WO2010085072A2 - 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법 - Google Patents

고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법 Download PDF

Info

Publication number
WO2010085072A2
WO2010085072A2 PCT/KR2010/000313 KR2010000313W WO2010085072A2 WO 2010085072 A2 WO2010085072 A2 WO 2010085072A2 KR 2010000313 W KR2010000313 W KR 2010000313W WO 2010085072 A2 WO2010085072 A2 WO 2010085072A2
Authority
WO
WIPO (PCT)
Prior art keywords
zone
column
section
normal butanol
distillation
Prior art date
Application number
PCT/KR2010/000313
Other languages
English (en)
French (fr)
Other versions
WO2010085072A3 (ko
Inventor
이성규
신준호
이종구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US13/145,325 priority Critical patent/US8888964B2/en
Priority to CN201080004898.XA priority patent/CN102281931B/zh
Priority to JP2011547768A priority patent/JP5822199B2/ja
Priority to EP10733625.7A priority patent/EP2394723B1/en
Publication of WO2010085072A2 publication Critical patent/WO2010085072A2/ko
Publication of WO2010085072A3 publication Critical patent/WO2010085072A3/ko
Priority to US14/469,047 priority patent/US9861907B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/12Monohydroxylic acyclic alcohols containing four carbon atoms

Definitions

  • the present invention relates to a dividing wall column for producing high purity normal butanol, and a normal butanol distillation method.
  • distillation column n-1
  • n-1 one distillation column which is one less than the number n of components of the mixture to be separated. That is, in the conventional distillation industry, the process for separating the three-component mixture uses a continuous two distillation column structure.
  • the conventional process is a two tower method in which the lowest boiling point component (D) is separated from the first tower 11 and the middle boiling point component (S) and the high boiling point component (B) are separated from the second tower 21.
  • the composition profile in the first column is shown in FIG. 2.
  • remixing of the middle boiling point (B) material generally occurs in the first column lower region.
  • a representative example of improving the separation efficiency by the heat integration structure is a Petlyuk distillation column structure as shown in FIG.
  • the pre-separator 12 and the main separator 22 are arranged in a thermally integrated structure to separate low-boiling material and high-boiling material from the pre-separator first, and then the top part and the bottom part of the pre-separator are mainly separated. It is introduced into the feed stage of the separator to separate the low boiling point, middle boiling point, and high boiling point material in the main separator, respectively.
  • This structure makes the energy distillation curve in the Petlyuk distillation column similar to the equilibrium distillation curve.
  • the design and operation of the process is not easy and in particular, it is difficult to balance the pressure in the tower.
  • a dividing wall column (DWC) has been proposed.
  • the dividing wall distillation column is similar to the Petlyuk distillation column in terms of thermodynamics, but from the structural point of view, the dividing wall is installed in the tower to integrate the preliminary separator of the Petlyuk distillation column into the main separator.
  • This structure facilitates operation by relieving the pressure balance between the preliminary and main separators of the Petlyuk distillation column and the operational difficulties, and also reduces the investment cost by integrating the two distillation columns into one. It has a big advantage.
  • Patent Literature 1 adds an alkaline additive to the above-mentioned slop butanol in a step of producing normal butanol by operating two distillation columns using slop butanol produced additionally in an oxo alcohol manufacturing process. And a step of removing the water and the low boiling point material from the distillation column 1, and removing the high boiling point material from the distillation column 2, and operating two existing distillation towers by operating two distillation towers. Since the content of normal butanol that can be obtained can be satisfied, the present invention relates to a method for purifying normal butanol, which not only shortens the process but also significantly reduces the energy and cost of operating the distillation column.
  • Patent document 2 is a step of introducing a mixture comprising a low boiling point material (A), a medium boiling point material (B) and a high boiling point material (C) to the first distillation column; Separating the mixture in a first distillation column such that no remixing of the boiling point material (B) occurs at the bottom of the first distillation column to provide a first distillation column top product and a bottom product; And separating the first distillation column bottom product in a second distillation column to provide a second distillation column top product and a bottom product, the low boiling point material (A) and the middle boiling point material in the product above the second distillation column.
  • the present invention relates to a method of controlling the concentration ratio of (B).
  • Patent Document 1 KR 10-2003-0088211 A2 2003.11.19.
  • Patent Document 2 KR 10-2008-0099034 A1 2008.11.12.
  • the dividing wall distillation column is less flexible to operating conditions due to the structural characteristics that cannot control the internal circulation flow rate. That is, there is a problem that accurate simulation and structure determination are required in the initial design stage of the distillation column.
  • the present invention is to solve the above problems, to provide a partition wall distillation column and a method of operation thereof designed for normal butanol purification to reduce the energy used as well as to reduce the equipment cost.
  • the present invention has been made to solve the above problems of the prior art,
  • a dividing wall distillation column comprising a main column including a condenser, a reboiler, and a dividing wall,
  • the main column is divided into a tower top zone, an upper supply zone, an upper outlet zone, a lower supply zone, a lower outlet zone and a tower bottom zone, and has at least one inflow stream and at least three outflow streams,
  • the inflow flow is that the raw material (F), which is crude normal butanol, is introduced into the supply intermediate stage (NR1) in contact with the upper supply section and the lower supply section of the main column,
  • At least one or more of said effluent streams provides a dividing wall distillation column, characterized in that it is substantially a normal butanol stream.
  • dividing wall type distillation column comprising a main column including a condenser, a reboiler, and a dividing wall
  • the main tower is divided into a tower top zone, an upper supply zone, an upper outlet zone, a lower supply zone, a lower outlet zone and a tower bottom zone,
  • the raw material F which is crude normal butanol, flows into the supply intermediate stage NR1 which is in contact with the upper feed zone and the lower feed zone of the main column, and the low boiling point component D flows out of the tower top zone, B) is discharged from the bottom zone, the middle boiling point component (S) is discharged to the outlet middle end (NR2) in contact with the upper outlet area and the lower outlet area,
  • the middle boiling point component provides a dividing wall distillation column, characterized in that substantially normal butanol.
  • the raw material (F) provides a dividing wall distillation column, characterized in that the normal butanol content is 90% by weight or more.
  • the number of stages provided in each of the column top section, the upper feed section, the upper outlet section, the lower supply section, the lower outlet section and the column bottom section are 80 of the theoretical stages calculated by the distillation curve. It provides a dividing wall distillation column, characterized in that within the range of 145%.
  • the length of the partition wall is characterized in that the length is determined according to the number of stages included in the upper supply section and the lower supply section, or the upper outlet section and the lower outlet section.
  • the length of the partition wall is characterized in that within the range of 30 to 85% of the total number of theoretical stages of the top section, the upper supply section, the lower outlet section and the bottom section calculated by the distillation curve. It provides a dividing wall distillation column.
  • the temperature of the column top section provides a dividing wall distillation column, characterized in that within the range of 90 to 100 °C at atmospheric pressure.
  • the temperature of the column bottom zone provides a dividing wall distillation column, characterized in that within the range of 140 to 160 °C at normal pressure.
  • the temperature of the outlet middle end (NR2) is provided at a position where the upper outlet area and the lower outlet area is in contact and the middle boiling point (S) component is outflow is within the range of 118 to 127 °C at normal pressure.
  • a dividing wall distillation column Provided is a dividing wall distillation column.
  • the temperature of the column top zone provides a dividing wall distillation column, characterized in that within the lower limit temperature (T 1a ) to the upper limit temperature (T 2a ) according to the following equation ( 1 ).
  • T 1a 86.8036 x P 0.3570
  • T 1a and T 2a are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the temperature of the column bottom zone provides a dividing wall distillation column, characterized in that within the lower limit temperature (T 1b ) to the upper limit temperature (T 2b ) in accordance with the following equation ( 2 ).
  • T 1b and T 2b are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the temperature of the outflow intermediate stage NR2 provided at a position where the upper outlet region and the lower outlet region are in contact with each other and the middle boiling point S component flows out may be a lower limit temperature T 1c according to Equation 3 below . It provides a dividing wall distillation column, characterized in that within the upper temperature (T 2c ) range.
  • T 1c and T 2c are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the dividing wall distillation column includes a main column including a condenser, a reboiler, and a dividing wall, wherein the main column is divided into a tower top section, an upper supply section, an upper outlet section, a lower supply section, a lower outlet section, and a tower bottom section.
  • the low boiling point component (D) flows out of the tower top zone
  • the high boiling point component (B) flows out of the top bottom zone
  • the middle boiling point component (S) flows out of the outflow intermediate stage (NR2) in contact with the upper outflow zone and the lower outflow zone.
  • the middle boiling point component provides a normal butanol fractional distillation method, characterized in that substantially normal butanol.
  • the raw material (F) provides a normal butanol fractional distillation method, characterized in that the normal butanol content is 90% by weight or more.
  • each stage provided in the column top section, the upper feed section, the upper outlet section, the lower feed section, the lower outlet section and the column bottom section of the main column is calculated by a distillation curve It provides a normal butanol fractional distillation method characterized in that it is within the range of 80 to 145% of the theoretical singular.
  • the length of the dividing wall is characterized in that the length is determined according to the number of stages included in the upper supply section and the lower supply section, or the upper outlet section and the lower outlet section. Normal butanol fractional distillation is provided.
  • the length of the dividing wall is within the range of 30 to 85% of the total theoretical number of stages of the top zone, the upper feed zone, the bottom outlet zone and the bottom bottom zone calculated by the distillation curve.
  • a normal butanol fractional distillation method is provided.
  • the method of the present invention provides a normal butanol fractional distillation method characterized in that the temperature of the column top zone is within the range of 90 to 100 °C at normal pressure.
  • the method of the present invention provides a normal butanol fractional distillation method, characterized in that the temperature of the column bottom zone is within the range of 140 to 160 °C at normal pressure.
  • the temperature of the outflow intermediate stage NR2 provided at a position where the upper outlet region and the lower outlet region are in contact with each other and the middle boiling point S component flows out is within a range of 118 to 127 ° C at atmospheric pressure. It provides a normal butanol fractional distillation method characterized in that.
  • the temperature of the top column provides a normal butanol fractional distillation method, characterized in that within the lower limit temperature (T 1a ) to the upper limit temperature (T 2a ) according to the following equation ( 1 ).
  • T 1a 86.8036 x P 0.3570
  • T 1a and T 2a are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the temperature of the column bottom zone provides a normal butanol fractional distillation method characterized in that it is within the lower limit temperature (T 1b ) to the upper limit temperature (T 2b ) according to the following equation ( 2 ).
  • T 1b and T 2b are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the temperature of the outflow intermediate end NR2 provided at a position where the upper outflow zone and the lower outflow zone are in contact with each other and the middle boiling point S component flows out is the lower limit temperature T 1c according to Equation 3 below. It provides a normal butanol fractional distillation method, characterized in that within the range (T 2c )).
  • T 1c and T 2c are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the dividing wall type distillation column of the present invention has the effect of two distillation columns in one distillation column, there is an effect of reducing the energy cost as well as the equipment cost of the apparatus compared to the conventional process equipment in producing high purity normal butanol. .
  • 1 is a schematic representation of a conventional distillation process for the separation of a three component mixture.
  • Figure 3 is a composition profile in the column to the side flow operation in the first stage column distillation method.
  • FIG. 4 is a schematic view showing a Petlyuk distillation column structure.
  • FIG. 5 is a schematic view showing the structure of a dividing wall distillation column of the present invention.
  • FIG. 6 is a schematic view showing a comparative example.
  • FIG. 7 is a schematic diagram showing an embodiment of the present invention.
  • first tower 21 second tower
  • pre-separator 22 main separator
  • tower top zone 200 upper supply zone
  • the comparative example uses two distillation columns without a conventional dividing wall, and the example uses one distillation column with a dividing wall.
  • FIGS. 6 and 7 show examples and comparative examples of the present invention, respectively.
  • the numbers 1 to 8 of FIGS. 6 and 7 are identification numbers representing individual streams shown in the drawings of the examples and the comparative examples, respectively.
  • Examples and comparative examples had the theoretical number as shown in Table 2, the experimental results were as shown in Table 3 and Table 4.
  • the temperature of the top section of the example was about 95 ° C. and about 50 ° C. after cooling through the condenser (ie, the Examples 2, 3, and 4 flows below show about 50 ° C.).
  • FIG. 5 The structure of the dividing wall distillation column of the present invention is illustrated in FIG. 5, and the following description will be understood.
  • a dividing wall distillation column comprising a main column including a condenser, a reboiler, and a dividing wall,
  • the main column is divided into a tower top zone, an upper supply zone, an upper outlet zone, a lower supply zone, a lower outlet zone and a tower bottom zone, and has at least one inflow stream and at least three outflow streams,
  • the inflow flow is that the raw material (F), which is crude normal butanol, is introduced into the supply intermediate stage (NR1) in contact with the upper supply section and the lower supply section of the main column,
  • At least one of said effluent streams is characterized in that it is substantially a normal butanol stream.
  • another distillation column of the present invention is a dividing wall type distillation column including a main column including a condenser, a reboiler, and a dividing wall,
  • the main tower is divided into a tower top zone, an upper supply zone, an upper outlet zone, a lower supply zone, a lower outlet zone and a tower bottom zone,
  • the raw material F which is crude normal butanol, flows into the supply intermediate stage NR1 which is in contact with the upper feed zone and the lower feed zone of the main column, and the low boiling point component D flows out of the tower top zone, B) is discharged from the bottom zone, the middle boiling point component (S) is discharged to the outlet middle end (NR2) in contact with the upper outlet area and the lower outlet area,
  • the middle boiling point component is substantially normal butanol.
  • the distillation column of the present invention includes a condenser 31 and a reboiler 41.
  • the condenser is a device that takes away the heat of vaporization of the gaseous mixture to condense, and can be used without limitation the condenser used in the conventional chemical engineering device.
  • the reboiler is a device for providing vaporization heat to the mixture in the liquid state to vaporize, it can be used without limitation the reboiler used in the conventional chemical engineering device.
  • the main tower 1 can be largely divided into six sections.
  • the tower top section 100 refers to an area of the upper part of the main tower without a partition wall.
  • the upper feed zone 200 is a region in which one surface is partitioned by the dividing wall, and is a subregion located above the inflow (raw material) flow.
  • the upper outlet area 300 is an area in which one surface is partitioned by the dividing wall, and is a sub area located above the effluent stream.
  • the lower feed zone 400 is an area where one surface is partitioned by the dividing wall, and is a sub area located below the influent flow.
  • the lower outlet area 500 is an area where one surface is partitioned by the dividing wall, and is a sub area located below the effluent flow.
  • the tower bottom zone 600 refers to the lower region of the main tower without a partition wall.
  • the pylon has at least one inflow stream and at least three outflow streams.
  • a raw material F which is crude n-BUOH, is introduced into the middle feed NR1 where the upper feed zone and the lower feed zone of the main column contact each other, and the low boiling point component D flows out of the tower top zone.
  • the high boiling point component (B) flows out of the top bottom zone, and the middle boiling point component (S) flows out of the outflow intermediate stage (NR2) in contact with the upper outlet zone and the lower outlet zone.
  • the middle boiling point component S flowing out to the outflow intermediate stage NR2 is substantially normal butanol.
  • the crude normal butanol raw material is a mixture in which the main component is normal butanol, and refers to a target (distillation target) of the distillation process, and the 'main component' refers to one component contained most among the individual components of the mixture.
  • substantially normal butanol means that the mixture itself can be regarded substantially as normal butanol, specifically, with normal butanol as a main component and normal butanol content relative to the feedstock. Is higher and the normal butanol component is at least 90% by weight in the total mixture.
  • the upper feed zone and the lower feed zone serve a similar role to the preliminary separator of the conventional process (ie, the upper feed zone and the lower feed zone may be collectively referred to as a pre-separation zone).
  • the three components introduced into the preliminary separation zone are separated into low boiling point material and high boiling point material.
  • a part of the low boiling point component and the high boiling point component separated in the preliminary separation zone flows into the top top zone, and part of the low boiling point component and the high boiling point component flows back into the upper outlet zone and the lower outlet zone and is distilled.
  • the upper outlet zone and the lower outlet zone serve as the main separator of the conventional process (ie, the upper outlet zone and the lower outlet zone collectively may be referred to as the main separator zone).
  • the main separator zone In the upper portion of the separation wall of the main separation region, mainly the low boiling point material and the middle boiling point material are separated, and in the lower part, the middle boiling point material and the high boiling point material are mainly separated.
  • the design of the combined column distillation column system with the dividing wall is based on the design of the existing combined column distillation column and the minimum tower design.
  • the efficiency of the distillation column is maximum when the liquid composition distribution of the column distillation stage is similar to the equilibrium distillation curve, so the first stage distillation system is designed assuming that the distillation column is operated by conversion flow operation.
  • the upper supply zone and the lower supply zone are designed, and the upper outlet zone and the lower outlet zone are designed by the stepwise equilibrium design method starting from the concentration of the middle boiling point product.
  • the liquid composition in the tower was calculated from the middle of the tower to the top, and the liquid composition in the column was sequentially calculated by the method of calculating the equilibrium composition from the middle of the tower to the bottom outflow zone, which serves as the main separator, from the middle boiling point concentration. From the distribution of the liquid composition thus obtained, the number of stages having the composition of the raw material supply stage and the product is counted as the upper feed zone and the lower feed zone serving as the preliminary separator, and the upper outlet zone and the lower outlet zone serving as the main separator, respectively. I can figure it out. Since the number of stages of the tower obtained here is the theoretical number of stages, and the ideal number of stages, the number of stages in the actual tower is preferably 80 to 145% of the number of theoretical stages according to the usual design criteria. If less than 80% of the calculated theoretical number of low boiling point and high boiling point material in the preliminary separation zone may not be well separated, if more than 145% is the minimum reflux ratio area, the energy saving effect is no longer increased, investment costs only increase This is undesirable.
  • the length of the dividing wall installed inside the main column is determined according to the number of stages calculated according to the distillation curves of the upper supply section and the lower supply section or the upper outlet section and the lower outlet section, respectively.
  • the length of the dividing wall is preferably within the range of 30 to 85% of the total number of theoretical stages of the top zone, the upper feed zone, the bottom outlet zone and the bottom bottom zone calculated by the distillation curve. If it is less than 30%, some of the low boiling point material may be included as a product of the main separator by lowering it in the preliminary separation zone, and if it is more than 85% of the liquid / gas and medium / high boiling point material of the low boiling point / medium point material in the column. Difficulties in maintaining a good equilibrium flow in the liquid / gas phase can lead to problems in column fabrication.
  • the temperature of the column top section of the main column is preferably in the range of 90 to 100 °C at atmospheric pressure. If it is below 90 °C, low boiling point material may sag below the preliminary separation zone, which affects the purity of the product. If it exceeds 100 °C, the high boiling point (HEAVIES) rises above the preliminary separation zone and affect the product purity. There is concern.
  • the temperature of the column bottom zone of the main column is preferably in the range of 140 to 160 °C at atmospheric pressure. If it is below 140 °C, the product of the middle boiling point material (n-BuOH) falls to the bottom, and the product yield decreases. If it exceeds 160 °C, the side boiling out with the middle boiling point material (n-BuOH) is the product. There is concern.
  • the temperature of the outlet intermediate stage NR2 provided at a position where the upper outlet region and the lower outlet region are in contact with each other and the middle boiling point S component flows out is within a range of 118 to 127 ° C at atmospheric pressure. If it is less than 118 °C low boiling point material is not easy to remove, if it exceeds 127 °C high boiling point material is not easy to have a big impact on product purity.
  • the temperature range of the tower top zone, the tower bottom zone and the outflow intermediate end NR2 of the main tower is based on the atmospheric pressure.
  • the meaning of the atmospheric pressure of the present invention is slightly different from the range of normal pressure normally used.
  • Conventional atmospheric pressure refers to about 1 atmosphere (1 atm ⁇ 1.033 kgf / cm 2 ), and the atmospheric pressure of the present invention refers to about 1.09 kgf / cm 2 .
  • the distillation column is operated at a slightly elevated pressure than the normal atmospheric pressure, and in the chemical plant with a high pressure process, the 1.09 kgf / cm 2 degree reflects the use of the related art terminology.
  • the upper limit temperature and the lower limit temperature need to be adjusted according to the pressure. That is, when the distillation column is operated under reduced pressure or pressure, the temperature range may be changed. In general, as the pressure increases, the upper limit temperature and the lower limit temperature tend to increase.
  • the tower top section is about 80 ⁇ 90 °C
  • the top bottom section is about 135 ⁇ 150 °C
  • the outflow intermediate (NR2) is about 110 ⁇ 118 °C
  • the top top section is about 95 ⁇ 105 °C
  • the top bottom section is about 145 ⁇ 165 °C
  • the outlet middle stage (NR2) is about 123 ⁇ 135 °C.
  • the temperature of the top zone may use the temperature range of the upper limit and the lower limit calculated using Equation 1 below.
  • Equations 1 to 3 are formulas calculated by the least squares method based on the data in Table 1 above.
  • T 1a 86.8036 x P 0.3570
  • T 1a and T 2a are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the temperature of the column bottom zone may use the upper and lower temperature ranges calculated using Equation 2 below.
  • T 1b and T 2b are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the temperature of the outflow intermediate end NR2 may use the upper and lower temperature ranges calculated using Equation 3 below.
  • T 1c and T 2c are temperatures, unit is ° C; P is pressure, unit is kgf / cm 2 ; 0.1 ⁇ P ⁇ 10, P ⁇ 1.09)
  • the heat-comprising distillation column system having a dividing wall aims to improve the tower efficiency of a distillation system for a three-component mixture.
  • the system is a distillation system of equilibrium distillation having high efficiency by installing a dividing wall in the main column.
  • the space having the function of preparative separator and main separator having a liquid composition distribution similar to that of the distillation column is formed.
  • the dividing wall distillation column includes a main column including a condenser, a reboiler, and a dividing wall, wherein the main column is divided into a tower top section, an upper supply section, an upper outlet section, a lower supply section, a lower outlet section, and a tower bottom section.
  • the low boiling point component (D) flows out of the tower top zone
  • the high boiling point component (B) flows out of the top bottom zone
  • the middle boiling point component (S) flows out of the outflow intermediate stage (NR2) in contact with the upper outflow zone and the lower outflow zone.
  • the middle boiling point component relates to a normal butanol fractional distillation method comprising normal butanol.
  • each stage provided in the column top section, the upper feed section, the upper outlet section, the lower feed section, the lower outlet section and the column bottom section of the main column is calculated by a distillation curve Paper is characterized in that it is within the range of 80 to 150% of the theoretical number.
  • the length of the dividing wall is characterized in that the length is determined according to the number of stages included in the upper supply section and the lower supply section, or the upper outlet section and the lower outlet section.
  • the length of the dividing wall is within the range of 30 to 85% of the total number of theoretical stages of the top zone, the upper feed zone, the bottom outlet zone and the bottom bottom zone calculated by the distillation curve. It is done.
  • the temperature of the top zone is characterized in that it is within the range of 90 to 100 °C at normal pressure.
  • the temperature of the column bottom zone is characterized in that it is within the range of 140 to 160 °C at normal pressure.
  • the temperature of the outlet intermediate stage (NR2) is provided at a position where the upper outlet zone and the lower outlet zone is in contact and the middle boiling point (S) component is outflow is within the range of 118 to 127 °C at normal pressure. It features.
  • the temperature of the column heading zone is within the range of the lower limit temperature (T 1a ) to the upper limit temperature (T 2a ) according to Equation 1 when the column heading zone is not at normal pressure as described above. It is characterized by.
  • the temperature of the column bottom zone is within the range of the lower limit temperature (T 1b ) to the upper limit temperature (T 2b ) according to Equation 2, when the column bottom zone is not the normal pressure as described above. It is characterized by.
  • the temperature of the outflow intermediate end NR2 provided at a position where the upper outflow zone and the lower outflow zone are in contact with each other and the middle boiling point S component flows out is as described above. If it is not the normal pressure, it is characterized in that it is within the lower limit temperature (T 1c ) to the upper limit temperature (T 2c ) according to the equation (3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법에 관한 것이다. 더 상세히는, 본 발명은, 분리벽형 증류탑에 크루드 노르말 부탄올 원료를 제공하여 노르말 부탄올을 분별증류하는 방법 및 그에 관한 장치에 관한 것이다. 본 발명의 분리벽형 증류탑은 1기의 증류탑으로 2기의 증류탑의 효과를 가지므로, 고순도 노르말 부탄올을 생산하는데 있어서 종래의 공정 장치에 비해 에너지 절감 효과는 물론 장치의 설비비도 줄일 수 있는 효과가 있다.

Description

고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법
본 발명은 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법에 관한 것이다.
본 출원은, 2009년 1월 20일에 한국 특허청에 제출된 한국 특허 출원 제10-2009-0004605호, 및 2010년 1월 14일에 한국 특허청에 제출된 한국 특허 출원 제10-2010-0003392호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
원유(Crude Oil)등과 같은 각종 원료물질은 통상적으로 수많은 화합물질의 혼합물인 경우가 많아 그 자체로 산업에 이용되는 것은 드물고 각각의 화합물로 분리된 후 사용되는 것이 보통이다. 혼합물을 분리하는 화학공정 중 대표적인 것이 증류공정이다.
통상적으로 증류공정은 고비점 성분과 저비점 성분을 양분하므로, 분리하고자 하는 혼합물의 성분 개수(n)보다 하나 적은 개수(n-1)의 증류탑을 사용하게 된다. 즉, 종래의 증류산업 현장에서 3성분 혼합물의 분리를 위한 공정은 대부분 연속 2기의 증류탑 구조를 사용하고 있다.
3성분 혼합물의 분리를 위한 종래의 증류공정은 도 1에 도시한 것과 같다.
종래의 공정은 제1탑(11)에서 가장 저비점 성분(D)을 분리하고, 제2탑(21)에서 중비점 성분(S)과 고비점 성분(B)을 분리하는 2 탑 방식이다.
기존의 2기 컬럼 증류방식에서 첫번째 컬럼 내의 조성 프로파일(profile)은 도 2과 같다. 도 2에 도시한 것과 같이 첫번째 컬럼 하부 영역에서 중비점(B)물질의 재혼합 현상이 발생하는 것이 일반적이다.
상기한 종래의 공정은 제품 생산물의 조성은 쉽게 제어할 수 있는 반면, 첫 번째 증류탑 내에서 중간 비점 물질의 재혼합 과정이 일어나게 된다. 이는 증류탑에서의 열역학적 효율을 떨어뜨리는 주요 요인이 되어 에너지를 불필요하게 추가로 소비하는 결과를 가져온다.
이러한 문제점을 개선하기 위하여 새로운 증류 구조에 대한 많은 연구가 진행되어 왔다. 열통합 구조에 의하여 분리 효율을 향상시키고자 하는 대표적인 예로 도 4와 같이 Petlyuk 증류탑 구조를 들 수 있다. Petlyuk 증류탑은 예비분리기(12)와 주분리기(22)를 열적으로 통합된 구조로 배열함으로써 저비점 물질과 고비점 물질을 1차적으로 예비분리기에서 분리한 다음, 예비분리기의 탑정 부분과 탑저 부분이 주분리기의 공급단으로 각각 유입되어 주분리기에서 저비점, 중비점, 고비점 물질을 각각 분리하게 된다. 이러한 구조는 Petlyuk 증류탑 내의 증류곡선이 평형증류곡선과 유사하게 되어 에너지 효율을 높게 만든다. 하지만 공정의 설계 및 운전이 용이하지 않고 특히 탑 내의 압력 균형을 맞추기 어렵다는 문제점이 존재한다.
이러한 Petlyuk 증류탑이 가지는 제한점을 개선하기 위하여 분리벽형 증류탑(DWC: Dividing Wall Column)이 제안되었다. 분리벽형 증류탑은 Petlyuk 증류탑과 열역학적 관점에서는 유사하나 구조적인 관점에서 탑 내에 분리벽을 설치함으로써 Petlyuk 증류탑의 예비분리기를 주분리기 내부에 통합시킨 형태이다. 이러한 구조는 Petlyuk 증류탑의 예비분리기와 주분리기 간의 압력 균형의 어려움과 이로 인한 운전 상의 어려움을 자연스럽게 해소해 줌으로써 운전이 용이하게 되고, 또한 2기의 증류탑이 하나로 통합되어 투자 비용도 대폭 절감될 수 있다는 큰 장점을 가지게 된다.
노르말 부탄올 정류를 위한 관련 종래의 기술로 하기 특허문헌 1 및 특허문헌 2의 것을 예시할 수 있다.
특허문헌 1은 옥소알콜 제조공정에서 부가적으로 생성되는 스롭(slop) 부탄올을 원료로 하여, 증류탑 2기를 운전하여 노말 부탄올을 생산하는 공정에 있어서 상기의 스롭(slop) 부탄올에 알칼리성 첨가제를 첨가하는 단계와, 증류탑1에서 수분 및 저비점 물질을 제거하는 단계와, 증류탑2에서 고비점 물질을 제거하는 단계를 포함하여 이루어지는 구성을 특징으로 하고, 2개의 증류탑을 운전해서 기존의 3개의 증류탑을 운전하여 얻을 수 있는 노말 부탄올의 함량을 만족시킬 수 있으므로, 공정을 단축시키게 될 뿐만 아니라 증류탑을 운전하는 데에 소요되는 에너지 및 비용을 현저히 절감할 수 있는 노말 부탄올 정제 방법에 관한 것을 제시하고 있다.
특허문헌 2는 저비점 물질(A), 중비점 물질(B) 및 고비점 물질(C)을 포함하는 혼합물을 제 1 증류 칼럼에 도입하는 단계; 상기 제 1 증류 칼럼 하부에서 중비점 물질(B)의 재혼합이 발생되지 않도록 상기 혼합물을 제 1 증류 칼럼에서 분리하여 제 1 증류 칼럼 상부 생성물 및 하부 생성물을 제공하는 단계; 및 상기 제 1 증류 칼럼 하부 생성물을 제 2 증류 칼럼에서 분리하여 제 2 증류 칼럼 상부 생성물 및 하부 생성물을 제공하는 단계를 포함하여 상기 제 2 증류 칼럼 상부의 생성물 중 저비점 물질(A) 및 중비점 물질(B)의 농도 비율을 제어하는 방법에 관한 것을 제시하고 있다.
(특허문헌 1) KR 10-2003-0088211 A2 2003.11.19.
(특허문헌 2) KR 10-2008-0099034 A1 2008.11.12.
상기한 바와 같은 분리벽형 증류탑의 장점에도 불구하고 실제 산업현장에서는 거의 보급되어 있지 못한 실정이다. 이에 대한 중요한 이유 중의 하나로서 Petlyuk 증류탑과는 달리 분리벽형 증류탑은 설계가 정해지면 내부순환 흐름량을 조절할 수 없는 구조적 특성으로 인하여 운전 조건 변동에 대한 유연성이 떨어진다는 점을 들 수 있다. 즉, 증류탑의 초기 설계 단계에서 정확한 모사와 구조 결정이 필요하다는 문제점이 있는 것이다.
현재 분리벽형 증류탑의 구조 및 제어에 대하여 많은 연구가 이루어지고 있지만 분리벽형 증류탑에서 공급단의 위치, 분리벽 구간 설정, 중비점 물질의 생산단 위치, 총단수, 증류온도 및 증류압력 등의 증류탑의 설계 구조 및 운전 조건에 대한 내용은 매우 제한되어 있는 상황이다.
특히, 분별증류하려는 대상 화합물의 성질에 따라 증류탑의 단수, 공급단의 위치 등의 설계구조 및 증류온도, 압력 등의 운전조건이 특별하게 변경되어야 하므로 분리벽형 증류탑의 사용을 어렵게 하고 있다.
따라서 본 발명은 상기의 문제점들을 해결하고, 사용에너지를 절감할 뿐만 아니라 설비비도 줄일 수 있도록, 노르말 부탄올 정제에 적합하게 설계된 분리벽형 증류탑 및 이의 운전방법을 제공하고자 한다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로서,
응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하는 분리벽형 증류탑에 있어서,
상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고, 적어도 1개 이상의 유입 흐름과 적어도 3개 이상의 유출 흐름을 가지며,
상기 유입 흐름은, 크루드 노르말 부탄올인 원료(F)가 상기 주탑의 상부 공급구역 및 상기 하부 공급구역이 접하는 공급중간단(NR1)으로 유입되는 것이고,
상기 유출 흐름 중 적어도 하나 이상은 실질적으로 노르말 부탄올 흐름인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한, 응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하는 분리벽형 증류탑에 있어서,
상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고,
크루드 노르말 부탄올인 원료(F)가 상기 주탑의 상부 공급구역 및 상기 하부 공급구역이 접하는 공급중간단(NR1)으로 유입되고, 저비점 성분(D)은 상기 탑정구역에서 유출되고, 고비점 성분(B)은 상기 탑저구역에서 유출되고, 중비점 성분(S)은 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 유출중간단(NR2)으로 유출되며,
상기 중비점 성분은 실질적으로 노르말 부탄올인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한 본 발명에 있어서, 상기 원료(F)는 노르말 부탄올 함량이 90 중량% 이상인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한 본 발명에 있어서, 상기 탑정구역, 상기 상부 공급구역, 상기 상부 유출구역, 상기 하부 공급구역, 상기 하부 유출구역 및 상기 탑저구역에 각각 구비되는 단수는 증류곡선에 의해 산출되어지는 이론단수의 80 내지 145 % 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한 본 발명에 있어서, 상기 분리벽의 길이는 상기 상부 공급구역 및 상기 하부 공급구역, 또는 상기 상부 유출구역과 상기 하부 유출구역이 포함하는 단수에 따라 그 길이가 결정되어지는 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한 본 발명에 있어서, 상기 분리벽의 길이는 증류곡선에 의해 산출되어지는 상기 탑정구역, 상기 상부 공급구역, 상기 하부 유출구역 및 상기 탑저구역 전체 이론단수의 30 내지 85% 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한 본 발명에 있어서, 상기 탑정구역의 온도는 상압에서 90 내지 100 ℃ 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한 본 발명에 있어서, 상기 탑저구역의 온도는 상압에서 140 내지 160 ℃ 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한 본 발명에 있어서, 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 상압에서 118 내지 127 ℃ 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
또한 본 발명에 있어서, 상기 탑정구역의 온도는 하기 수학식 1을 따르는 하한온도(T1a) 내지 상한온도(T2a) 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
[수학식 1]
하한: T1a = 86.8036×P0.3570
상한: T2a = 96.8276×P0.3201
(여기서, T1a 및 T2a는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
또한 본 발명에 있어서, 상기 탑저구역의 온도는 하기 수학식 2을 따르는 하한온도(T1b) 내지 상한온도(T2b) 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
[수학식 2]
하한: T1b = 139.100×P0.1438
상한: T2b = 156.9071×P0.1977
(여기서, T1b 및 T2b는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
또한 본 발명에 있어서, 상부 유출구역 및 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 하기 수학식 3을 따르는 하한온도(T1c) 내지 상한온도(T2c) 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
[수학식 3]
하한: T1c = 115.7594×P0.2297
상한: T2c = 125.0420×P0.2727
(여기서, T1c 및 T2c는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
또한, 분리벽형 증류탑에 크루드 노르말 부탄올 원료를 제공하여 노르말 부탄올을 분별증류하는 방법에 있어서,
상기 분리벽형 증류탑은 응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하고, 상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고,
저비점 성분(D)은 탑정구역에서 유출되고, 고비점 성분(B)은 탑저구역에서 유출되고, 중비점 성분(S)은 상부 유출구역 및 하부 유출구역이 접하는 유출중간단(NR2)으로 유출되며,
상기 중비점 성분은 실질적으로 노르말 부탄올인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
또한 본 발명의 방법에 있어서, 상기 원료(F)는 노르말 부탄올 함량이 90 중량% 이상인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
또한 본 발명의 방법에 있어서, 상기 주탑의 상기 탑정구역, 상기 상부 공급구역, 상기 상부 유출구역, 상기 하부 공급구역, 상기 하부 유출구역 및 상기 탑저구역에 구비되는 각각의 단수는 증류곡선에 의해 산출되어지는 이론단수의 80 내지 145 % 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
또한 본 발명의 방법에 있어서, 상기 분리벽의 길이는 상기 상부 공급구역 및 상기 하부 공급구역, 또는 상기 상부 유출구역과 상기 하부 유출구역이 포함하는 단수에 따라 그 길이가 결정되어지는 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
또한 본 발명의 방법에 있어서, 상기 분리벽의 길이는 증류곡선에 의해 산출되어지는 상기 탑정구역, 상기 상부 공급구역, 상기 하부 유출구역 및 상기 탑저구역 전체 이론단수의 30 내지 85% 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
또한 본 발명의 방법에 있어서, 상기 탑정구역의 온도는 상압에서 90 내지 100 ℃ 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
또한 본 발명의 방법에 있어서, 상기 탑저구역의 온도는 상압에서 140 내지 160 ℃ 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
또한 본 발명의 방법에 있어서, 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 상압에서 118 내지 127 ℃ 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
또한 본 발명의 방법에 있어서, 상기 탑정구역의 온도는 하기 수학식 1을 따르는 하한온도(T1a) 내지 상한온도(T2a) 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
[수학식 1]
하한: T1a = 86.8036×P0.3570
상한: T2a = 96.8276×P0.3201
(여기서, T1a 및 T2a는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
또한 본 발명의 방법에 있어서, 상기 탑저구역의 온도는 하기 수학식 2을 따르는 하한온도(T1b) 내지 상한온도(T2b) 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
[수학식 2]
하한: T1b = 139.100×P0.1438
상한: T2b = 156.9071×P0.1977
(여기서, T1b 및 T2b는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
또한 본 발명의 방법에 있어서, 상부 유출구역 및 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 하기 수학식 3을 따르는 하한온도(T1c) 내지 상한온도(T2c) 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법을 제공한다.
[수학식 3]
하한: T1c = 115.7594×P0.2297
상한: T2c = 125.0420×P0.2727
(여기서, T1c 및 T2c는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
본 발명의 분리벽형 증류탑은 1기의 증류탑으로 2기의 증류탑의 효과를 가지므로, 고순도 노르말 부탄올을 생산하는데 있어서 종래의 공정 장치에 비해 에너지 절감 효과는 물론 장치의 설비비도 줄일 수 있는 효과가 있다.
도 1은 3 성분 혼합물의 분리를 위한 종래의 증류공정의 개략도.
도 2는 종래의 증류공정에서 첫번째 컬럼 내의 조성 프로파일.
도 3은 기존 1기 컬럼 증류 방식에서 측류유출 운전을 하는 컬럼 내 조성 프로파일.
도 4는 Petlyuk 증류탑 구조를 나타낸 개략도.
도 5는 본 발명의 분리벽형 증류탑의 구조를 나타낸 개략도.
도 6은 비교예를 나타낸 개략도.
도 7은 본 발명의 실시예를 나타낸 개략도.
* 주요 도면 보호의 설명
1 : 주탑
11 : 제1탑 21: 제2탑
12: 예비분리기 22 : 주분리기
31: 응축기 41: 재비기
51: 분리벽
100 : 탑정구역 200 : 상부 공급구역
300 : 상부 유출구역 400 : 하부 공급구역
500 : 하부 유출구역 600 : 탑저구역
NR1 : 공급중간단 NR2 : 유출중간단
F : 원료(피드) B : 고비점 물질
D : 저비점 물질 S : 중비점 물질
이하 실시예를 들어 본 발명을 더 상세히 설명한다. 본 발명의 실시예는 발명의 상세한 설명을 위한 것일뿐, 이에 의해 권리범위를 제한하려는 것은 아니다.
실시예
본 발명에서 제안한 시스템의 성능을 검증하기 위하여 DWC를 설계 제작하여 운전을 실시하였다. 실제 운전을 통하여 요구하는 제품의 조성이 얻어지는 것을 확인하였다. 비교예는 종래의 분리벽 없는 2기의 증류탑을 사용하고, 실시예는 분리벽이 있는 1기의 증류탑을 사용하였다.
도 6 및 도 7에서는 본 발명의 실시예 및 비교예를 각각 도시하였다. 상기 도 6 및 도 7의 번호 1 내지 8 은 실시예 및 비교예 각각의 도면에 도시된 개별 흐름(stream)을 나타내는 식별번호이다.
실시예 및 비교예는 표 2과 같은 이론단수를 가졌으며, 실험결과는 하기 표 3 및 표 4와 같았다. 실시예의 탑정구역의 온도는 약 95 ℃였고, 응축기를 통한 냉각 후 약 50 ℃를 나타내었다(즉, 하기 실시예 2, 3, 및 4 흐름은 약 50 ℃를 나타냄).
표 2
항목 이론단수
실시예 탑정 구역(100) 10
상부 공급구역(200) 5
상부 유출구역(300) 10
하부 공급구역(400) 25
하부 유출구역(500) 20
탑저 구역(600) 15
비교예 1st column 20
2nd column 32
표 3
구분 단위 1 2 3 4 5 6 7 8
비교예 condition 온도 87 97 97 97 129.7 50 50 150.2
압력 ㎏/㎠ 5 1.09 1.09 1.09 4.033 1.79 1.79 1.874
유량 ㎏/hr 15823 3430 86.5 65.5 15671 23268.2 15208 463
조성 H2O wt% 0.6 8.7 100 8.7 0 0 0 0
LIGHT 0.11 2.6 0 2.6 0.1 0.1 0.1 0
N-BUOH 97.3 88.7 0 88.7 97.9 99.9 99.9 30.9
HEAVIES 2 0 0 0 2 0 0 69
실시예 condition 온도 87 50 50 50 122.6 149.7 - -
압력 ㎏/㎠ 5 1.09 1.09 1.09 1.235 1.54 - -
유량 ㎏/hr 15823 13910 82.5 131.5 15208 401 - -
조성 H2O wt% 0.6 41.7 79.4 18.1 0 0 - -
LIGHT 0.11 3 0.8 4.25 0.05 0 - -
N-BUOH 97.3 55.3 19.8 77.6 99.9 20.8 - -
HEAVIES 2 0 0 0 0.02 79.12 - -
표 4
비교예 실시예 절감량(MMKcal/hr) 절감율(%)
에너지 소비량(MMKcal/hr) Total 1st column 2nd column 5.50 2.40 30.4
7.90 1.21 6.69
상기 실시예에서 살펴본 바와 같이 재혼합 현상 제거 및 분리 효율 증가로 인해 99.9 wt%의 고순도 노르말 부탄올을 효율적으로 얻을 수 있었다. 제품 순도 증가로 인한 노르말 부탄올의 추가적인 정류 리싸이클(recycle)단계를 줄일 수 있고, 생산성 향상이 가능하다. 투자비측면에서도 기존증류탑(컬럼 2기, 열교환기 4기) 에 비해 DWC(컬럼 1기, 열교환기 2기)가 휠씬 저렴함을 확인할 수 있었다. 에너지 절감율은 기존 대비 약 30.4%로 크게 절감되었다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명의 분리벽형 증류탑의 구조를 도 5에 도시하였는 바 이를 참조하여 아래의 설명을 이해할 수 있을 것이다.
본 발명의 증류탑은,
응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하는 분리벽형 증류탑에 있어서,
상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고, 적어도 1개 이상의 유입 흐름과 적어도 3개 이상의 유출 흐름을 가지며,
상기 유입 흐름은, 크루드 노르말 부탄올인 원료(F)가 상기 주탑의 상부 공급구역 및 상기 하부 공급구역이 접하는 공급중간단(NR1)으로 유입되는 것이고,
상기 유출 흐름 중 적어도 하나 이상은 실질적으로 노르말 부탄올 흐름인 것임을 특징으로 한다.
또한, 본 발명의 다른 증류탑은, 응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하는 분리벽형 증류탑에 있어서,
상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고,
크루드 노르말 부탄올인 원료(F)가 상기 주탑의 상부 공급구역 및 상기 하부 공급구역이 접하는 공급중간단(NR1)으로 유입되고, 저비점 성분(D)은 상기 탑정구역에서 유출되고, 고비점 성분(B)은 상기 탑저구역에서 유출되고, 중비점 성분(S)은 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 유출중간단(NR2)으로 유출되며,
상기 중비점 성분은 실질적으로 노르말 부탄올인 것임을 특징으로 한다.
본 발명의 증류탑은 응축기(31) 및 재비기(41)를 포함한다.
상기 응축기는 가스 상태의 혼합물의 기화열을 빼앗아 응축시키는 장치로서, 종래 화학공학 장치에 사용되는 응축기를 비제한적으로 사용할 수 있다.
상기 재비기는 액체 상태의 혼합물에 기화열을 제공하여 기화시키는 장치로서, 종래 화학공학 장치에 사용되는 재비기를 비제한적으로 사용할 수 있다.
상기 주탑(1)은 크게 6 부분의 구역으로 구획될 수 있다.
상기 탑정구역(100)은 분리벽이 없는 주탑의 상부의 영역을 말한다.
상기 상부 공급구역(200)은 분리벽에 의해 일면이 구획되는 영역이고 유입물(원료) 흐름보다 상부에 위치하는 서브영역이다.
상기 상부 유출구역(300)은 분리벽에 의해 일면이 구획되는 영역이고, 유출물 흐름보다 상부에 위치하는 서브영역이다.
상기 하부 공급구역(400)은 분리벽에 의해 일면이 구획되는 영역이고, 유입물 흐름보다 하부에 위치하는 서브영역이다.
상기 하부 유출구역(500)은 분리벽에 의해 일면이 구획되는 영역이고, 유출물 흐름보다 하부에 위치하는 서브영역이다.
상기 탑저구역(600)은 분리벽이 없는 주탑의 하부 영역을 말한다.
상기 주탑은 적어도 1개의 유입 흐름 및 적어도 3개의 유출 흐름을 갖는다.
크루드 노르말 부탄올(crude n-BUOH)인 원료(F)가 상기 주탑의 상부 공급구역 및 상기 하부 공급구역이 접하는 공급중간단(NR1)으로 유입되고, 저비점 성분(D)은 상기 탑정구역에서 유출되고, 고비점 성분(B)은 상기 탑저구역에서 유출되고, 중비점 성분(S)은 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 유출중간단(NR2)으로 유출된다. 이 때 유출중간단(NR2)으로 유출되는 중비점 성분(S)은 실질적으로 노르말 부탄올이다.
여기서, 크루드 노르말 부탄올 원료라 함은 주성분이 노르말 부탄올인 혼합물로서, 당해 증류공정의 목적물(증류 대상물)인 것을 말하고, 상기 ‘주성분’은 혼합물 각각의 개별성분 중 가장 많이 포함된 일성분을 말하는 것이다. 고순도의 노르말 부탄올을 얻기 위해서는 상기 크루드 노르말 부탄올 원료의 노르말 부탄올 함량이 높을수록 바람직하고, 99 중량% 이상의 고순도 노르말 부탄올을 얻기 위해서는 적어도 90 중량% 이상인 것이 바람직하다.
또한, "실질적으로 노르말 부탄올인 것"의 의미는 그 혼합물 자체를 실질적으로(substantially) 노르말 부탄올로서 간주할 수 있다는 의미로서, 구체적으로는, 노르말 부탄올을 주성분으로 하고, 공급원료에 비해 노르말 부탄올 함량이 더 높으며, 노르말 부탄올 성분이, 전체 혼합물에 있어서, 적어도 90 중량% 초과하는 것을 말하는 것이다.
분리벽형 증류공정이 종래의 연속 2기 증류공정보다 에너지가 적게 소요되는 이유는 구조적 차이로 해석할 수 있다. 분리벽형 증류탑에서는 분리벽에 의해 나누어진 공간이 예비분리기의 역할을 하므로 고비점 물질과 저비점 물질의 분리로 인해 액체 조성이 평형증류곡선과 거의 일치하게 되고 재혼합(remixing)효과가 억제되게 되어 분리를 위한 열역학적 효율이 좋아지게 된다.
상기 상부 공급구역 및 하부 공급구역은 종래 공정의 예비분리기와 유사한 역할을 한다(즉, 상부 공급구역 및 하부 공급구역를 통칭하여 예비분리영역이라고 할 수 있다). 예비분리영역으로 유입되는 3 성분은 저비점 물질과 고비점 물질로 분리된다. 상기 예비분리영역에서 분리되어진 저비점 성분과 고비점 성분의 일부는 탑정구역으로 유입되고, 일부는 다시 상부 유출구역 및 하부 유출구역으로 유입되어 재증류 되어진다.
상기 상부 유출구역 및 하부 유출구역은 종래 공정의 주분리기 역할을 한다(즉, 상부 유출구역 및 하부 유출구역을 통칭하여 주분리영역이라고 할 수 있다). 상기 주분리영역의 분리벽 상부 부분에서는 주로 저비점 물질과 중비점 물질로 분리되고, 하부 부분에서는 주로 중비점 물질과 고비점 물질이 분리된다.
저비점 성분은 주탑의 탑정구역과 응축기를 거친 후 일부는 저비점 제품(D)으로 생산되고, 그 나머지는 액상 유량(LD)으로 다시 주탑의 탑정구역으로 환류되고, 고비점 성분은 주탑의 탑저구역과 재비기를 거친 후 일부는 고비점 제품(B)으로 생산되고, 그 나머지는 기상 유량(VB)으로 다시 주탑의 탑저구역으로 환류되어진다.
분리벽이 있는 열복합 증류탑 시스템의 설계는 기존의 열복합형 증류탑의 설계를 기초로 하며 최소단 탑 설계에 기초를 두고 있다. 증류탑의 효율은 탑내 증류단의 액체조성 분포가 평형증류곡선과 유사할 때 최대가 되므로 우선 전환류 조작으로 증류탑이 운전된다고 가정하여 최소단 증류시스템을 설계하였다. 즉, 원료공급단에서의 액체조성과 원료의 조성이 같다고 가정하고 상부 공급구역 및 하부 공급구역을 설계하며, 상부 유출구역 및 하부 유출구역은 중비점 제품의 농도를 시작으로 계단식 평형조성 설계법에 의해 탑중간에서 상부로 탑내의 액체조성을 계산하고 다시 주분리기의 역할을 하는 하부 유출구역를 중간비점 제품의 농도를 시작으로 탑중간에서 탑저로 평형조성 계산법에 의해 계단식으로 탑내의 액체조성을 차례차례 계산하였다. 이렇게 얻어진 액체조성의 분포로부터 원료공급단과 제품의 조성을 가지는 단의 수를 헤아리면 예비분리기의 역할을 하는 상부 공급구역 및 하부 공급구역, 및 주분리기 역할을 하는 상부 유출구역 및 하부 유출구역 단수를 각각 알아낼 수 있다. 여기서 얻어진 탑의 단수는 이론단수로서, 이상적인 단수이기 때문에 실제 탑에서 단수는 통상의 설계기준에 따라 이론단수의 80 내지 145%로 하는 것이 바람직하다. 상기 산출되어진 이론단수의 80% 미만일 경우 예비분리영역에서 저비점과 고비점 물질의 분리가 잘되지 않을 수 있고, 145% 초과일 경우 최소환류비 영역이므로 에너지 절감 효과가 더 이상 증가되지 않으며, 투자비만 증가되므로 바람직하지 않다.
그리고 상기 주탑의 내부에 설치되는 분리벽의 길이는 각각 상부 공급구역 및 하부 공급구역 또는 상부 유출구역 및 하부 유출구역의 증류곡선에 따라 산출된 단수에 따라 그 길이가 결정되어진다.
이러한 분리벽형 증류탑에서 최적의 분리벽 구간을 설계할 때 예비분리영역과 주분리영역과의 액체 조성에 대한 평형증류 곡선방법 등으로 분리벽 구간을 정하여 이론단수 및 환류량 등을 구하는 방법은 다양하지만, 본 발명에서는 Fenske-Underwood 식을 이용하여 이론단수를 구하였다(Fenske-Underwood 식은 당해 기술분야의 통상의 지식을 가진 자에게 널리 알려진 식이다).
상기 분리벽의 길이는 증류곡선에 의해 산출되어지는 상기 탑정구역, 상기 상부 공급구역, 상기 하부 유출구역 및 상기 탑저구역 전체 이론단수의 30 내지 85% 범위 이내인 것이 바람직하다. 30 % 미만일 경우 예비분리영역에서 저비점 물질 일부가 하부로 쳐저 주분리기의 제품으로 포함될 우려가 있고, 85 % 초과일 경우 컬럼 내부에서 저비점/중비점 물질의 액상/기상 및 중비점/고비점 물질의 액상/기상의 원할한 평형흐름을 유지하기 어려워 컬럼 제작상 문제가 있을 수 있다.
상기 주탑의 탑정구역의 온도는 상압에서 90 내지 100 ℃ 범위 이내인 것이 바람직하다. 90℃ 미만인 경우에는 저비점 물질이 예비분리영역 하부로 처질 수 있어 제품 순도에 영향을 끼치고, 100℃를 초과하는 경우 상부로 고비점 물질(HEAVIES) 이 예비 분리영역 상부로 올라가 제품 순도에 영향을 미칠 우려가 있다.
상기 주탑의 탑저구역의 온도는 상압에서 140 내지 160℃ 범위 이내인 것이 바람직하다. 140 ℃ 미만인 경우에는 제품인 중비점 물질(n-BuOH)이 하부로 떨어져 제품 생산량이 감소하고, 160 ℃ 를 초과할 경우 고비점 물질(HEAVIES)이 제품인 중비점 물질(n-BuOH)과 함께 측류유출될 염려가 있다.
상기 상부 유출구역 및 상기 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 상압에서 118 내지 127 ℃ 범위 이내인 것이 바람직하다. 118℃ 미만인 경우에는 저비점 물질제거가 용이하지 않고, 127℃를 초과할 경우 고비점 물질 제거가 용이하지 않아 제품 순도에 큰 영향을 끼칠 수 있다.
상기 탑정구역, 탑저구역 및 주탑의 유출중간단(NR2)의 온도 범위는 상압을 기준으로 한 것이다. 본 발명의 상압의 의미는 통상적으로 사용되는 상압의 범위와 조금 다르다. 통상적인 상압은 약 1 기압(1 atm ≒ 1.033 ㎏f/cm2) 정도를 말하는 것인데, 본 발명의 상압은 약 1.09 ㎏f/cm2 정도를 말하는 것이다. 이는 증류탑 공정에서는 통상의 대기압보다 약간 승압되어 운전되는 것이 일반적이고, 고압공정이 많은 화학공장에서 1.09 ㎏f/cm2 정도는 상압으로 보는 당해 기술분야 용어 사용 관행을 반영한 것이다.
상압이 아닌 경우에는 압력에 따라 상기 상한온도와 하한온도가 조절될 필요가 있다. 즉, 증류탑을 감압 또는 가압 운전할 경우 상기 온도범위는 변할 수 있다. 일반적으로 압력이 상승할 수록 상한온도 및 하한온도는 상승되는 경향이 있다.
예를들어, 압력이 약 0.8 ㎏/㎠인 경우, 탑정구역은 약 80 ~ 90 ℃, 탑저구역은 약 135 ~ 150 ℃, 유출중간단(NR2)는 약 110 ~ 118 ℃ 가 적당하며,
압력이 약 1.3 ㎏/㎠인 경우, 탑정구역은 약 95 ~ 105 ℃, 탑저구역은 약 145 ~ 165 ℃, 유출중간단(NR2)는 약 123 ~ 135 ℃ 가 적당하다.
압력에 따른 온도의 상한과 하한은 하기 표 1에 정리한 바를 참고할 수 있다.
표 1
P ≒ 1.09 ㎏/㎠ (상압 공정인 경우)
하한 온도(℃) 상한 온도(℃)
탑정구역 90 100
탑저구역 140 160
유출중간단(NR2) 118 127
P ≒ 0.8 ㎏/㎠ (감압 공정인 경우)
하한 온도(℃) 상한 온도(℃)
탑정구역 80 90
탑저구역 135 150
유출중간단(NR2) 110 118
P ≒ 1.3 ㎏/㎠ (가압 공정인 경우)
하한 온도(℃) 상한 온도(℃)
탑정구역 95 105
탑저구역 145 165
유출중간단(NR2) 123 135
특히, 상압이 아닌 경우에, 상기 탑정구역의 온도는 하기 수학식 1을 사용하여 산출된 상한 및 하한의 온도 범위를 사용할 수 있다. 하기 수학식 1 내지 3은 상기 표 1의 자료를 바탕으로 최소자승법에 의해 산출된 공식이다.
[수학식 1]
하한: T1a = 86.8036×P0.3570
상한: T2a = 96.8276×P0.3201
(여기서, T1a 및 T2a는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
또한, 상기 탑저구역이 상압이 아닌 경우에, 상기 탑저구역의 온도는 하기 수학식 2을 사용하여 산출된 상한 및 하한의 온도 범위를 사용할 수 있다.
[수학식 2]
하한: T1b = 139.100×P0.1438
상한: T2b = 156.9071×P0.1977
(여기서, T1b 및 T2b는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
또한, 상기 유출중간단(NR2)이 상압이 아닌 경우에, 상기 유출중간단(NR2)의 온도는 하기 수학식 3을 사용하여 산출된 상한 및 하한의 온도 범위를 사용할 수 있다.
[수학식 3]
하한: T1c = 115.7594×P0.2297
상한: T2c = 125.0420×P0.2727
(여기서, T1c 및 T2c는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
상기와 같이 본 발명에 따른 분할 벽이 있는 열복합 증류탑 시스템은 3성분 혼합물에 대한 증류시스템의 탑 효율 개선에 목적을 두었으며, 이 시스템은 주탑 내에 분리벽을 설치하여 고효율인 평형증류의 증류시스템과 유사한액 조성 분포를 가지는 예비분리기 및 주분리기의 기능을 하는 공간이 형성토록 하여 2기의 증류탑으로 구성되어 있는 것과 같은 효과를 갖는다.
특히, 분리벽형 증류탑에 크루드 노르말 부탄올인 원료를 제공하여 노르말 부탄올을 분별증류하는 방법에 있어서,
상기 분리벽형 증류탑은 응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하고, 상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고,
저비점 성분(D)은 탑정구역에서 유출되고, 고비점 성분(B)은 탑저구역에서 유출되고, 중비점 성분(S)은 상부 유출구역 및 하부 유출구역이 접하는 유출중간단(NR2)으로 유출되며,
상기 중비점 성분은 노르말 부탄올을 포함하는 것임을 특징으로 하는 노르말 부탄올 분별증류방법에 관한 것이다.
본 발명의 방법에 있어서, 상기 주탑의 상기 탑정구역, 상기 상부 공급구역, 상기 상부 유출구역, 상기 하부 공급구역, 상기 하부 유출구역 및 상기 탑저구역에 구비되는 각각의 단수는 증류곡선에 의해 산출되어지는 이론단수의 80 내지 150 % 범위 이내인 것임을 특징으로 한다.
본 발명의 방법에 있어서, 상기 분리벽의 길이는 상기 상부 공급구역 및 상기 하부 공급구역, 또는 상기 상부 유출구역과 상기 하부 유출구역이 포함하는 단수에 따라 그 길이가 결정되어지는 것임을 특징으로 한다.
본 발명의 방법에 있어서, 상기 분리벽의 길이는 증류곡선에 의해 산출되어지는 상기 탑정구역, 상기 상부 공급구역, 상기 하부 유출구역 및 상기 탑저구역 전체 이론단수의 30 내지 85% 범위 이내인 것임을 특징으로 한다.
본 발명의 방법에 있어서, 상기 탑정구역의 온도는 상압에서 90 내지 100 ℃ 범위 이내인 것임을 특징으로 한다.
본 발명의 방법에 있어서, 상기 탑저구역의 온도는 상압에서 140 내지 160 ℃ 범위 이내인 것임을 특징으로 한다.
본 발명의 방법에 있어서, 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 상압에서 118 내지 127 ℃ 범위 이내인 것임을 특징으로 한다.
본 발명의 방법에 있어서, 상기 탑정구역의 온도는, 상술한 바와 같이 상기 탑정구역이 상압이 아닌 경우에, 상기 수학식 1을 따르는 하한온도(T1a) 내지 상한온도(T2a) 범위 이내인 것임을 특징으로 한다.
본 발명의 방법에 있어서, 상기 탑저구역의 온도는, 상술한 바와 같이 상기 탑저구역이 상압이 아닌 경우에, 상기 수학식 2을 따르는 하한온도(T1b) 내지 상한온도(T2b) 범위 이내인 것임을 특징으로 한다.
본 발명의 방법에 있어서, 상부 유출구역 및 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는, 상술한 바와 같이 상기 유출중간단(NR2)이 상압이 아닌 경우에, 상기 수학식 3을 따르는 하한온도(T1c) 내지 상한온도(T2c) 범위 이내인 것임을 특징으로 한다.

Claims (23)

  1. 응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하는 분리벽형 증류탑에 있어서,
    상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고, 적어도 1개 이상의 유입 흐름과 적어도 3개 이상의 유출 흐름을 가지며,
    상기 유입 흐름은, 크루드 노르말 부탄올인 원료(F)가 상기 주탑의 상부 공급구역 및 상기 하부 공급구역이 접하는 공급중간단(NR1)으로 유입되는 것이고,
    상기 유출 흐름 중 적어도 하나 이상은 실질적으로 노르말 부탄올 흐름인 것임을 특징으로 하는 분리벽형 증류탑.
  2. 제 1 항에 있어서, 저비점 성분(D)은 상기 탑정구역에서 유출되고, 고비점 성분(B)은 상기 탑저구역에서 유출되고, 중비점 성분(S)은 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 유출중간단(NR2)으로 유출되며,
    상기 유출중간단(NR2) 흐름은 실질적으로 노르말 부탄올인 것임을 특징으로 하는 분리벽형 증류탑.
  3. 제 1 항에 있어서, 상기 원료(F)는 노르말 부탄올 함량이 90 중량% 이상인 것임을 특징으로 하는 분리벽형 증류탑.
  4. 제 1 항에 있어서, 상기 주탑의 상기 탑정구역, 상기 상부 공급구역, 상기 상부 유출구역, 상기 하부 공급구역, 상기 하부 유출구역 및 상기 탑저구역에 구비되는 각각의 단수는 증류곡선에 의해 산출되어지는 이론단수의 80 내지 145 % 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑.
  5. 제 1 항에 있어서, 상기 분리벽의 길이는 상기 상부 공급구역 및 상기 하부 공급구역, 또는 상기 상부 유출구역과 상기 하부 유출구역이 포함하는 단수에 따라 그 길이가 결정되어지는 것임을 특징으로 하는 분리벽형 증류탑.
  6. 제 1 항에 있어서, 상기 분리벽의 길이는 증류곡선에 의해 산출되어지는 상기 탑정구역, 상기 상부 공급구역, 상기 하부 유출구역 및 상기 탑저구역 전체 이론단수의 30 내지 85% 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑.
  7. 제 1 항에 있어서, 상기 탑정구역의 온도는 상압에서 90 내지 100 ℃ 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑.
  8. 제 1 항에 있어서, 상기 탑저구역의 온도는 상압에서 140 내지 160 ℃ 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑.
  9. 제 1 항에 있어서, 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 상압에서 118 내지 127 ℃ 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑.
  10. 제 1 항에 있어서, 상기 탑정구역의 온도는 하기 수학식 1을 따르는 하한온도(T1a) 내지 상한온도(T2a) 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑.
    [수학식 1]
    하한: T1a = 86.8036×P0.3570
    상한: T2a = 96.8276×P0.3201
    (여기서, T1a 및 T2a는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
  11. 제 1 항에 있어서, 상기 탑저구역의 온도는 하기 수학식 2을 따르는 하한온도(T1b) 내지 상한온도(T2b) 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑.
    [수학식 2]
    하한: T1b = 139.100×P0.1438
    상한: T2b = 156.9071×P0.1977
    (여기서, T1b 및 T2b는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
  12. 제 1 항에 있어서, 상부 유출구역 및 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 하기 수학식 3을 따르는 하한온도(T1c) 내지 상한온도(T2c) 범위 이내인 것임을 특징으로 하는 분리벽형 증류탑.
    [수학식 3]
    하한: T1c = 115.7594×P0.2297
    상한: T2c = 125.0420×P0.2727
    (여기서, T1c 및 T2c는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
  13. 분리벽형 증류탑에 크루드 노르말 부탄올 원료를 제공하여 노르말 부탄올을 분별증류하는 방법에 있어서,
    상기 분리벽형 증류탑은 응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하고, 상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고,
    저비점 성분(D)은 탑정구역에서 유출되고, 고비점 성분(B)은 탑저구역에서 유출되고, 중비점 성분(S)은 상부 유출구역 및 하부 유출구역이 접하는 유출중간단(NR2)으로 유출되며,
    상기 중비점 성분은 실질적으로 노르말 부탄올인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
  14. 제 13 항에 있어서, 상기 원료(F)는 노르말 부탄올 함량이 90 중량% 이상인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
  15. 제 13 항에 있어서, 상기 주탑의 상기 탑정구역, 상기 상부 공급구역, 상기 상부 유출구역, 상기 하부 공급구역, 상기 하부 유출구역 및 상기 탑저구역에 구비되는 각각의 단수는 증류곡선에 의해 산출되어지는 이론단수의 80 내지 145 % 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
  16. 제 13 항에 있어서, 상기 분리벽의 길이는 상기 상부 공급구역 및 상기 하부 공급구역, 또는 상기 상부 유출구역과 상기 하부 유출구역이 포함하는 단수에 따라 그 길이가 결정되어지는 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
  17. 제 13 항에 있어서, 상기 분리벽의 길이는 증류곡선에 의해 산출되어지는 상기 탑정구역, 상기 상부 공급구역, 상기 하부 유출구역 및 상기 탑저구역 전체 이론단수의 30 내지 85% 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
  18. 제 13 항에 있어서, 상기 탑정구역의 온도는 상압에서 90 내지 100 ℃ 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
  19. 제 13 항에 있어서, 상기 탑저구역의 온도는 상압에서 140 내지 160 ℃ 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
  20. 제 13 항에 있어서, 상기 상부 유출구역 및 상기 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 상압에서 118 내지 127 ℃ 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
  21. 제 13 항에 있어서, 상기 탑정구역의 온도는 하기 수학식 1을 따르는 하한온도(T1a) 내지 상한온도(T2a) 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
    [수학식 1]
    하한: T1a = 86.8036×P0.3570
    상한: T2a = 96.8276×P0.3201
    (여기서, T1a 및 T2a는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
  22. 제 13 항에 있어서, 상기 탑저구역의 온도는 하기 수학식 2을 따르는 하한온도(T1b) 내지 상한온도(T2b) 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
    [수학식 2]
    하한: T1b = 139.100×P0.1438
    상한: T2b = 156.9071×P0.1977
    (여기서, T1b 및 T2b는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
  23. 제 13 항에 있어서, 상부 유출구역 및 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 하기 수학식 3을 따르는 하한온도(T1c) 내지 상한온도(T2c) 범위 이내인 것임을 특징으로 하는 노르말 부탄올 분별증류방법.
    [수학식 3]
    하한: T1c = 115.7594×P0.2297
    상한: T2c = 125.0420×P0.2727
    (여기서, T1c 및 T2c는 온도로서, 단위는 ℃; P는 압력으로, 단위는 ㎏f/cm2 ; 0.1 ≤ P ≤ 10, P ≠ 1.09)
PCT/KR2010/000313 2009-01-20 2010-01-18 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법 WO2010085072A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/145,325 US8888964B2 (en) 2009-01-20 2010-01-18 Divided wall distillation column for producing high purity normal butanol, and normal butanol distillation method
CN201080004898.XA CN102281931B (zh) 2009-01-20 2010-01-18 用于制备高纯度正丁醇的分隔壁蒸馏塔和正丁醇的蒸馏方法
JP2011547768A JP5822199B2 (ja) 2009-01-20 2010-01-18 高純度のノルマルブタノール生産用分離壁型蒸留塔、及びノルマルブタノール蒸留方法
EP10733625.7A EP2394723B1 (en) 2009-01-20 2010-01-18 Method for producing n-butanol with a divided wall distillation column
US14/469,047 US9861907B2 (en) 2009-01-20 2014-08-26 Divided wall distillation column for producing high purity normal butanol, and normal butanol distillation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0004605 2009-01-20
KR20090004605 2009-01-20
KR1020100003392A KR101191122B1 (ko) 2009-01-20 2010-01-14 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법
KR10-2010-0003392 2010-01-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/145,325 A-371-Of-International US8888964B2 (en) 2009-01-20 2010-01-18 Divided wall distillation column for producing high purity normal butanol, and normal butanol distillation method
US14/469,047 Continuation US9861907B2 (en) 2009-01-20 2014-08-26 Divided wall distillation column for producing high purity normal butanol, and normal butanol distillation method

Publications (2)

Publication Number Publication Date
WO2010085072A2 true WO2010085072A2 (ko) 2010-07-29
WO2010085072A3 WO2010085072A3 (ko) 2010-11-04

Family

ID=42644678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000313 WO2010085072A2 (ko) 2009-01-20 2010-01-18 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법

Country Status (6)

Country Link
US (2) US8888964B2 (ko)
EP (1) EP2394723B1 (ko)
JP (1) JP5822199B2 (ko)
KR (1) KR101191122B1 (ko)
CN (1) CN102281931B (ko)
WO (1) WO2010085072A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039701A (zh) * 2011-11-11 2014-09-10 Lg化学株式会社 三卤硅烷精制设备
CN104066680A (zh) * 2011-11-11 2014-09-24 Lg化学株式会社 三卤硅烷精炼设备
JP2014533199A (ja) * 2011-11-11 2014-12-11 エルジー・ケム・リミテッド トリハロシランの精製装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1009344B1 (pt) 2009-03-19 2020-03-17 Lg Chem, Ltd. Método de destilação fracionada de ácido acrílico
WO2010107283A2 (ko) * 2009-03-19 2010-09-23 주식회사 엘지화학 고순도 2-에틸헥산올 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
BR112014006334B8 (pt) * 2011-09-19 2020-08-18 Lg Chemical Ltd método de destilação utilizando uma coluna de parede divisória de duplo modo
KR101582001B1 (ko) * 2012-06-28 2015-12-31 주식회사 엘지화학 이소프로필 알코올의 제조 방법
WO2014004966A2 (en) * 2012-06-29 2014-01-03 Gevo, Inc. Method for purification of alcohols
WO2014112810A1 (ko) * 2013-01-16 2014-07-24 주식회사 엘지화학 알칸올의 제조 장치
KR101596111B1 (ko) * 2013-01-16 2016-02-22 주식회사 엘지화학 알칸올의 제조 장치
CN105555380B (zh) * 2013-07-18 2017-11-14 Lg化学株式会社 蒸馏装置
US9758458B2 (en) * 2013-08-20 2017-09-12 Lg Chem, Ltd. Method for purifying isopropyl alcohol
EP3105201B1 (en) 2014-02-13 2019-09-18 BP Corporation North America Inc. Energy efficient fractionation process for separating the reactor effluent from tol/a9+ translakylation processes
KR101724072B1 (ko) * 2014-04-04 2017-04-06 한화케미칼 주식회사 분리벽형 증류탑을 이용한 비닐 아세트산의 정제 방법
KR101819278B1 (ko) 2015-04-03 2018-01-17 주식회사 엘지화학 증류 장치
KR102006422B1 (ko) * 2015-06-08 2019-08-01 주식회사 엘지화학 증류 장치
US11207611B1 (en) 2018-07-03 2021-12-28 Burns & Mcdonnell Engineering Company, Inc. Process for separating hydrocarbons in a liquid feed utilizing an externally heated reboiler connected to a divided wall column as the primary source of heat energy
US10688408B2 (en) * 2018-07-26 2020-06-23 Uop Llc Dividing wall column with vapor separation
WO2023066835A1 (en) 2021-10-22 2023-04-27 Basf Se Process for purification of n-butanol
CN114460848A (zh) * 2022-02-08 2022-05-10 万华化学集团股份有限公司 精馏塔的灵敏板控制方法、设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088211A (ko) 2002-05-13 2003-11-19 재원산업 주식회사 노말 부탄올 정제방법
KR20080099034A (ko) 2007-05-08 2008-11-12 주식회사 엘지화학 저비점, 중비점 및 고비점 물질을 포함하는 원료의 분리방법
KR20090004605A (ko) 2007-06-28 2009-01-12 주식회사 엘지화학 투명 플라스틱 필름의 제조방법 및 이에 의해 제조된 투명플라스틱 필름
KR20100003392A (ko) 2008-07-01 2010-01-11 현대자동차주식회사 하이브리드 차량의 엔진 출력토크 제어 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230533A (en) * 1978-06-19 1980-10-28 Phillips Petroleum Company Fractionation method and apparatus
JPH09299702A (ja) * 1996-05-16 1997-11-25 Kyowa Yuka Kk 蒸留方法
JPH11315051A (ja) * 1998-05-06 1999-11-16 Kyowa Yuka Kk 2,2,4−トリメチル−1,3−ペンタンジオールイソブチレート類の蒸留装置及び蒸留方法
DE19907532A1 (de) * 1999-02-22 2000-08-31 Basf Ag Verfahren zur Herstellung von Acetylenalkoholen und deren Folgeprodukten
DE19954511A1 (de) * 1999-11-12 2001-05-17 Basf Ag Verfahren zur Herstellung von Alkalisalzen der L-Ascorbinsäure
DE10004311A1 (de) * 2000-02-01 2001-08-02 Basf Ag Destillative Reinigung von Ammoniak
DE10021703A1 (de) * 2000-05-04 2001-11-08 Basf Ag Verfahren zur destillativen Trennung von Tetrahydrofuran, gamma-Butyrolacton und/oder 1,4-Butandiol enthaltenden Gemischen
DE10021624A1 (de) * 2000-05-04 2001-11-08 Basf Ag Trennwandkolonne
DE10046609A1 (de) * 2000-09-20 2002-04-04 Basf Ag Verfahren und Vorrichtung zur destillativen Trennung von C5+-Schnitten
DE10100552A1 (de) 2001-01-09 2002-07-11 Basf Ag Verfahren und Vorrichtung zur destillativen Aufarbeitung von 1,6-Hexandiol, 1,5-Pentandiol ung Caprolacton
US7267746B1 (en) * 2001-02-26 2007-09-11 Uop Llc Dividing wall distillation column control apparatus
DE10223974A1 (de) 2002-05-29 2003-12-11 Basf Ag Isolierung stereoisomerer Isoprenoidalkohole durch Rektifikation
US20040000473A1 (en) * 2002-06-20 2004-01-01 Willi Hofen Process of separating 1-methoxy-2-propanol and 2-methoxy-1-propanol from aqueous compositions
DE10233387A1 (de) * 2002-07-23 2004-02-12 Basf Ag Verfahren zur kontinuierlich betriebenen Reindestillation von Oxiranen, speziell von Propylenoxid
DE10255647A1 (de) * 2002-11-28 2004-06-09 Basf Ag Verfahren zur Gewinnung eines aliphatischen Dialdehyd-Monoacetals
DE10326403A1 (de) * 2003-06-12 2004-12-30 Basf Ag Verfahren zur destillativen Trennung eines Vinylether und Alkohol enthaltenden Gemischs
CN1887834A (zh) 2006-07-19 2007-01-03 江苏工业学院 利用隔离壁精馏塔萃取精馏分离叔丁醇-水的方法和装置
US7528290B2 (en) * 2006-12-28 2009-05-05 Uop Llc Apparatuses and methods for separating butene-1 from a mixed C4 feed
US7700814B2 (en) * 2007-03-27 2010-04-20 Exxonmobil Chemical Patents Inc. Manufacture of alcohols
EP2008989A1 (de) * 2007-06-26 2008-12-31 Basf Se Kontinuierliches Verfahren zur Herstellung von Neral in reiner oder angereicherter Form

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088211A (ko) 2002-05-13 2003-11-19 재원산업 주식회사 노말 부탄올 정제방법
KR20080099034A (ko) 2007-05-08 2008-11-12 주식회사 엘지화학 저비점, 중비점 및 고비점 물질을 포함하는 원료의 분리방법
KR20090004605A (ko) 2007-06-28 2009-01-12 주식회사 엘지화학 투명 플라스틱 필름의 제조방법 및 이에 의해 제조된 투명플라스틱 필름
KR20100003392A (ko) 2008-07-01 2010-01-11 현대자동차주식회사 하이브리드 차량의 엔진 출력토크 제어 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2394723A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104039701A (zh) * 2011-11-11 2014-09-10 Lg化学株式会社 三卤硅烷精制设备
CN104066680A (zh) * 2011-11-11 2014-09-24 Lg化学株式会社 三卤硅烷精炼设备
JP2014533199A (ja) * 2011-11-11 2014-12-11 エルジー・ケム・リミテッド トリハロシランの精製装置
US8968521B2 (en) * 2011-11-11 2015-03-03 Lg Chem, Ltd. Trihalosilane refining method
US8974642B2 (en) * 2011-11-11 2015-03-10 Lg Chem, Ltd. Trihalosilane refining method
US8992737B2 (en) * 2011-11-11 2015-03-31 Lg Chem, Ltd. Trihalosilane refining method
US9849402B2 (en) 2011-11-11 2017-12-26 Lg Chem, Ltd. Trihalosilane refining device having divided wall distillation column

Also Published As

Publication number Publication date
KR101191122B1 (ko) 2012-10-15
JP5822199B2 (ja) 2015-11-24
EP2394723A4 (en) 2012-08-01
JP2012515771A (ja) 2012-07-12
WO2010085072A3 (ko) 2010-11-04
EP2394723A2 (en) 2011-12-14
US9861907B2 (en) 2018-01-09
EP2394723B1 (en) 2017-03-01
CN102281931A (zh) 2011-12-14
US8888964B2 (en) 2014-11-18
KR20100085846A (ko) 2010-07-29
CN102281931B (zh) 2014-09-24
US20150041308A1 (en) 2015-02-12
US20110303526A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2010085072A2 (ko) 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법
WO2010107283A2 (ko) 고순도 2-에틸헥산올 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
WO2010107284A2 (ko) 고순도 아크릴산 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
WO2012091397A2 (ko) 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법
WO2017003247A1 (ko) 증류 장치
WO2012091396A2 (ko) 고순도 네오펜틸글리콜 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법
WO2016159707A1 (ko) 증류 장치
WO2013042941A1 (ko) 듀얼 모드 분리벽형 증류탑
WO2015026073A1 (en) Method for preparing glycol ester using reactive distillation
WO2011081385A2 (ko) 트리클로로실란의 정제 방법 및 정제 장치
KR101728905B1 (ko) 분리벽형 증류탑 및 이를 이용한 네오펜틸글리콜의 정제 방법
WO2023177133A1 (ko) Pgme, pgmea, 물의 혼합물로부터 물을 분리하는 방법
WO2021133138A1 (ko) 1,4-사이클로헥산디메탄올의 제조방법
WO2015178718A1 (ko) 큐멘의 정제 장치 및 정제 방법
WO2022119125A1 (ko) 아크릴산의 제조 공정
WO2015178717A1 (ko) 큐멘의 정제 장치 및 정제 방법
WO2016068676A1 (ko) 증류 장치
WO2020067797A1 (ko) 아미드계 화합물의 회수 방법 및 장치
KR101251176B1 (ko) 노르말 부탄올 회수용 분리벽형 증류탑
WO2022119123A1 (ko) 아크릴산의 제조 공정
WO2015009117A1 (ko) 분리벽형 증류탑
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
KR101724072B1 (ko) 분리벽형 증류탑을 이용한 비닐 아세트산의 정제 방법
CA2280654C (en) Process for the production of 1,2-butadiene
WO2015009116A1 (ko) 증류 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004898.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733625

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010733625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011547768

Country of ref document: JP

Ref document number: 2010733625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13145325

Country of ref document: US