WO2022119125A1 - 아크릴산의 제조 공정 - Google Patents
아크릴산의 제조 공정 Download PDFInfo
- Publication number
- WO2022119125A1 WO2022119125A1 PCT/KR2021/015168 KR2021015168W WO2022119125A1 WO 2022119125 A1 WO2022119125 A1 WO 2022119125A1 KR 2021015168 W KR2021015168 W KR 2021015168W WO 2022119125 A1 WO2022119125 A1 WO 2022119125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acrylic acid
- boiling point
- acetaldehyde
- absorbent
- less
- Prior art date
Links
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 title claims abstract description 242
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 title claims abstract description 242
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 51
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims abstract description 264
- 239000000463 material Substances 0.000 claims abstract description 155
- 239000002250 absorbent Substances 0.000 claims abstract description 94
- 230000002745 absorbent Effects 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 93
- 238000001816 cooling Methods 0.000 claims abstract description 68
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 35
- 238000010521 absorption reaction Methods 0.000 claims abstract description 28
- 238000000926 separation method Methods 0.000 claims abstract description 26
- 239000012620 biological material Substances 0.000 claims abstract description 16
- 238000009835 boiling Methods 0.000 claims description 176
- 239000002994 raw material Substances 0.000 claims description 40
- 238000011084 recovery Methods 0.000 claims description 5
- 238000004064 recycling Methods 0.000 claims 1
- 238000007906 compression Methods 0.000 abstract description 26
- 239000002826 coolant Substances 0.000 abstract 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 96
- 239000004310 lactic acid Substances 0.000 description 48
- 235000014655 lactic acid Nutrition 0.000 description 48
- 239000006227 byproduct Substances 0.000 description 19
- 239000000126 substance Substances 0.000 description 19
- 239000003507 refrigerant Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229910001868 water Inorganic materials 0.000 description 13
- 230000006835 compression Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- 238000004821 distillation Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000012808 vapor phase Substances 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 2
- 241000183024 Populus tremula Species 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920000247 superabsorbent polymer Polymers 0.000 description 2
- 239000004583 superabsorbent polymers (SAPs) Substances 0.000 description 2
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229930182843 D-Lactic acid Natural products 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- -1 and specifically Chemical compound 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229940022769 d- lactic acid Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 1
- TZMFJUDUGYTVRY-UHFFFAOYSA-N pentane-2,3-dione Chemical compound CCC(=O)C(C)=O TZMFJUDUGYTVRY-UHFFFAOYSA-N 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
- C07C51/44—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/783—Separation; Purification; Stabilisation; Use of additives by gas-liquid treatment, e.g. by gas-liquid absorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/04—Acrylic acid; Methacrylic acid
Definitions
- the present application relates to a process for the production of acrylic acid.
- acrylic acid is produced through the oxidative dehydrogenation reaction of propylene, and acrylic acid is used as a raw material for super absorbent polymers, paints, adhesives, and the like, and its demand is increasing.
- superabsorbent polymers are used in hygiene products such as diapers.
- reaction for producing other chemical products from lactic acid there is a gas phase reaction in which a raw material containing lactic acid is evaporated, contacted with a catalyst in a gaseous state, and a product is obtained.
- a gas-phase dehydration method using a solid catalyst is known as a technology for producing acrylic acid using lactic acid, and research on the dehydration reaction of lactic acid is mainly in progress as a gas-phase reaction.
- Lactic acid is a substance that polymerizes while esterification occurs in the liquid phase without a catalyst in the absence of water. As lactic acid is oligomerized and dehydrated, the oligomerization reaction of lactic acid occurs as lactic acid is concentrated without water. When the lactic acid oligomer is introduced into the reactor for the production of acrylic acid, fouling occurs in the reactor and the reaction yield is lowered. Therefore, a method for reducing the content of the lactic acid oligomer for the production of acrylic acid is being studied.
- by-products such as carbon monoxide, carbon dioxide, and acetaldehyde, which are by-products having a low boiling point, are generated together with the production of acrylic acid, thereby lowering the selectivity of acrylic acid.
- by-products such as low-boiling-point by-products and acrylic acid are smoothly separated, and research on a process that can commercialize the low-boiling by-product itself by increasing the purity is in progress.
- Patent Document 1 International Publication No. 2005-095320
- the present application seeks to provide a process for preparing acrylic acid.
- An exemplary embodiment of the present application includes a first step of cooling a reaction product of a bio-material to separate a first low-boiling-point material including acetaldehyde (ACHO) and a first high-boiling-point material including acrylic acid (AA); a second step of compressing the first low boiling point material containing acetaldehyde (ACHO) to separate a second low boiling point material containing condensed acetaldehyde (ACHO) and a second high boiling point material containing acrylic acid (AA); a third step of adding a second absorbent to the second low boiling point material containing acetaldehyde (ACHO) and cooling to separate the first incompressible material and a third low boiling point material containing acetaldehyde (ACHO); and a fourth step of producing acrylic acid by purifying the first high boiling point material containing the acrylic acid (AA).
- the first low-boiling material containing acetaldehyde (ACHO) and acrylic acid (AA) by adding (or not adding) and cooling the first absorbent to the reaction product of the bio-raw material ) including a first step of separating a first high boiling point material containing can be operated by increasing the pressure of the absorption process (third step) used for acetaldehyde separation, and when the pressure is increased, it is advantageous for acetaldehyde to be condensed, so the amount of the second absorbent can be effectively reduced, thereby cooling the absorbent Since the amount of heat is reduced, the amount of refrigerant used can be reduced.
- the loss of acrylic acid can be reduced by recovering the condensed second high-boiling material back to the first step, and thus the amount of the first absorbent used in the first step is reduced. It can be effectively reduced (including when not used).
- the manufacturing process of acrylic acid according to the present application can commercialize acetaldehyde produced as a by-product into a product of high purity and high yield, so that both acrylic acid and acetaldehyde can be obtained, which can improve the economic feasibility of the bio process. will have characteristics.
- 1 is a schematic diagram showing a manufacturing process of acrylic acid according to an exemplary embodiment of the present application.
- Figure 2 is a schematic diagram showing a manufacturing process of acrylic acid according to an exemplary embodiment of the present application.
- FIG 3 is a schematic view showing a manufacturing process of acrylic acid according to Comparative Examples 1 and 2 of the present application.
- 'p to q' means the range of 'p or more and q or less'.
- An exemplary embodiment of the present application includes a first step of cooling a reaction product of a bio-material to separate a first low-boiling-point material including acetaldehyde (ACHO) and a first high-boiling-point material including acrylic acid (AA); a second step of compressing the first low boiling point material containing acetaldehyde (ACHO) to separate a second low boiling point material containing condensed acetaldehyde (ACHO) and a second high boiling point material containing acrylic acid (AA); a third step of adding a second absorbent to the second low boiling point material containing acetaldehyde (ACHO) and cooling to separate the first incompressible material and a third low boiling point material containing acetaldehyde (ACHO); and a fourth step of producing acrylic acid by purifying the first high boiling point material containing the acrylic acid (AA).
- the first low-boiling material containing acetaldehyde (ACHO) and acrylic acid (AA) by adding (or not adding) and cooling the first absorbent to the reaction product of the bio-raw material ) including a first step of separating a first high boiling point material containing can be operated by increasing the pressure of the absorption process (third step) used for acetaldehyde separation, and when the pressure is increased, it is advantageous for acetaldehyde to be condensed, so the amount of the second absorbent can be effectively reduced, thereby cooling the absorbent Since the amount of heat is reduced, the amount of refrigerant used can be reduced.
- the loss of acrylic acid can be reduced by recovering the condensed second high-boiling material back to the first step, and thus the amount of the first absorbent used in the first step is reduced. It can be effectively reduced (including when not used).
- the manufacturing process of acrylic acid according to the present application can commercialize acetaldehyde produced as a by-product into a product of high purity and high yield, so that both acrylic acid and acetaldehyde can be obtained, which can improve the economic feasibility of the bio process. will have characteristics.
- acetaldehyde is produced as a by-product in the reaction product of the bio raw material.
- acetaldehyde produced as a by-product can be similarly commercialized as a product of high purity and high yield, so that both acrylic acid and acetaldehyde can be obtained. It has characteristics that can improve the economic feasibility of the bioprocess.
- the present invention includes a process of producing acrylic acid based on a bio raw material instead of the existing petrochemical process of generating acrylic acid through the oxidation reaction of propylene, and the manufacturing process of acrylic acid according to the present application is the first
- the step and the second step together, high purity acrylic acid can be obtained, and in particular, by adding the compression process of the second step, the amount of refrigerant used during the process can be reduced, and further including the third step
- the main feature of the present invention is to improve the economic feasibility of the bio-process by commercializing materials discarded as by-products as well as to obtain high-purity acetaldehyde.
- a first step of separating a first low boiling point material including acetaldehyde (ACHO) and a first high boiling point material including acrylic acid (AA) by cooling a reaction product of a bio raw material is provided do.
- the reaction of the biomaterial included in the first step may include a dehydration reaction of lactic acid, and any reaction of the biomaterial for producing acrylic acid may be included without limitation.
- the bio-material may be lactic acid in the gas phase.
- the gas phase may mean a vaporized state, that is, a state in which a liquid is vaporized to become a gas.
- the lactic acid is lactic acid, which is an organic compound having an asymmetric carbon atom bonded to four atomic groups of a carboxy group, a hydroxyl group, a methyl group, and hydrogen, and includes both D-lactic acid and L-lactic acid, and is a single lactic acid monomer.
- lactic acid which is an organic compound having an asymmetric carbon atom bonded to four atomic groups of a carboxy group, a hydroxyl group, a methyl group, and hydrogen, and includes both D-lactic acid and L-lactic acid, and is a single lactic acid monomer.
- the lactic acid oligomer refers to a material in which lactic acid reacts with each other to form a dimer, a trimer, etc.
- the lactic acid oligomer may refer to a dimer to 100mer of lactic acid.
- Lactic acid is a substance that polymerizes through an esterification reaction in a liquid phase without a catalyst even in the absence of water. That is, except for a single lactic acid monomer, all substances formed through a polymerization reaction of lactic acid may be defined as lactic acid oligomers.
- the vapor phase lactic acid is water; and lactic acid raw materials,
- the lactic acid raw material is lactic acid; and a lactic acid oligomer, and provides a process for producing acrylic acid including 10 parts by weight or more and 100 parts by weight or less of the lactic acid raw material based on 100 parts by weight of lactic acid in the gas phase.
- 10 parts by weight or more and 100 parts by weight or less based on 100 parts by weight of the lactic acid in the gas phase, 10 parts by weight or more and 100 parts by weight or less, preferably 30 parts by weight or more and 100 parts by weight or less, more preferably 60 parts by weight or more and 100 parts by weight or more may be less than or equal to
- the vapor phase lactic acid is the final vaporized lactic acid aqueous solution before producing acrylic acid.
- the content of the lactic acid raw material in the vapor phase lactic acid satisfies the above range, the input amount of the lactic acid raw material itself is suitable, and the water content is adjusted to an appropriate range. to have excellent economic efficiency of the acrylic acid manufacturing process according to the present application.
- the ratio of lactic acid: lactic acid oligomer in the vapor phase lactic acid is 100:0 to 80:20 to provide a process for producing acrylic acid.
- the ratio of lactic acid: lactic acid oligomer in the vapor phase lactic acid is 100:0 to 80:20, preferably 100:0 to 90:10, more preferably 100:0 to 95:5 range can be satisfied.
- the manufacturing process of acrylic acid according to the present invention breaks away from the traditional petrochemical-based manufacturing process and obtains sustainability by manufacturing acrylic acid based on lactic acid, an eco-friendly bio raw material, and at the same time has excellent characteristics in terms of environmental protection.
- Lactic acid in the gas phase corresponds to the bio-material of the first step according to the present application, and it is possible to reduce the occurrence of fouling in the reactor for the final acrylic acid production process and to increase the reaction yield.
- the reaction product of the bio raw material is acrylic acid, acetaldehyde, carbon monoxide, carbon dioxide, water, hydrogen, lactic acid monomer, acetic acid, 2,3-pentadione (2,3-PD) and propionic acid ( PA) may be included.
- acetaldehyde is not produced because the reaction temperature occurs at 250°C to 270°C. 400° C.), acetaldehyde is produced as a by-product during the production process of acrylic acid, and at this time, it is a main object of the present invention to commercialize acetaldehyde produced as a by-product.
- the first step includes separating through a cooling tower, the cooling temperature of the cooling tower is 10° C. or more and 150° C. or less, and the internal pressure of the cooling tower is 0.5 bar or more and 5.0 bar or less It provides a process for the production of acrylic acid.
- the internal pressure of the cooling tower may be 0.5 bar or more and 5.0 bar or less, preferably 1.0 bar or more and 4.0 bar or less, more preferably 2.0 bar or more and 3.5 bar or less, and specifically, it may satisfy 3.0 bar.
- the internal temperature of the cooling tower may be 10 °C or more, preferably 20 °C or more, more preferably 40 °C or more, 200 °C or less, preferably 150 °C or less.
- the internal temperature and pressure of the cooling tower in the first step satisfy the above ranges, it is possible to minimize the content of acrylic acid contained in the first low boiling point material discharged to the upper part of the cooling tower, that is, the acrylic acid (AA) All of the acrylic acid in the reaction product of the bio raw material to the first high-boiling-point material included is discharged to the lower part of the cooling tower, thereby increasing the yield and purity of the acrylic acid.
- the first step may be a step of separating the first high boiling point material containing acrylic acid and other low boiling point by-products through cooling in the process of producing acrylic acid.
- a process for producing acrylic acid which includes a process of adding a first absorbent in the step of cooling the reaction product of the bio raw material in the first step.
- the loss of acrylic acid can be reduced by recovering the condensed second high boiling point material back to the first step.
- Absorbent is not used, or even if it is used, it has a characteristic that can effectively reduce the amount used.
- the first absorbent is added such that the acrylic acid (AA) included in the first low boiling point material of the first step contains 1 part by weight or less based on 100 parts by weight of acrylic acid in the reaction product of the bio-raw material. It provides a process for producing acrylic acid that includes.
- the amount of acrylic acid (AA) included in the first low-boiling material in the first step is 1 part by weight or less, preferably 0.5 to 100 parts by weight of acrylic acid in the reaction product of the bio-raw material. It may be at most parts by weight, more preferably at most 0.01 parts by weight, and at least 0 parts by weight, preferably at least 0.005 parts by weight.
- acrylic acid (AA) included in the first low-boiling material in the first step the amount is discarded without being obtained.
- the weight of acrylic acid (AA) contained in the as described above it is possible to provide an economically excellent manufacturing process of acrylic acid.
- the cooling temperature of the cooling tower is 10° C. or more and 50° C. or less
- 1 part by weight or more and 15 parts by weight or less of the first absorbent are included with respect to 100 parts by weight of the reaction product of the bio raw material of the first step It provides a process for the production of acrylic acid.
- 0 parts by weight or more and 15 parts by weight or less preferably 0 parts by weight or more and 10 parts by weight or less, more preferably may be 0 parts by weight or more and 9 parts by weight or less.
- the loss of acrylic acid can be reduced by recovering the condensed second high boiling point material back to the first step, and thus the first absorbent used in the first step By not using or using, as the above range is included, the amount used can be effectively reduced. , it is possible to provide an economically excellent manufacturing process of acrylic acid.
- the amount of heat of the cooling tower is adjusted during the first step as described above, and the first absorbent is included in the content range, and in particular, acrylic acid and water are included as the range is included.
- the yield and purity of the final acrylic acid are increased, and at the same time, acetaldehyde produced as a by-product can be produced with high purity.
- FIG. 1 is a schematic diagram of a manufacturing process of acrylic acid according to the present application, specifically, a reaction product (2) of a bio raw material is introduced into a cooling tower (A), and a separation process according to a boiling point including a first absorbent (1) occurs It can be confirmed that, at this time, it can be confirmed that the first high-boiling material (3) containing acrylic acid (AA) at the bottom and the first low-boiling point material (4) containing acetaldehyde (ACHO) at the top are separated.
- AA acrylic acid
- ACHO acetaldehyde
- 1 is a schematic diagram of a manufacturing process of acrylic acid according to an exemplary embodiment of the present application, in which the first step is specifically, a reaction product (2) of a bio raw material is introduced into a cooling tower (A), a first low-boiling material (4) and It can be confirmed that the first high boiling point substances 3 are separated from each other, and in particular, as the second step of the compression process to be described later is performed, the input amount of the first absorbent 1 is effectively reduced, or the first absorbent 1 is It can be seen that the weight of acrylic acid included in the first low-boiling-point material 4 can be adjusted to a low level even if it does not contain itself.
- the first absorbent has a boiling point difference of 20° C. or more compared to the reference boiling point (NBP, Normal Boiling point) of the acrylic acid (AA) and the reference boiling point (NBP, Normal Boiling) of acetaldehyde (ACHO) point) provides a process for producing acrylic acid that includes a material having a boiling point difference of 50° C. or more.
- the reference boiling point (NBP, Normal Boiling point) is a synonym for boiling point, and may mean the boiling point of a liquid when the external pressure is 1 atm (760 mmHg).
- the boiling point of a common substance means the reference boiling point, for example, the reference boiling point of water can be expressed as 100°C. It means a temperature at which not only evaporation occurs from the surface of the liquid, but also vaporization occurs from the inside of the liquid to generate bubbles, and may mean a temperature at which a change in state of a substance from a liquid to a gas occurs.
- the first absorbent has a boiling point difference of 20°C or more and 40°C or less compared to the reference boiling point (NBP, Normal Boiling point) of the acrylic acid (AA) and the reference boiling point (NBP, NBP, It may be a material having a boiling point difference of 50°C or more and 80°C or less compared to normal boiling point).
- the reference boiling point of the acrylic acid is 141°C
- the reference boiling point of the acetaldehyde is 20°C.
- the first absorbent has a boiling point difference of 20° C. or more and 40° C. or less compared to the reference boiling point (NBP, Normal Boiling point) of the acrylic acid (AA), and the reference boiling point (NBP) of acetaldehyde (ACHO) , Normal Boiling point) may be a material having a boiling point difference of 50° C. or more and 80° C. or less and a boiling point higher than that of acetaldehyde.
- the first absorbent may be used without limitation if the above conditions are satisfied, and specifically, in an exemplary embodiment of the present application, the first absorbent may include water.
- the first absorbent may satisfy a temperature range of 10°C or higher and 60°C or lower.
- the first absorbent may satisfy a temperature range of 10°C or more and 60°C or less, preferably 20°C or more and 50°C or less, and most preferably 30°C or more and 50°C or less.
- the temperature range of the first absorbent satisfies the above range, and when it is included in the cooling tower of the first stage as it satisfies the above range, it is adjusted to a range similar to the internal temperature range of the cooling tower, thereby reducing the internal capacity of the cooling tower and economical efficiency It has features that can improve it.
- acrylic acid included in the first high boiling point material may include 95 parts by weight or more based on 100 parts by weight of acrylic acid included in the reaction product of the bio raw material.
- the amount of acrylic acid included in the first high boiling point material is 95 parts by weight or more, preferably 97 parts by weight or more, more preferably based on 100 parts by weight of acrylic acid included in the reaction product of the bio-material. It may be 99 parts by weight or more, and may be 100 parts by weight or less.
- the amount of acetaldehyde included in the first low-boiling point material based on 100 parts by weight of acetaldehyde included in the reaction product of the bio-material may include 90 parts by weight or more.
- the amount of acetaldehyde included in the first low-boiling material is 90 parts by weight or more, preferably 93 parts by weight or more, more preferably based on 100 parts by weight of acetaldehyde included in the reaction product of the bio-material. may be 95 parts by weight or more, 100 parts by weight or less, preferably 99 parts by weight or less.
- the first step corresponds to the process of separating acetaldehyde and acrylic acid.
- the compression process is carried out and acrylic acid, which may be included in a small amount in the first low boiling point material, is also recovered together in the first step. It is a feature of the present invention that the recovery rate of the separated acrylic acid is high.
- the first high-boiling material containing acrylic acid (AA) is distilled to distill the 2-1 low-boiling material containing acetaldehyde (ACHO) and the second 2- containing acrylic acid (AA) 1
- a step 2-1 of separating high-boiling-point substances is provided.
- step 2-1 is a step of distilling the first high boiling point material containing acrylic acid (AA) discharged to the lower part of the cooling tower in the first step once more, acetaldehyde ( It corresponds to the process of separating the 2-1 low-boiling material containing ACHO) and the 2-1 high boiling point material containing acrylic acid (AA).
- step 2-1 acetaldehyde, which can be discharged to the lower part of the cooling tower in the first step, can be further separated to obtain acrylic acid in high yield and high purity, and at the same time, acetaldehyde
- the 2-1 low-boiling material containing (ACHO) it has the characteristics of being able to obtain acetaldehyde in high yield and high purity through the separation process of the steps described below.
- the first high-boiling material comprising acrylic acid (AA) is water; acrylic acid; and acetaldehyde.
- the amount of acrylic acid included in the 2-1 high boiling point material may be 95 parts by weight or more based on 100 parts by weight of the acrylic acid included in the first high boiling point material containing acrylic acid (AA).
- a step of adding and cooling an absorbent in the first step and a step of separating the aldehyde once again in the step 2-1, and finally the 2-1 high boiling point produced It is characterized in that it can form a high yield of acrylic acid contained in the point material.
- the 2-1 high boiling point material may be purified to obtain a final acrylic acid.
- acetaldehyde included in the first high boiling point material containing acrylic acid (AA) based on 100 parts by weight of acetaldehyde included in the first high boiling point material containing acrylic acid (AA), 95 parts by weight or more of acetaldehyde included in the 2-1 low boiling point material may be present.
- acetaldehyde contained in the first high boiling point material containing acrylic acid (AA) is separated again, and acetaldehyde can also be commercialized through the process described below. have characteristics.
- FIG. 2 is a schematic diagram of a manufacturing process of acrylic acid according to the present application, in which step 2-1 is specifically separating the first high boiling point material (3) containing acrylic acid (AA) through a distillation column (E), acrylic acid It can be seen that the 2-1 high-boiling-point substance 12 containing (AA) is obtained, and the 2-1-th low-boiling-point substance 13 containing acetaldehyde (ACHO) is supplied through a process described below.
- step 2-1 is specifically separating the first high boiling point material (3) containing acrylic acid (AA) through a distillation column (E), acrylic acid
- the final acrylic acid may be obtained by purifying the first high boiling point material containing acrylic acid (AA) or the 2-1 high boiling point material 12 containing acrylic acid (AA). .
- a second low boiling point material containing acetaldehyde (ACHO) condensed by compressing the first low boiling point material containing acetaldehyde (ACHO) and a second high boiling point material containing acrylic acid (AA) A second step of separating the point material is provided.
- the second step is a step of compressing and condensing the first low boiling point material containing acetaldehyde (ACHO) discharged to the upper part of the cooling tower in the first step, the step of condensing
- the second low boiling point material containing acetaldehyde (ACHO) and the second high boiling point material containing acrylic acid (AA) can be separated, and in particular, the process of condensing the second low boiling point material containing acetaldehyde (ACHO)
- acrylic acid which can be discharged to the upper part of the cooling tower in the first step, is further separated to include the second high boiling point material, and is again included in the first step through the liquid phase circulation.
- high yield and high purity of acrylic acid can be obtained through have the characteristics of being able to do it.
- the second step includes a step of compression and condensation through a compressor, and the discharge pressure of the compressor provides a process for producing acrylic acid that is 1.2 bar or more and 10.0 bar or less.
- the discharge pressure of the compressor may be 1.5 bar or more and 10.0 bar or less, preferably 2.5 bar or more and 7.0 bar or less, and more preferably, the discharge pressure of the compressor may be 3.0 bar or more and 5.0 bar or less.
- the compression ratio in the second step provides a process for producing acrylic acid that is 1.0 or more.
- the compression ratio in the second step may be 1.0 or more, preferably 1.2 or more, and provides a process for producing acrylic acid that is 2.5 or less, preferably 2.0 or less.
- the compression ratio means a compression ratio of the compressor, and specifically, it may mean a pressure discharged after input to the compressor of the second stage (outlet pressure)/pressure before input to the compressor (inlet pressure).
- the discharge pressure of the compressor in the second step has the above range, it is possible to effectively separate acrylic acid and acetaldehyde, which may be included together in the upper part of the cooling tower of the first step, in particular, acetaldehyde (ACHO)
- acetaldehyde ACHO
- a process for producing acrylic acid that further comprises the step of circulating a second high boiling point material including acrylic acid (AA) in the second step to the first step.
- acrylic acid which can be discharged to the upper part of the first step, is again separated into a second high boiling point material containing acrylic acid (AA) through the second step, and the acrylic acid (AA)
- AA acrylic acid
- the second high boiling point material containing acrylic acid (AA) is input to the upper end of the cooling tower of the first step, and at this time, the reaction product of the bio raw material included in the first step is at the bottom of the cooling tower. Put together, re-separation can be made.
- the process of the second step may be performed as a single-step compression and condensation process, and may further be performed as a multi-step compression process.
- the production process of acrylic acid according to the present invention is mainly characterized by having the second step of compression and condensation as described above. Also, it is possible to minimize the amount of refrigerant used, and it is characterized in that it provides an economically excellent process.
- FIG. 1 and 2 are schematic views of a manufacturing process of acrylic acid according to an exemplary embodiment of the present application, in which the second step can be specifically identified.
- the first low boiling point material 4 containing acetaldehyde (ACHO) discharged to the upper part of the cooling tower (A) is supplied to the compressor (B), and the second low boiling point material containing acetaldehyde (ACHO) is condensed.
- the second high-boiling point material (5) containing (6) and acrylic acid (AA) is separated, and in particular, the second high-boiling point material (5) containing the separated acrylic acid (AA) is again heated in the cooling tower (A) ) to minimize the loss of acrylic acid that can be discharged to the upper part of the cooling tower (A).
- a second absorbent is added to the second low boiling point material including acetaldehyde (ACHO) and cooled to separate the first incompressible material and the third low boiling point material including acetaldehyde (ACHO) A third step is provided.
- the third step is a process of adding and cooling a second absorbent to the second low boiling point material discharged to the upper part of the cooling tower in the first step, and through this process, acrylic acid is manufactured Acetaldehyde, which is produced as a by-product in the process, also has the characteristics of being able to be commercialized. That is, the main feature of the present invention is to obtain high-purity acrylic acid, which can be seen as a characteristic of the present invention, and at the same time, to commercialize high-purity acetaldehyde.
- the third step includes separating through an absorption tower, the temperature of the absorption tower is 0° C. or more and 150° C. or less, and the internal pressure of the absorption tower is 0.5 bar or more 10.0 It provides a process for producing acrylic acid that is less than or equal to bar.
- the internal pressure of the absorption tower of the third step may be 0.5 bar or more and 10.0 bar or less, preferably 1.0 bar or more and 8.0 bar or less, and more preferably 1.5 bar or more and 5.0 bar or less, specifically 3.0 bar can be satisfied.
- the internal temperature of the absorption tower of the third step may be 0 °C or more, preferably 5 °C or more, more preferably 10 °C or more, 150 °C or less, preferably 100 °C or less can be
- acetaldehyde included in the second low boiling point material discharged to the upper part of the absorption tower can be commercialized in high yield and high purity, in particular Since the separation process from the first incompressible material included in the second low boiling point material can be smoothly performed, acetaldehyde can be obtained in high yield and high purity while simultaneously obtaining acrylic acid.
- acetaldehyde (ACHO) included in the first incompressible material in the third step is a second to include 1 part by weight or less based on 100 parts by weight of acetaldehyde in the reaction product of the bio-raw material. It provides a process for producing acrylic acid comprising an absorbent.
- the content of the second absorbent is adjusted to discharge all of acetaldehyde among the reaction products of the bio raw material with the second low boiling point material containing acetaldehyde (ACHO) to the lower part of the absorption tower. It is characterized in that it can be
- acetaldehyde (ACHO) included in the first incompressible material of the third step is 5 parts by weight or less, preferably based on 100 parts by weight of acetaldehyde in the reaction product of the bio-raw material may be 1.5 parts by weight or less, more preferably 1.0 parts by weight or less, and 0 parts by weight or more, preferably 0.01 parts by weight or more.
- the second absorbent is included in the content range during the third step as described above, and in particular, the second low boiling point material including acetaldehyde and incompressible material as the content range is included.
- the yield and purity of the finally produced acetaldehyde can be increased.
- the second absorbent is a material having a higher boiling point than the reference boiling point (NBP, Normal Boiling point) of the acetaldehyde (ACHO), and the boiling point difference is 20° C. or more. manufacturing process is provided.
- the second absorbent is a material having a higher boiling point than the reference boiling point (NBP, Normal Boiling point) of the acetaldehyde (ACHO), and the boiling point difference is 20°C or more and 100°C or less.
- NBP Reference boiling point
- ACHO acetaldehyde
- the second absorbent is a material having a higher boiling point than the reference boiling point (NBP, Normal Boiling point) of the acetaldehyde (ACHO), and has a boiling point difference of 20° C. or more and 100° C. or less, preferably a boiling point difference. It provides a process for producing acrylic acid that includes a material having a boiling point difference of 30° C. or more and 90° C. or less, more preferably 50° C. or more and 80° C. or less.
- the second absorbent may be a material having a higher boiling point than that of acetaldehyde.
- the second absorbent may include at least one selected from the group consisting of water and acrylic acid.
- the second absorbent may satisfy a temperature range of -5°C or higher and 20°C or lower.
- the second absorbent may satisfy a temperature range of -5°C or more and 20°C or less, preferably 5°C or more and 15°C or less, and most preferably 5°C or more and 10°C or less.
- the temperature range of the second absorbent satisfies the above range, and when it is included in the absorption tower of the third stage as it satisfies the above range, the internal capacity of the absorption tower is adjusted to a similar range to the internal temperature range of the absorption tower. It has characteristics that can improve economic efficiency by reducing
- the pressure of the absorption tower of the third step used for acetaldehyde separation can be increased and thus operated, thus acetaldehyde Since it is advantageous for the condensation of the second absorbent, it is possible to reduce the amount of the second absorbent used, and the amount of cooling heat for cooling the second absorbent is reduced due to the reduced amount of the second absorbent, thereby reducing the amount of refrigerant used.
- the amount of acetaldehyde included in the third low-boiling point material may be 95 parts by weight or more based on 100 parts by weight of acetaldehyde included in the second low-boiling point material.
- the amount of acetaldehyde contained in the third low-boiling material is 95 parts by weight or more, preferably 97 parts by weight or more, more preferably It may be 99 parts by weight or more, 100 parts by weight or less, preferably 99.9 parts by weight or less.
- the first incompressible material may include carbon monoxide, carbon dioxide, and an inert gas.
- the third step of the present application can be confirmed in FIGS. 1 and 2 , and specifically, after supplying the second low boiling point material 6 to the absorption tower C, the second absorbent 8 is supplied to remove the inert gas The process of separating the included first incompressible material 9 and the third low boiling point material 10 can be confirmed.
- a process for producing acrylic acid which further comprises separating acetaldehyde and the second absorbent by separating the third low-boiling material containing the acetaldehyde (ACHO). .
- the above process corresponds to a process for obtaining acetaldehyde when the process of step 2-1 is not performed.
- separating the second low-boiling-point material containing acetaldehyde (ACHO) and the third low-boiling-point material containing acetaldehyde (ACHO) to separate acetaldehyde and the second absorbent It provides a process for producing acrylic acid that further comprises.
- the process corresponds to a process for obtaining acetaldehyde when the process of step 2-1 is performed.
- the step includes the step of separating through a separation tower, the temperature of the separation tower is 10° C. or more and 200° C. or less, and the internal pressure of the separation tower is 0.3 bar or more and 10.0 bar or less. It provides a process for the production of acrylic acid.
- the step may be represented as step 3-1.
- step 3-1 corresponds to a process of separating the second absorbent for commercialization of acetaldehyde and obtaining pure acetaldehyde.
- the internal pressure of the separation tower of step 3-1 may be 0.3 bar or more and 10.0 bar or less, preferably 1.0 bar or more and 8.0 bar or less, and more preferably 2.0 bar or more and 5.0 bar or less, Specifically, 3.0 bar may be satisfied.
- the internal temperature of the separation tower of the above step may be 10 °C or more, preferably 20 °C or more, more preferably 40 °C or more, 200 °C or less, preferably 150 °C or less have.
- acetaldehyde included in the third low boiling point material discharged to the lower part of the absorption tower in the third step can be commercialized with high yield and high purity, especially Since the separation process from the second absorbent contained in the third low-boiling material can be smoothly performed, acetaldehyde can be obtained in high yield and high purity at the same time as acrylic acid.
- the second absorbent may be included together in the third step through a liquid flow again, so that the amount of the second absorbent can also be minimized.
- the method may further include cooling the second absorbent with a refrigerant.
- the second absorbent supplied from the outside and the second absorbent reused through the liquid flow as described above may be included.
- the temperature of the second absorbent may provide a process for producing acrylic acid that is -5 °C or more and 20 °C or less.
- acetaldehyde in the second low boiling point material including acetaldehyde can be adjusted to absorb 99 wt% or more.
- the purity of the acetaldehyde is 95% or more, and the recovery rate based on the reaction product of the bio-material is 95% or more.
- the purity of the acetaldehyde may be 100% or less, 99.99% or less.
- the first low-boiling-point material including acetaldehyde (ACHO) and acrylic acid (AA) are added (or not added) and cooled to the reaction product of the bio-raw material.
- the first step of separating the first high-boiling point material and the second step of compression the final high-purity and high-yield acrylic acid can be prepared, and the separation process through the third step and the separation tower
- acetaldehyde produced as a by-product can be commercialized as a product of high purity and high yield as well, so that both acrylic acid and acetaldehyde can be obtained.
- the production process of the present invention is particularly useful for the synthesis of acrylic acid, and specifically, acrylic acid can be produced by contacting the vapor composition containing lactic acid obtained in the present invention with a dehydration catalyst.
- the generated reaction gas is collected and liquefied by cooling or contact with a collection liquid, and high-purity acrylic acid can be obtained through a purification process such as extractive distillation and crystallization.
- the produced acrylic acid is widely used as a raw material for water-absorbing resins, paints, adhesives, and the like.
- Example 1 The operation process of Example 1 can be confirmed in FIG. 2, and as shown in FIG. 2, the flow rate included in each step and the weight ratio of the main composition (water, acrylic acid and acetaldehyde) that can be included in the flow rate are Tables 1 to It was shown in Table 5.
- the cooling temperature of the cooling tower of the first stage was about 50° C. to 125° C., and the internal pressure of the cooling tower was operated at 3.0 bar.
- acetaldehyde refers to a flow rate including the recovery process (second step) of acetic acid included after the entire process is performed one cycle.
- the second step of the compression process was performed in 4 flows (the first low boiling point material), and the compression ratio was 1.7.
- the temperature of the first low-boiling-point material input to the compressor in the 4th stream was 49.2° C., and it was included in the compressor and increased to 86.9° C.
- the temperature of the first low-boiling-point material (flow 6) to be described later through the compressor was 40.0 °C, and then the second high boiling point material (5) was cycled back to the first stage.
- the temperature of the distillation column of step 2-1 was about 40° C. to 130° C., and the internal pressure of the distillation column was operated at 2.5 bar.
- the temperature of the absorption tower of the third step was about 14° C. to 55° C., and the absorption tower internal pressure was operated at 4.5 bar.
- the reference boiling point of the second absorbent included in the third step was 100°C.
- the temperature of the separation tower in step 3-1 was about 40° C. to 133° C., and the pressure inside the separation tower was operated at 3.0 bar.
- the amount of refrigerant used to cool the second absorbent was 0.12 Gcal/hr.
- Example 2 The operation process of Example 2 can be confirmed in FIG. 2, and as shown in FIG. 2, the flow rate included in each step and the weight ratio of the main composition (water, acrylic acid and acetaldehyde) that can be included in the flow rate are Tables 6 to It was shown in Table 10.
- Example 2 corresponds to a process using the first absorbent in the first step, unlike Example 1.
- the cooling temperature of the cooling tower of the first stage was about 88° C. to 121° C., and the cooling tower internal pressure was operated at 2.5 bar.
- the reference boiling point of the first absorbent included in the first step was 100 °C.
- acetaldehyde refers to a flow rate including the recovery process (second step) of the included acetic acid after the entire process is performed one cycle.
- the compression process of the second step was performed in 4 flows (the first low boiling point material), and the compression ratio was 1.3.
- the temperature of the first low-boiling-point material input to the compressor in the 4th stream was 88.1°C, and it was included in the compressor and increased to 117.7°C, and thereafter, the temperature of the first low-boiling-point material (flow 6) to be described later through the compressor was 40.0 °C, and then the second high boiling point material (5) was cycled back to the first stage.
- the temperature of the distillation column in step 2-1 was about 55° C. to 121° C., and the distillation column internal pressure was operated at 2.5 bar.
- the temperature of the absorption tower in the third step was about 9°C to 43°C, and the absorption tower internal pressure was operated at 3.0 bar.
- the reference boiling point of the second absorbent included in the third step was 100 °C.
- the temperature of the separation tower in step 3-1 was about 40° C. to 133° C., and the pressure inside the separation tower was operated at 3.0 bar.
- the amount of refrigerant used to cool the second absorbent was 0.18 Gcal/hr.
- Example 1 The process was performed in the same manner as in Example 1, except that the second step was not included in Example 1. Specifically, the process as shown in FIG. 3 was performed, and as the compression process (second step) was not included, the amount of the first absorbent was 6000 kg/hr, and the flow rate of the first absorbent was large, and the same amount of acetaldehyde In order to commercialize the refrigerant, it was confirmed that the amount of refrigerant was increased by 69.2% compared to Example 1 at 0.39 Gcal/hr.
- Example 2 The process was performed in the same manner as in Example 2, except that the second step was not included in Example 2. Specifically, the process was performed as shown in FIG. 3, and in order to commercialize the same amount of acetaldehyde, the amount of refrigerant was 0.39 Gcal/hr, and it was confirmed that the amount of refrigerant increased by 53.8% compared to Example 2.
- the first absorbent is added to the reaction product of the bio-material (or not addition) and cooling to separate a first low-boiling material comprising acetaldehyde (ACHO) and a first high-boiling point material comprising acrylic acid (AA) and acetaldehyde (ACHO) that has passed through the first step
- ACHO acetaldehyde
- ACHO acrylic acid
- ACHO acetaldehyde
- acetaldehyde is produced as a by-product in the reaction product of the bio raw material.
- acetaldehyde produced as a by-product can be similarly commercialized as a product with high purity and high yield, so acrylic acid and acetaldehyde It was confirmed that all of these can be obtained, which has characteristics that can improve the economic feasibility of the bioprocess.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 출원의 아크릴산의 제조 공정은 바이오 원료의 반응 생성물에 제1 흡수제를 첨가(또는 미첨가) 및 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계 및 상기 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축기에 포함하여, 압축 및 응축시키는 제2 단계를 포함하여, 아세트알데하이드 분리에 사용되는 흡수 공정(제3 단계)의 압력을 높여 운전할 수 있고, 제2 흡수제의 사용량을 줄일 수 있으므로, 흡수제의 냉각 열량이 줄어들어 냉매의 사용량을 줄일 수 있고, 상기 제2 단계의 압축 공정시, 응축된 제2 고비점 물질을 제1 단계로 회수하여 아크릴산의 손실을 줄일 수 있으며, 제1 단계에서 사용되는 제1 흡수제의 양을 감소시킬 수 있습니다.
Description
본 출원은 2020년 12월 03일 한국특허청에 제출된 한국 특허 출원 제10-2020-0167623호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 아크릴산의 제조 공정에 관한 것이다.
일반적으로 아크릴산은 프로필렌의 산화 탈수소 반응을 통하여 제조되었으며, 아크릴산은 고흡수성수지, 도료, 접착제 등의 원료가 되는 것으로 그 수요가 증가하고 있다. 특히 고흡수성 수지는 기저귀 등의 위생용품으로 사용되고 있다.
지금까지 화학품의 상당수는, 석탄이나 석유 등의 화석 원료에서 유도되는 원료를 이용하여 제조되어 왔다. 그러나 최근, 지구 온난화 방지 및 환경보호의 관점에서 탄소원으로서 재활용 가능한 생물 유래 자원을 종래의 화석 원료의 대체로서 이용하는 것이 주목되어 있다. 예를 들면 옥수수나 밀 등의 전분계 바이오매스, 사탕수수 등의 당질계 바이오매스 및 유채의 짜고남은 찌꺼기나 볏짚 등의 셀룰로오스계 바이오매스 등의 바이오매스 자원을 원료로서 이용하는 방법의 개발이 시도되고 있다.
즉 최근 전통적인 석유 화학 기반의 제조 공정을 탈피하여, 친환경 원료를 기반으로 한 화학품을 제조함으로써 지속 가능성을 얻음과 동시에 환경 보호 관점에서 우수한 특징을 갖는 연구가 진행되고 있는 추세이다.
젖산에서 다른 화학품을 제조하는 반응의 형식의 하나로서 젖산을 포함한 원료를 증발시키고 기체 상태에서 촉매와 접촉시키고 생성물을 얻는 기상 반응을 들 수 있다. 예를 들면 젖산을 이용하여 아크릴산을 제조하는 기술로서 고체 촉매를 이용하는 기상 탈수 방법이 알려져 있으며, 젖산의 탈수 반응은 주로 기상 반응으로 연구가 진행중에 있다.
젖산은 물이 없는 상황에서 촉매 없이도 액상에서 에스테르화 반응이 일어나면서 중합을 하는 물질로, 젖산이 농축되어 고농도가 될수록 젖산 올리고머로 반응된다. 젖산이 올리고머화 되면서 탈수가 되므로 물 없이 젖산이 농축될수록 젖산의 올리고머화 반응이 일어난다. 젖산 올리고머가 아크릴산 제조를 위한 반응기로 투입되는 경우 반응기 내 파울링 발생, 반응 수율이 낮아지게 되므로, 아크릴산의 제조를 위해 젖산 올리고머의 함량을 줄일 수 있는 방법이 연구중에 있다.
상기와 같은 문제에 더하여, 프로필렌의 산화 반응과 같이 전통적 석유화학과 비교하여 바이오 원료의 반응은 낮은 아크릴산의 선택도를 보이기 때문에 공정을 개발함에 있어 경제성의 향상이 필요하다.
특히, 바이오 원료 기반의 아크릴산 제조시, 아크릴산의 제조와 함께 저비점을 갖는 부산물인, 일산화탄소, 이산화탄소, 아세트알데하이드 등의 부산물이 함께 생성되어 아크릴산의 선택도가 낮아지게 되는 바, 바이오 원료를 기반으로한 아크릴산의 제조시 저비점 부산물 등의 부산물과 아크릴산을 원활하게 분리하고, 또한 저비점 부산물 자체의 순도를 높여 제품화할 수 있는 공정에 대한 연구가 진행중에 있다.
<선행기술문헌>
(특허문헌 1) 국제공개 제2005-095320호
본 출원은 아크릴산의 제조 공정을 제공하고자 한다.
본 출원의 일 실시상태는 바이오 원료의 반응 생성물을 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계; 상기 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축하여 응축된 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질 및 아크릴산(AA)을 포함하는 제2 고비점 물질을 분리하는 제2 단계; 상기 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질에 제2 흡수제를 첨가 및 냉각하여 제1 비압축성 물질 및 아세트알데하이드(ACHO)를 포함하는 제3 저비점 물질을 분리하는 제3 단계; 및 상기 아크릴산(AA)을 포함하는 제1 고비점 물질을 정제하여 아크릴산을 생산하는 제4 단계를 포함하는 것인 아크릴산의 제조 공정을 제공하고자 한다.
본 출원의 일 실시상태에 따른 아크릴산의 제조 공정의 경우, 바이오 원료의 반응 생성물에 제1 흡수제를 첨가(또는 미첨가) 및 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계 및 상기 제1 단계를 거친 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축기에 포함하여 압축 및 응축시키는 제2 단계를 포함함에 따라, 아세트알데하이드 분리에 사용되는 흡수 공정(제3 단계)의 압력을 높여 운전할 수 있으며, 압력이 높아지는 경우 아세트알데하이드의 응축에 유리하므로, 제2 흡수제의 사용량을 효과적으로 줄일 수 있고, 이에 따라 흡수제의 냉각 열량이 줄어들어 냉매의 사용량을 줄일 수 있는 특징을 갖게 된다.
또한, 상기 제2 단계의 압축 공정을 진행시, 응축된 제2 고비점 물질을 다시 제1 단계로 회수하여 아크릴산의 손실을 줄일 수 있으며, 이에 따라 제1 단계에서 사용되는 제1 흡수제의 양을 효과적으로 감소(사용하지 않는 경우를 포함)시킬 수 있다.
즉, 본 출원에 따른 아크릴산의 제조 공정은 부산물로 생성되는 아세트알데하이드를 고순도 및 고수율의 제품으로 제품화할 수 있어, 아크릴산과 아세트알데하이드를 모두 획득할 수 있는 것으로 바이오 공정의 경제성을 향상시킬 수 있는 특징을 갖게 된다.
도 1은 본 출원의 일 실시상태에 따른 아크릴산의 제조 공정을 나타낸 개략도이다.
도 2는 본 출원의 일 실시상태에 따른 아크릴산의 제조 공정을 나타낸 개략도이다.
도 3은 본 출원의 비교예 1 및 비교예 2에 따른 아크릴산의 제조 공정을 나타낸 개략도이다.
<부호의 설명>
A: 냉각탑
B: 압축기
C: 흡수탑
D: 분리탑
E: 증류탑
1: 제1 흡수제
2: 바이오 원료의 반응 생성물
3: 제1 고비점 물질
4: 제1 저비점 물질
5: 제2 고비점 물질
6: 제2 저비점 물질
7: 제2 흡수제
8: 제2 흡수제(순환 흐름)
9: 제1 비압축성 물질
10: 제3 저비점 물질
11: 아세트알데하이드
12: 제2-1 고비점 물질
13: 제2-1 저비점 물질
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서에 있어서, 'p 내지 q'는 'p 이상 q 이하'의 범위를 의미한다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 출원의 일 실시상태는 바이오 원료의 반응 생성물을 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계; 상기 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축하여 응축된 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질 및 아크릴산(AA)을 포함하는 제2 고비점 물질을 분리하는 제2 단계; 상기 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질에 제2 흡수제를 첨가 및 냉각하여 제1 비압축성 물질 및 아세트알데하이드(ACHO)를 포함하는 제3 저비점 물질을 분리하는 제3 단계; 및 상기 아크릴산(AA)을 포함하는 제1 고비점 물질을 정제하여 아크릴산을 생산하는 제4 단계를 포함하는 것인 아크릴산의 제조 공정을 제공하고자 한다.
본 출원의 일 실시상태에 따른 아크릴산의 제조 공정의 경우, 바이오 원료의 반응 생성물에 제1 흡수제를 첨가(또는 미첨가) 및 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계 및 상기 제1 단계를 거친 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축기에 포함하여 압축 및 응축시키는 제2 단계를 포함함에 따라, 아세트알데하이드 분리에 사용되는 흡수 공정(제3 단계)의 압력을 높여 운전할 수 있으며, 압력이 높아지는 경우 아세트알데하이드의 응축에 유리하므로, 제2 흡수제의 사용량을 효과적으로 줄일 수 있고, 이에 따라 흡수제의 냉각 열량이 줄어들어 냉매의 사용량을 줄일 수 있는 특징을 갖게 된다.
또한, 상기 제2 단계의 압축 공정을 진행시, 응축된 제2 고비점 물질을 다시 제1 단계로 회수하여 아크릴산의 손실을 줄일 수 있으며, 이에 따라 제1 단계에서 사용되는 제1 흡수제의 양을 효과적으로 감소(사용하지 않는 경우를 포함)시킬 수 있다.
즉, 본 출원에 따른 아크릴산의 제조 공정은 부산물로 생성되는 아세트알데하이드를 고순도 및 고수율의 제품으로 제품화할 수 있어, 아크릴산과 아세트알데하이드를 모두 획득할 수 있는 것으로 바이오 공정의 경제성을 향상시킬 수 있는 특징을 갖게 된다.
특히, 젖산의 탈수 반응은 고온(330℃~400℃)에서 일어나기 때문에, 바이오 원료의 반응 생성물에는 아세트알데하이드가 부산물로 생성되는 것으로, 본원 발명에 따른 아크릴산의 제조 공정의 경우, 상기와 같이 고순도, 고수율의 아크릴산을 제조함과 동시에 상기의 제3 단계를 공정상 포함함에 따라, 부산물로 생성되는 아세트알데하이드를 마찬가지로 고순도 및 고수율의 제품으로 제품화할 수 있어, 아크릴산과 아세트알데하이드를 모두 획득할 수 있는 것으로 바이오 공정의 경제성을 향상시킬 수 있는 특징을 갖게 된다.
즉, 본 발명은 프로필렌의 산화반응으로 아크릴산을 생성하는 기존의 석유 화학 공정을 대신하여, 바이오 원료 기반에 따른 아크릴산을 생산하는 공정을 포함하는 것으로, 본 출원에 따른 아크릴산의 제조 공정은 상기 제1 단계 및 제2 단계를 함께 포함하여, 고순도의 아크릴산을 획득할 수 있으며, 특히 제2 단계의 압축공정을 추가하여, 공정 진행시 냉매의 사용량을 감소 시킬 수 있고, 더욱이 상기 제3 단계를 더 포함하여 고순도의 아세트알데하이드 또한 획득 할 수 있어, 부산물로 버려지는 물질 또한 제품화하여 바이오 공정의 경제성을 향상시키는 것은 본원 발명의 주된 특징으로 한다.
본 출원의 일 실시상태에 있어서, 바이오 원료의 반응 생성물을 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계를 제공한다.
상기 제1 단계에 포함되는 바이오 원료의 반응은 젖산의 탈수 반응을 포함할 수 있으며, 아크릴산을 생산하기 위한 바이오 원료의 반응이라면 제한 없이 포함될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 바이오 원료는 기상의 젖산일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 기상이라는 것은 기화된 상태 즉, 액체를 기화하여 기체로된 상태를 의미할 수 있다.
본 출원에 있어서, 상기 젖산은 Lactic acid로 카복시기, 하이드록시기, 메틸기, 수소의 네 원자단이 결합한 비대칭 탄소원자를 가지는 유기화합물로, D-젖산 및 L-젖산을 모두 포함하며, 단독의 젖산 단량체를 의미할 수 있다.
본 출원에 있어서, 상기 젖산 올리고머는 젖산이 서로 반응하여 2량체, 3량체 등을 형성한 물질을 의미하며, 상기 젖산 올리고머는 젖산의 2량체 내지 100량체를 의미할 수 있다.
젖산은 물이 없는 상황에서도 촉매 없이 액상에서 에스테르화 반응을 통하여 중합을 하는 물질로, 젖산의 중합 반응을 통해 형성된 물질을 통틀어 젖산 올리고머로 표현할 수 있다. 즉, 단독의 젖산 단량체를 제외하고는 젖산의 중합 반응을 통해 형성된 모든 물질을 젖산 올리고머로 정의할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 기상의 젖산은 물; 및 젖산 원료를 포함하며,
상기 젖산 원료는 젖산; 및 젖산 올리고머를 포함하고, 상기 기상의 젖산 100 중량부 기준 상기 젖산 원료 10 중량부 이상 100중량부 이하로 포함하는 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 기상의 젖산 100 중량부 기준 상기 젖산 원료 10 중량부 이상 100중량부 이하, 바람직하게는 30 중량부 이상 100중량부 이하, 더욱 바람직하게는 60 중량부 이상 100중량부 이하일 수 있다.
상기 기상의 젖산은 아크릴산을 생산하기 전 최종의 기화된 상태의 젖산 수용액으로 상기 기상의 젖산 내의 젖산 원료의 함량이 상기 범위를 만족함에 따라 젖산 원료 자체의 투입 물량이 적합하며, 물의 함량을 적정 범위로 조절하여 본 출원에 따른 아크릴산 제조 공정의 경제성이 우수한 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 기상의 젖산 중 젖산:젖산 올리고머의 비율이 100:0 내지 80:20인 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 기상의 젖산 중 젖산:젖산 올리고머의 비율이 100:0 내지 80:20, 바람직하게는 100:0 내지 90:10, 더욱 바람직하게는 100:0 내지 95:5의 범위를 만족할 수 있다.
즉, 본 발명에 따른 아크릴산의 제조 공정은 전통적인 석유 화학 기반의 제조 공정을 탈피하여, 친환경 바이오 원료인 젖산을 기반으로 한 아크릴산을 제조함으로써 지속 가능성을 얻음과 동시에 환경 보호 관점에서 우수한 특징을 가질 수 있다. 상기 기상의 젖산은 본 출원에 따른 제1 단계의 바이오 원료에 해당하는 것으로, 최종 아크릴산의 제조 공정을 위한 반응기 내의 파울링 발생을 줄일 수 있고, 반응 수율을 높일 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 바이오 원료의 반응 생성물은 아크릴산, 아세트알데하이드, 일산화탄소, 이산화탄소, 물, 수소, 젖산 단량체, 아세트산, 2,3-펜타디온(2,3-PD) 및 프로피온산(PA)을 포함할 수 있다.
특히, 석유 화학 기반의 프로필렌 산화 반응의 경우 반응온도가 250℃내지 270℃에서 일어나는 것으로 아세트알데하이드가 생성되지 않으나, 본 출원에 따른 바이오 원료의 반응 중 기상 젖산의 탈수 반응의 경우 고온(330℃~400℃)에서 일어나기 때문에 아크릴산의 제조 공정 중, 아세트알데하이드가 부산물로써 생성되며, 이 때 부산물로 생성되는 아세트알데하이드 또한 제품화하는 것이 본 발명의 주된 목적이다.
본 출원의 일 실시상태에 있어서, 상기 제1 단계는 냉각탑을 통하여 분리하는 단계를 포함하고, 상기 냉각탑의 냉각 온도는 10℃ 이상 150℃ 이하이고, 상기 냉각탑의 내부 압력은 0.5 bar 이상 5.0 bar 이하인 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 냉각탑의 내부 압력은 0.5 bar 이상 5.0 bar 이하, 바람직하게는 1.0 bar 이상 4.0 bar 이하, 더욱 바람직하게는 2.0 bar 이상 3.5 bar 이하일 수 있으며, 구체적으로 3.0 bar를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 냉각탑의 내부 온도는 10℃ 이상, 바람직하게는 20℃ 이상, 더욱 바람직하게는 40℃ 이상일 수 있으며, 200℃ 이하, 바람직하게는 150℃ 이하 일 수 있다.
상기와 같이 제1 단계 상의 냉각탑의 내부 온도 및 압력이 상기 범위를 만족함에 따라, 냉각탑의 상부로 배출되는 제1 저비점 물질에 포함되는 아크릴산의 함량을 최소화할 수 있으며 즉, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질에 바이오 원료의 반응 생성물 중 아크릴산이 모두 상기 냉각탑의 하부로 배출되어 아크릴산의 수율 및 순도를 높일 수 있는 특징을 갖게 된다.
즉, 상기 제1 단계는 아크릴산을 생산하는 공정에 있어, 냉각을 통하여 아크릴산을 포함하는 제1 고비점 물질과 그 외 저비점 부산물을 분리하는 단계일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 단계의 바이오 원료의 반응 생성물을 냉각하는 단계에 제1 흡수제를 첨가하는 공정을 포함하는 것인 아크릴산의 제조 공정을 제공한다.
특히, 본 출원에 따른 후술하는 제2 단계의 압축 공정을 진행시, 응축된 제2 고비점 물질을 다시 제1 단계로 회수하여 아크릴산의 손실을 줄일 수 있으며, 이에 따라 제1 단계에서 사용되는 제1 흡수제를 사용하지 않거나, 사용하더라도 효과적으로 사용되는 양을 줄일 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 제1 단계의 상기 제1 저비점 물질에 포함되는 아크릴산(AA)이 상기 바이오 원료의 반응 생성물 내 아크릴산 100 중량부 대비 1 중량부 이하를 포함하도록 제1 흡수제를 포함하는 것인 아크릴산의 제조 공정을 제공한다.
본 발명에 따른 상기 제1 단계는 상기 제1 흡수제의 함량을 조절하여, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질에 바이오 원료의 반응 생성물 중 아크릴산이 모두 상기 냉각탑의 하부로 배출될 수 있도록 할 수 있다.
구체적으로 본 출원의 일 실시상태에 있어서, 상기 제1 단계의 상기 제1 저비점 물질에 포함되는 아크릴산(AA)이 상기 바이오 원료의 반응 생성물 내 아크릴산 100 중량부 대비 1 중량부 이하, 바람직하게는 0.5 중량부 이하, 더욱 바람직하게는 0.01중량부 이하일 수 있으며, 0 중량부 이상, 바람직하게는 0.005 중량부 이상일 수 있다.
즉, 상기 제1 단계의 상기 제1 저비점 물질에 포함되는 아크릴산(AA)의 경우, 수득되지 않고 버려지는 양으로, 상기와 같이 제1 흡수제를 포함하는 경우, 그 양을 조절하여 제1 저비점 물질에 포함되는 아크릴산(AA)의 중량을 상기와 같이 조절하여, 경제적으로 우수한 아크릴산의 제조 공정을 제공할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 냉각탑의 냉각 온도 10℃ 이상 50℃ 이하인 경우, 상기 제1 단계의 바이오 원료의 반응 생성물 100 중량부 대비 상기 제1 흡수제 1 중량부 이상 15 중량부 이하를 포함하는 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제1 단계의 바이오 원료의 반응 생성물 100 중량부 대비 상기 제1 흡수제 0 중량부 이상 15 중량부 이하, 바람직하게는 0 중량부 이상 10 중량부 이하, 더욱 바람직하게는 0 중량부 이상 9 중량부 이하일 수 있다.
본 출원에 따른 후술하는 제2 단계의 압축 공정을 진행시, 응축된 제2 고비점 물질을 다시 제1 단계로 회수하여 아크릴산의 손실을 줄일 수 있으며, 이에 따라 제1 단계에서 사용되는 제1 흡수제를 사용하지 않거나, 사용하더라도 상기 범위를 포함함에 따라, 효과적으로 사용되는 양을 줄일 수 있으며, 상기 범위를 포함하는 경우 제1 저비점 물질에 포함되는 아크릴산(AA)의 중량을 줄여 버려지는 아크릴산을 최소화하여, 경제적으로 우수한 아크릴산의 제조 공정을 제공할 수 있다.
본 출원의 아크릴산의 제조 공정에 있어서, 상기와 같이 제1 단계 진행시 냉각탑의 열량을 조절하고, 제1 흡수제를 상기 함량범위로 포함하는 것으로, 특히 상기 범위를 포함함에 따라 아크릴산 및 물 등을 포함하는 제1 고비점 물질을 모두 상기 흡수탑의 하부로 배출되도록 조절하여, 최종 생산되는 아크릴산의 수율 및 순도를 높임과 동시에 부산물로 생산되는 아세트알데하이드 또한 고순도로 생산할 수 있는 특징을 갖게 된다.
도 1은 본 출원에 따른 아크릴산의 제조 공정의 개략도로, 구체적으로 바이오 원료의 반응 생성물(2)이 냉각탑(A)으로 투입되며, 제1 흡수제(1)를 포함하여 비점에 따른 분리 공정이 일어나는 것을 확인할 수 있으며, 이 때 하부로 아크릴산(AA)을 포함하는 제1 고비점 물질(3) 및 상부로 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질(4)로 분리되는 것을 확인할 수 있다.
도 1은 본 출원의 일 실시상태에 따른 아크릴산의 제조 공정의 개략도로, 상기 제1 단계는 구체적으로 냉각탑(A)으로 바이오 원료의 반응 생성물(2)이 투입되어 제1 저비점 물질(4)과 제1 고비점 물질(3)을 각각 분리하는 것을 확인할 수 있으며, 특히 후술할 제2 단계의 압축 공정을 진행함에 따라 제1 흡수제(1)의 투입량을 효과적으로 줄이거나, 아예 제1 흡수제(1) 자체를 포함하지 않아도 제1 저비점 물질(4) 상에 포함되는 아크릴산의 중량을 낮게 조절할 수 있음을 알 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 흡수제는 상기 아크릴산(AA)의 기준 끓는점(NBP, Normal Boiling point) 대비 비점차이가 20℃ 이상 및 아세트알데하이드(ACHO)의 기준 끓는점(NBP, Normal Boiling point) 대비 비점차이가 50℃ 이상인 물질을 포함하는 것인 아크릴산의 제조 공정을 제공한다.
본 출원에 있어서, 상기 기준 끓는점(NBP, Normal Boiling point)은 비등점(沸騰點)의 동의어로, 외부 압력이 1기압(760㎜Hg)일 때 액체의 끓는점을 의미할 수 있다. 보통 물질의 끓는점이라고 하면 기준 끓는점을 의미하는 것으로, 예를 들어 물의 기준 끓는점은 100℃로 나타낼 수 있다. 액체 표면에서부터 증발이 일어날 뿐만 아니라, 액체 내부로부터 기화가 일어나 기포가 발생하기 시작하는 온도를 의미하며, 액체에서 기체로 물질의 상태 변화가 일어나는 온도를 의미할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 흡수제는 상기 아크릴산(AA)의 기준 끓는점(NBP, Normal Boiling point) 대비 비점차이가 20℃ 이상 40℃ 이하 및 아세트알데하이드(ACHO)의 기준 끓는점(NBP, Normal Boiling point) 대비 비점차이가 50℃ 이상 80℃ 이하인 물질일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 아크릴산의 기준 끓는점은 141℃이며, 상기 아세트알데하이드의 기준 끓는점은 20℃이다.
본 출원의 일 실시상태에 있어서, 상기 제1 흡수제는 상기 아크릴산(AA)의 기준 끓는점(NBP, Normal Boiling point) 대비 비점차이가 20℃ 이상 40℃ 이하, 아세트알데하이드(ACHO)의 기준 끓는점(NBP, Normal Boiling point) 대비 비점차이가 50℃ 이상 80℃ 이하 및 상기 아세트알데하이드보다 비점이 높은 물질일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 흡수제는 상기 조건을 만족하면 제한없이 사용될 수 있으며, 구체적으로 본 출원의 일 실시상태에 있어서 상기 제1 흡수제는 물을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 흡수제는 10℃ 이상 60℃ 이하의 온도 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 흡수제는 10℃ 이상 60℃ 이하, 바람직하게는 20℃ 이상 50℃ 이하, 가장 바람직하게는 30℃ 이상 50℃ 이하의 온도범위를 만족할 수 있다.
상기와 같이 제1 흡수제의 온도 범위가 상기 범위를 만족하는 것으로, 상기 범위를 만족함에 따라 제1 단계의 냉각탑으로 포함될 때, 냉각탑의 내부 온도 범위와 유사 범위로 조절되어 냉각탑의 내부 용량을 줄여 경제성을 향상시킬 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 바이오 원료의 반응 생성물에 포함된 아크릴산 100 중량부 기준 상기 제1 고비점 물질에 포함되는 아크릴산은 95 중량부 이상을 포함할 수있다.
또 다른 일 실시상태에 있어서, 상기 바이오 원료의 반응 생성물에 포함된 아크릴산 100 중량부 기준 상기 제1 고비점 물질에 포함되는 아크릴산은 95 중량부 이상, 바람직하게는 97 중량부 이상, 더욱 바람직하게는 99 중량부 이상일 수 있으며, 100 중량부 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 바이오 원료의 반응 생성물에 포함된 아세트알데하이드 100 중량부 기준 상기 제1 저비점 물질에 포함되는 아세트알데하이드는 90 중량부 이상을 포함할 수있다.
또 다른 일 실시상태에 있어서, 상기 바이오 원료의 반응 생성물에 포함된 아세트알데하이드 100 중량부 기준 상기 제1 저비점 물질에 포함되는 아세트알데하이드는 90 중량부 이상, 바람직하게는 93 중량부 이상, 더욱 바람직하게는 95 중량부 이상일 수 있으며, 100 중량부 이하, 바람직하게는 99 중량부 이하일 수 있다.
즉, 상기 제1 단계는 아세트알데하이드와 아크릴산을 분리하는 공정에 해당하는 것으로, 특히 후술하는 제2 단계에서 압축 공정 진행 및 제1 저비점 물질상 소량 포함될 수 있는 아크릴산도 함께 회수하여, 제1 단계에 따라 분리된 아크릴산의 회수율이 높은 것을 본 발명의 특징으로 한다.
본 출원의 일 실시상태에 있어서, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질을 증류하여 아세트알데하이드(ACHO)를 포함하는 제2-1 저비점 물질 및 아크릴산(AA)을 포함하는 제2-1 고비점 물질을 분리하는 제2-1 단계를 제공한다.
본 출원의 일 실시상태에 있어서, 상기 제2-1 단계는 상기 제1 단계에서 냉각탑의 하부로 배출되는 아크릴산(AA)을 포함하는 제1 고비점 물질을 한번 더 증류하는 단계로, 아세트알데하이드(ACHO)를 포함하는 제2-1 저비점 물질 및 아크릴산(AA)을 포함하는 제2-1 고비점 물질을 분리하는 공정에 해당한다.
즉, 상기와 같은 제2-1 단계의 공정을 통하여, 제1 단계에서 냉각탑의 하부로 배출될 수 있는 아세트알데하이드를 추가로 분리하여 고수율 및 고순도의 아크릴산을 획득할 수 있음과 동시에, 아세트알데하이드(ACHO)를 포함하는 제2-1 저비점 물질을 획득하여, 후술하는 단계의 분리공정을 거쳐 고수율 및 고순도의 아세트알데하이드를 또한 수득할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질은 물; 아크릴산; 및 아세트알데하이드를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질에 포함된 아크릴산 100 중량부 기준 상기 제2-1 고비점 물질에 포함되는 아크릴산 95 중량부 이상일 수 있다.
또 다른 일 실시상태에 있어서, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질에 포함된 아크릴산 100 중량부 기준 상기 제2-1 고비점 물질에 포함되는 아크릴산 95 중량부 이상, 바람직하게는 97 중량부 이상, 더욱 바람직하게는 99 중량부 이상일 수 있으며, 100 중량부 이하, 바람직하게는 99.99 중량부 이하일 수 있다.
상기와 같이 본 발명에 따른 아크릴산의 제조 공정의 경우 제1 단계에서 흡수제를 첨가 및 냉각하는 공정 및 제2-1 단계에서 알데하이드를 다시 한번 분리하는 단계를 거쳐, 최종적으로 생성되는 제2-1 고비점 물질에 포함되는 아크릴산의 수율을 높게 형성할 수 있는 것을 특징으로 한다.
본 출원의 일 실시상태에 있어서, 상기 제2-1 고비점 물질은 정제되어 최종 아크릴산을 획득할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질에 포함된 아세트알데하이드 100 중량부 기준 상기 제2-1 저비점 물질에 포함되는 아세트알데하이드 95 중량부 이상일 수 있다.
또 다른 일 실시상태에 있어서, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질에 포함된 아세트알데하이드 100 중량부 기준 상기 제2-1 저비점 물질에 포함되는 아세트알데하이드 95 중량부 이상, 바람직하게는 96 중량부 이상, 더욱 바람직하게는 97 중량부 이상일 수 있으며, 100 중량부 이하, 바람직하게는 99.99 중량부 이하일 수 있다.
상기와 같이, 고수율의 아크릴산을 획득할 수 있음과 동시에, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질에 포함된 아세트알데하이드를 다시 분리하여, 후술하는 공정을 거쳐 아세트알데하이드 또한 제품화할 수 있는 특징을 갖게 된다.
도 2는 본 출원에 따른 아크릴산의 제조 공정의 개략도로, 상기 제2-1 단계는 구체적으로 아크릴산(AA)을 포함하는 제1 고비점 물질(3)을 증류탑(E)을 통하여 분리하여, 아크릴산(AA)을 포함하는 제2-1 고비점 물질(12)을 수득하고, 아세트알데하이드(ACHO)를 포함하는 제2-1 저비점 물질(13)을 후술하는 공정으로 공급하는 것을 확인할 수 있다.
이 때 후술하는 제4 단계에서, 상기 아크릴산(AA)을 포함하는 제1 고비점 물질 또는 아크릴산(AA)을 포함하는 제2-1 고비점 물질(12)을 정제하여 최종의 아크릴산 수득할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축하여 응축된 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질 및 아크릴산(AA)을 포함하는 제2 고비점 물질을 분리하는 제2 단계를 제공한다.
본 출원의 일 실시상태에 있어서, 상기 제2 단계는 상기 제1 단계에서 냉각탑의 상부로 배출되는 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축 및 응축하는 단계로, 상기 응축하는 단계를 통하여 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질 및 아크릴산(AA)을 포함하는 제2 고비점 물질을 분리할 수 있고, 특히 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질을 응축하는 공정을 포함하여 후술하는 제3 단계의 공정의 압력을 높여 운전할 수 있고, 이에 따라 제2 흡수제의 냉각시키기 위한 냉매의 사용량을 최소화할 수 있는 특징을 갖게 된다.
즉, 상기와 같은 제2 단계의 공정을 통하여, 제1 단계에서 냉각탑의 상부로 배출될 수 있는 아크릴산을 추가로 분리하여 제2 고비점 물질을 포함하여, 다시 액상 순환을 통하여 제1 단계로 포함시켜 고수율 및 고순도의 아크릴산을 획득할 수 있음과 동시에, 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질을 응축하여, 후술하는 제3 단계의 분리공정을 거쳐 고수율 및 고순도의 아세트알데하이드를 수득할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 제2 단계는 압축기를 통하여 압축 및 응축하는 단계를 포함하며, 상기 압축기의 배출 압력은 1.2 bar 이상 10.0 bar 이하인 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 압축기의 배출 압력은 1.5 bar 이상 10.0 bar 이하, 바람직하게는 2.5 bar 이상 7.0 bar 이하, 더욱 바람직하게는 상기 압축기의 배출 압력은 3.0 bar 이상 5.0 bar 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 단계에서의 압축비는 1.0 이상인 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제2 단계에서의 압축비는 1.0 이상, 바람직하게는 1.2 이상일 수 있으며, 2.5 이하, 바람직하게는 2.0 이하인 것인 아크릴산의 제조 공정을 제공한다.
상기 압축비는 컴프레서 압축비를 의미하는 것으로 구체적으로 상기 제2 단계의 압축기에 투입된 후 배출된 압력(outlet 압력)/압축기에 투입되기 전의 압력(inlet 압력)을 의미할 수 있다.
상기와 같이 제2 단계에 있어 압축기의 배출 압력이 상기 범위를 가짐에 따라, 상기 제1 단계의 냉각탑 상부로 함께 포함될 수 있는 아크릴산과 아세트알데하이드를 효과적으로 분리할 수 있으며, 특히 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질을 적정 범위로 응축하여, 공정 중 제2 흡수제를 냉각시키기 위한 냉매의 사용량을 최소화할 수 있어 경제성이 우수한 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 제2 단계의 아크릴산(AA)을 포함하는 제2 고비점 물질을 상기 제1 단계로 순환하는 단계를 더 포함하는 것인 아크릴산의 제조 공정을 제공한다.
본 출원에 따른 아크릴산의 제조 공정은 상기 제1 단계의 상부로 배출될 수 있는 아크릴산을 상기 제2 단계를 통하여 다시 아크릴산(AA)을 포함하는 제2 고비점 물질로 분리하고, 상기 아크릴산(AA)을 포함하는 제2 고비점 물질을 다시 제1 단계로 포함시키는 순환 흐름을 갖는 것으로, 바이오 원료에 포함될 수 있는 아크릴산의 손실을 최소화 할 수 있어 경제성이 우수한 특징을 갖게 된다.
즉, 상기 제2 단계에서 아크릴산(AA)을 포함하는 제2 고비점 물질은 제1 단계의 냉각탑의 상단에 투입되며, 이 때, 제1 단계에서 포함되는 바이오 원료의 반응 생성물은 냉각탑의 하단에 투입되어 함께, 재 분리가 이루어질 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 단계의 공정은 한 단계의 압축 및 응축 공정으로 진행될 수 있으며, 추가로 다단계의 압축 공정으로 진행될 수 있다.
즉 본원 발명에 따른 아크릴산의 제조 공정은 상기와 같이 제2 단계의 압축 및 응축하는 단계를 갖는 것을 주된 특징으로 하는 것으로, 상기와 같은 공정을 통하여 고순도 및 고수율의 아크릴산 및 아세트알데하이드를 각각 제품화할 수 있으며, 또한 사용되는 냉매의 양을 최소화할 수 있어 경제적으로도 우수한 공정을 제공하는 것을 특징으로 한다.
도 1 및 도 2는 본 출원의 일 실시상태에 따른 아크릴산의 제조 공정에 대한 개략도로, 구체적으로 상기 제2 단계를 확인할 수 있다. 구체적으로 상기 냉각탑(A)의 상부로 배출된 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질(4)을 압축기(B)에 공급하여, 응축된 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질(6) 및 아크릴산(AA)을 포함하는 제2 고비점 물질(5)을 분리하는 것을 확인할 수 있으며, 특히 분리된 아크릴산(AA)을 포함하는 제2 고비점 물질(5)을 재차 냉각탑(A)으로 공급하여 냉각탑(A)의 상부로 배출될 수 있는 아크릴산의 손실을 최소화하는 것을 확인할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질에 제2 흡수제를 첨가 및 냉각하여 제1 비압축성 물질 및 아세트알데하이드(ACHO)를 포함하는 제3 저비점 물질을 분리하는 제3 단계를 제공한다.
본 출원의 아크릴산의 제조 공정에 있어, 상기 제3 단계는 상기 제1 단계에서 냉각탑의 상부로 배출되는 제2 저비점 물질에 제2 흡수제를 첨가 및 냉각하는 공정으로, 이와 같은 공정을 통하여 아크릴산의 제조 공정상 부산물로 생성되는 아세트알데하이드 또한 제품화할 수 있는 특징을 갖게 된다. 즉, 본원 발명의 특징으로 볼 수 있는 고순도의 아크릴산을 획득함과 동시에 고순도의 아세트알데하이드 또한 제품화하는 단계로 본 발명의 주된 특징이 될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제3 단계는 흡수탑을 통하여 분리하는 단계를 포함하고, 상기 흡수탑의 온도는 0℃ 이상 150℃ 이하이고, 상기 흡수탑의 내부 압력은 0.5 bar 이상 10.0 bar 이하인 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제3 단계의 흡수탑의 내부 압력은 0.5 bar 이상 10.0 bar 이하, 바람직하게는 1.0 bar 이상 8.0 bar 이하, 더욱 바람직하게는 1.5 bar 이상 5.0 bar 이하일 수 있으며, 구체적으로 3.0 bar를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제3 단계의 흡수탑의 내부 온도는 0℃ 이상, 바람직하게는 5℃ 이상, 더욱 바람직하게는 10℃ 이상일 수 있으며, 150℃ 이하, 바람직하게는 100℃ 이하 일 수 있다.
상기와 같이 제3 단계 상의 흡수탑의 내부 온도 및 압력이 상기 범위를 만족함에 따라, 흡수탑의 상부로 배출되는 제2 저비점 물질에 포함되는 아세트알데하이드를 고수율 및 고순도로 제품화할 수 있으며, 특히 상기 제2 저비점 물질에 포함되는 제1 비압축성 물질과 분리 공정이 원활하게 진행될 수 있어 아크릴산의 수득과 동시에 아세트알데하이드를 고수율 및 고순도로 획득할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 제3 단계의 상기 제1 비압축성 물질에 포함되는 아세트알데하이드(ACHO)가 상기 바이오 원료의 반응 생성물 내 아세트알데하이드 100 중량부 대비 1 중량부 이하를 포함하도록 제2 흡수제를 포함하는 것인 아크릴산의 제조 공정을 제공한다.
본 발명에 따른 상기 제3 단계는 상기 제2 흡수제의 함량을 조절하여, 상기 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질에 바이오 원료의 반응 생성물 중 아세트알데하이드를 모두 상기 흡수탑의 하부로 배출될 수 있도록 하는 것을 특징으로 한다.
구체적으로 본 출원의 일 실시상태에 있어서, 상기 제3 단계의 상기 제1 비압축성 물질에 포함되는 아세트알데하이드(ACHO)가 상기 바이오 원료의 반응 생성물 내 아세트알데하이드 100 중량부 대비 5 중량부 이하, 바람직하게는 1.5 중량부 이하, 더욱 바람직하게는 1.0중량부 이하일 수 있으며, 0 중량부 이상, 바람직하게는 0.01 중량부 이상일 수 있다.
즉, 본 출원에 따른 아크릴산의 제조 공정의 경우, 다른 하나의 특징으로 부산물로 생성되는 아세트알데하이드를 제품화하는 것으로, 상기와 같이 제2 흡수제의 양을 조절하여 아세트알데하이드의 손실분을 최소화할 수 있는 특징을 갖게 된다.
본 출원의 아크릴산의 제조 공정에 있어서, 상기와 같이 제3 단계 진행시 제2 흡수제를 상기 함량범위로 포함하는 것으로, 특히 상기 범위를 포함함에 따라 아세트알데하이드 및 비압축성 물질 등을 포함하는 제2 저비점 물질에 있어, 상기 제3 단계의 흡수탑의 하부로 아세트알데하이드를 포함하는 제3 저비점 물질만을 배출되도록 조절하여, 최종 생산되는 아세트알데하이드의 수율 및 순도를 높일 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 제2 흡수제는 상기 아세트알데하이드(ACHO)의 기준 끓는점(NBP, Normal Boiling point)보다 고비점 물질로, 비점차이가 20℃ 이상인 물질을 포함하는 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제2 흡수제는 상기 아세트알데하이드(ACHO)의 기준 끓는점(NBP, Normal Boiling point)보다 고비점 물질로, 비점차이가 20℃ 이상 100℃ 이하인 물질을 포함하는 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제2 흡수제는 상기 아세트알데하이드(ACHO)의 기준 끓는점(NBP, Normal Boiling point)보다 고비점 물질로, 비점차이가 20℃ 이상 100℃ 이하, 바람직하게는 비점차이가 30℃ 이상 90℃ 이하, 더욱 바람직하게는 비점차이가 50℃ 이상 80℃ 이하인 물질을 포함하는 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제2 흡수제는 상기 아세트알데하이드의 비점보다 고비점 물질일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 흡수제는 물 및 아크릴산으로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 흡수제는 -5℃ 이상 20℃ 이하의 온도 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제2 흡수제는 -5℃ 이상 20℃ 이하, 바람직하게는 5℃ 이상 15℃ 이하, 가장 바람직하게는 5℃ 이상 10℃ 이하의 온도범위를 만족할 수 있다.
상기와 같이 제2 흡수제의 온도 범위가 상기 범위를 만족하는 것으로, 상기 범위를 만족함에 따라 제3 단계의 흡수탑으로 포함될 때, 흡수탑의 내부 온도 범위와 유사 범위로 조절되어 흡수탑의 내부 용량을 줄여 경제성을 향상시킬 수 있는 특징을 갖게 된다.
또한, 본 출원에 따른 아크릴산의 제조 공정의 경우, 전술한 제2 단계에서 압축 공정을 추가하여, 아세트알데하이드 분리에 사용되는 상기 제3 단계의 흡수탑의 압력을 높여 운전할 수 있으며, 이에 따라 아세트알데하이드의 응축에 유리하므로 제2 흡수제의 사용량을 줄일 수 있으며, 제2 흡수제의 사용량이 줄어 제2 흡수제를 냉각시키기 위한 냉각 열량이 줄어, 냉매의 사용량을 줄일 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 제2 저비점 물질에 포함된 아세트알데하이드 100 중량부 기준 상기 제3 저비점 물질에 포함되는 아세트알데하이드는 95 중량부 이상을 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제2 저비점 물질에 포함된 아세트알데하이드 100 중량부 기준 상기 제3 저비점 물질에 포함되는 아세트알데하이드는 95 중량부 이상, 바람직하게는 97 중량부 이상, 더욱 바람직하게는 99 중량부 이상일 수 있으며, 100 중량부 이하, 바람직하게는 99.9 중량부 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 비압축성 물질은 일산화탄소, 이산화탄소 및 불활성 가스를 포함할 수 있다.
도 1 및 도 2에서 본 출원의 제3 단계를 확인할 수 있으며, 구체적으로 제2 저비점 물질(6)을 흡수탑(C)으로 공급한 후, 제2 흡수제(8)를 공급하여, 불활성 가스를 포함하는 제1 비압축성 물질(9)과 제3 저비점 물질(10)을 분리하는 공정을 확인할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 아세트알데하이드(ACHO)를 포함하는 제3 저비점 물질을 분리하여, 아세트알데하이드 및 상기 제2 흡수제를 분리하는 단계를 더 포함하는 것인 아크릴산의 제조 공정을 제공한다.
상기 공정은 전술한 제2-1 단계의 공정을 진행하지 않는 경우, 아세트알데하이드를 획득하기 위한 공정에 해당한다.
또 다른 일 실시상태에 있어서, 상기 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질 및 아세트알데하이드(ACHO)를 포함하는 제3 저비점 물질을 분리하여, 아세트알데하이드 및 상기 제2 흡수제를 분리하는 단계를 더 포함하는 것인 아크릴산의 제조 공정을 제공한다.
상기 공정은 전술한 제2-1 단계의 공정을 진행한 경우, 아세트알데하이드를 획득하기 위한 공정에 해당한다.
본 출원의 일 실시상태에 있어서, 상기 단계는 분리탑을 통하여 분리하는 단계를 포함하고, 상기 분리탑의 온도는 10℃ 이상 200℃ 이하이고, 상기 분리탑의 내부 압력은 0.3 bar 이상 10.0 bar 이하인 것인 아크릴산의 제조 공정을 제공한다.
본 출원의 일 실시상태에 있어서 상기 단계는 제3-1 단계로 나타낼 수 있다.
즉, 상기 제3-1 단계의 공정은 아세트알데하이드를 제품화를 위하여 제2 흡수제를 분리하고, 순수한 아세트알데하이드를 획득하는 공정에 해당한다.
또 다른 일 실시상태에 있어서, 상기 3-1단계의 분리탑의 내부 압력은 0.3 bar 이상 10.0 bar 이하, 바람직하게는 1.0 bar 이상 8.0 bar 이하, 더욱 바람직하게는 2.0 bar 이상 5.0 bar 이하일 수 있으며, 구체적으로 3.0 bar를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 단계의 분리탑의 내부 온도는 10℃ 이상, 바람직하게는 20℃ 이상, 더욱 바람직하게는 40℃ 이상일 수 있으며, 200℃ 이하, 바람직하게는 150℃ 이하 일 수 있다.
상기와 같이 분리탑의 내부 온도 및 압력이 상기 범위를 만족함에 따라, 제3 단계의 흡수탑의 하부로 배출되는 제3 저비점 물질에 포함되는 아세트알데하이드를 고수율 및 고순도로 제품화할 수 있으며, 특히 상기 제3 저비점 물질에 포함되는 제2 흡수제와의 분리 공정이 원활하게 진행될 수 있어 아크릴산의 수득과 동시에 아세트알데하이드를 고수율 및 고순도로 획득할 수 있는 특징을 갖게 된다.
추가로, 상기와 같이 아세트알데하이드 및 상기 제2 흡수제를 분리한 후, 상기 제2 흡수제는 다시 액상 흐름을 통하여, 상기 제3 단계로 함께 포함될 수 있어, 제2 흡수제의 사용량 또한 최소화할 수 있는 특징을 갖게 되며, 특히 본 발명에 따른 아크릴산의 제조 공정의 경우, 상기와 같이 제2 단계의 공정을 통하여, 상기 분리된 제2 흡수제를 냉각하기 위한 냉매의 사용량을 줄일 수 있는 것을 주된 특징으로 한다.
본 출원의 일 실시상태에 있어서, 상기 아세트알데하이드 및 상기 제2 흡수제를 분리한 후, 상기 제2 흡수제를 냉매로 냉각하는 단계를 더 포함할 수 있다.
즉, 본 출원의 일 실시상태에 있어서, 상기 제3 단계에서 포함되는 제2 흡수제의 경우, 외부에서 공급하여 주는 제2 흡수제 및 상기와 같은 액상 흐름을 통하여 재사용되는 제2 흡수제를 포함할 수 있으며, 냉매로 냉각하는 단계를 포함하여, 상기 제2 흡수제의 온도는 -5℃ 이상 20℃ 이하인 것인 아크릴산의 제조 공정을 제공할 수 있다.
상기와 같이 제2 흡수제의 온도가 상기 범위를 만족함에 따라, 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질 내의 아세트알데하이드를 99 wt% 이상 흡수하도록 조정할 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 아세트알데하이드의 순도는 95% 이상이고, 상기 바이오 원료의 반응 생성물 기준 회수율이 95% 이상인 것인 아크릴산의 제조 공정을 제공한다.
또 다른 일 실시상태에 있어서, 상기 아세트알데하이드의 순도는 100% 이하, 99.99% 이하일 수 있다.
즉 본원 발명에 따른 아크릴산의 제조 공정에 있어, 바이오 원료의 반응 생성물에 제1 흡수제를 첨가(또는 미첨가) 및 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계 및 상기 압축하는 제2 단계를 포함함에 따라 최종 고순도, 고수율의 아크릴산을 제조할 수 있음과 동시에 상기의 제3 단계 및 분리탑을 통한 분리 공정을 공정상 포함함에 따라, 부산물로 생성되는 아세트알데하이드를 마찬가지로 고순도 및 고수율의 제품으로 제품화할 수 있어, 아크릴산과 아세트알데하이드를 모두 획득할 수 있는 것으로 바이오 공정의 경제성을 향상시킬 수 있는 특징을 갖게 된다.
본 발명 제조 공정은 특히 아크릴산의 합성에 유용하고 구체적으로 본 발명에서 얻어진 젖산을 포함한 증기 조성물을 탈수 촉매와 접촉시켜 아크릴산을 제조할 수 있다. 생성된 반응 가스는 냉각이나 포집액과의 접촉에 의해 포집 액화되고 추출 증류 결정화 등의 정제 공정을 거쳐 고순도의 아크릴산을 얻을 수 있다. 생성된 아크릴산은 흡수성 수지, 도료나 점착제 등의 원료로서 넓게 이용된다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<제조예>
하기의 실시예 및 비교예는 아스펜테크사의 아스펜플러스로 모사되었다.
실시예 1
상기 실시예 1의 운전 공정을 도 2에서 확인할 수 있으며, 도 2에 표시된 바와 같이, 각 단계별 포함되는 유량 및 유량 내 포함될 수 있는 주요 조성(물, 아크릴산 및 아세트알데하이드)의 중량비는 하기 표 1 내지 표 5와 같았다.
상기 제1 단계의 냉각탑의 냉각 온도는 약 50℃ 내지 125℃이며, 냉각탑 내부 압력은 3.0bar로 운전하였다.
상기 표 1의 4번 흐름에서 아세트알데하이드는 전체 공정을 1사이클 진행 후, 포함되는 아세트산의 회수 공정(제2 단계)을 포함하는 유량을 의미한다.
상기 제1 단계를 거쳐, 4번의 흐름(제1 저비점 물질)에 제2 단계의 압축 공정을 진행하였으며, 압축비는 1.7이었다. 상기 4번 흐름에서 압축기로 투입되는 제1 저비점 물질의 온도는 49.2℃였으며, 압축기로 포함되어 86.9℃로 상승하였고, 이후, 압축기를 거친 후술하는 제1 저비점 물질(6번 흐름)의 온도는 40.0℃였으며, 이후 제2 고비점 물질(5)은 다시 제1 단계로 순환되었다.
상기 제2-1 단계의 증류탑의 온도는 약 40℃ 내지 130℃이며, 증류탑 내부 압력은 2.5bar로 운전하였다.
상기 제3 단계의 흡수탑의 온도는 약 14℃ 내지 55℃이며, 흡수탑 내부 압력은 4.5bar로 운전하였다. 또한 상기 제3 단계에서 포함되는 제2 흡수제의 기준 끓는점은 100℃ 였다.
상기 제3-1 단계의 분리탑의 온도는 약 40℃ 내지 133℃이며, 분리탑 내부 압력은 3.0bar로 운전하였다. 특히, 상기 표 5에서 제2 흡수제를 냉각시키기 위한 냉매의 사용량은 0.12Gcal/hr로 확인되었다.
실시예 2
상기 실시예 2의 운전 공정을 도 2에서 확인할 수 있으며, 도 2에 표시된 바와 같이, 각 단계별 포함되는 유량 및 유량 내 포함될 수 있는 주요 조성(물, 아크릴산 및 아세트알데하이드)의 중량비는 하기 표 6 내지 표 10과 같았다.
특히, 상기 실시예 2는 실시예 1과는 달리 제1 흡수제를 제1 단계에 사용한 공정에 해당한다.
상기 제1 단계의 냉각탑의 냉각 온도는 약 88℃ 내지 121℃이며, 냉각탑 내부 압력은 2.5bar로 운전하였다. 또한 상기 제1 단계에서 포함되는 제1 흡수제의 기준 끓는점은 100℃ 였다.
상기 표 6의 4번 흐름에서 아세트알데하이드는 전체 공정을 1사이클 진행 후, 포함되는 아세트산의 회수 공정(제2 단계)을 포함하는 유량을 의미한다.
상기 제1 단계를 거쳐, 4번의 흐름(제1 저비점 물질)에 제2 단계의 압축 공정을 진행하였으며, 압축비는 1.3이었다. 상기 4번 흐름에서 압축기로 투입되는 제1 저비점 물질의 온도는 88.1℃였으며, 압축기로 포함되어 117.7℃로 상승하였고, 이후, 압축기를 거친 후술하는 제1 저비점 물질(6번 흐름)의 온도는 40.0℃였으며, 이후 제2 고비점 물질(5)은 다시 제1 단계로 순환되었다.
상기 제2-1 단계의 증류탑의 온도는 약 55℃ 내지 121℃이며, 증류탑 내부 압력은 2.5bar로 운전하였다.
상기 제3 단계의 흡수탑의 온도는 약 9℃ 내지 43℃이며, 흡수탑 내부 압력은 3.0bar로 운전하였다. 또한 상기 제3 단계에서 포함되는 제2 흡수제의 기준 끓는점은 100℃였다.
상기 제3-1 단계의 분리탑의 온도는 약 40℃ 내지 133℃이며, 분리탑 내부 압력은 3.0bar로 운전하였다. 특히, 상기 표 10에서 제2 흡수제를 냉각시키기 위한 냉매의 사용량은 0.18Gcal/hr로 확인되었다.
비교예 1
상기 실시예 1에서 제2 단계를 포함하지 않는 것을 제외하고, 상기 실시예 1과 동일한 방법으로 공정을 진행하였다. 구체적으로 도 3과 같은 공정으로 진행하였으며, 압축 공정(제2 단계)를 포함하지 않음에 따라, 제1 흡수제의 양이 6000kg/hr로 제1 흡수제의 유량이 많이 포함되고, 동일양의 아세트알데하이드를 제품화하기 위하여, 냉매의 사용량은 0.39Gcal/hr로 상기 실시예 1 대비 냉매의 사용량이 69.2% 증가함을 확인할 수 있었다.
비교예 2
상기 실시예 2에서 제2 단계를 포함하지 않는 것을 제외하고, 상기 실시예 2와 동일한 방법으로 공정을 진행하였다. 구체적으로 도 3과 같은 공정으로 진행하였으며, 동일양의 아세트알데하이드를 제품화하기 위하여, 냉매의 사용량은 0.39Gcal/hr로 상기 실시예 2 대비 냉매의 사용량이 53.8% 증가함을 확인할 수 있었다.
상기 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 알 수 있듯, 본 출원의 일 실시상태에 따른 아크릴산의 제조 공정의 경우, 바이오 원료의 반응 생성물에 제1 흡수제를 첨가(또는 미첨가) 및 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계 및 상기 제1 단계를 거친 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축기에 포함하여 압축 및 응축시키는 제2 단계를 포함함에 따라, 아세트알데하이드 분리에 사용되는 흡수 공정(제3 단계)의 압력을 높여 운전할 수 있으며, 압력이 높아지는 경우 아세트알데하이드의 응축에 유리하므로, 제2 흡수제의 사용량을 효과적으로 줄일 수 있고, 이에 따라 제2 흡수제를 냉각시키기 위한 냉각 열량이 줄어들어 냉매의 사용량을 줄일 수 있는 특징을 갖게 됨을 확인할 수 있었다.
특히, 젖산의 탈수 반응은 고온(330℃~400℃)에서 일어나기 때문에, 바이오 원료의 반응 생성물에는 아세트알데하이드가 부산물로 생성되는 것으로, 본원 발명에 따른 아크릴산의 제조 공정의 경우, 상기와 같이 고순도, 고수율의 아크릴산을 제조함과 동시에 상기의 제3 단계를 공정상 포함(제2 흡수제)함에 따라, 부산물로 생성되는 아세트알데하이드를 마찬가지로 고순도 및 고수율의 제품으로 제품화할 수 있어, 아크릴산과 아세트알데하이드를 모두 획득할 수 있는 것으로 바이오 공정의 경제성을 향상시킬 수 있는 특징을 갖게 됨을 확인할 수 있었다.
상기 비교예 1 및 비교예 2에서 알 수 있듯, 본 출원에 따른 제2 공정(압축 공정)을 진행하지 않은 경우로, 제1 단계에서 제1 흡수제의 유량이 높게 포함되고, 압축 공정이 진행되지 않아 제1 단계에서의 상부로 배출되는 제1 저비점 물질에 포함되는 아크릴산의 손실을 방지할 수 없으며, 더욱이 제2 흡수제를 냉각시키기 위한 냉각 열량이 필요하여, 냉매의 사용량이 늘어나는 것을 확인할 수 있었다.
Claims (14)
- 바이오 원료의 반응 생성물을 냉각하여 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질 및 아크릴산(AA)을 포함하는 제1 고비점 물질을 분리하는 제1 단계;상기 아세트알데하이드(ACHO)를 포함하는 제1 저비점 물질을 압축하여 응축된 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질 및 아크릴산(AA)을 포함하는 제2 고비점 물질을 분리하는 제2 단계;상기 아세트알데하이드(ACHO)를 포함하는 제2 저비점 물질에 제2 흡수제를 첨가 및 냉각하여 제1 비압축성 물질 및 아세트알데하이드(ACHO)를 포함하는 제3 저비점 물질을 분리하는 제3 단계; 및상기 아크릴산(AA)을 포함하는 제1 고비점 물질을 정제하여 아크릴산을 생산하는 제4 단계;를 포함하는 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서, 상기 제1 단계의 바이오 원료의 반응 생성물을 냉각하는 단계에 제1 흡수제를 첨가하는 공정을 포함하는 것인 아크릴산의 제조 공정.
- 청구항 2에 있어서, 상기 제1 흡수제는 아크릴산(AA)의 기준 끓는점(NBP, Normal Boiling point) 대비 비점차이가 20℃ 이상 및 아세트알데하이드(ACHO)의 기준 끓는점(NBP, Normal Boiling point) 대비 비점차이가 50℃ 이상인 물질을 포함하는 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서, 상기 제2 흡수제는 상기 아세트알데하이드(ACHO)의 기준 끓는점(NBP, Normal Boiling point)보다 고비점 물질로, 비점차이가 20℃ 이상인 물질을 포함하는 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서, 상기 제1 단계는 냉각탑을 통하여 분리하는 단계를 포함하고,상기 냉각탑의 냉각 온도는 10℃ 이상 150℃ 이하이고, 상기 냉각탑의 내부 압력은 0.5 bar 이상 5.0 bar 이하인 것인 아크릴산의 제조 공정.
- 청구항 2에 있어서, 상기 제1 단계의 상기 제1 저비점 물질에 포함되는 아크릴산(AA)이 상기 바이오 원료의 반응 생성물 내 아크릴산 100 중량부 대비 1 중량부 이하를 포함하도록 제1 흡수제를 포함하는 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서, 상기 제3 단계는 흡수탑을 통하여 분리하는 단계를 포함하고,상기 흡수탑의 온도는 0℃ 이상 150℃ 이하이고, 상기 흡수탑의 내부 압력은 0.5 bar 이상 10.0 bar 이하인 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서, 상기 제3 단계의 상기 제1 비압축성 물질에 포함되는 아세트알데하이드(ACHO)가 상기 바이오 원료의 반응 생성물 내 아세트알데하이드 100 중량부 대비 1 중량부 이하를 포함하도록 제2 흡수제를 포함하는 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서,상기 제2 단계의 아크릴산(AA)을 포함하는 제2 고비점 물질을 상기 제1 단계로 순환하는 단계를 더 포함하는 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서,상기 제2 단계는 압축기를 통하여 압축 및 응축하는 단계를 포함하며,상기 압축기의 배출 압력은 1.2 bar 이상 10.0 bar 이하인 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서,상기 아세트알데하이드(ACHO)를 포함하는 제3 저비점 물질을 분리하여,아세트알데하이드 및 상기 제2 흡수제를 분리하는 단계를 더 포함하는 것인 아크릴산의 제조 공정.
- 청구항 11에 있어서,상기 단계는 분리탑을 통하여 분리하는 단계를 포함하고,상기 분리탑의 온도는 10℃ 이상 200℃ 이하이고, 상기 분리탑의 내부 압력은 0.3 bar 이상 10.0 bar 이하인 것인 아크릴산의 제조 공정.
- 청구항 1에 있어서,상기 제2 흡수제의 온도는 -5℃ 이상 20℃ 이하인 것인 아크릴산의 제조 공정.
- 청구항 11에 있어서,상기 아세트알데하이드의 순도는 95% 이상이고, 상기 바이오 원료의 반응 생성물 기준 회수율이 95% 이상인 것인 아크릴산의 제조 공정.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180029257.8A CN115427384B (zh) | 2020-12-03 | 2021-10-27 | 生产丙烯酸的方法 |
JP2022564802A JP2023522775A (ja) | 2020-12-03 | 2021-10-27 | アクリル酸の製造方法 |
EP21900813.3A EP4124614A4 (en) | 2020-12-03 | 2021-10-27 | METHOD FOR PRODUCING ACRYLIC ACID |
US17/923,885 US20230271914A1 (en) | 2020-12-03 | 2021-10-27 | Process for preparing acrylic acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200167623A KR20220078268A (ko) | 2020-12-03 | 2020-12-03 | 아크릴산의 제조 공정 |
KR10-2020-0167623 | 2020-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022119125A1 true WO2022119125A1 (ko) | 2022-06-09 |
Family
ID=81853169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/015168 WO2022119125A1 (ko) | 2020-12-03 | 2021-10-27 | 아크릴산의 제조 공정 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230271914A1 (ko) |
EP (1) | EP4124614A4 (ko) |
JP (1) | JP2023522775A (ko) |
KR (1) | KR20220078268A (ko) |
CN (1) | CN115427384B (ko) |
WO (1) | WO2022119125A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240037087A (ko) * | 2022-09-14 | 2024-03-21 | 주식회사 엘지화학 | 아크릴산 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005095320A1 (en) | 2004-04-02 | 2005-10-13 | Ciba Specialty Chemicals Water Treatments Limited | Preparation of acrylic acid derivatives from alpha or beta-hydroxy carboxylic acids |
KR20090041355A (ko) * | 2007-10-23 | 2009-04-28 | 주식회사 엘지화학 | (메타)아크릴산 회수방법 및 (메타)아크릴산 회수장치 |
JP2014189510A (ja) * | 2013-03-26 | 2014-10-06 | Nippon Shokubai Co Ltd | アクリル酸の製造方法 |
JP2015518481A (ja) * | 2012-04-11 | 2015-07-02 | ザ プロクター アンド ギャンブルカンパニー | アクリル酸又はその誘導体を生成する方法 |
KR20150096745A (ko) * | 2012-12-21 | 2015-08-25 | 주식회사 다이셀 | 아세트산의 제조 방법 |
KR20160018699A (ko) * | 2013-06-12 | 2016-02-17 | 치요다가코겐세츠가부시키가이샤 | 알데히드 흡착재, 알데히드의 제거 방법, 아세트산의 제조 방법 및 알데히드 흡착재의 재생 방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1458396A (en) * | 1972-12-27 | 1976-12-15 | Degussa | Process for obtaining acrylic acid and optionally acrolein |
US5571386A (en) * | 1994-05-31 | 1996-11-05 | Rohm And Haas Company | Process for grade acrylic acid |
DE60005870T2 (de) * | 1999-03-05 | 2004-08-19 | Rohm And Haas Co. | Verfahren zur Herstellung von Acrylsäure |
US7799946B2 (en) * | 2007-02-14 | 2010-09-21 | Saudi Basic Industries Corporation | Process for separating methacrolein from methacrylic acid in a gas phase product from the partial oxidation of isobutene |
CN101255109B (zh) * | 2008-04-09 | 2011-01-12 | 南京工业大学 | 一种生物质乳酸脱水生产丙烯酸的工艺 |
FR2948365B1 (fr) * | 2009-07-22 | 2011-09-09 | Arkema France | Procede de fabrication d'acide acrylique bio-ressource a partir de glycerol |
FR2954311B1 (fr) * | 2009-12-22 | 2012-02-03 | Arkema France | Procede de synthese perfectionne d'acroleine a partir de glycerol |
FR3033558B1 (fr) * | 2015-03-12 | 2017-02-24 | Arkema France | Procede ameliore de production d'acide (meth)acrylique |
-
2020
- 2020-12-03 KR KR1020200167623A patent/KR20220078268A/ko not_active Application Discontinuation
-
2021
- 2021-10-27 CN CN202180029257.8A patent/CN115427384B/zh active Active
- 2021-10-27 JP JP2022564802A patent/JP2023522775A/ja active Pending
- 2021-10-27 US US17/923,885 patent/US20230271914A1/en active Pending
- 2021-10-27 WO PCT/KR2021/015168 patent/WO2022119125A1/ko unknown
- 2021-10-27 EP EP21900813.3A patent/EP4124614A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005095320A1 (en) | 2004-04-02 | 2005-10-13 | Ciba Specialty Chemicals Water Treatments Limited | Preparation of acrylic acid derivatives from alpha or beta-hydroxy carboxylic acids |
KR20090041355A (ko) * | 2007-10-23 | 2009-04-28 | 주식회사 엘지화학 | (메타)아크릴산 회수방법 및 (메타)아크릴산 회수장치 |
JP2015518481A (ja) * | 2012-04-11 | 2015-07-02 | ザ プロクター アンド ギャンブルカンパニー | アクリル酸又はその誘導体を生成する方法 |
KR20150096745A (ko) * | 2012-12-21 | 2015-08-25 | 주식회사 다이셀 | 아세트산의 제조 방법 |
JP2014189510A (ja) * | 2013-03-26 | 2014-10-06 | Nippon Shokubai Co Ltd | アクリル酸の製造方法 |
KR20160018699A (ko) * | 2013-06-12 | 2016-02-17 | 치요다가코겐세츠가부시키가이샤 | 알데히드 흡착재, 알데히드의 제거 방법, 아세트산의 제조 방법 및 알데히드 흡착재의 재생 방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4124614A4 |
Also Published As
Publication number | Publication date |
---|---|
JP2023522775A (ja) | 2023-05-31 |
EP4124614A1 (en) | 2023-02-01 |
CN115427384B (zh) | 2024-01-05 |
US20230271914A1 (en) | 2023-08-31 |
CN115427384A (zh) | 2022-12-02 |
KR20220078268A (ko) | 2022-06-10 |
EP4124614A4 (en) | 2023-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010107284A2 (ko) | 고순도 아크릴산 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법 | |
WO2010085072A2 (ko) | 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법 | |
WO2010107283A2 (ko) | 고순도 2-에틸헥산올 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법 | |
WO2022119125A1 (ko) | 아크릴산의 제조 공정 | |
WO2017003247A1 (ko) | 증류 장치 | |
WO2015026073A1 (en) | Method for preparing glycol ester using reactive distillation | |
KR100462266B1 (ko) | 아크릴레이트의 정제방법 | |
WO2022119123A1 (ko) | 아크릴산의 제조 공정 | |
WO2023177133A1 (ko) | Pgme, pgmea, 물의 혼합물로부터 물을 분리하는 방법 | |
WO2018124579A1 (ko) | 부타디엔 제조방법 | |
WO2022119126A1 (ko) | 아크릴산의 제조 공정 | |
WO2022060153A1 (ko) | 에스테르 작용기를 포함하는 고분자의 해중합 촉매 및 이를 이용한 해중합 방법 | |
WO2018124575A1 (ko) | 부타디엔 제조방법 | |
WO2012078552A1 (en) | Recovery of acetic acid from heavy ends in vinyl acetate synthesis process | |
WO2021133138A1 (ko) | 1,4-사이클로헥산디메탄올의 제조방법 | |
WO2020067797A1 (ko) | 아미드계 화합물의 회수 방법 및 장치 | |
WO2018012847A1 (ko) | 글리세롤의 전기촉매 반응장치와 바이오매스의 화학적촉매 반응장치를 포함하는 통합 시스템 | |
WO2022169165A1 (ko) | 1,4-사이클로헥산디메탄올 조성물 및 이의 정제 방법 | |
WO2022146093A1 (ko) | 이소시아네이트 화합물의 제조 방법 | |
WO2016105106A2 (ko) | 무수당 알코올의 연속적인 생산방법 | |
US4578501A (en) | Preparation of terephthalic acid from a crude dimethyl terephthalate | |
US3509183A (en) | Process for epoxidation of allyl alcohol by peracetic acid | |
WO2016056851A1 (ko) | 프로판 부분산화반응에 의한 연속식 아크릴산 제조방법 및 제조장치 | |
WO2023163481A1 (ko) | 다단 해중합을 통한 재생 비스(2-히드록시에틸)테레프탈레이트의 제조방법 | |
WO2024215008A1 (ko) | 젖산 탈수 반응을 통한 아크릴산 제조 방법 및 이의 제조 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21900813 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022564802 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021900813 Country of ref document: EP Effective date: 20221017 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |