WO2010086788A2 - Convertisseur destiné à une utilisation monophasée et triphasée, alimentation en tension continue et chargeur de pile - Google Patents

Convertisseur destiné à une utilisation monophasée et triphasée, alimentation en tension continue et chargeur de pile Download PDF

Info

Publication number
WO2010086788A2
WO2010086788A2 PCT/IB2010/050333 IB2010050333W WO2010086788A2 WO 2010086788 A2 WO2010086788 A2 WO 2010086788A2 IB 2010050333 W IB2010050333 W IB 2010050333W WO 2010086788 A2 WO2010086788 A2 WO 2010086788A2
Authority
WO
WIPO (PCT)
Prior art keywords
converter
mains
coils
phase
capacitor
Prior art date
Application number
PCT/IB2010/050333
Other languages
English (en)
Other versions
WO2010086788A3 (fr
Inventor
Axel Krause
Original Assignee
Brusa Elektronik Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brusa Elektronik Ag filed Critical Brusa Elektronik Ag
Priority to JP2011547035A priority Critical patent/JP5480296B2/ja
Priority to EP10703689.9A priority patent/EP2391521B1/fr
Priority to CN201080005790.2A priority patent/CN102301577B/zh
Priority to US13/131,874 priority patent/US8503208B2/en
Publication of WO2010086788A2 publication Critical patent/WO2010086788A2/fr
Publication of WO2010086788A3 publication Critical patent/WO2010086788A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a converter for single-phase and three-phase operation, comprising three branches connected in parallel and each having two rectifying elements connected in series, the direction of flow of the rectifying elements pointing away from a low end, and three mains-side coils which are connected between the two rectifying elements of one branch each.
  • Modern semiconductor technology has permitted converters from a.c. voltage to d.c. voltage and vice versa for comparatively high powers.
  • the feedbacks into the supply network are problematic. Such feedbacks can occur, for example, in the case of transient processes which are due, for example, to switching processes or nonlinear consumers, in particular due to components of the power electronics, such as, for example, transistors and thyristors.
  • Inverters are used, for example, wherever a d.c. voltage is to be converted into a a.c. voltage, for example if solar direct current is to be fed into the a. c. voltage mains.
  • Rectifiers on the other hand are used when an apparatus (for example an electronic circuit) is to be connected to the alternating current mains but is suitable only for d.c. voltage.
  • a further field of use is the charging of batteries or accumulators, which is becoming increasingly important owing to the steadily growing mobility of people and the associated operation of mobile electrical and electronic devices.
  • electrically powered motor vehicles set completely new requirements with regard to battery chargers, since charging should be possible both on the single-phase mains (customary in the household) and on the three-phase mains - owing to the greater power density and hence faster charging. Furthermore, a comparatively high energy content (which in the end determines the range of the vehicle) should be transferred in as short a time as possible from the mains into the battery.
  • the high power of such battery chargers which is required for this purpose and unfortunately frequently leads, with conventional devices, to comparatively high mains feedbacks which are reduced according to the prior art, for example, with the aid of suitable filters (e.g. absorption circuit, low-pass filter, etc) .
  • suitable filters e.g. absorption circuit, low-pass filter, etc
  • DE 101 51 153 Al describes in this context an apparatus for charging batteries for electric vehicles which has a controlled step-up transformer for producing a d.c. voltage from a single-phase or multiphase a.c. voltage which is lower than the d.c. voltage.
  • the charger is equipped with a mains filter and a particular series choke which keep the mains feedbacks l ow .
  • DE000002624532A1 discloses the capacitor exclusively on the single-phase mains only in association with resistances and diodes, not with one or more coils and also not optionally on the three- phase mains.
  • DE10151153A1 discloses a converter with uncoupled chokes at the mains input, followed by a non- resonant PWM inverter. No capacitor switching is mentioned.
  • EP1643626A2 discloses switchable capacitors in combination with chokes and a passive three-phase rectifier, but these capacitors are not connected on the mains side but on the "switch side" of the chokes (in the case of the diodes).
  • EP1971016A2 discloses a coupled (filter) choke together with a capacitor as a passive three-phase harmonic filter.
  • the capacitor is not switchable and the mains-side converter is a passive rectifier. Single-phase operation is not intended, and the chokes are on the DC side of the rectifier.
  • US5200887 discloses switchable (DC) capacitors parallel to the passive rectifiers in order nevertheless to achieve the same intermediate circuit voltage (as in the case of 400 V) on halving the mains voltage (from 400 to 200 V) . No chokes are present.
  • a converter according to the invention for single-phase and three-phase operation comprises: - three branches connected in parallel and each having two rectifying elements connected in series, the direction of flow of the rectifying elements pointing away from a low end, three mains-side coils which are connected between the two rectifying elements of one branch each, a first coil being provided on the mains side with a switch which connects the first coil to the mains during three-phase operation and connects it via a capacitor, a) to the low end or b) on the mains side to another coil during single-phase operation.
  • a converter according to the invention is connected on the load side to a two-pole inverter, the inverter is connected to a primary side of a transformer and - a secondary side of the transformer is connected to a two-pole rectifier and the rectifier is provided for connection of a load. Accordingly, furthermore, in an alternative d.c.
  • a converter according to the invention is connected on the load side to two two-pole inverters connected in parallel or in series and each having a capacitor connected parallel thereto, the inverters are connected to a primary side of each of two transformers, - a secondary side of each of the transformers is connected to in each case a two-pole rectifier having in each case a capacitor connected parallel thereto and the rectifiers are connected in parallel or in series and are provided for connection of a load.
  • one of the two abovementioned converters according to the invention is provided for connection of an accumulator on the load side.
  • a d.c. voltage supply according to the invention is provided for connection of an accumulator on the load side.
  • the switch provided on the mains side in the case of the first coil it is possible to operate the converter both in the single-phase mode and in the three-phase mode without the mains feedbacks becoming excessively large.
  • the first coil or choke is connected to the mains in the case of three- phase operation and connected via a capacitor either to the low end or on the mains side to another coil in the case of single-phase operation.
  • the mains feedbacks are effectively reduced - as will be shown later.
  • the converter is therefore also suitable in particular for said d.c. voltage supplies and said battery chargers. However, its use is by no means limited to this area.
  • a “converter” can be understood as meaning a rectifier, an inverter or a bidirectional converter.
  • a “rectifying element” can be understood, for example, as meaning a diode, a transistor, a thyristor or another rectifying element. Accordingly, there are passive rectifiers, active rectifiers or active inverters.
  • batteries are to be understood as meaning rechargeable batteries, accumulators or other power-storing media.
  • the first coil consists of two part-coils which are connected in parallel in the case of three-phase operation and in series in the case of single-phase operation.
  • a high inductance can be realized for single-phase operation whereas the inductance is comparatively low in the three-phase case.
  • the high inductance results in small current ripples and is preferably used when the capacitor is connected to the low end.
  • part-coils are coupled in the same sense to the other coils in the case of three-phase operation and if, in the case of single- phase operation with the coil divided into two part- coils, one part-coil is coupled in the same sense and the other part-coil in the opposite sense to the other coils. This results in a lower magnetic modulation of the coil core so that it can be designed to be smaller.
  • the part-coils and the other coils have the same number of turns. In this way, the current through the part-coils can be halved relative to the other coils during three-phase operation, and the part-coils connected in parallel act in the same way as the other two coils, which in the case of three- phase operation leads to symmetrical behavior in all three coils.
  • each switching element is connected antiparallel to each rectifying element.
  • the converter can then convert electrical energy not only in one direction but also in the opposite direction and therefore permits in principle bidirectional operation, i.e. conversion of alternating current into direct current and vice versa.
  • Suitable switching elements are, for example, components from power electronics, in particular transistors or thyristors.
  • the abovementioned converters i.e. passive rectifiers, active rectifiers or active inverters, can therefore also be used in any combination, i.e. for example a passive rectifier combined with an active inverter.
  • a rectifying element is connected antiparallel to one switching element each of an inverter and a switching element is connected antiparallel to one rectifying element each of a rectifier.
  • the d.c. voltage supply can thus also operate as an inverter and thus permits in principle bidirectional operation, i.e. conversion of alternating current into direct current and vice versa.
  • This means that such embodiments can be optimally used, for example, in the solar power sector by virtue of the fact that, in sunlight and with an excess of direct current, the electrical energy firstly can be stored in batteries but secondly can also be delivered to the alternating current mains.
  • alternating current can be taken from the mains (if the mains is capable of supply) and secondly current from the batteries can be converted into alternating current and can thus serve the system as an a. c. voltage source.
  • an electric vehicle (not used for driving) can accordingly be operated with its battery as a power buffer for an alternating current mains.
  • Suitable switching elements are, for example, once again components from power electronics, in particular power transistors or thyristors.
  • the invention does not relate to converters for battery chargers but to converters generally.
  • the battery chargers do not relate simply to applications in motor vehicle construction but generally to battery chargers.
  • the person skilled in the art will without difficulty find here that the invention is also suitable for other fields of use.
  • Fig. 1 schematically shows a first variant of a converter according to the invention
  • Fig. 2 shows the variation of selected parameters of the first converter as a function of time
  • FIG. 3 schematically shows a second variant of a converter according to the invention
  • Fig. 4 shows a vector diagram of selected parameters of the second converter
  • Fig. 5 shows the variation of selected parameters of the second converter as a function of time
  • Fig. 6 shows the variation of selected parameters of a further variant of the second converter as a function of time
  • Fig. 7 schematically shows a third variant of a converter according to the invention.
  • Fig. 8 schematically shows a first variant of a battery charger according to the invention
  • Fig. 9 schematically shows a second variant of a battery charger according to the invention.
  • Fig. 10 schematically shows a third variant of a battery charger according to the invention comprising a down-circuit DC/DC converter
  • Fig. 11 shows a simplified diagram of the DC/DC converter together with the variation of different voltages and currents as a function of time
  • Fig. 12 shows a simplified rectifier having mains- side uncoupled coils
  • Fig. 13a shows current and voltage curves of the circuit shown in Fig. 12, at 25% duty cycle
  • Fig. 13b shows current and voltage curves of the circuit shown in Fig. 12, at 50% duty cycle
  • Fig. 14 shows a simplified rectifier having mains- side coupled coils
  • Fig. 15a shows current and voltage curves of the circuit shown in Fig. 14, at 25% duty cycle
  • Fig. 15b shows current voltage curves of the circuit shown in Fig. 14, at 50% duty cycle.
  • Fig. 1 schematically shows a variant of a converter Ia according to the invention.
  • the converter Ia comprises three branches connected in parallel and each having two rectifying elements connected in series, in this case diodes D, whose direction of flow points away from a low end FP, and three coils L a , L b , L c , which are connected between the two diodes D of one branch each and are connected to one mains connection L 3 , L 2/N , L I each.
  • a switch S is provided on the mains side, which switch S connects the first coil L a to the mains connection L 3 in the case of three-phase operation and via a capacitor C to the lower end FP in the case of single-phase operation.
  • one switching element each in this case a transistor T, is connected antiparallel to each diode D. This is advantageous for realizing the basic invention and also serves for being able to operate the converter 1 bidirectionally .
  • Fig. 2 shows the variation of selected parameters of the converter Ia shown in fig. 1 as a function of time, namely that of the phase current I L i of the capacitor current I c , of the capacitor voltage U 0 and finally of the apparent power at the capacitor S 0 .
  • the curve is chosen so that a constant power flux occurs at the output of the converter Ia although the converter Ia is operated in single-phase mode at the input and accordingly pulses the power with twice the mains frequency (e.g. 100 Hz) at the input.
  • the capacitor current I c , the capacitor voltage U 0 and hence the apparent power S 0 oscillate twice as fast as the phase current I L i-
  • the phase current I L i oscillates at 50 Hz and hence the capacitor current I 0 , the capacitor voltage U 0 and the apparent power S 0 at 100 Hz.
  • Calculations/simulations also show that, for 90% use of the energy stored in the capacitor C at maximum capacitor voltage U c , a minimum capacitor voltage U 0 of 31.6% of the highest capacitor voltage U 0 is sufficient for completely compensating the power ripple in single-phase operation.
  • the maximum capacitor voltage U c is 600 V and the minimum capacitor voltage U 0 is 190 V (rounded up to 200 V) .
  • the capacitance C is 150 ⁇ F.
  • a 100 Hz current flows through the first coil L a while a 50 Hz current flows through the other two coils L b and L c .
  • Fig. 3 shows a converter Ib which is very similar to the converter Ia shown in fig. 1.
  • the switch S connects the first coil L a in single-phase operation via a capacitor C but not to the low end FP but instead to another coil L b , L c , in the example shown to the second coil L b .
  • Fig. 4 shows a vector diagram and fig. 5 the variation of the phase voltages U L i, U L 2 and U L 3 and of the phase currents I L i, IL2 and I L 3 of the converter Ib shown in fig. 3 as a function of time.
  • the third phase L 3 is not connected on the mains side, the term is retained owing to the virtually produced third phase.
  • U L 2 0 owing to the connection to the neutral conductor L 2/N -
  • the capacitor voltage U 0 has the greatest magnitude. This is advantageous but not essential.
  • the capacitor current I c is maximum but the capacitor voltage U 0 is zero, and hence also the power output by the capacitor C.
  • the capacitor voltage U 0 is maximum but the capacitor current I c is zero, and hence also the power taken up by the capacitor C.
  • the instantaneous mains power corresponds to the mains power averaged over a sine period, so that the capacitor C also need not compensate any power.
  • the capacitor C At peak value of the mains current, the capacitor C reaches 1/V2 times its maximum voltage U Cma ⁇ and also of its maximum current I C ma ⁇ , owing to the phase shift by 45°. Since at this moment twice the effective power P N is taken from the mains, and the capacitor C must take up half thereof (i.e. P N ), the following is true:
  • I i2 2 I 2 N + IC 2 - 2I N IC - COS (45 °)
  • I L2 ⁇ I N 2 + ic 2 -J ⁇ -ijc
  • U L 2 in a further advantageous variant of the invention is not capped at zero but is modulated, for example, with half the capacitor voltage U 0 . Consequently, U L 2 and U L 3 are always opposite in phase.
  • Fig. 6 shows the corresponding voltage curves.
  • the average value U a of all three phase voltages U L i, U L 2 and U L 3 relative to the intermediate circuit midpoint and the total energy E stored in the chokes L a , L b and L c are shown .
  • Fig. 7 shows a further advantageous configuration of the invention, namely a converter Ic having three branches connected in parallel and each having two diodes which are connected in series and whose direction of flow points away from a low end FP.
  • One transistor T each is connected antiparallel to each diode D and one capacitor C 2 each is connected parallel to each branch.
  • the circuit comprises three mains-side coils L a , L b , L c , which are connected between the two diodes D of one branch each, the first coil L a consisting of two part-coils L ai , L a2 , which are connected in parallel in the case of three-phase operation and in series in the case of single-phase operation.
  • the coils L ai , L a2 , L b , L c are coupled in the same sense.
  • a switch S is provided on the mains side and connects the first coil L a to the mains in the case of three-phase operation (parallel connection of the part- coils L a i and L a2 ) and connects it via a capacitor C to the lower end FP in the case of single-phase operation (series connection of the part-coils L ai and L a2 ) .
  • the switch S consists of a two-pole relay which appropriately switches the part-coils L ai and L a2 .
  • the capacitor C is formed from 5 parallel part- capacitors .
  • Fig. 8 shows a further variant of the invention, namely a battery charger 5a in which the converter Ia from fig. 1 is connected on the load side to a two-pole inverter 2.
  • the inverter 2 is connected to a primary side of a transformer T, and a secondary side of the transformer T is connected to a two-pole rectifier 3.
  • a load in the form of a battery B is connected to the rectifier 3.
  • the combination of inverter 2, transformer T and rectifier 3 forms a DC/DC converter which can set the charging voltage to any level.
  • Fig. 9 shows a battery charger 5b which in principle has the same design as the battery charger 5b shown in fig. 8, except that here, instead of the converter Ia from fig. 1, the converter Ib from fig. 3 is connected to the inverter 2.
  • fig. 10 shows a battery charger 5c in which the converter Ic from fig. 7 is connected on the load side to two two-pole inverters 2a, 2b connected in series and each having a capacitor Ci, C2 connected parallel thereto.
  • the inverters 2a, 2b are in turn connected to one primary side each of two transformers T a , T b .
  • One secondary side each of the transformers T a , T b is connected to one two-pole rectifier 3a, 3b each and to in each case a capacitor C3, C 4 connected parallel thereto.
  • the rectifiers 3a, 3b are in turn connected in parallel and intended for connection of a load via a filter 4.
  • the circuit connected to the converter Ic forms a DC/DC converter which can set the charging voltage for the battery or, in the case of inverse operation, the intermediate circuit voltage to any level.
  • the inverters 2a, 2b are connected in series on the primary side whereas the rectifiers 3a, 3b are connected in parallel.
  • all four combinations of series and parallel connection are conceivable, i.e. for example two parallel inverters 2a, 2b and two parallel rectifiers 3a, 3b.
  • fig. 11 shows a simplified diagram of this circuit.
  • the energy flow in fig. 11 is from the battery (not shown in fig. 10 and connected to the filter 4) to the alternating current mains.
  • Fig. 11 shows the two transformers T a and T b , the voltages U 1 I and U 12 which are supplied by the inverters 3a and 3b on the battery side to the transformers T a and T b , and the load-side or mains-side rectifiers 2a and 2b, which are connected on the secondary side to the transformers T a and T b and are shown here as simple full-wave bridge rectifiers with the smoothing capacitors Ci and C 2 .
  • the two inverters 3a, 3b are operated synchronously with respect to frequency but offset by 90° with symmetrical square-wave voltage.
  • the leakage inductances L S i, L S 2 at the transformers T a and T b form in each case a resonant circuit with the capacitors Ci and C2. If the resonant frequency thereof is exactly twice as large as the clock frequency, sinusoidal a.c. voltages which are superposed on the d.c. voltage and phase-shifted by 180° result at Ci and C2. These phase-shifted d.c. voltages are compensated by the series circuit of the rectifiers 2a, 2b, whereby a virtually ripple-free d.c. voltage results on the load side.
  • the resonant operation also ensures that the transistors of the inverters 3a and 3b (MOSFETs in the example shown) are switched on and off in a virtually currentless manner, which reduces losses and substantially avoids HF disturbances. Owing to the moderate range of change of current in the transformer windings, parasitic loss effects (eddy currents, skin and proximity effect or the like) are also reduced.
  • the battery voltage is lower than the mains voltage or intermediate circuit voltage.
  • the resonance capacitors Ci and C2 are arranged on the side of the higher voltage (i.e. the mains side here), they have lower losses and a higher energy density.
  • the series connection of the two converters on the high voltage side permits the use of switches with lower losses.
  • a rectifier for two phases in this case for the a.c. voltages U A ci and U AC 2, is shown instead of a three-phase rectifier according to the invention.
  • Two coupled coils L a and L b are connected on the mains side to the rectifier.
  • the actuation of the transistors of the rectifier is effected with symmetrical pulse-width modulation (PWM), i.e. the ascending and descending flanks of the PWM signals have the same time difference relative to the "clock time" (dashed line in fig. 13a and 13b) .
  • PWM pulse-width modulation
  • Figures 13a and 13b show the variation of the potentials Ui and U2, U A ci and U A c2 as a function of time at both connections of the coils L a and L b , the coil currents I La and I Lb and the mains-side current I AC .
  • the mains-side parameters UA C I / U AC 2 and I AC are shown as being constant owing to the high clock frequency of the rectifier (e.g. 33 kHz) in figures 13a and 13b in comparison with the mains frequency (e.g. 50 Hz).
  • Fig. 13a shows the variations of said parameters as a function of time for 25% duty cycle, and fig. 13b for 50% duty cycle.
  • the chokes "integrate" the voltages U AC i-Ui and U AC 2 ⁇ U2, which gives a sawtooth-like or triangular current curve.
  • the coil currents I La and I Lb vary relatively considerably about a mean value, which leads to high ripple currents. As is evident from fig. 13b, this applies even when the mean current value is equal to zero.
  • Fig. 14 shows a variant of the circuit shown in fig. 12.
  • the coils L a and L b are now coupled.
  • Figures 15a and 15b show the variation of various parameters as a function of time, analogously to figures 13a and 13b.
  • the two coils or chokes L a and L b are wound on the same closed core. This results in a very high main inductance.
  • the actual storage chokes result from the leakage inductance.
  • U A c 0 (fig. 15b) .
  • This setup is therefore preferred according to the invention.
  • width ratios not equal to 50%, only the difference between the voltages (U A ci ⁇ Ui) - (UA C 2 ⁇ U2) is integrated via the leakage inductance.
  • the symmetrical modulation results in twice the ripple current frequency and half the ripple current amplitude in comparison with the "uncoupled" variant in fig. 12.
  • the current ripple is therefore substantially reduced according to the invention.
  • ILI-IL3 Phase currents ILa -ILb Coil currents

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Le convertisseur (1a, 1c) destiné à une utilisation monophasée et triphasée selon la présente invention comprend un redresseur triphasé sur lequel sont connectées trois bobines (La, Lb, Lc) du côté du réseau électrique. Une première bobine (La) est équipée du côté du réseau électrique d'un commutateur (S) qui connecte la première bobine (La) au réseau électrique au cours de l'utilisation triphasée et qui la connecte via un condensateur (C) soit à l'extrémité inférieure (FP) du redresseur soit du côté du réseau électrique à une autre bobine (Lb, Lc) au cours de l'utilisation monophasée. De plus, la présente invention a trait à une alimentation en tension continue et à un chargeur de pile (5a, 5c) qui comprennent le convertisseur (1a, 1c) selon l'invention.
PCT/IB2010/050333 2009-01-29 2010-01-26 Convertisseur destiné à une utilisation monophasée et triphasée, alimentation en tension continue et chargeur de pile WO2010086788A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011547035A JP5480296B2 (ja) 2009-01-29 2010-01-26 単相および3相動作用の変換器、dc電源および電池充電器
EP10703689.9A EP2391521B1 (fr) 2009-01-29 2010-01-26 Convertisseur destiné à une utilisation monophasée et triphasée, alimentation en tension continue et chargeur de pile
CN201080005790.2A CN102301577B (zh) 2009-01-29 2010-01-26 用于单相和三相操作的转换器、直流电压源及电池充电器
US13/131,874 US8503208B2 (en) 2009-01-29 2010-01-26 Converter for single-phase and three-phase operation, D.C. voltage supply and battery charger

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US14837709P 2009-01-29 2009-01-29
CH00136/09 2009-01-29
US61/148,377 2009-01-29
CH1362009 2009-01-29
CH01059/09 2009-07-08
CH10592009 2009-07-08
US22814109P 2009-07-23 2009-07-23
US61/228,141 2009-07-23

Publications (2)

Publication Number Publication Date
WO2010086788A2 true WO2010086788A2 (fr) 2010-08-05
WO2010086788A3 WO2010086788A3 (fr) 2010-10-07

Family

ID=42357762

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2010/050333 WO2010086788A2 (fr) 2009-01-29 2010-01-26 Convertisseur destiné à une utilisation monophasée et triphasée, alimentation en tension continue et chargeur de pile
PCT/IB2010/050401 WO2010086823A2 (fr) 2009-01-29 2010-01-29 Convertisseur cc/cc et convertisseur ca/cc

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/050401 WO2010086823A2 (fr) 2009-01-29 2010-01-29 Convertisseur cc/cc et convertisseur ca/cc

Country Status (6)

Country Link
US (2) US8503208B2 (fr)
EP (2) EP2391521B1 (fr)
JP (2) JP5480296B2 (fr)
KR (2) KR20110110783A (fr)
CN (2) CN102301577B (fr)
WO (2) WO2010086788A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8009443B2 (en) 2009-01-29 2011-08-30 Brusa Elektronik Ag DC/DC converter and AC/DC converter
EP2479059A1 (fr) * 2011-01-19 2012-07-25 Power Research Electronics B.v. Chargeur de batterie pour véhicules électriques
WO2012167827A1 (fr) * 2011-06-08 2012-12-13 L-3 Communications Magnet-Motor Gmbh Convertisseur courant continu/courant alternatif et procédé de commande d'un convertisseur courant continu/courant alternatif
WO2012167828A1 (fr) * 2011-06-08 2012-12-13 L-3 Communications Magnet-Motor Gmbh Procédé de commande d'un convertisseur courant continu/courant alternatif
EP2567857A1 (fr) * 2011-09-09 2013-03-13 Siemens Aktiengesellschaft Système d'alimentation d'énergie pour un véhicule électrique
EP3242382A1 (fr) * 2016-05-04 2017-11-08 ABB Schweiz AG Système de convertisseur alternatif-continu
US10454377B2 (en) 2011-01-19 2019-10-22 Abb B.V. Resonant power converter
WO2020048966A1 (fr) 2018-09-03 2020-03-12 Brusa Elektronik Ag Dispositif convertisseur

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645931B2 (ja) 2009-06-24 2014-12-24 ブルサ エレクトロニック アーゲー 原動機付移動体用電力分配回路
EP2472702B1 (fr) * 2009-10-16 2017-08-02 Mitsubishi Electric Corporation Système d'alimentation en énergie pour véhicule
JP5071498B2 (ja) * 2010-03-10 2012-11-14 オムロン株式会社 電力変換装置およびパワーコンディショナ
US8649195B2 (en) * 2010-04-08 2014-02-11 Arizona Board Of Regents For And On Behalf Of Arizona State University Hybrid space vector PWM schemes for interleaved three-phase converters
EP2385617A1 (fr) * 2010-05-06 2011-11-09 Brusa Elektronik AG Commande et procédé pour un convertisseur de courant continu et convertisseur de courant continu
FR2961965B1 (fr) * 2010-06-25 2012-07-13 Valeo Sys Controle Moteur Sas Dispositif de charge de moyens d'accumulation
KR20130126580A (ko) 2010-06-29 2013-11-20 브루사 일렉트로닉 아게 전압 컨버터
US20130134935A1 (en) * 2011-05-26 2013-05-30 Electric Power Research Institute, Inc. Medium voltage stand alone dc fast charger
US8441231B2 (en) * 2011-05-27 2013-05-14 Eta Semiconductor Inc. Bidirectional hysteretic power converter
US9306465B2 (en) 2011-06-10 2016-04-05 Lear Corporation Method for controlling a converter having variable frequency control and system for powering a vehicle load using same
CN103201948B (zh) * 2011-10-26 2016-01-06 丰田自动车株式会社 电动机控制装置
JP5762617B2 (ja) * 2012-02-14 2015-08-12 三菱電機株式会社 Dc/dcコンバータ
US9048756B2 (en) * 2012-03-07 2015-06-02 Virginia Tech Intellectual Properties, Inc. DC-side leakage current reduction for single phase full-bridge power converter/inverter
JP2013209017A (ja) * 2012-03-30 2013-10-10 Toyota Industries Corp 電源回路
US20140347898A1 (en) * 2012-05-31 2014-11-27 General Electric Company Modular multi-level power conversion system with dc fault current limiting capability
CN102710152B (zh) * 2012-06-06 2015-12-02 矽力杰半导体技术(杭州)有限公司 一种高效率、快速响应的交流-直流电压转换电路
US9373978B2 (en) * 2012-07-24 2016-06-21 General Electric Company Uninterruptible power supply apparatus for receiving power from different electrical utility configurations
CN102820769B (zh) * 2012-08-15 2014-08-13 武汉理工大学 抑制逆变系统低频纹波的自适应波形控制方法
FR2996071B1 (fr) * 2012-09-25 2014-09-05 Renault Sa Systeme de charge d'une batterie d'un vehicule automobile
JP6073630B2 (ja) * 2012-10-05 2017-02-01 シャープ株式会社 Dc−dcコンバータと、それを用いたソーラーパワーコントローラおよび移動体
WO2014056540A1 (fr) * 2012-10-11 2014-04-17 Siemens Aktiengesellschaft Convertisseur continu-continu multi-niveaux modulaire pour applications ccht
US20140156099A1 (en) 2012-12-05 2014-06-05 Cummins Power Generation, Inc. Generator power systems with active and passive rectifiers
CN103066666B (zh) * 2013-01-22 2015-08-26 矽力杰半导体技术(杭州)有限公司 一种升压型电池充电管理系统及其控制方法
DE102014203565A1 (de) * 2014-02-27 2015-08-27 Robert Bosch Gmbh Steuereinrichtung und Verfahren zur Antriebsschlupfregelung für ein elektrisches Antriebssystem
EP3123605B1 (fr) * 2014-03-28 2018-07-18 FLSmidth A/S Alimentation haute tension
CN107852095B (zh) * 2015-08-06 2020-01-10 日立汽车系统株式会社 充电装置
US10461583B2 (en) 2015-11-10 2019-10-29 Samsung Electronics Co., Ltd. Electronic device and method for wireless charging in electronic device
MX2018007707A (es) * 2015-12-22 2018-11-09 Thermatool Corp Sistema de suministro de energia de alta frecuencia con salida muy regulada para calentar una pieza de trabajo.
US10177681B2 (en) * 2016-06-24 2019-01-08 Infineon Technologies Austria Ag Power converter including an autotransformer and power conversion method
US10727697B2 (en) 2016-09-14 2020-07-28 Witricity Corporation Power flow controller synchronization
FR3064832B1 (fr) * 2017-04-03 2020-10-30 Valeo Siemens Eautomotive France Sas Systeme de chargeur electrique triphase et monophase pour vehicule electrique ou hybride
DE102017009527A1 (de) * 2017-10-12 2019-04-18 Thyssenkrupp Ag Verfahren zum Versorgen einer Fahranlage eines Unterseebootes mit elektrischer Energie und Fahrnetz eines Unterseebootes
CN108528263A (zh) * 2018-06-08 2018-09-14 重庆聚陆新能源有限公司 一种高效率的电动汽车直流快充系统
DE102018210579A1 (de) 2018-06-28 2020-01-02 Continental Automotive Gmbh Fahrzeugseitige Ladeschaltung
KR20200031413A (ko) 2018-09-14 2020-03-24 엘지이노텍 주식회사 태양광 연계 에너지 저장 시스템용 dc-dc 컨버터 및 그 제어방법
EP3648322A1 (fr) * 2018-10-30 2020-05-06 Mahle International GmbH Chargeurs embarqués (obc)
DE112018004240T5 (de) * 2018-12-17 2021-04-08 Fuji Electric Co., Ltd. Dc-dc-wandler
RU2707699C1 (ru) * 2019-01-24 2019-11-28 Эдвид Иванович Линевич Способ рекуперации электрической энергии и устройство для его осуществления
DE102019106485B4 (de) * 2019-03-14 2021-04-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Weissach-Gleichrichteranordnung
KR102603058B1 (ko) 2019-04-22 2023-11-16 현대자동차주식회사 친환경 차량용 충전 제어 시스템 및 방법
KR102656474B1 (ko) * 2019-05-08 2024-04-16 주식회사 지오라인 급속 및 완속 충전 일체형 사용자인증 이동형 충전장치
US11201541B2 (en) 2019-07-26 2021-12-14 Brusa Hypower Ag Power converter and method for operating a power converter
EP4038735A1 (fr) * 2019-10-02 2022-08-10 Hella Gmbh & Co. Kgaa Convertisseur de puissance bidirectionnel ayant un circuit intermédiaire
DE102020119104B3 (de) 2020-07-21 2021-09-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Gleichrichteranordnung
DE102020119105A1 (de) 2020-07-21 2022-01-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Gleichrichteranordnung
NL2026324B1 (en) * 2020-08-21 2022-04-14 Prodrive Tech Bv Modular reconfigurable electrical AC/DC converter
DE102020129247A1 (de) 2020-11-06 2022-05-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Gleichrichteranordnung
CN112506041B (zh) * 2020-11-19 2022-07-08 合肥工业大学 Dc/dc转换器
FR3124905A1 (fr) * 2021-06-30 2023-01-06 Valeo Systemes De Controle Moteur Système de conversion de tension et véhicule automobile comportant un tel système
NL2029102B1 (en) 2021-09-01 2023-03-17 Prodrive Tech Innovation Services B V Flying capacitor circuit with active capacitor voltage control
JP2024089390A (ja) * 2022-12-21 2024-07-03 株式会社Soken 電力変換装置、プログラム
CN117175943B (zh) * 2023-08-10 2024-09-17 哈尔滨工业大学 一种新型负压输出软开关高降压比变换器及拓扑结构
CN117239885B (zh) * 2023-11-16 2024-03-15 中山市宝利金电子有限公司 宽电压范围的储能充电电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2624532A1 (de) 1976-06-01 1977-12-08 Siemens Ag Schaltungsanordnung zum anschluss eines elektronischen geraetes an ein wechselspannungsnetz
US5200887A (en) 1991-06-28 1993-04-06 Daihen Corporation Power supply unit for arc processing
DE10151153A1 (de) 2001-10-19 2003-04-30 Bombardier Transp Gmbh Vorrichtung zum Laden von Batterien für Elektrofahrtzeuge
EP1643626A2 (fr) 2004-09-22 2006-04-05 Matsushita Electric Industrial Co., Ltd. Dispositif d'alimentation à courant continu et procédé pour le même, et dispositif d'entraînement pour un compresseur
EP1971016A2 (fr) 2007-03-16 2008-09-17 Vacon Oyj Circuit de suppression des harmoniques de courant

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1638344A1 (de) 1968-03-05 1969-09-18 Kaick Avk Generatoren Buerstenlose Synchronmaschine mit Spezialerregermaschine
US3517300A (en) 1968-04-16 1970-06-23 Gen Electric Power converter circuits having a high frequency link
DE1763299A1 (de) 1968-05-02 1971-10-21 Licentia Gmbh Entregungsschaltung fuer buerstenlos ueber rotierende Dioden erregte Synchronmaschinen
US3555396A (en) * 1969-05-02 1971-01-12 Garrett Corp Self-starting power converter
DE2127497A1 (de) 1971-05-28 1972-12-07 Siemens Ag Anordnung zur Schnellentregung von bürstenlosen Synchronmaschinen, die über umlaufende ungesteuerte Gleichrichter erregt werden
US4017784A (en) 1976-05-17 1977-04-12 Litton Systems, Inc. DC to DC converter
CA1097738A (fr) 1976-08-20 1981-03-17 Westinghouse Electric Corporation Methode de desexcitation rapide d'une excitatrice sans balai
SE406397B (sv) 1977-06-27 1979-02-05 Asea Ab Feltmatningsutrustning
US4336486A (en) 1980-01-09 1982-06-22 Westinghouse Electric Corp. Dynamoelectric machines brushless supplemental excitation system
DE3305224A1 (de) 1983-02-16 1984-08-16 Bbc Brown Boveri & Cie Bord-batterieladegeraet
GB2152770B (en) 1983-11-15 1987-04-29 Yokogawa Hokushin Electric Dc/dc converter
DE3406274A1 (de) 1984-02-17 1985-08-29 Siemens AG, 1000 Berlin und 8000 München Elektrische synchronmaschine, die ueber rotierende gleichrichter erregt wird
US4695933A (en) * 1985-02-11 1987-09-22 Sundstrand Corporation Multiphase DC-DC series-resonant converter
JPS62138061A (ja) * 1985-12-09 1987-06-20 Yuasa Battery Co Ltd スイツチングレギユレ−タ電源装置
KR930001224B1 (ko) * 1987-01-09 1993-02-22 가부시끼가이샤 산샤덴끼 세이사꾸쇼 교류 아아크 용접기용 전원장치
JPH03111413A (ja) 1989-09-26 1991-05-13 Toray Ind Inc グラフトポリアリレートの製造方法
SE500682C2 (sv) 1992-04-02 1994-08-08 Asea Brown Boveri Sätt och anordning för avmagnetisering av borstlösa synkrongeneratorer
AT403422B (de) 1993-06-18 1998-02-25 Steyr Daimler Puch Ag Regelschaltung für batteriebetriebene fahrzeuge
US5555494A (en) 1993-09-13 1996-09-10 Morris; George Q. Magnetically integrated full wave DC to DC converter
DE9403447U1 (de) 1994-03-01 1994-04-28 Siemens AG, 80333 München Energieversorgungseinrichtung für Reisezugwagen
JPH0865904A (ja) 1994-06-06 1996-03-08 Nippondenso Co Ltd 電気自動車用充電装置
JP2865194B2 (ja) 1994-07-29 1999-03-08 株式会社アイ・ヒッツ研究所 単相入力3相全波整流回路及び単相入力疑似4相全波整流回路
US5710698A (en) * 1994-09-30 1998-01-20 Lockheed Martin Energy Systems, Inc. Delta connected resonant snubber circuit
AT405227B (de) 1995-12-11 1999-06-25 Steyr Daimler Puch Ag Ladevorrichtung für ein batteriebetriebenes fahrzeug
DE19546420C1 (de) 1995-12-12 1997-04-10 Siemens Ag Unterbrechungsfreie Stromversorgungseinrichtung
US5754413A (en) 1996-02-23 1998-05-19 Lucent Technologies Inc. Reduced voltage stress asymmetrical DC-to-DC converter using first and second transformers having differing turns ratios
US5973939A (en) 1996-08-29 1999-10-26 Trw Inc. Double forward converter with soft-PWM switching
SE520786C2 (sv) * 1997-03-24 2003-08-26 Abb Ab Anläggning för överföring av elektrisk effekt
JP3361047B2 (ja) 1998-01-30 2003-01-07 株式会社東芝 車両用電源装置
DE19941170A1 (de) 1999-08-30 2001-03-08 Herbert Weh Selbstsymmetrierende Einspeiseschaltung
US6337801B2 (en) * 1999-12-16 2002-01-08 Virginia Tech Intellectual Properties, Inc. Three-phase zero-current-transition (ZCT) inverters and rectifiers with three auxiliary switches
JP2001211645A (ja) * 2000-01-25 2001-08-03 Hitachi Ltd 直流電源装置
US7187566B2 (en) 2000-03-17 2007-03-06 Daikin Industries, Ltd. Three-phase rectifier
JP3482378B2 (ja) * 2000-06-01 2003-12-22 松下電器産業株式会社 スイッチング電源装置
DE10051156B4 (de) 2000-10-16 2005-09-22 Siemens Ag Verfahren und Umrichterschaltung zur mittelfrequenten transformatorischen Energieübertragung
US6490183B2 (en) 2000-12-29 2002-12-03 Ericsson, Inc. Method and apparatus for minimizing negative current build up in DC-DC converters with synchronous rectification
CA2369060C (fr) 2001-01-24 2005-10-04 Nissin Electric Co., Ltd. Convertisseur c.c./c.c. et convertisseur c.c./c.c. bidirectionnel et methode de controle connexe
JP3463807B2 (ja) 2001-01-24 2003-11-05 日新電機株式会社 Dc−dcコンバータ
JP3555137B2 (ja) * 2001-10-01 2004-08-18 日新電機株式会社 双方向dc−dcコンバータ
DE10123789A1 (de) * 2001-05-16 2002-11-21 Philips Corp Intellectual Pty Stromversorgungssystem
US6603675B1 (en) * 2002-01-17 2003-08-05 Abb Ab Apparatus and a method for voltage conversion
DE10217889A1 (de) * 2002-04-22 2003-11-13 Siemens Ag Stromversorgung mit einem Direktumrichter
US6765810B2 (en) 2002-08-02 2004-07-20 Artesyn Technologies, Inc. Full-wave coupled inductor power converter having synchronous rectifiers and two input switches that are simultaneously off for a time period of each switching cycle
JP2004088814A (ja) 2002-08-22 2004-03-18 Nissin Electric Co Ltd Dc−dcコンバータ
JP2005006455A (ja) 2003-06-13 2005-01-06 Toshiba Corp 整流装置
EP1646135A4 (fr) * 2003-07-15 2008-09-10 Mitsubishi Electric Corp Convertisseur de courant triphase et convertisseur de courant
US7149096B2 (en) 2004-02-18 2006-12-12 Astec International Limited Power converter with interleaved topology
EP1788911B1 (fr) * 2004-08-19 2017-06-28 Otis Elevator Company Exploitation d'un dispositif triphase utilisant un courant monophase
GB2421365B (en) * 2004-12-16 2007-12-27 Alstom Matrix converters
DE102005023290A1 (de) 2005-05-20 2006-11-23 Sma Technologie Ag Bidirektionaler Batteriewechselrichter
WO2007032074A1 (fr) 2005-09-15 2007-03-22 Mitsubishi Denki Kabushiki Kaisha Contrôleur de génératrice à courant alternatif pour véhicules
DE102006055126A1 (de) 2006-11-22 2008-06-05 Siemens Ag Verfahren zur Umwandlung einer Eingangsspannung in eine Ausgangsspannung sowie Stromversorgungseinrichtung, insbesondere stromgespeister Gegentaktwandler
EP1956703B1 (fr) * 2007-02-08 2010-04-07 SMA Solar Technology AG Dispositif destiné à l'alimentation électrique à partir d'une source de courant
JP4719702B2 (ja) * 2007-02-19 2011-07-06 ヤンマー株式会社 直流電源装置
US7751212B2 (en) * 2007-04-23 2010-07-06 Raytheon Company Methods and apparatus for three-phase rectifier with lower voltage switches
US7679941B2 (en) 2007-06-06 2010-03-16 General Electric Company Power conversion system with galvanically isolated high frequency link
JP4770798B2 (ja) 2007-06-15 2011-09-14 株式会社豊田自動織機 電源装置
JP2010074922A (ja) * 2008-09-17 2010-04-02 Tdk-Lambda Corp スイッチング電源
CN102301577B (zh) * 2009-01-29 2014-10-01 布鲁萨电子公司 用于单相和三相操作的转换器、直流电压源及电池充电器
JP5645931B2 (ja) 2009-06-24 2014-12-24 ブルサ エレクトロニック アーゲー 原動機付移動体用電力分配回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2624532A1 (de) 1976-06-01 1977-12-08 Siemens Ag Schaltungsanordnung zum anschluss eines elektronischen geraetes an ein wechselspannungsnetz
US5200887A (en) 1991-06-28 1993-04-06 Daihen Corporation Power supply unit for arc processing
DE10151153A1 (de) 2001-10-19 2003-04-30 Bombardier Transp Gmbh Vorrichtung zum Laden von Batterien für Elektrofahrtzeuge
EP1643626A2 (fr) 2004-09-22 2006-04-05 Matsushita Electric Industrial Co., Ltd. Dispositif d'alimentation à courant continu et procédé pour le même, et dispositif d'entraînement pour un compresseur
EP1971016A2 (fr) 2007-03-16 2008-09-17 Vacon Oyj Circuit de suppression des harmoniques de courant

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8503208B2 (en) 2009-01-29 2013-08-06 Brusa Elektronik Ag Converter for single-phase and three-phase operation, D.C. voltage supply and battery charger
US8009443B2 (en) 2009-01-29 2011-08-30 Brusa Elektronik Ag DC/DC converter and AC/DC converter
CN105322627B (zh) * 2011-01-19 2017-12-12 Abb有限公司 电动车辆的电池充电器
CN103429454B (zh) * 2011-01-19 2016-06-08 Abb有限公司 电动车辆的电池充电器
US10454377B2 (en) 2011-01-19 2019-10-22 Abb B.V. Resonant power converter
WO2012098202A3 (fr) * 2011-01-19 2013-05-02 Abb B.V. Chargeur de batterie pour véhicules électriques
US10166873B2 (en) 2011-01-19 2019-01-01 Abb B.V. Battery charger for electric vehicles
CN103429454A (zh) * 2011-01-19 2013-12-04 Abb有限公司 电动车辆的电池充电器
CN105322627A (zh) * 2011-01-19 2016-02-10 Abb有限公司 电动车辆的电池充电器
EP3002149A1 (fr) * 2011-01-19 2016-04-06 Abb B.V. Chargeur de batterie pour véhicules électriques
EP2479059A1 (fr) * 2011-01-19 2012-07-25 Power Research Electronics B.v. Chargeur de batterie pour véhicules électriques
WO2012167828A1 (fr) * 2011-06-08 2012-12-13 L-3 Communications Magnet-Motor Gmbh Procédé de commande d'un convertisseur courant continu/courant alternatif
US9742286B2 (en) 2011-06-08 2017-08-22 L-3 Communications Magnet-Motor Gmbh Method of controlling a DC/AC converter
US9343993B2 (en) 2011-06-08 2016-05-17 L-3 Communications Magnet-Motor Gmbh DC/AC converter and method of controlling a DC/AC converter
WO2012167827A1 (fr) * 2011-06-08 2012-12-13 L-3 Communications Magnet-Motor Gmbh Convertisseur courant continu/courant alternatif et procédé de commande d'un convertisseur courant continu/courant alternatif
EP2567857A1 (fr) * 2011-09-09 2013-03-13 Siemens Aktiengesellschaft Système d'alimentation d'énergie pour un véhicule électrique
EP3242382A1 (fr) * 2016-05-04 2017-11-08 ABB Schweiz AG Système de convertisseur alternatif-continu
WO2017191245A1 (fr) * 2016-05-04 2017-11-09 Abb Schweiz Ag Système convertisseur alternatif-continu
US11050352B2 (en) 2016-05-04 2021-06-29 Abb Schweiz Ag AC-to-DC converter system
EP3453106B1 (fr) * 2016-05-04 2022-07-06 ABB Schweiz AG Système de convertisseur alternatif-continu
WO2020048966A1 (fr) 2018-09-03 2020-03-12 Brusa Elektronik Ag Dispositif convertisseur

Also Published As

Publication number Publication date
EP2391521B1 (fr) 2020-03-25
US20100220501A1 (en) 2010-09-02
WO2010086823A4 (fr) 2010-12-09
KR20110110783A (ko) 2011-10-07
US8009443B2 (en) 2011-08-30
EP2391522B1 (fr) 2021-07-07
JP2012516670A (ja) 2012-07-19
KR20110110805A (ko) 2011-10-07
CN102301577B (zh) 2014-10-01
CN102301576B (zh) 2014-12-31
WO2010086788A3 (fr) 2010-10-07
CN102301577A (zh) 2011-12-28
CN102301576A (zh) 2011-12-28
JP2012516671A (ja) 2012-07-19
WO2010086823A3 (fr) 2010-10-14
JP4910078B1 (ja) 2012-04-04
US20110261591A1 (en) 2011-10-27
US8503208B2 (en) 2013-08-06
JP5480296B2 (ja) 2014-04-23
EP2391521A2 (fr) 2011-12-07
WO2010086823A2 (fr) 2010-08-05
EP2391522A2 (fr) 2011-12-07

Similar Documents

Publication Publication Date Title
EP2391521B1 (fr) Convertisseur destiné à une utilisation monophasée et triphasée, alimentation en tension continue et chargeur de pile
US10562404B1 (en) Integrated onboard chargers for plug-in electric vehicles
US9584047B2 (en) Bidirectional power converter having a charger and export modes of operation
CA3000773C (fr) Convertisseur de puissance bidirectionnel
TW201232989A (en) Resonance type charging device and vehicle using the same
JP2015208171A (ja) 電源装置
US9209698B2 (en) Electric power conversion device
US20200266713A1 (en) DC-DC converter
KR20190115364A (ko) 단상 및 3상 겸용 충전기
Mishima et al. A Single-Stage High-Frequency-Link Modular Three-Phase $ LLC $ AC–DC Converter
KR20210018598A (ko) 차량용 전력 변환 시스템 및 그 제어 방법
US20070183176A1 (en) Power supply apparatus
Wang et al. A novel converter topology for a primary-side controlled wireless EV charger with a wide operation range
KR101027988B1 (ko) 직렬 보상 정류기 및 이를 포함하는 직렬 보상 무정전 전원장치
Burlaka et al. Bidirectional single stage isolated DC-AC converter
JP5412515B2 (ja) 電源装置
CN110741545B (zh) 高效电功率转换
Ruddell et al. A novel single-phase AC-AC BD-IPT system with zero power ripple
CN111373627A (zh) 用于控制蓄电器的电池充电器的方法
US20240213885A1 (en) Ac-dc conversion device and voltage converter circuit
RU2301156C1 (ru) Способ электроснабжения потребителей на транспортном средстве и система для его реализации
Samanta et al. A new inductive power transfer topology using direct AC-AC converter with active source current control
Zhou et al. Research on an integrated charging and drive system based on DAB converter
Diyunugalge Wireless Grid Integration of Electric Vehicles with Two-Way Power Flow: New Concepts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005790.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703689

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13131874

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010703689

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117017583

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011547035

Country of ref document: JP