WO2010087393A1 - エポキシ樹脂組成物、該エポキシ樹脂組成物の製造方法およびその硬化物 - Google Patents

エポキシ樹脂組成物、該エポキシ樹脂組成物の製造方法およびその硬化物 Download PDF

Info

Publication number
WO2010087393A1
WO2010087393A1 PCT/JP2010/051105 JP2010051105W WO2010087393A1 WO 2010087393 A1 WO2010087393 A1 WO 2010087393A1 JP 2010051105 W JP2010051105 W JP 2010051105W WO 2010087393 A1 WO2010087393 A1 WO 2010087393A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
epoxy resin
reaction
phenol
Prior art date
Application number
PCT/JP2010/051105
Other languages
English (en)
French (fr)
Inventor
慎司 岡本
匡敏 藤永
伸太郎 横沼
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2010548546A priority Critical patent/JP5616234B2/ja
Priority to CN2010800059927A priority patent/CN102300899B/zh
Publication of WO2010087393A1 publication Critical patent/WO2010087393A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition having low melt viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, rapid curing and flame retardancy, a production method thereof and a cured product thereof.
  • Epoxy resin compositions are widely used in the fields of electrical / electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance, etc.
  • carbon fiber reinforced composite materials that use carbon fibers with excellent specific strength and specific elastic modulus as reinforcing fibers and epoxy resin compositions with good wettability and adhesion with the carbon fibers as matrix resins also have low viscosity.
  • a resin composition having heat resistance.
  • the epoxy resin composition When used for a single-side sealed package such as BGA (Ball Grid Array), it has an excellent performance that the warpage of the package is small.
  • BGA Ball Grid Array
  • the fluidity is high in addition to the small warpage and the adhesiveness with the substrate surface is good. ing.
  • the melt viscosity is low, the fluidity and adhesion are improved, and a large amount of filler can be added, which is advantageous in terms of solder heat resistance and water resistance.
  • a low melt viscosity epoxy resin composition that combines low melt viscosity, high glass transition temperature, low moisture absorption, high adhesion, heat resistance, fast curing, and flame retardancy The appearance of things is strongly desired.
  • epoxy resin compositions with excellent water resistance and high adhesion at high glass transition temperatures are also desired for interlayer insulation materials for build-up substrates.
  • water resistance and storage stability are inherently required. It is desired to have a phenolic curing agent having excellent low melting viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, rapid curing, and flame retardancy.
  • An epoxy resin is often used as a resin material for electronic materials, and various phenol novolak condensates, amines, and acid anhydrides are used as curing agents for the epoxy resin.
  • phenolic novolak condensates are mainly used as curing agents for epoxy resins for semiconductor (IC) sealing from the viewpoint of heat resistance and reliability.
  • ICs have been highly integrated, packages have become smaller and thinner, and surface mounting methods have been applied, and the sealing material further improves thermal shock resistance and soldering heat resistance during surface mounting operations. It is requested.
  • a major factor affecting the soldering heat resistance is the hygroscopicity of the sealing resin material.
  • the moisture-absorbing sealing material generates an internal pressure due to vaporization of water at a high temperature during the surface mounting operation, and internal peeling and package cracks occur, resulting in poor soldering heat resistance. Accordingly, the epoxy resin is particularly required to have a low hygroscopic property.
  • the epoxy resin varnish for insulating a printed circuit board preferably has a lower viscosity in view of handling at the time of prepreg production, and the smaller the amount of organic solvent used, the better.
  • the viscosity of the epoxy resin solution used so far in this field cannot be sufficiently lowered or it is difficult to reduce the amount of the organic solvent used.
  • the sealing material As a method of reducing the hygroscopicity of the sealing material, there is a method of increasing the amount of filler such as non-hygroscopic silica filled in the sealing resin material.
  • the viscosity of the base resin material is high, the high filling property of the filler is impaired. Therefore, it is desirable that the viscosity of the epoxy resin is low.
  • the sealing material is required to have heat resistance, high strength, toughness, flame retardancy, adhesive strength, and the like.
  • Conventional sealing resin materials using phenol novolak condensate as a curing agent for the epoxy resin for sealing have a relatively high hygroscopic property and are not sufficiently satisfactory in terms of other physical properties.
  • an epoxy resin molding material for electronic component sealing (see Patent Document 6) that effectively uses formaldehyde is disclosed.
  • a material having further improved hygroscopicity, heat resistance, adhesive properties, flame retardancy, rapid curing, storage stability, and the like is desired.
  • the object of the present invention is excellent in low melt viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, fast curing, flame retardancy, etc., especially for electrical and electronic industries, for sealing electronic components
  • Another object of the present invention is to provide an epoxy resin composition for laminated board materials, a method for producing the epoxy resin composition, and a cured resin obtained from the epoxy resin composition.
  • an epoxy resin composition having low moisture absorption, high adhesion, and heat-resistant physical properties of the aralkyl type phenol resin and having a low melt viscosity
  • the present inventors have found that an alkylene type in the molecule.
  • a polymer unit and a phenol novolak polymer unit By having both a polymer unit and a phenol novolak polymer unit, and making the ratio of the degree of polymerization of the both within a specific range, low melt viscosity and fast curing, low moisture absorption, high adhesion, and excellent heat resistance
  • the present inventors have found that a phenol novolac resin composition can be obtained, and found that an excellent epoxy resin composition can be obtained by the reaction of the obtained resin composition with epihalohydrin, thereby completing the present invention.
  • the present invention includes an epoxy resin containing a component represented by the following general formula (1) and having a compound content represented by the following general formula (3-1) and general formula (3-2) of 50% or less. It is a resin composition.
  • the m / n is 0.04 to 20
  • the melt viscosity at 150 ° C. is 10 to 200 mPa ⁇ s.
  • the epoxy resin composition is produced by reacting a phenol resin composition containing a component represented by (II) with an epihalohydrin in the presence of an alkali metal hydroxide.
  • this invention is the epoxy resin hardened
  • the epoxy resin composition of the present invention comprises a biphenylylene compound represented by the general formula (6-1) described below and / or a xylylene compound represented by the general formula (6-2) described below, a phenol compound, It is an epoxy resin composition obtained by reacting an epihalohydrin with a phenol resin composition obtained by reacting formaldehyde.
  • the epoxy resin composition of the present invention comprises a biphenylylene group such as 4,4′-biphenylylene group, 2,4′-biphenylylene group, 2,2′-biphenylylene group, 1,4-xylylene group, It has both polymer units of an epoxy resin containing at least one cross-linking group selected from xylylene groups such as 2-xylylene group and 1,3-xylylene group and an epoxy resin containing methylene cross-linking group.
  • xylylene groups such as 2-xylylene group and 1,3-xylylene group
  • an epoxy resin containing methylene cross-linking group By having a structure in which the ratio is in a specific range, suitable for epoxy resin compositions, low melt viscosity, high glass transition temperature, low moisture absorption, high adhesion, heat resistance, and flame retardancy, storage stability, It is a resin composition having good handleability.
  • the resin composition of the present invention can be applied to the latest semiconductor sealing materials such as BGA.
  • the epoxy resin composition of the present invention is a phenol having a total of n polymerization units of a phenol resin in which R represented by the general formula (4) contains a biphenylylene cross-linking group and / or a xylylene cross-linking group, and a methylene cross-linking group.
  • the polymerization degree ratio m / n of each polymer unit in the formula (1) is 0.04 to 20, more preferably 0.05 to 9, and still more preferably 0.1 to 6, and the melt viscosity at 150 ° C.
  • the epoxy resin composition has a viscosity of 5 to 1000 mPa ⁇ s, preferably 10 to 200 mPa ⁇ s. It is preferable that m / n is 0.04 to 20 and the melt viscosity at 150 ° C.
  • the preferred range differs depending on the average molecular weight of the epoxy resin composition (degree of polymerization: depending on the molar ratio of the phenol compound used and the total amount of the cross-linked product and formaldehyde constituting R in the general formula (4)).
  • the details of the phenol resin composition represented by the general formula (4) are described in JP-A-2008-189708.
  • a phenol resin composition in which the molar ratio of the phenol compound to be used and the total amount used of the cross-linked product and formaldehyde constituting R in the general formula (4) is less than 2.0 to 3.0 times mol is glycidyl ether
  • the converted epoxy resin composition has a melt viscosity at 150 ° C. of 100 to 200 mPa ⁇ s, more preferably 100 to 150 mPa ⁇ s.
  • the melt viscosity at 150 ° C. is 10 to 100 mPa ⁇ s, more preferably 30 to 80 mPa ⁇ s.
  • the epoxy resin composition of the present invention is not particularly limited with respect to the value of m / n, but if the value of m / n is less than 0.04, the effect of lowering the melt viscosity may be insufficient, and the fluidity May not improve. Therefore, the value of m / n is preferably 0.04 or more. More preferably, it is 0.1-6.
  • a preferable range of the molar ratio (phenol / (m + n)) of the phenol compound and the total amount of the cross-linked product and formaldehyde constituting R in the general formula (4) is 2.0 to 5, and this is taken into account.
  • a preferable value of m / n is 0.1 to 6, and a more preferable range is 0.3 to 3.
  • the phenol compound used in the present invention has at least one hydroxyl group on the benzene ring, and R 1 , R 2 and R 3 may be the same or different, and each is a hydrogen atom.
  • An alkyl group having 1 to 6 carbon atoms or an aryl group, and p, q and r are a group of compounds each consisting of an integer of 0 to 2.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a linear alkyl group such as a methyl group, an ethyl group, and a propyl group, and a branched alkyl group such as an isopropyl group and a tertiary butyl group.
  • phenol includes a phenyl group. There is no problem even if these phenol compounds are used alone or in combination of two or more.
  • Specific phenol compounds include, for example, monohydric phenols such as phenol, cresol, ethylphenol, propylphenol, butylphenol, hexylphenol, nonylphenol, xylenol, and butylmethylphenol, and divalent phenols such as catechol, resorcin, and hydroquinone. Among them, phenol is particularly preferable.
  • formaldehyde is preferably exemplified.
  • the form of formaldehyde is not particularly limited, but a formaldehyde aqueous solution and a polymer that decomposes in the presence of an acid such as paraformaldehyde and trioxane to formaldehyde can also be used.
  • a formaldehyde aqueous solution that is easy to handle is preferable, and a commercially available 42% formaldehyde aqueous solution can be used as it is.
  • the bridging group R used in the present invention is a 4,4′-biphenylylene group, a 2,4′-biphenylylene group or a 2,2 ′ represented by the following general formula (2-1) and general formula (2-2).
  • bridging groups are derived from compounds represented by the following formulas (6-1) and (6-2).
  • Y represents a halogen atom, a hydroxyl group, or an alkoxyl group having 1 to 6 carbon atoms.
  • the halogen atom include fluorine, chlorine, bromine and iodine, with chlorine being preferred.
  • the alkoxyl group is not particularly limited, but is preferably an aliphatic alkoxy having 1 to 6 carbon atoms.
  • the compounds represented by the formulas (6-1) and (6-2) include 4,4′-di (halogenomethyl) biphenyl, 2,4′-di (halogenomethyl) biphenyl, 2, 2′-di (halogenomethyl) biphenyl, 4,4′-di (alkoxymethyl) biphenyl, 2,4′-di (alkoxymethyl) biphenyl, 2,2′-di (alkoxymethyl) biphenyl, 1,4- Di (halogenomethyl) benzene, 1,4-di (alkoxymethyl) benzene, 1,2-di (halogenomethyl) benzene, 1,2-di (alkoxymethyl) benzene, 1,3-di (halogenomethyl) benzene And 1,3-di (alkoxymethyl) benzene, or 4,4′-di (hydroxymethyl) biphenyl, 2,4′-di (hydroxymethyl) biphenyl, 2,2′-di (hydroxyme Le)
  • Preferred specific compounds of the compounds represented by formulas (6-1) and (6-2) include 4,4′-di (chloromethyl) biphenyl, 4,4′-di (methoxymethyl) biphenyl, 4,4′-di (ethoxymethyl) biphenyl, 1,4-di (chloromethyl) benzene, 1,4-di (methoxymethyl) benzene and 1,4-di (ethoxymethyl) benzene.
  • R in the formula (4) it is not a problem to use a biphenylylene group and / or a xylylene group alone or in combination.
  • R preferably has a biphenylylene cross-linking group, particularly a 4,4′-biphenylylene cross-linking group.
  • the content ratio of the compounds represented by the following general formulas (5-1) and (5-2) (which may be collectively referred to as “binuclear bodies”) is the phenol resin. On the other hand, it is preferably 50% or less, particularly 47% or less, more preferably 5 to 47%, and particularly preferably 10 to 40%.
  • the content ratio of the compounds represented by the general formulas (5-1) and (5-2) is determined from the area ratio of the chart measured by gel permeation chromatography as described later.
  • R 4 and R 5 may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group.
  • alkyl group having 1 to 6 carbon atoms in R 4 and R 5 in the general formula (5-1) and the general formula (5-2) include linear alkyl groups such as a methyl group, an ethyl group, and a propyl group, Examples thereof include branched alkyl groups such as isopropyl group and tertiary butyl group, and examples of aryl groups include phenyl group.
  • n-fold moles of R that is, 4,4′-biphenylylene group or 2,4,4, with respect to a certain amount of phenol compound in the presence of an acid catalyst.
  • a cross-linked product containing a '-biphenylylene group or 2,2'-biphenylylene group and / or 1,4-xylylene group, 1,2-xylylene group or 1,3-xylylene group and m-fold moles of formaldehyde They can be added simultaneously and carried out in a single-stage condensation reaction.
  • the amount of phenol used per 1 mol of the total of the cross-linked product and formaldehyde constituting R in the general formula (4) is no particular restriction on the amount of phenol used per 1 mol of the total of the cross-linked product and formaldehyde constituting R in the general formula (4), but preferably 1.3 to 10 times mol, more preferably Is used in the range of 2.0 to 5 moles, and the phenol compound and formaldehyde are preferentially reacted at a low reaction temperature (eg, around 100 ° C. as an example). It is preferable to employ a system in which the composition is formed, and then the methylene crosslinking group phenol resin composition, the crosslinked body constituting R in the general formula (4), and the phenol are reacted by raising the temperature or increasing the catalyst.
  • the acid catalyst to be used is not particularly limited, and known ones such as hydrochloric acid, oxalic acid, sulfuric acid, phosphoric acid, paratoluenesulfonic acid can be used alone or in combination of two or more. Toluenesulfonic acid is particularly preferred.
  • the temperature of the condensation reaction is 50 to 120 ° C., preferably 80 to 110 ° C. as a low temperature condition, and the reaction temperature at the time of temperature rise is 130 to 230 ° C., preferably 150 to 200 ° C.
  • the time for the condensation reaction varies depending on the reaction temperature and the type and amount of the catalyst used, but is about 1 to 24 hours.
  • the reaction pressure is usually carried out under normal pressure, but there is no problem even if it is carried out under slight pressure or reduced pressure.
  • the amount of phenol used is less than 1.3 moles per 1 mole of the total of the cross-linked product and formaldehyde constituting R in the general formula (4), a phenol resin composition having a high molecular weight and a high melt viscosity is obtained. The tendency to be recognized is recognized.
  • the amount of phenol used is more than 10 times mole, low molecular weight components of 2 nuclei or less increase, Tg and mechanical strength decrease tend to decrease physical properties. Increasing costs and problems in terms of environmental impact.
  • the amount of phenol used is preferably 1.5 to 10 moles.
  • the phenol resin composition used in the present invention includes a phenol compound, formaldehyde, 4,4′-biphenylylene group, 2,4′-biphenylylene group, 2,2,2 constituting R in the general formula (4).
  • a phenol compound formaldehyde, 4,4′-biphenylylene group, 2,4′-biphenylylene group, 2,2,2 constituting R in the general formula (4).
  • cross-linked products such as' -biphenylylene group and / or 1,4-xylylene group, 1,2-xylylene group, 1,3-xylylene group, etc. It is desirable from the viewpoint of economy and productivity.
  • a phenol compound and formaldehyde are condensed in advance, and then a 4,4′-biphenylylene group or a 2,4′-biphenylylene group constituting R in the general formula (4) or 2,2'-biphenylylene group and / or 1,4-xylylene group, 1,2-xylylene group, 1,3-xylylene group, etc.
  • the phenol resin added in the second stage reaction is a total of 1 to 2 stages with respect to a total of 1 mol of the cross-linked product constituting R in the general formula (4) and formaldehyde charged in the total of the 1 to 2 stage reactions. It is particularly preferable to use phenol in the range of 1.3 mol times or more, preferably 2.3 to 5 times mol.
  • the degree of polymerization of each polymer unit of the alkylene group-containing crosslinkable phenol resin and the methylene crosslinkable group-containing phenol resin that is, the distribution of n and m becomes narrow, and the control of the molecular weight becomes easy.
  • a polymer of the desired melt viscosity is easily obtained.
  • formaldehyde can be added after the reaction of the cross-linked product such as 1,2-xylylene group or 1,3-xylylene group.
  • the total of phenol compounds is charged in the formula (1)
  • the synthesis is carried out in the vicinity of 1.3 times moles with respect to the total of 1 mole of the cross-linked product and formaldehyde constituting R, there is a case where unfavorable cases occur because the polymerization progresses and the viscosity does not progress.
  • the two-stage condensation reaction can be carried out according to the one-stage condensation reaction conditions.
  • the amount of the acid catalyst used in the one-stage condensation reaction and the two-stage condensation reaction varies depending on the kind thereof, but in the case of oxalic acid, about 0.1 to 2.0% by weight, and in the case of sulfuric acid, 0.05 to 0.00. About 5% by weight, and in the case of paratoluenesulfonic acid, about 0.02 to 0.1% by weight is preferably used.
  • reaction temperature is not particularly limited, but is preferably set in the range of about 60 to 160 ° C. More preferably, it is 80 to 140 ° C.
  • the phenol resin composition used in the present invention can be obtained by removing the unreacted phenol compound and the acid catalyst.
  • a method for removing a phenol compound a method is generally employed in which heat is applied under reduced pressure or while blowing an inert gas to distill the phenol compound out of the system.
  • the removal of the acid catalyst includes a method such as washing with water.
  • the epoxy resin composition of the present invention has a content ratio of compounds represented by the following general formula (3-1) and general formula (3-2) (these may be collectively referred to as “binuclear bodies”). It must be 50% or less with respect to the epoxy resin, particularly preferably 47% or less, more preferably 5 to 47%, and particularly preferably 10 to 40%.
  • the content ratio of the compounds represented by the general formula (3-1) and the general formula (3-2) is obtained from the area ratio of the chart measured by gel permeation chromatography as described later.
  • G represents a glycidyl group
  • R 4 and R 5 may be the same or different, and each represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group.
  • alkyl group having 1 to 6 carbon atoms of R 4 and R 5 include a linear alkyl group such as a methyl group, an ethyl group, and a propyl group, and a branched alkyl group such as an isopropyl group and a tertiary butyl group.
  • the aryl group include a phenyl group.
  • the content ratio of the compounds represented by the general formulas (3-1) and (3-2) exceeds 50%, the ICI viscosity of the epoxy resin composition at 150 ° C. The viscosity becomes so high that it cannot be measured. For this reason, the handleability of an epoxy resin composition worsens.
  • the phenol resin composition represented by the general formula (4) is subjected to epihalohydrin in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. It can be obtained by glycidyl etherification at 10 ° C. to 120 ° C.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide.
  • glycidyl etherification a conventionally known method can be used and is not particularly limited.
  • epihalohydrin epichlorohydrin, ⁇ -methylepichlorohydrin, ⁇ -methylepichlorohydrin, epibromohydrin, etc. can be used. preferable.
  • the amount of epihalohydrin used is not particularly limited and can be appropriately selected according to the molecular weight of the target epoxy resin, but an excess amount is usually used relative to the phenol resin. Since the epoxy resin composition of the present invention is desired to have a low melt viscosity, the amount of epichlorohydrin used is 3.0 to 20 moles, preferably 3.0 to 10 moles per mole of the hydroxyl group of the phenol resin composition. Is a mole.
  • the alkali metal hydroxide used may be a solid or an aqueous solution thereof.
  • water and epihalohydrin are allowed to flow out of the reaction system continuously under reduced pressure or normal pressure to remove moisture.
  • a method may be used in which the removed epihalohydrin is continuously returned to the reaction system.
  • the amount of the alkali metal hydroxide used is 0.8 to 2.0 mol, preferably 0.9 to 1.3 mol, per mol of the hydroxyl group of the phenol resin composition.
  • the reaction is preferably carried out by adding an alcohol such as methanol, ethanol or isopropyl alcohol, or an aprotic polar solvent such as dimethylsulfone, dimethylsulfoxide, tetrahydrofuran or dioxane.
  • an alcohol such as methanol, ethanol or isopropyl alcohol
  • an aprotic polar solvent such as dimethylsulfone, dimethylsulfoxide, tetrahydrofuran or dioxane.
  • a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide or trimethylbenzylammonium chloride is added as a catalyst to a mixture of the phenol resin composition represented by the general formula (4) and epihalohydrin, and obtained by these reactions.
  • a method of adding an alkali metal hydroxide to the halohydrin etherified product to cause ring closure may be used.
  • the reaction temperature is not particularly limited, but is usually 30 to 90 ° C, preferably 35 to 80 ° C.
  • reaction time is affected by the reaction temperature, it is usually 0.5 to 10 hours, preferably 1 to 8 hours.
  • the recovered crude epoxy resin composition is dissolved in a solvent such as toluene or methylid butyl ketone, and an aqueous solution of alkali metal hydroxide is added and reacted to cause ring closure. You can be sure.
  • the produced salt is removed by filtration, washing with water, etc., and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin composition represented by the general formula (1) of the present invention.
  • a curing agent and a curing accelerator can be added to the epoxy resin composition of the present invention.
  • the addition amount of the curing agent is preferably 5 to 40 parts by weight, and more preferably 5 to 20 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the addition amount of the curing accelerator is preferably 0.01 to 10 parts by weight, and more preferably 0.01 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the curing agent and the curing accelerator are described.
  • curing agent examples include phenol compounds, amine compounds, acid anhydride compounds, amide compounds, and the like.
  • amine curing agents such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, polyalkylene glycol polyamine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, dimer of linolenic acid and ethylenediamine.
  • Amide-based curing agents such as polyamide resin to be synthesized, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride , Acid anhydride curing agents such as methylhexahydrophthalic anhydride, phenol novolak resin, cresol novolak resin, bisphenol A type novolak resin, bisphenol F type novolak resin, Aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol trimethylol methane resin, tetraphenylol ethane resin, naphthol novolak resin,
  • a hardening accelerator As a hardening accelerator, the well-known hardening accelerator for hardening an epoxy resin composition with a phenol type hardening
  • curing accelerators include organic phosphine compounds and their boron salts, tertiary amines, quaternary ammonium salts, imidazoles and their tetraphenylboron salts, and among them, curability and moisture resistance. From these points, triphenylphosphine and 1,8-diazabicyclo (5,4,0) undecene-7 (DBU) are preferable.
  • a heat-latent curing accelerator that exhibits activity by heating is more preferable, and tetraphenylphosphonium derivatives such as tetraphenylphosphonium and tetraphenylborate are preferable.
  • an inorganic filler In the epoxy resin composition of the present invention, an inorganic filler, a release agent, a colorant, a flame retardant, a low stress agent, or the like can be added or reacted in advance as necessary. Especially when used for semiconductor encapsulation, the addition of inorganic fillers is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, glass, calcium silicate, gypsum, calcium carbonate, magnesite, clay, talc, mica, magnesia, barium sulfate and the like. However, amorphous silica, crystalline silica and the like are particularly preferable. The usage-amount of these additives may be the same as the usage-amount in the conventional epoxy resin composition for semiconductor sealing.
  • the epoxy resin composition of the present invention can be a cured product.
  • a cured product of the epoxy resin composition is prepared by mixing the epoxy resin composition of the present invention, a phenol resin composition as a curing agent, and a curing accelerator, and curing the mixture in a temperature range of 100 to 250 ° C. can get.
  • a cured product can also be obtained by curing the epoxy resin composition of the present invention in a temperature range of 100 to 250 ° C.
  • the bottle was placed in a hot air circulating dryer at 95 ° C. ⁇ 24 Hr. I left it alone.
  • the bottle was taken out from the hot air circulation dryer, immersed in a low temperature constant temperature water bath and cooled to 25 ° C. After cooling, the water adhering to the surface was well wiped and the weight was measured.
  • the water absorption was determined using the following equation.
  • Water absorption [%] ((BA) / A) ⁇ 100
  • B Weight after water absorption [g] (5) Tg (glass transition temperature)
  • Each composition was 150 ° C. ⁇ 5 Hr. + 180 ° C. ⁇ 3 Hr.
  • a sample was prepared by casting, curing, and cutting to the following size.
  • Synthesis of phenolic resin composition A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube was charged with 564 g (6.00 mol) of phenol, 4,4′-di (methoxymethyl) biphenyl (hereinafter abbreviated as 4,4′-BMMB). 202.60 g (0.84 mol), 42% formalin aqueous solution 40.0 g (0.56 mol), and 50% sulfuric acid aqueous solution 0.28 g were charged and reacted at 100 ° C. for 3 hours. Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C.
  • 4,4′-BMMB 4,4′-BMMB
  • the obtained phenol resin composition had an ICI viscosity of 39 mPa ⁇ s, and an OH equivalent by an acetylation method was 166 g / eq.
  • Synthesis example 2 In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 470 g (5.00 mol), 4,4′-BMMB 233.44 g (0.96 mol), 42% formalin aqueous solution 45. 71 g (0.64 mol) and 50% sulfuric acid aqueous solution 0.26 g were charged and reacted at 100 ° C. for 3 hours. Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off.
  • the obtained reaction solution was cooled and washed with water three times.
  • the oil layer was separated and 360 g of a phenol resin composition was obtained by distilling off unreacted phenol by distillation under reduced pressure.
  • the obtained phenol resin composition had an ICI viscosity of 70 mPa ⁇ s, and an OH equivalent by an acetylation method was 164 g / eq.
  • Synthesis example 3 In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, phenol 470 g (5.00 mol), 4,4′-BMMB 288.10 g (1.19 mol), 42% formalin aqueous solution 56. 43 g (0.79 mol) and 50% sulfuric acid aqueous solution 0.29 g were charged and reacted at 100 ° C. for 3 hours. Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times.
  • the oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 450 g of a phenol resin composition.
  • the obtained phenol resin composition had an ICI viscosity of 75 mPa ⁇ s, and an OH equivalent by an acetylation method was 171 g / eq.
  • Synthesis example 4 A glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube was charged with 404.2 g (4.30 mol) of phenol, 4,4′-di (chloromethyl) biphenyl (hereinafter, 4,4′-BCMB). 150.7 g (0.60 mol) was charged and reacted at 100 ° C. for 3 hours, and then 28.57 g (0.40 mol) of 42% formalin aqueous solution was added, and then reacted at 100 ° C. for 3 hours. I let you. Meanwhile, the hydrochloric acid produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times.
  • the oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 251 g of a phenol resin composition.
  • the obtained phenol resin composition had an ICI viscosity of 40 mPa ⁇ s, and an OH equivalent by an acetylation method was 166 g / eq.
  • Synthesis example 5 To a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 470 g (5.00 mol) of phenol, 302.5 g (1.25 mol) of 4,4′-BMMB, 50% aqueous sulfuric acid solution was added. 28 g was charged and reacted for 2 hours while maintaining the reaction temperature at 125 ° C., then heated to 165 ° C. and reacted for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 380 g of a phenol resin composition. The obtained phenol resin composition had an ICI viscosity of 115 mPa ⁇ s and an OH equivalent by an acetylation method of 202 g / eq.
  • Synthesis example 7 In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, phenol 274.5 g (2.92 mol), 4,4′-BMMB 290.4 g (1.23 mol), 42% formalin aqueous solution 57.14 g (0.82 mol) and 50% sulfuric acid aqueous solution 0.22 g were charged and reacted at 100 ° C. for 3 hours. Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off.
  • the obtained reaction solution was cooled and washed with water three times.
  • the oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 370 g of a phenol resin composition.
  • the obtained phenol resin composition had an ICI viscosity of 90 mPa ⁇ s, and an OH equivalent by an acetylation method was 188 g / eq.
  • Synthesis example 8 In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 685 g (7.27 mol) of phenol, 151.15 g (0.62 mol) of 4,4′-BMMB, and a 42% formalin aqueous solution 29. 7 g (0.4 mol) and 50% sulfuric acid aqueous solution 0.34 g were charged and reacted at 100 ° C. for 3 hours. Thereafter, the reaction was carried out for 2 hours while maintaining the reaction temperature at 125 ° C., then the temperature was raised to 165 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off.
  • the obtained reaction solution was cooled and washed with water three times.
  • the oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 250 g of a phenol resin composition.
  • the obtained phenol resin composition had an ICI viscosity of 40 mPa ⁇ s, and an OH equivalent by an acetylation method was 164 g / eq.
  • Synthesis Example 9 In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 141 g (1.5 mol) of phenol, 248.6 g (1.03 mol) of 4,4′-BMMB, and 50% aqueous sulfuric acid solution were added. 16 g was charged and reacted for 2 hours while maintaining the reaction temperature at 125 ° C., then heated to 165 ° C. and reacted for 3 hours. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and 280 g of a phenol resin composition was obtained by distilling off unreacted phenol by distillation under reduced pressure.
  • the ICI viscosity of the obtained phenol resin composition was not measurable at 150 ° C., and the OH equivalent by the acetylation method was 240 g / eq.
  • the synthesis conditions and physical property values of the phenol resin compositions obtained in Synthesis Examples 1 to 9 are summarized in Table 1.
  • the content (%) of the compounds of the general formulas (5-1) and (5-2) in the phenol resin composition is the phenol resin (that is, added) of the chart obtained by the method for measuring the number average molecular weight.
  • the peak area corresponding to the compounds of the general formulas (5-1) and (5-2) in the total peak area (excluding the product) was obtained.
  • Synthesis Example 10 In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 470.00 g (5.00 mol) of phenol, 1,4-di (methoxymethyl) benzene (hereinafter abbreviated as 1,4-PXDM). ) 276.67 g (1.67 mol) and 50% sulfuric acid aqueous solution 0.33 g were charged and reacted at 130 ° C. for 1 hour. Thereafter, the reaction temperature was raised to 160 ° C. and the reaction was carried out for 3 hours. Meanwhile, the methanol produced was distilled off.
  • 1,4-PXDM 1,4-di (methoxymethyl) benzene
  • the content (%) of the compounds of the general formulas (3-1) and (3-2) (dinuclear body) in the epoxy resin composition is the epoxy content of the chart obtained by the method for measuring the number average molecular weight. It was determined from the ratio of peak areas corresponding to the compounds of the general formulas (3-1) and (3-2) in the total peak area of the resin (that is, excluding additives).
  • Example 1 In a glass reaction vessel equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 298.8 g (1.80 mol) of the phenol resin composition obtained in Synthesis Example 1 and 999.0 g (10.80 mol) of epichlorohydrin. ) And 93.75 g of methanol were charged and dissolved uniformly. At 50 ° C., solid 96% sodium hydroxide 75 g (1.80 mol) was added in portions over 90 minutes. Thereafter, the reaction was carried out at 50 ° C. for 2 hours, and the reaction was continued for another 2 hours after the temperature was raised to 70 ° C. After completion of the reaction, excess epichlorohydrin was removed under reduced pressure.
  • Example 2 In a glass reaction vessel equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 278.8 g (1.70 mol) of the phenol resin composition obtained in Synthesis Example 2 and 943.5 g (10.20 mol) of epichlorohydrin were obtained. ) And 88.54 g of methanol were charged and dissolved uniformly. At 50 ° C., 70.83 g (1.70 mol) of solid 96% sodium hydroxide was added in portions over 90 minutes. Thereafter, the reaction was carried out at 50 ° C. for 2 hours, and the reaction was continued for another 2 hours after the temperature was raised to 70 ° C. After completion of the reaction, excess epichlorohydrin was removed under reduced pressure.
  • Example 3 In a glass reaction vessel equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 290.7 g (1.70 mol) of the phenol resin composition obtained in Synthesis Example 3 and 943.5 g (10.20 mol) of epichlorohydrin. ) And 88.54 g of methanol were charged and dissolved uniformly. At 50 ° C., 70.83 g (1.70 mol) of solid 96% sodium hydroxide was added in portions over 90 minutes. Thereafter, the reaction was carried out at 50 ° C. for 2 hours, and the reaction was continued for another 2 hours after the temperature was raised to 70 ° C. After completion of the reaction, excess epichlorohydrin was removed under reduced pressure.
  • Example 4 In a glass reaction vessel equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 232.4 g (1.40 mol) of the phenol resin composition obtained in Synthesis Example 4 and 777.0 g (8.40 mol) of epichlorohydrin were obtained. ) And 72.92 g of methanol were charged and dissolved uniformly. At 50 ° C., 58.33 g (1.40 mol) of solid 96% sodium hydroxide was added in portions over 90 minutes. Thereafter, the reaction was carried out at 50 ° C. for 2 hours, and the reaction was continued for another 2 hours after the temperature was raised to 70 ° C. After completion of the reaction, excess epichlorohydrin was removed under reduced pressure.
  • Example 5 In a glass reaction vessel equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 282 g (1.5 mol) of the phenol resin composition obtained in Synthesis Example 7, 832.5 g (9.0 mol) of epichlorohydrin, Methanol 78.13 g was charged and dissolved uniformly. At 50 ° C., 62.5 g (1.5 mol) of solid 96% sodium hydroxide was added in portions over 90 minutes. Thereafter, the reaction was carried out at 50 ° C. for 2 hours, and the reaction was continued for another 2 hours after the temperature was raised to 70 ° C. After completion of the reaction, excess epichlorohydrin was removed under reduced pressure.
  • Example 6 In a glass reaction vessel equipped with a stirrer, a condenser, and a nitrogen gas introduction tube, 272 g (2.0 mol) of the phenol resin obtained in Synthesis Example 10, 1110 g of epichlorohydrin (12.0 mol), and 88.00 g of methanol. Was uniformly dissolved. At 50 ° C., 83.33 g (2.0 mol) of solid 96% sodium hydroxide was added in portions over 90 minutes. Thereafter, the reaction was carried out at 50 ° C. for 2 hours, and the reaction was continued for another 2 hours after the temperature was raised to 70 ° C. After completion of the reaction, excess epichlorohydrin was removed under reduced pressure.
  • Comparative Example 1 In a glass reaction vessel equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 303.0 g (1.50 mol) of the phenol resin composition obtained in Synthesis Example 5 and 832.5 g (9.0 mol) of epichlorohydrin were obtained. ) And 78.13 g of methanol were charged and dissolved uniformly. At 50 ° C., 62.50 g (1.50 mol) of solid 96% sodium hydroxide was added in portions over 90 minutes. Thereafter, the reaction was carried out at 50 ° C. for 2 hours, and the reaction was continued for another 2 hours after the temperature was raised to 70 ° C.
  • Comparative Example 3 An epoxy resin obtained by epoxidizing a commercially available phenol resin synthesized from orthocresol and formalin (EOCN-1020-55: manufactured by Nippon Kayaku Co., Ltd.) was used as the epoxy resin.
  • Table 2 shows the physical property values of the epoxy resin compositions of Examples 1 to 5 and Comparative Examples 1 to 5, the blending ratio of the cured product 1 of the epoxy resin composition obtained by the method shown below, and the properties of the cured product 1 Are summarized in
  • TPP triphenylphosphine
  • the epoxy resin composition and the curing agent are blended so that the phenol hydroxyl group equivalent ratio and the epoxy equivalent ratio are 1: 1, and the TPP catalyst is 0 with respect to the weight of the epoxy resin composition of the blending. .15 wt% was charged. These were heated to 150 ° C., melted and mixed, vacuum degassed, cast into a 150 ° C.
  • Table 3 shows the physical property values of the epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 5, the blending ratio of the cured product 2 of the epoxy resin composition obtained by the method shown below, and the properties of the cured product 2.
  • the epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 5 and the curing agent were blended so that the phenol hydroxyl group equivalent and the epoxy equivalent ratio were 1: 1, and the TPP catalyst was an epoxy resin composition of the blend. 2.3 wt% of the product weight was charged.
  • the filler was added to 83 wt%, and these were kneaded with a biaxial kneader under conditions of 100 ° C. to 110 ° C. and pulverized to prepare EMC powder.
  • a tablet was prepared using the obtained EMC powder, and spiral flow measurement was performed.
  • a test piece was prepared using the above-mentioned EMC powder with a transfer molding machine and post-cured at 180 ° C. for 8 hours to obtain a test piece for evaluating water absorption, strength, and flame retardancy.
  • the epoxy resin composition obtained in the examples of the present invention is an epoxy resin having a low melt viscosity while maintaining a high glass transition temperature, low moisture absorption, high adhesion, heat resistance, rapid curing, and flame retardancy. It became clear that it was a composition.
  • an epoxy resin composition having a low melt viscosity while the cured product maintains a high glass transition temperature, low moisture absorption, high adhesion, heat resistance, rapid curing, and flame retardancy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性などに優れ、特に電気および電子産業用、電子部品の封止用、積層板材料用のエポキシ樹脂組成物およびその製造方法、およびその用途を提供することを課題とする。 この課題は、分子内にアルキレン型重合体単位と、フェノールノボラック重合体単位を共に有し、両者の重合度の比を特定範囲としたフェノール樹脂とエピハロヒドリンとの反応により得られ、2核体の含有割合が50%以下であるエポキシ樹脂組成物により解決される。

Description

エポキシ樹脂組成物、該エポキシ樹脂組成物の製造方法およびその硬化物
 本発明は、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化及び難燃性を兼ね備えたエポキシ樹脂組成物、その製造方法及びその硬化物に関する。
 エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
 しかし近年、電気・電子材料分野においてはその発展に伴い、フィラーを高充填させるための低粘度化をはじめ、難燃性、耐熱性、耐湿性、密着性、誘電特性等の諸特性の一層の向上が求められている。これらの要求に対するエポキシ樹脂組成物については、多くの提案がなされてはいるが、未だ十分とはいえない。特に電子回路基盤材料において、実装ハンダ処置時のクラックなど吸湿が原因の不良が大きな問題であり、低吸湿性材料への要求が強い。低吸湿率化のためにはフィラーの高充填化が必要であり、この高充填化には、樹脂組成物の低粘度化が必要である。一方、比強度、比弾性率に優れる炭素繊維を強化繊維に、該炭素繊維と濡れ性、接着性が良好なエポキシ樹脂組成物をマトリックス樹脂に使用する炭素繊維強化複合材料においても、低粘度で耐熱性を有する樹脂組成物が求められている。
 エポキシ樹脂組成物は、BGA(Ball Grid Array)などの片面封止パッケージに用いた場合、パッケージの反りが小さいという優れた性能を有する。しかし最近の半導体パッケージでは、例えばBGAの場合、さらなるファインピッチ化や一括封止タイプになり、反りが小さいことの他に流動性が高いこと、基板表面との密着性が良いことなどが求められている。また低溶融粘度であれば流動性や密着性が向上し、フィラーも多く配合できるので半田耐熱性や耐水性の面でも有利になる。即ちこれら封止材への要求特性を満たすために、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を兼ね備えた低溶融粘度エポキシ樹脂組成物の出現が強く望まれている。
 また、ビルドアップ基板の層間絶縁材にも、耐水性に優れ、高ガラス転移温度で接着性のよいエポキシ樹脂組成物が望まれており、これを達成するために、元々耐水性や保存安定性に優れたフェノール系硬化剤で、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を兼ね備えたものが望まれている。
 電子材料用樹脂材料にはエポキシ樹脂が多く用いられ、そのエポキシ樹脂の硬化剤としては各種のフェノ-ルノボラック縮合体、アミン類、酸無水物が使用される。特に半導体(IC)封止用エポキシ樹脂の硬化剤としては、耐熱性、信頼性の面からフェノ-ル性ノボラック縮合体が主に用いられる。近年、ICの高集積化、パッケ-ジの小型、薄型化、また表面実装方式の適用が進み、その封止用材料には耐熱衝撃性および表面実装作業時のソルダリング耐熱性を一層向上させることが要求されている。ソルダリング耐熱性を左右する大きな要因として、封止用樹脂材料の吸湿性が挙げられる。すなわち、吸湿した封止用材料は表面実装作業時の高温下で水分の気化による内圧が発生し、内部剥離やパッケ-ジクラックが発生してソルダリング耐熱性が劣る。したがって、エポキシ樹脂は低吸湿性であることが特に要求される。
 プリント基板絶縁用のエポキシ樹脂ワニスは、プリプレグ製造時の取り扱い性を考慮すると、その粘度が低い方が好ましく、有機溶剤の使用量も少ない程よい。しかしながら、この分野で使用されるこれまでのエポキシ樹脂溶液の粘度は、十分に満足できるほど低くすることができないか、あるいは有機溶剤の使用量を少なくすることが難しいという問題点がある。
 一方、封止用材料の吸湿性を低下させる方法として、封止用樹脂材料に充填される非吸湿性のシリカなどの充填材を増量する方法がある。この場合、ベ-スの樹脂材料の粘度が高いと充填材の高充填性が損なわれるので、エポキシ樹脂の粘度の低いことが望まれる。また、封止用材料には耐熱性、高強度、強靱性、難燃性、接着強さなどが求められる。封止用エポキシ樹脂の硬化剤としてフェノ-ルノボラック縮合体を用いた従来の封止用樹脂材料では、吸湿性が比較的高く、また他の物性の面からも十分に満足できるものではなかった。
 そこで、低吸湿性、耐熱性、接着性、難燃性などを向上させるために各種のフェノ-ルノボラック縮合体及びそのエピハロヒドリンとの反応物が提案されている。例えば、o-クレゾ-ルなどのアルキルフェノ-ル類を用いたノボラック縮合体、また、1-ナフト-ルなどのナフト-ル類を用いたノボラック縮合体がある(例えば、特許文献1から3参照)。また、フェノ-ルの縮合剤としてジ(ヒドロキシプロピル)ビフェニルを用いたフェノ-ル性化合物が開示されており(特許文献4参照)、ビス(メトキシメチル)ビフェニル混合物を用いたフェノ-ルノボラック縮合体を提案している(特許文献5参照)。さらに、ホルムアルデヒドを有効に利用した電子部品封止用エポキシ樹脂成型材料(特許文献6参照)が開示されている。
 しかし、さらに一層の吸湿性、耐熱性、接着特性、難燃性、速硬化、保存安定性などが向上した材料が望まれている。
特開昭59-230017号公報 特開平05-078437号公報 特開平05-086156号公報 特開平05-117350号公報 特開平08-143648号公報 特開昭63-022824号公報
 本発明の課題は、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性などに優れ、特に電気および電子産業用、電子部品の封止用、積層板材料用のエポキシ樹脂組成物、該エポキシ樹脂組成物の製造方法ならびに該エポキシ樹脂組成物から得られる樹脂硬化物を提供することにある。
 本発明者らは、上記アラルキル型のフェノール樹脂の低吸湿性、高密着性、耐熱性物性を生かし、かつ溶融粘度が低いエポキシ樹脂組成物を得るために鋭意検討した結果、分子内にアルキレン型重合体単位と、フェノールノボラック重合体単位を共に有し、両者の重合度の比を特定範囲にすることにより、低溶融粘度且つ速硬化で、低吸湿性、高密着性、耐熱性の優れたフェノールノボラック樹脂組成物が得られることを見出し、さらに得られた樹脂組成物とエピハロヒドリンとの反応により同様に優れたエポキシ樹脂組成物が得られることを見出し、本発明を完成した。
 すなわち本発明は、下記一般式(1)で表わされる成分を含有し、下記一般式(3-1)及び一般式(3-2)で表される化合物の含有割合が50%以下であるエポキシ樹脂組成物である。
 一般式(1):
Figure JPOXMLDOC01-appb-C000008
(式中、Rは下記一般式(2-1)及び一般式(2-2):
Figure JPOXMLDOC01-appb-C000009
で示されるビフェニリレン基及びキシリレン基から選ばれる少なくとも一つの架橋基を表し、R、R及びRは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1~6個のアルキル基、又はアリール基であり、p、q、rはそれぞれ0~2の整数である。また、mおよびnは、正の数値であり、Gはグリシジル基を表す。)
 一般式(3-1)及び(3-2):
Figure JPOXMLDOC01-appb-C000010
(式中、Gはグリシジル基を表し、R,Rは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1~6個のアルキル基又はアリール基を表す。)
 さらには、m/nは0.04~20であり、150℃における溶融粘度が10~200mPa・sである上記エポキシ樹脂組成物である。
 また、本発明は、下記一般式(4):
Figure JPOXMLDOC01-appb-C000011
(式中、Rは下記一般式(2-1)及び一般式(2-2):
Figure JPOXMLDOC01-appb-C000012
で示されるビフェニリレン基及びキシリレン基から選ばれる少なくとも一つの架橋基を表し、R、R及びRは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1から6個のアルキル基又はアリール基であり、p、q、rはそれぞれ0~2の整数である。また、mおよびnは、正の数値を示す。)で表される成分を含有するフェノール樹脂組成物とエピハロヒドリンをアルカリ金属水酸化物の存在下において反応させることを特徴とするエポキシ樹脂組成物の製造方法である。
 さらに、本発明は、上記エポキシ樹脂組成物を硬化させたエポキシ樹脂硬化物である。
 また、本発明のエポキシ樹脂組成物は、後述する一般式(6-1)で表されるビフェニリレン化合物及び/又は後述する一般式(6-2)で表されるキシリレン化合物と、フェノール化合物と、ホルムアルデヒドとを反応させて得られるフェノール樹脂組成物に、エピハロヒドリンを反応させて得られるエポキシ樹脂組成物である。
 本発明のエポキシ樹脂組成物は、分子内に4,4’-ビフェニリレン基、2,4’-ビフェニリレン基、2,2’-ビフェニリレン基等のビフェニリレン基、及び1,4-キシリレン基、1,2-キシリレン基、1,3-キシリレン基等のキシリレン基から選ばれる少なくとも一つの架橋基を含有するエポキシ樹脂及びメチレン架橋基を含有するエポキシ樹脂の重合単位を共に有し、両者の重合度の比が特定の範囲である構造としたことにより、エポキシ樹脂組成物に好適な、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性、保存安定性、良好な取り扱い性を兼ね備えた樹脂組成物である。
 本発明の樹脂組成物は、BGA等、最新の半導体封止材料に対応できる。
 本発明のエポキシ樹脂組成物は、上記一般式(4)で示されるRがビフェニリレン架橋基及び/またはキシリレン架橋基を含有するフェノール樹脂の重合単位をトータルでn個、メチレン架橋基を含有するフェノール樹脂の重合単位をトータルでm個有する共重合タイプのフェノール樹脂組成物をエピハロヒドリンを用いてグリシジルエーテル化して得られる上記一般式(1)の成分を含有するエポキシ樹脂組成物であり、好ましくは一般式(1)における各重合単位の重合度比m/nが0.04~20、より好ましくは0.05~9、さらに好ましくは0.1~6であり、かつ、150℃における溶融粘度が5~1000mPa・s、好ましくは10~200mPa・sのエポキシ樹脂組成物である。m/nが0.04~20であり、かつ、150℃における溶融粘度が10~200mPa・sであることが好ましい。
 好ましい範囲は、該エポキシ樹脂組成物の平均分子量(重合度:使用するフェノール化合物と一般式(4)のRを構成する架橋体及びホルムアルデヒドとの合計使用量とのモル比により異なる)により異なる。
 上記一般式(4)で示されるフェノール樹脂組成物については、特開2008-189708号公報にその詳細が記載されている。
 使用するフェノール化合物と一般式(4)のRを構成する架橋体及びホルムアルデヒドとの合計使用量とのモル比が、2.0~3.0倍モル未満の場合のフェノール樹脂組成物をグリシジルエーテル化したエポキシ樹脂組成物では、150℃での溶融粘度は100~200mPa・sであり、さらに好ましくは100~150mPa・sである。
 使用するフェノール化合物と一般式(4)のRを構成する架橋体及びホルムアルデヒドとの合計使用量とのモル比が、3.0以上~10倍モル未満の場合、好ましくは3.0~5倍モルの場合のフェノール樹脂組成物をグリシジルエーテル化したエポキシ樹脂組成物では、150℃での溶融粘度は、10~100mPa・sであり、さらに好ましくは30~80mPa・sである。
 本発明のエポキシ樹脂組成物は、m/nの値については特に制限はないが、m/nの値が0.04未満では、溶融粘度を下げる効果が不十分となる場合もあり、流動性が良くならない場合もある。よって、m/nの値は、0.04以上が好ましい。より好ましくは0.1~6である。フェノール化合物と一般式(4)のRを構成する架橋体及びホルムアルデヒドとの合計使用量とのモル比(フェノール/(m+n))の好ましい範囲は、2.0~5であり、これを加味したm/nの好ましい値は0.1~6であり、より好ましい範囲は0.3~3である。
 本発明で使用するフェノール化合物は、一般式(4)で記載のとおり、ベンゼン環に水酸基を少なくとも1個有し、R、R及びRは、同一でも異なっていてもよく、それぞれ水素、炭素数1~6個のアルキル基又はアリール基であり、p、q及びrは、それぞれ0~2の整数からなる化合物群である。炭素数1~6個のアルキル基としては、メチル基、エチル基、プロピル基等の直鎖状アルキル基、イソプロピル基、ターシャリーブチル基等の分岐鎖状アルキル基などが挙げられ、アリール基としては、フェニル基などが挙げられる。
 これらのフェノール化合物は、単独でも2種以上を混合して用いても何ら問題はない。
 具体的なフェノール化合物としては、例えばフェノール、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、ヘキシルフェノール、ノニルフェノール、キシレノール、ブチルメチルフェノール等の1価フェノールの他、カテコール、レゾルシン、ハイドロキノン等の2価フェノールも挙げられるが、特にフェノールが好ましい。
 本発明でメチレン架橋基を形成する化合物としては、ホルムアルデヒドが好適に挙げられる。さらにホルムアルデヒドの形態としては、特に制限はないが、ホルムアルデヒド水溶液、及びパラホルムアルデヒド、トリオキサンなど酸存在下で分解してホルムアルデヒドとなる重合物を用いることもできる。
 好ましくは、取り扱いの容易なホルムアルデヒド水溶液であり、市販品の42%ホルムアルデヒド水溶液をそのまま使用できる。
 本発明で使用する架橋基Rは、下記一般式(2-1)及び一般式(2-2)で表される4,4’-ビフェニリレン基、2,4’-ビフェニリレン基又は2,2’-ビフェニリレン基、1,4-キシリレン基、1,2-キシリレン基または、1,3-キシリレン基等があげられる。これらの異性体は、単独でも混合しても使用することができる。
Figure JPOXMLDOC01-appb-C000013
 これらの架橋基は、次式(6-1)及び(6-2)で表される化合物から誘導される。
Figure JPOXMLDOC01-appb-C000014
(ここで、式中、Yはハロゲン原子、ヒドロキシル基又は炭素原子数1~6のアルコキシル基を表す。)
 ここで、ハロゲン原子としては、フッ素、塩素、臭素及びヨウ素が挙げられるが、塩素が好ましい。アルコキシル基としては、特に制限はないが、炭素数1~6個の脂肪族アルコキシが好ましい。
 式(6-1)及び(6-2)で表される化合物は、具体的には、4,4’-ジ(ハロゲノメチル)ビフェニル、2,4’-ジ(ハロゲノメチル)ビフェニル、2,2’-ジ(ハロゲノメチル)ビフェニル、4,4’-ジ(アルコキシメチル)ビフェニル、2,4’-ジ(アルコキシメチル)ビフェニル、2,2’-ジ(アルコキシメチル)ビフェニル、1,4-ジ(ハロゲノメチル)ベンゼン、1,4-ジ(アルコキシメチル)ベンゼン、1,2-ジ(ハロゲノメチル)ベンゼン、1,2-ジ(アルコキシメチル)ベンゼン、1,3-ジ(ハロゲノメチル)ベンゼンおよび1,3-ジ(アルコキシメチル)ベンゼン、あるいは、4,4’-ジ(ヒドロキシメチル)ビフェニル、2,4’-ジ(ヒドロキシメチル)ビフェニル、2,2’-ジ(ヒドロキシメチル)ビフェニル、1,4-ジ(ヒドロキシメチル)ベンゼン、1,3-ジ(ヒドロキシメチル)ベンゼンおよび1,2-ジ(ヒドロキシメチル)ベンゼンである。
 式(6-1)及び(6-2)で表される化合物の好ましい具体的な化合物としては、4,4’-ジ(クロロメチル)ビフェニル、4,4’-ジ(メトキシメチル)ビフェニル、4,4’-ジ(エトキシメチル)ビフェニル、1,4-ジ(クロロメチル)ベンゼン、1,4-ジ(メトキシメチル)ベンゼン及び1,4-ジ(エトキシメチル)ベンゼンが挙げられる。
 これら、(4)式中のRを構成する架橋体としては、ビフェニリレン基および/又はキシリレン基を単一でも混合して使用することも何ら問題ではない。しかし、混合して使用する場合では、その混合比率は、ビフェニリレン基1モルに対して20~50モル%でキシリレン基を使用するのが好ましい。Rがビフェニリレン架橋基、特に4,4‘-ビフェニリレン架橋基を有することが好ましい。
 フェノール樹脂組成物の製造条件については、特開2008-189708号公報に詳細が記されているのでその条件に準じて実施すればよい。
 一般式(4)に示すフェノール樹脂組成物の製法の一例を以下に示す。
 フェノール樹脂組成物は、下記一般式(5-1)及び一般式(5-2)で表される化合物(これらを総称して「2核体」という場合がある)の含有割合がフェノール樹脂に対して50%以下、特に47%以下であることが好ましく、5~47%であることがより好ましく、10~40%であることが特に好ましい。なお、一般式(5-1)及び一般式(5-2)で表される化合物の含有割合は、後述するとおり、ゲル浸透クロマトグラフィーで測定したチャートの面積比から求める。
Figure JPOXMLDOC01-appb-C000015
(式中、R,Rは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1~6個のアルキル基又はアリール基を表す。)
 一般式(5-1)及び一般式(5-2)のR,Rにおける炭素数1~6個のアルキル基としては、メチル基、エチル基、プロピル基等の直鎖状アルキル基、イソプロピル基、ターシャリーブチル基等の分岐鎖状アルキル基などが挙げられ、アリール基としては、フェニル基などが挙げられる。
[フェノール樹脂組成物の製造]
 一般式(4)で示されるフェノール樹脂組成物の製造方法は、酸触媒存在下、一定量のフェノール化合物に対して、n倍モルのR、即ち4,4’-ビフェニリレン基または、2,4’-ビフェニリレン基または、2,2’-ビフェニリレン基および/又は1,4-キシリレン基または、1,2-キシリレン基または、1,3-キシリレン基等を含む架橋体とm倍モルのホルムアルデヒドを同時に添加して1段の縮合反応で行なうことができる。
 この場合は一般式(4)中のRを構成する架橋体及びホルムアルデヒドの合計1モルに対し、フェノールの使用量の制限は特には設けないが、好ましくは1.3~10倍モル、さらに好ましくは2.0~5倍モルの範囲で使用すると共に、反応温度を低温(一例として100℃前後)にてフェノール化合物とホルムアルデヒドの反応を優先的に行ない、主として低分子量のメチレン架橋基のフェノール樹脂組成物を形成させ、次いで昇温または触媒を増量してメチレン架橋基フェノール樹脂組成物、一般式(4)中のRを構成する架橋体及びフェノールを反応させる方式を採用するのが好ましい。
 用いる酸触媒としては、特に限定はなく、塩酸、蓚酸、硫酸、リン酸、パラトルエンスルホン酸など公知のものを単独であるいは2種以上併用して使用することができるが、硫酸、蓚酸又はパラトルエンスルホン酸が特に好ましい。
 縮合反応の温度は、低温条件としては50~120℃、好ましくは80~110℃であり、昇温時での反応温度は130~230℃、好ましくは150~200℃である。
 縮合反応の時間は、反応温度や使用する触媒の種類および量により変動するが、1~24時間程度である。
 反応圧力は、通常、常圧下にて行うが、若干の加圧下あるいは減圧下にて実施しても何ら問題はない。
 一般式(4)中のRを構成する架橋体とホルムアルデヒドの合計1モルに対しフェノールの使用量を1.3倍モル未満にした場合には高分子量で溶融粘度の高いフェノール樹脂組成物が得られる傾向が認められる。
 また、フェノールの使用量を10倍モルより多く使用すると2核体以下の低分子量成分が増加し、Tgの低下、機械強度の低下が生じるなど物性を低下させ傾向が認められ、フェノール使用量が増加しコスト高、環境負荷の面で問題となる。フェノールの使用量は、好ましくは、1.5~10倍モルである。
 なお、本発明で使用するフェノール樹脂組成物は、フェノール化合物、ホルムアルデヒド、一般式(4)中のRを構成する4,4’-ビフェニリレン基または、2,4’-ビフェニリレン基または、2,2’-ビフェニリレン基および/又は1,4-キシリレン基または、1,2-キシリレン基または、1,3-キシリレン基等の架橋体の添加順序に制限はないが、一括で同時に添加することが、経済性、生産性の観点からは望ましい。
 別法としては、架橋体のホルムアルデヒドと一般式(4)中のRを構成する4,4’-ビフェニリレン基または、2,4’-ビフェニリレン基または、2,2’-ビフェニリレン基および/又は1,4-キシリレン基または、1,2-キシリレン基または、1,3-キシリレン基等の架橋体の添加順序をずらす方法も挙げられる。
 具体的には、酸触媒の存在下で、予めフェノール化合物とホルムアルデヒドを縮合させ、次いで一般式(4)中のRを構成する4,4’-ビフェニリレン基または、2,4’-ビフェニリレン基または、2,2’-ビフェニリレン基および/又は1,4-キシリレン基または、1,2-キシリレン基または、1,3-キシリレン基等の架橋体を添加して縮合させる2段の縮合反応で製造することもできる。このような2段の縮合反応では、2段目の反応において新たにフェノール化合物を添加することができる。ただし、この場合も1段反応の場合と同様にフェノール化合物を過剰に使用することが好ましい。2段目の反応において追加するフェノール樹脂は、1~2段反応のトータルで仕込む一般式(4)中のRを構成する架橋体とホルムアルデヒドの合計1モルに対して、1~2段のトータルで仕込むフェノールが1.3モル倍以上、好ましくは2.3~5倍モルの範囲で使用することが特に好ましい。このような2段反応で行なうと、アルキレン基含有架橋基型フェノール樹脂及びメチレン架橋基含有フェノール樹脂の各重合単位の重合度、すなわちn及びmの分布が狭くなり、分子量のコントロールが容易となり、所望の溶融粘度の重合体が得やすいので、本発明の目的のためには好ましい。
 しかしながら、フェノール化合物、一般式(4)中のRを構成する4,4’-ビフェニリレン基または、2,4’-ビフェニリレン基または、2,2’-ビフェニリレン基および/又は1,4-キシリレン基または、1,2-キシリレン基または、1,3-キシリレン基等の架橋体の反応の後に、ホルムアルデヒドを添加することもできるが、この場合、フェノール化合物のトータルが、仕込む(1)式中のRを構成する架橋体とホルムアルデヒドの合計1モルに対して、1.3倍モル付近で合成すると高分子化が進み、低粘度化が進まず、好ましくないケースが起こる場合もある。
 2段階の縮合反応は、1段の縮合反応条件に準じて実施することができる。
 前記1段縮合反応及び2段縮合反応における酸触媒の使用量は、その種類によっても異なるが、蓚酸の場合は0.1~2.0重量%程度、硫酸の場合は0.05~0.5重量%程度、またパラトルエンスルホン酸の場合は0.02~0.1重量%程度使用するのがよい。とくに2段縮合反応を行う場合では、2段目のビフェニリレン基またはキシリレン基含有架橋体をフェノール化合物及びメチレン架橋基フェノール樹脂と反応させる際には、硫酸又はパラトルエンスルホン酸を使用することが好ましい。また、反応温度はとくに限定はないが、60~160℃程度の範囲に設定するのが好ましい。より好ましくは、80~140℃である。
 酸触媒の存在下で縮合反応させた後、未反応のフェノール化合物及び酸触媒を除去することにより、本発明で使用するフェノール樹脂組成物を得ることができる。
 フェノール化合物の除去方法は、減圧下あるいは不活性ガスを吹き込みながら熱をかけ、フェノール化合物を蒸留し系外へ除去する方法が一般的である。酸触媒の除去は、水洗などの洗浄による方法が挙げられる。
 本発明のエポキシ樹脂組成物は、下記一般式(3-1)及び一般式(3-2)で表される化合物(これらを総称して「2核体」という場合がある)の含有割合がエポキシ樹脂に対して50%以下であることが必要であり、47%以下であることが特に好ましく、5~47%であることがより好ましく、10~40%であることが特に好ましいい。なお、一般式(3-1)及び一般式(3-2)で表される化合物の含有割合は、後述するとおり、ゲル浸透クロマトグラフィーで測定したチャートの面積比から求める。
Figure JPOXMLDOC01-appb-C000016
(式中、Gはグリシジル基を表し、R,Rは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1~6個のアルキル基又はアリール基を表す。)
 R,Rの炭素数1~6個のアルキル基としては、メチル基、エチル基、プロピル基等の直鎖状アルキル基、イソプロピル基、ターシャリーブチル基等の分岐鎖状アルキル基などが挙げられ、アリール基としては、フェニル基などが挙げられる。
 本発明のエポキシ樹脂組成物において、一般式(3-1)及び一般式(3-2)で表される化合物の含有割合が50%を超えると、エポキシ樹脂組成物の150℃におけるICI粘度が測定できなくなるほど粘度が高くなる。このため、エポキシ樹脂組成物の取り扱い性が悪くなる。
 [エポキシ樹脂組成物の製造]
 一般式(1)で示されるエポキシ樹脂組成物の製造方法は、一般式(4)で示されるフェノール樹脂組成物をエピハロヒドリン中で水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下、10℃~120℃でグリシジルエーテル化することで得ることができる。このグリシジルエーテル化については従来公知の方法が利用でき特に制限されるものではない。
 エピハロヒドリンとしてはエピクロルヒドリン、α―メチルエピクロルヒドリン、γ―メチルエピクロルヒドリン、エピブロモヒドリン等が使用可能であるが、工業的に入手が容易であり、水酸基との反応性が良好であるエピクロルヒドリンを用いることが好ましい。
 エピハロヒドリンの使用量は、特に限定されるものではなく、目的とするエポキシ樹脂の分子量に応じて適宜選択できるが、通常、フェノール樹脂に対して過剰量が使用される。本発明のエポキシ樹脂組成物は低溶融粘度であることが望まれる為、エピクロルヒドリンの使用量は、フェノール樹脂組成物水酸基1モルに対して、3.0~20モル、好ましくは3.0~10モルである。
 用いるアルカリ金属水酸化物は、固形物でもその水溶液を使用してもよい。水溶液を使用する場合においては、アルカリ金属水酸化物の水溶液を連続的に反応系内に添加しながら、減圧下、または常圧下において連続的に水とエピハロヒドリンを反応系外に流出させ、水分を除去しエピハロヒドリンは反応系内に連続的に戻す方法でもよい。アルカリ金属水酸化物の使用量は、フェノール樹脂組成物水酸基1モルに対して0.8~2.0モル、好ましくは0.9~1.3モルである。
 グリシジルエーテル化の際、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等の非プロトン性極性溶媒などを添加して反応を行うことが反応進行上好ましい。
 また、一般式(4)で示されるフェノール樹脂組成物とエピハロヒドリンの混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加し、これらの反応によって得られるハロヒドリンエーテル化物にアルカリ金属水酸化物を加えて閉環させる方法でもよい。
 反応温度は、特に制限はないが、通常30~90℃であり、好ましくは35~80℃である。
 反応時間は、反応温度にも影響されるが、通常0.5~10時間であり、好ましくは1~8時間である。
 これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下でエピハロヒドリンや溶媒等を除去する。
 また、加水分解性塩素を低減させるために、回収された粗エポキシ樹脂組成物をトルエンやメチルイドブチルケトン等の溶剤に溶解し、アルカリ金属水酸化物の水溶液を添加し反応させることで閉環を確実なものにすることが出来る。
 反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下で溶剤を留去することにより、本発明の一般式(1)で示されるエポキシ樹脂組成物が得られる。
 本発明のエポキシ樹脂組成物には、硬化剤及び硬化促進剤を添加することができる。硬化剤の添加量は、エポキシ樹脂100重量部に対して、5~40重量部であることが好ましく、5~20重量部であることがより好ましい。硬化促進剤の添加量は、エポキシ樹脂100重量部に対して、0.01~10重量部であることが好ましく、0.01~5重量部であることがより好ましい。
 以下、硬化剤及び硬化促進剤を記載する
[硬化剤]
 使用する硬化剤としては例えばフェノール系化合物、アミン系化合物、酸無水物系化合物、アミド系化合物等が挙げられる。
 使用されうる具体的な硬化剤としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ポリアルキレングリコールポリアミン、ジアミノジフェニルスルホン、イソホロンジアミン等のアミン系硬化剤、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド系硬化剤、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物系硬化剤、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、ビスフェノールF型ノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂等を始めとするフェノール樹脂系硬化剤、及びこれらの変性物、イミダゾ-ル、BF3-アミン錯体、並びにグアニジン誘導体などが挙げられるが特にこれらに限定されうるものではない。
[硬化促進剤]
 硬化促進剤としては、エポキシ樹脂組成物をフェノール系硬化剤で硬化させるための公知の硬化促進剤を用いることが出来る。このような硬化促進剤としては例えば有機ホスフィン化合物およびそのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類及びそのテトラフェニルボロン塩などを挙げることができるが、この中でも、硬化性や耐湿性の点から、トリフェニルホスフィン及び1,8-ジアザビシクロ(5,4,0)ウンデセン-7(DBU)が好ましい。また、より高流動性にするためには、加熱により活性が発現する熱潜在性の硬化促進剤がより好ましく、テトラフェニルホスフォニウム・テトラフェニルボレートなどのテトラフェニルホスフォニウム誘導体が好ましい。
[その他添加剤]
 本発明のエポキシ樹脂組成物には、必要に応じて、無機充填剤、離型剤、着色剤、難燃剤、低応力剤等を、添加または予め反応して用いることができる。とくに半導体封止用に使用する場合は、無機充填剤の添加は必須である.このような無機充填剤の例として、非晶性シリカ、結晶性シリカ、アルミナ、ガラス、珪酸カルシウム、石膏、炭酸カルシウム、マグネサイト、クレー、タルク、マイカ、マグネシア、硫酸バリウムなどを挙げることができるが、とくに非晶性シリカ、結晶性シリカなどが好ましい.これら添加剤の使用量は、従来の半導体封止用エポキシ樹脂組成物における使用量と同様でよい。
[エポキシ樹脂組成物の硬化物]
 本発明のエポキシ樹脂組成物は、硬化物とすることができる。エポキシ樹脂組成物の硬化物は本発明のエポキシ樹脂組成物と、硬化剤としてのフェノール樹脂組成物と、硬化促進剤とを混合し、その混合物を100~250℃の温度範囲で硬化させることにより得られる。
 また、本発明のエポキシ樹脂組成物を100~250℃の温度範囲で硬化させることにより硬化物を得ることもできる。
 以下に実施例を挙げて、本発明を具体的に説明する。尚、本発明はこれら実施例に限定されるものではない。また、本発明で得られた樹脂組成物の評価方法を以下に示す。
(1) エポキシ当量
JIS K-7236に準拠した方法で測定した。
(2) 150℃溶融粘度:ICI溶融粘度計を用い、150℃でのエポキシ樹脂組成物の溶融粘度を測定した。
ICI粘度の測定方法は以下の通りである。
ICIコーンプレート粘度計  MODEL CV-1S TOA工業(株)
ICI粘度計のプレート温度を150℃に設定し、試料を所定量、秤量した。
プレート部に秤量した樹脂組成物を置き、上部よりコーンで押えつけ、90sec放置する。コーンを回転させて、そのトルク値をICI粘度として読み取った。
(3)ゲルタイム
 エポキシ樹脂組成物とフェノール樹脂組成物とを1:1の当量になるように試験管に仕込み、さらにTPPをエポキシに対して0.12wt%になるよう計量し、試験管に仕込んだ。
 湯温を150℃、175℃に設定したゲルタイマー(東芝社製時間計 SF0-304M)に試験管を設置し、SUS攪拌棒を使い、1秒間に1回転の攪拌を行った。
 はじめは粘度が低く液状であるが、一定時間が経過すると、樹脂組成物の粘度が急激に上昇し、ゲル状となる。この時間をゲルタイムとした。この時間が速いほど、硬化性が良好という指標になる。
(4)吸水率
 各組成物を150℃×5Hr.+180℃×3Hr.にて注型し、下記サイズに硬化させて、試料を作成した。
 サイズ;(φ50±1)×(3±0.2)(径×厚;mm)
 前記試料の表面をクロスで良く拭き取り、試料の重量を測定した。
 前記試料を100mlの瓶に入れ、純水80mlを加えた。
 前記瓶を熱風循環式乾燥器中にて、95℃×24Hr.放置した。
 前記瓶を熱風循環式乾燥器より取り出し、低温恒温水槽に浸けて25℃に冷却した。
 冷却後、表面に付着した水分を良く拭き取り重量を測定した。
 次式を用いて、吸水率を求めた。
    吸水率[%]=((B-A)/A)×100
        A:吸水前重量[g]
        B:吸水後重量[g]
(5)Tg(ガラス転位温度)
 各組成物を150℃×5Hr.+180℃×3Hr.にて注型、硬化させ、下記サイズにカットして、試料を作成した。
    サイズ;(50±1)×(40±1)×(100±1)(縦×横×高;mm)
 前記試料を熱機械分析装置(TMA-60(SHIMADZU製))にセットし、N雰囲気下にて測定した。
 測定は、昇温速度=5℃/min.で350℃まで測定し、変曲点の温度を求めガラス転位温度(Tg)とした。
(6)強度
 JIS K 7171に準じて測定した。
(7)スパイラルフロー
 低圧トランスファー成形機を用いて、EMMI-1-66に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.8MPa、保圧時間120秒の条件でEMC組成物を注入し、流動長を測定した。
(8)難燃性(UL-94)
 UL-94に準じて測定した。
 以下に詳細な合成例を示す。
[フェノール樹脂組成物の合成]
合成例1
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール564g(6.00モル)、4,4’-ジ(メトキシメチル)ビフェニル(以下、4,4’-BMMBと略記する。)202.60g(0.84モル)、42%ホルマリン水溶液40.0g(0.56モル)、50%硫酸水溶液0.28gを仕込み、100℃で3時間反応させた。
 その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより330gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は39mPa・s、アセチル化法によるOH当量は166g/eqであった。
合成例2
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール470g(5.00モル)、4,4’-BMMB 233.44g(0.96モル)、42%ホルマリン水溶液45.71g(0.64モル)、50%硫酸水溶液0.26gを仕込み、100℃で3時間反応させた。
 その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより360gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は70mPa・s、アセチル化法によるOH当量は164g/eqであった。
合成例3
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール470g(5.00モル)、4,4’-BMMB 288.10g(1.19モル)、42%ホルマリン水溶液56.43g(0.79モル)、50%硫酸水溶液0.29gを仕込み、100℃で3時間反応させた。
 その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより450gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は75mPa・s、アセチル化法によるOH当量は171g/eqであった。
合成例4
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール404.2g(4.30モル)、4,4’-ジ(クロロメチル)ビフェニル(以下、4,4’-BCMBと略記する。)150.7g(0.60モル)を仕込み、100℃で3時間反応させ、その後42%ホルマリン水溶液28.57g(0.40モル)を添加し、その後100℃で3時間反応させた。その間、生成する塩酸を留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより251gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は40mPa・s、アセチル化法によるOH当量は166g/eqであった。
合成例5
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール470g(5.00モル)、4,4’-BMMB 302.5g(1.25モル)、50%硫酸水溶液0.28gを仕込み、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより380gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は115mPa・s、アセチル化法によるOH当量は202g/eqであった。
合成例6
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール470g(5.00モル)、4,4’-BMMB 389.1g(1.61モル)、50%硫酸水溶液0.28gを仕込み、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより470gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は130mPa・s、アセチル化法によるOH当量は208g/eqであった。
合成例7
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール274.5g(2.92モル)、4,4’-BMMB 290.4g(1.23モル)、42%ホルマリン水溶液57.14g(0.82モル)、50%硫酸水溶液0.22gを仕込み、100℃で3時間反応させた。
 その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより370gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は90mPa・s、アセチル化法によるOH当量は188g/eqであった。
合成例8
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール685g(7.27モル)、4,4’-BMMB 151.15g(0.62モル)、42%ホルマリン水溶液29.7g(0.4モル)、50%硫酸水溶液0.34gを仕込み、100℃で3時間反応させた。
 その後、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより250gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は40mPa・s、アセチル化法によるOH当量は164g/eqであった。
合成例9
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール141g(1.5モル)、4,4’-BMMB 248.6g(1.03モル)、50%硫酸水溶液0.16gを仕込み、反応温度を125℃に保ちながら2時間反応させその後165℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより280gのフェノール樹脂組成物を得た。
 得られたフェノール樹脂組成物のICI粘度は150℃で測定不可能、アセチル化法によるOH当量は240g/eqであった。
 合成例1~9で得られたフェノール樹脂組成物の合成条件および物性値を表1にまとめて示した。なお、フェノール樹脂組成物中の一般式(5-1)及び(5-2)の化合物の含有量(%)は、上記数平均分子量の測定方法で得られたチャートのフェノール樹脂(すなわち、添加物を除いたもの)の全ピーク面積中の一般式(5-1)及び(5-2)の化合物に相当するピーク面積の割合から求めた。
合成例10
 撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール470.00g(5.00モル)、1,4-ジ(メトキシメチル)ベンゼン(以下1,4-PXDMと略記する) 276.67g(1.67モル)、50%硫酸水溶液0.33gを仕込み、130℃で1時間反応させた。
 その後、反応温度を160℃に昇温し、3時間反応を行った。その間、生成するメタノールを留去した。その後80℃まで冷却し、42%ホルマリン水溶液83.44g(1.17モル)を滴下投入した。投入後100℃に昇温し、1時間反応を行った。反応終了後、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより430gのフェノール樹脂を得た。
〔エポキシ樹脂組成物の製造〕
 合成例1~10で得られたフェノール樹脂組成物を用いて、実施例1~6及び比較例1~5のエポキシ樹脂組成物を合成した。エポキシ樹脂組成物について、数平均分子量(Mn)及び重量平均分子量(Mw)を以下の方法で測定した。
 ゲル浸透クロマトグラフィー(HCL-8220(東ソー社製)を用いて、下記の条件で標準物質を測定した結果を用いて検量線を作成し、各樹脂組成物のポリスチレン換算数平均分子量(Mn)と、重量平均分子量(Mw)とを求めた。
カラム:
TSK-GEL Hタイプ
G2000H×L 4本
G3000H×L 1本
G4000H×L 1本
を直列につないで使用した。
カラム圧力:13.5MPa
溶解液:テトラヒドロフラン(THF)
フローレート:1ml/min.
測定温度:40℃
検出器:スペクトロフォトメーター(UV-8020)
RANGE:2.56 WAVE LENGTH 254nm & RI
 また、エポキシ樹脂組成物中の一般式(3-1)及び(3-2)の化合物(2核体)の含有量(%)は、上記数平均分子量の測定方法で得られたチャートのエポキシ樹脂(すなわち、添加物を除いたもの)の全ピーク面積中の一般式(3-1)及び(3-2)の化合物に相当するピーク面積の割合から求めた。
実施例1
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例1で得られたフェノール樹脂組成物298.8g(1.80モル)、エピクロルヒドリン999.0g(10.80モル)、メタノール93.75gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム75g(1.80モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを480g投入し溶解させた。25%水酸化ナトリウム水溶液28.80g(0.18モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで382gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は34mPa・sであり、エポキシ当量は233g/eqであった。得られたエポキシ樹脂組成物のMn及びMwは、それぞれ、682及び835であった。
実施例2
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例2で得られたフェノール樹脂組成物278.8g(1.70モル)、エピクロルヒドリン943.5g(10.20モル)、メタノール88.54gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム70.83g(1.70モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを450g投入し溶解させた。25%水酸化ナトリウム水溶液27.20g(0.17モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで364gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は56mPa・sであり、エポキシ当量は239g/eqであった。得られたエポキシ樹脂組成物のMn及びMwは、それぞれ、775及び1017であった。
実施例3
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例3で得られたフェノール樹脂組成物290.7g(1.70モル)、エピクロルヒドリン943.5g(10.20モル)、メタノール88.54gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム70.83g(1.70モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを450g投入し溶解させた。25%水酸化ナトリウム水溶液27.20g(0.17モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで380gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は64mPa・sであり、エポキシ当量は244g/eqであった。得られたエポキシ樹脂組成物のMn及びMwは、それぞれ、873及び1274であった。
実施例4
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例4で得られたフェノール樹脂組成物232.4g(1.40モル)、エピクロルヒドリン777.0g(8.40モル)、メタノール72.92gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム58.33g(1.40モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを373g投入し溶解させた。25%水酸化ナトリウム水溶液22.40g(0.14モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで290gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は33mPa・sであり、エポキシ当量は233g/eqであった。
実施例5
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例7で得られたフェノール樹脂組成物282g(1.5モル)、エピクロルヒドリン832.5g(9.0モル)、メタノール78.13gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム62.5g(1.5モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを500g投入し溶解させた。25%水酸化ナトリウム水溶液24.0g(0.1モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで340gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は82mPa・sであり、エポキシ当量は250g/eqであった。
 実施例6
 撹拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例10で得られたフェノール樹脂272g(2.0モル)、エピクロルヒドリン1110g(12.0モル)、メタノール88.00gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム83.33g(2.0モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを480g投入し溶解させた。25%水酸化ナトリウム水溶液32.0g(0.2モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで340gのエポキシ樹脂を得た。
比較例1
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例5で得られたフェノール樹脂組成物303.0g(1.50モル)、エピクロルヒドリン832.5g(9.0モル)、メタノール78.13gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム62.50g(1.50モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを460g投入し溶解させた。25%水酸化ナトリウム水溶液24.00g(0.15モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで380gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は100mPa・sであり、エポキシ当量は273g/eqであった。得られたエポキシ樹脂組成物のMn及びMwは、それぞれ、732及び940であった。
比較例2
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例6で得られたフェノール樹脂組成物312.0g(1.50モル)、エピクロルヒドリン832.5g(9.0モル)、メタノール78.13gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム62.50g(1.50モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを460g投入し溶解させた。25%水酸化ナトリウム水溶液24.00g(0.15モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで380gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は103mPa・sであり、エポキシ当量は276g/eqであった。得られたエポキシ樹脂組成物のMn及びMwは、それぞれ、822及び1152であった。
比較例3
 エポキシ樹脂として、オルソクレゾールとホルマリンから合成された市販のフェノール樹脂をエポキシ化したエポキシ樹脂(EOCN-1020-55:日本化薬株式会社製)を用いた。
比較例4
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例8で得られたフェノール樹脂組成物278.8g(1.70モル)、エピクロルヒドリン943.5g(10.20モル)、メタノール88.54gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム70.83g(1.70モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを450g投入し溶解させた。25%水酸化ナトリウム水溶液27.20g(0.17モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで360gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は30mPa・sであり、エポキシ当量は230g/eqであった。
比較例5
 攪拌装置、及びコンデンサー、及び窒素ガス導入管を備えたガラス製反応容器に、合成例9で得られたフェノール樹脂組成物240g(1.0モル)、エピクロルヒドリン555g(6.0モル)、メタノール78.13gを仕込み、均一に溶解させた。50℃で固形の96%水酸化ナトリウム41.7g(1.0モル)を90分かけて分割投入した。その後50℃で2時間反応させ、70℃昇温後さらに2時間反応を継続した。反応終了後、過剰のエピクロルヒドリンを減圧下において除去した。
 釜残にメチルイソブチルケトンを500g投入し溶解させた。25%水酸化ナトリウム水溶液16.0g(0.1モル)を添加し70℃で1時間反応させた。反応終了後、水層が中性になるまで水洗処理を5回繰り返した。加熱減圧下メチルイソブチルケトンを留去することで300gのエポキシ樹脂組成物を得た。
 得られたエポキシ樹脂組成物の150℃におけるICI粘度は測定不可能であり、エポキシ当量は320g/eqであった。
 実施例1~5および比較例1~5のエポキシ樹脂組成物の物性値、および以下に示した方法で得られたエポキシ樹脂組成物の硬化物1の配合割合と硬化物1の特性を表2にまとめて示した。
[硬化物1の調製]
  実施例1~6および比較例1~5のエポキシ樹脂組成物、および、硬化剤として明和化成株式会社製HF-3M(水酸基当量107g/eq)の汎用フェノールノボラック樹脂、硬化促進剤としてトリフェニルホスフィン(TPPと略記することもある。)を使用した。
 具体的には、上記エポキシ樹脂組成物および上記硬化剤を、フェノール水酸基当量とエポキシ当量比が1:1となるように配合し、TPP触媒は、該配合のエポキシ樹脂組成物重量に対して0.15wt%仕込んだ。これらを、150℃に加熱して溶融混合し、真空脱泡した後に150℃の金型(厚さ4mm)に注型し、150℃、5時間で硬化させた後、さらに180℃、8時間かけて硬化して成形体を試作した。
 得られた成形体(硬化物)の各種物性の試験方法は前記の通りである。
〔硬化物2の調製〕
 実施例1~6および比較例1~5のエポキシ樹脂組成物の物性値、および以下に示した方法で得られたエポキシ樹脂組成物の硬化物2の配合割合と硬化物2の特性を表3にまとめて示した。
 実施例1~6および比較例1~5のエポキシ樹脂組成物、硬化剤として明和化成株式会社製HF-3M(水酸基当量107g/eq)の汎用フェノールノボラック樹脂、硬化促進剤としてトリフェニルホスフィン(TPPと略記することもある。)、充填剤として(株)龍森製シリカ(MSR-2212)を使用して、以下の方法で、EMC(Epoxy Moldering Compound]を合成した。
 実施例1~6および比較例1~5のエポキシ樹脂組成物および上記硬化剤を、フェノール水酸基当量とエポキシ当量比が1:1となるように配合し、TPP触媒は、該配合のエポキシ樹脂組成物重量に対して2.3wt%仕込んだ。これに83wt%になるように充填剤を加え、これらを、100℃~110℃の条件で2軸ニーダで混練後粉砕しEMC粉体を調整した。
 得られたEMC粉体を用いてタブレットを作成し、スパイラルフロー測定を行った。
 また、トランスファー成形機にて上記のEMC粉体を用いて試験片を作成し、180℃ 8hrのポストキュアを行い、吸水率、強度、難燃評価用のテストピースを得た。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 上記表2及び表3において、「%/EP」は、エポキシ樹脂組成物に対する重量%を示す。
 上記表2及び表3中、比較例5の150℃でのICI粘度は、各樹脂組成物の粘度が高すぎて、測定できなかった。
 本発明の実施例で得られたエポキシ樹脂組成物は、高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を維持しつつ、低溶融粘度を有するエポキシ樹脂組成物であることが明らかとなった。
 本発明によれば、硬化物が高ガラス転移温度、低吸湿性、高密着性、耐熱性、速硬化、及び難燃性を維持しつつ、低溶融粘度を有するエポキシ樹脂組成物が提供できる。

Claims (8)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは下記一般式(2-1)及び(2-2):
    Figure JPOXMLDOC01-appb-C000002
    で示されるビフェニリレン基及びキシリレン基から選ばれる少なくとも一つの架橋基を表し、R、R及びRは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1~6個のアルキル基、又はアリール基であり、p、q、rはそれぞれ0~2の整数である。また、mおよびnは、正の数値であり、Gはグリシジル基を表す。)の成分を含有し、下記一般式(3-1)及び(3-2):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Gはグリシジル基を表し、R,Rは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1~6個のアルキル基又はアリール基を表す。)で表される化合物の含有割合が50%以下であるエポキシ樹脂組成物。
  2.  m/nが0.04~20であり、150℃における溶融粘度が10~200mPa・sである請求項1に記載のエポキシ樹脂組成物。
  3.  Rが少なくともビフェニリレン架橋基を含有する請求項1または2に記載のエポキシ樹脂組成物。
  4.  該ビフェニリレン架橋基が4,4‘-ビフェニリレン架橋基を含有する請求項3に記載のエポキシ樹脂組成物。
  5.  さらに、硬化剤、必要により効果促進剤を含有する請求項1~4のいずれか一項に記載のエポキシ樹脂組成物。
  6.  請求項1~5のいずれか一項に記載のエポキシ樹脂組成物を硬化してなる硬化物。
  7.  下記一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは下記一般式(2-1)及び(2-2):
    Figure JPOXMLDOC01-appb-C000005
    で示されるビフェニリレン基及びキシリレン基から選ばれる少なくとも一つの架橋基を表し、R、R及びRは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1~6個のアルキル基、又はアリール基であり、p、q、rはそれぞれ0~2の整数である。また、mおよびnは、正の数値を表す。)の成分を含有し、下記一般式(5-1)及び(5-2):、
    Figure JPOXMLDOC01-appb-C000006
    (式中、R,Rは同一でも異なっていてもよく、それぞれ、水素原子、炭素数1から6個のアルキル基又はアリール基を表す。)で表される化合物の含有割合が50%以下であるフェノール樹脂組成物と、エピハロヒドリンとをアルカリ金属水酸化物の存在下において反応させることを特徴とする請求項1~4のいずれか一項に記載のエポキシ樹脂組成物の製造方法。
  8.  フェノール樹脂組成物が、フェノール化合物とホルムアルデヒドと、下記一般式(6-1)及び(6-2):。
    Figure JPOXMLDOC01-appb-C000007
    (ここで、式中、Yはハロゲン原子、ヒドロキシル基又は炭素原子数1~6のアルコキシル基を表す。)で表される化合物のから選択した1種以上の架橋体とを反応させて得られることを特徴とする請求項7に記載のエポキシ樹脂組成物の製造方法
PCT/JP2010/051105 2009-01-30 2010-01-28 エポキシ樹脂組成物、該エポキシ樹脂組成物の製造方法およびその硬化物 WO2010087393A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010548546A JP5616234B2 (ja) 2009-01-30 2010-01-28 エポキシ樹脂組成物、該エポキシ樹脂組成物の製造方法およびその硬化物
CN2010800059927A CN102300899B (zh) 2009-01-30 2010-01-28 环氧树脂组合物、该环氧树脂组合物的制造方法及其固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009019185 2009-01-30
JP2009-019185 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010087393A1 true WO2010087393A1 (ja) 2010-08-05

Family

ID=42395651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051105 WO2010087393A1 (ja) 2009-01-30 2010-01-28 エポキシ樹脂組成物、該エポキシ樹脂組成物の製造方法およびその硬化物

Country Status (5)

Country Link
JP (1) JP5616234B2 (ja)
KR (1) KR101609014B1 (ja)
CN (1) CN102300899B (ja)
TW (1) TWI478955B (ja)
WO (1) WO2010087393A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074338A (ja) * 2009-10-02 2011-04-14 Ube Industries Ltd フェノール樹脂及びエポキシ樹脂並びにエポキシ樹脂硬化物
WO2023162693A1 (ja) * 2022-02-25 2023-08-31 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂、多価ヒドロキシ樹脂、エポキシ樹脂組成物、及びエポキシ樹脂硬化物並びに多価ヒドロキシ樹脂の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI544011B (zh) * 2013-05-17 2016-08-01 明和化成股份有限公司 含磷之酚樹脂 、其製造方法及其用途
WO2016194034A1 (ja) * 2015-05-29 2016-12-08 住友ベークライト株式会社 封止用樹脂組成物、半導体装置、および構造体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120039A (ja) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc ベンジル化ポリフェノール、そのエポキシ樹脂、それらの製造方法および用途
JP2000034393A (ja) * 1998-05-15 2000-02-02 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2002317102A (ja) * 2001-04-20 2002-10-31 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2006176555A (ja) * 2004-12-21 2006-07-06 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
WO2007007827A1 (ja) * 2005-07-13 2007-01-18 Ube Industries, Ltd. ビフェニレン架橋フェノールノボラック樹脂ならびにその用途
WO2007026553A1 (ja) * 2005-08-31 2007-03-08 Ube Industries, Ltd. 低軟化点フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物
JP2008189708A (ja) * 2007-02-01 2008-08-21 Ube Ind Ltd 低溶融粘度フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW386098B (en) * 1996-12-23 2000-04-01 An Epoxy Resin Which Is Obtain Epoxy resin obtained by reacting a novolak type resin with epihalohydrin
JP5319289B2 (ja) * 2006-10-11 2013-10-16 日本化薬株式会社 エポキシ樹脂及びその製造方法、並びにそれを用いたエポキシ樹脂組成物及びその硬化物
JP5012003B2 (ja) * 2006-12-26 2012-08-29 宇部興産株式会社 低溶融粘度フェノールノボラック樹脂、その製造方法ならびにその用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08120039A (ja) * 1994-10-20 1996-05-14 Mitsui Toatsu Chem Inc ベンジル化ポリフェノール、そのエポキシ樹脂、それらの製造方法および用途
JP2000034393A (ja) * 1998-05-15 2000-02-02 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2002317102A (ja) * 2001-04-20 2002-10-31 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2006176555A (ja) * 2004-12-21 2006-07-06 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
WO2007007827A1 (ja) * 2005-07-13 2007-01-18 Ube Industries, Ltd. ビフェニレン架橋フェノールノボラック樹脂ならびにその用途
WO2007026553A1 (ja) * 2005-08-31 2007-03-08 Ube Industries, Ltd. 低軟化点フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物
JP2008189708A (ja) * 2007-02-01 2008-08-21 Ube Ind Ltd 低溶融粘度フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074338A (ja) * 2009-10-02 2011-04-14 Ube Industries Ltd フェノール樹脂及びエポキシ樹脂並びにエポキシ樹脂硬化物
WO2023162693A1 (ja) * 2022-02-25 2023-08-31 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂、多価ヒドロキシ樹脂、エポキシ樹脂組成物、及びエポキシ樹脂硬化物並びに多価ヒドロキシ樹脂の製造方法

Also Published As

Publication number Publication date
KR101609014B1 (ko) 2016-04-04
KR20110127166A (ko) 2011-11-24
JP5616234B2 (ja) 2014-10-29
TWI478955B (zh) 2015-04-01
CN102300899B (zh) 2013-08-07
CN102300899A (zh) 2011-12-28
TW201035151A (en) 2010-10-01
JPWO2010087393A1 (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5228328B2 (ja) 低溶融粘度フェノールノボラック樹脂、その製造方法およびそれを用いたエポキシ樹脂硬化物
JP5754731B2 (ja) エポキシ樹脂、エポキシ樹脂の製造方法、及びその使用
JP5170493B2 (ja) フェノール系重合体、その製法及びその用途
JP5413488B2 (ja) フェノールノボラック樹脂、その製造方法、それを用いたエポキシ樹脂組成物および硬化物
JP6091295B2 (ja) エポキシ樹脂組成物及びその硬化物
JP2008156553A (ja) 低溶融粘度フェノールノボラック樹脂、その製造方法ならびにその用途
KR101408535B1 (ko) 변성 액상 에폭시 수지, 및 그것을 이용한 에폭시 수지 조성물 및 그 경화물
KR20100021998A (ko) 액상 에폭시 수지, 에폭시 수지 조성물 및 경화물
JP6238845B2 (ja) フェノール樹脂、フェノール樹脂混合物、エポキシ樹脂、エポキシ樹脂組成物およびそれらの硬化物
JP5616234B2 (ja) エポキシ樹脂組成物、該エポキシ樹脂組成物の製造方法およびその硬化物
JP4451129B2 (ja) エポキシ樹脂組成物
JP2010229304A (ja) フェノール樹脂、該樹脂の製造方法及び該樹脂を含むエポキシ樹脂組成物、ならびにその硬化物
JP5734603B2 (ja) フェノール性樹脂、エポキシ樹脂、それらの製造方法、エポキシ樹脂組成物及び硬化物
JP4210216B2 (ja) フェノール樹脂、エポキシ樹脂、その製造方法及びエポキシ樹脂組成物
JP4493748B2 (ja) エポキシ樹脂、その製造方法、エポキシ樹脂組成物およびその硬化物
JP3813105B2 (ja) 硬化性に優れたエポキシ樹脂組成物、その硬化物およびその用途
JP2005002321A (ja) 光半導体封止用エポキシ樹脂組成物
JP5515583B2 (ja) フェノール樹脂及びエポキシ樹脂並びにエポキシ樹脂硬化物
JP2002128868A (ja) 半導体封止用エポキシ樹脂組成物
JP4086630B2 (ja) 多価フェノール類化合物、エポキシ樹脂組成物およびその硬化物
JP5272963B2 (ja) エポキシ樹脂及びその製造方法
TW202244099A (zh) 環氧樹脂、其製造方法、使用該環氧樹脂之環氧樹脂組成物及硬化物
JP2019143091A (ja) 多価ヒドロキシ樹脂の製造方法、熱硬化性樹脂組成物の製造方法、封止材の製造方法、積層板の製造方法、多価ヒドロキシ樹脂および熱硬化性樹脂組成物
JP2007077408A (ja) エポキシ樹脂の製造方法
JP2006036971A (ja) エポキシ樹脂、その製造方法、エポキシ樹脂組成物及び半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005992.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548546

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117019996

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10735858

Country of ref document: EP

Kind code of ref document: A1