WO2015009116A1 - 증류 장치 - Google Patents

증류 장치 Download PDF

Info

Publication number
WO2015009116A1
WO2015009116A1 PCT/KR2014/006573 KR2014006573W WO2015009116A1 WO 2015009116 A1 WO2015009116 A1 WO 2015009116A1 KR 2014006573 W KR2014006573 W KR 2014006573W WO 2015009116 A1 WO2015009116 A1 WO 2015009116A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
inlet
outlet
distillation
region
Prior art date
Application number
PCT/KR2014/006573
Other languages
English (en)
French (fr)
Inventor
이성규
신준호
김성균
이종구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480051772.6A priority Critical patent/CN105555380B/zh
Priority to JP2016527941A priority patent/JP2016529096A/ja
Priority to US14/905,618 priority patent/US9919238B2/en
Priority claimed from KR1020140091326A external-priority patent/KR101583145B1/ko
Publication of WO2015009116A1 publication Critical patent/WO2015009116A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall

Definitions

  • the present application relates to a distillation apparatus and a method for separating 2-ethylhexyl acrylate using the same.
  • Various raw materials such as crude oil, etc., are a mixture of various substances, for example various compounds, which raw materials can typically be used after being separated into the respective compounds.
  • a typical chemical process for separating the mixture is a distillation process.
  • the mixture may be distilled through one or more distillation towers, in which part or all of the flow may pass through a condenser or reboiler and then refluxed to the distillation tower, through which the compounds of high purity Can be obtained.
  • raw materials containing three or more components can be separated into their respective components through two or more distillation columns.
  • a low boiling point component may be preferentially separated from the raw material at the top of the first distillation column
  • a middle boiling point component and a high boiling point component may be separated from the raw material at the upper and lower portions of the second distillation column connected to the first distillation column, respectively.
  • remixing of the middle boiling point component may occur in the lower region of the first distillation column, and thus additional energy consumption may occur.
  • An object of the present application is to provide a distillation apparatus and a separation method for separating 2-ethylhexyl acrylate with high purity by using the distillation apparatus.
  • the present application relates to a distillation apparatus.
  • An exemplary distillation apparatus may comprise two distillation apparatuses.
  • Distillation apparatus according to an embodiment of the present application may be a form in which the first distillation apparatus and the second distillation apparatus are connected, the energy loss generated during the purification of the raw material comprising a mixture, for example, a compound of Formula 1 While minimizing, it is possible to purify the raw material by utilizing the existing distillation apparatus can improve the economics of the process.
  • the distillation apparatus is a distillation apparatus in which the raw material (F 1-1 ) containing the compound of formula 1 is introduced and purified.
  • the distillation apparatus includes a first distillation apparatus and a second distillation apparatus.
  • the first distillation apparatus includes a first distillation column 100 into which the raw material F 1-1 is introduced, and the second distillation apparatus is sequentially connected to the first distillation column 100, and the first distillation column ( And a second distillation column 200 into which the outlet flow of 100 is introduced.
  • the first distillation column 100 and the second distillation column 200 of the distillation apparatus may be connected to each other by a connection route, for example, a pipe.
  • R 1 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, for example, 1 to 8 carbon atoms, 1 to 6 carbon atoms, or 1 to 4 carbon atoms
  • R 2 represents an alkyl group, for example, 1 carbon atom.
  • Linear or branched alkyl groups having from 1 to 24, 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms or 1 to 8 carbon atoms.
  • the component of Formula 1 is not particularly limited as long as it is a compound satisfying Formula 1.
  • a compound satisfying Formula 1 for example, butyl acrylate, methyl acrylate, methyl methacrylate, 2-ethylhexyl acrylate, acrylic acid , Ethylene glycol, butyl alcohol, methyl alcohol, or isopropyl alcohol, preferably 2-ethylhexyl acrylate.
  • a first distillation device and a second distillation device in the above is capable of separating device by the multi-component material contained in the raw material (F 1-1) each having a boiling point difference.
  • a distillation apparatus having various forms may be used in the present application in consideration of boiling points such as components of the raw material F 1-1 to be introduced or components to be separated.
  • the low boiling point and the high boiling point material are primarily separated from the first distillation tower 100, and a stream including the middle boiling point material flows into the second distillation tower 200 to provide the second distillation tower ( 200) to the product.
  • a specific kind of distillation apparatus that can be used in the distillation process of the mixture in the present application is not particularly limited, and includes, for example, a first distillation column 100 and a second distillation column 200 having a general structure as shown in FIG. 1.
  • a distillation apparatus can be used.
  • Fig. 2 is a diagram schematically showing a first distillation apparatus according to the present exemplary application.
  • the first distillation apparatus includes a first distillation column 100, a first condenser 101 connected to the first distillation column 100, and a reboiler 102.
  • the inside of the first distillation column 100 is divided into an upper end 110, a lower end 130, and an intermediate end 120, or divided into an upper 110, a lower 130, and an intermediate part 120.
  • the term “top” or “top” means a relatively upper portion of the structures of the first distillation column 100 and the second distillation column 200, and for example, the first distillation column 100 and the first portion.
  • the upper portion may be divided into two regions divided when the distillation column is divided into two equal parts in the height or length direction.
  • “lower” or “lower” in the above means a relatively lower portion in the structure of the first distillation column 100 and the second distillation column 200, for example, the first distillation column 100 and When the second distillation column 200 is divided into two equal parts in the height or length direction of the distillation column, it may mean a lower portion of the two regions divided.
  • the "middle end” or “middle part” may mean a middle area among three areas divided when divided into three equal heights or length directions of each distillation column in the structure of the first distillation column 100. It may mean a region between an upper portion and a lower portion of the first distillation column 100.
  • the upper, lower, and middle portions of the first distillation column 100 and the second distillation column 200 may be used in a concept relative to each other.
  • the term "condenser” is a device installed separately from the distillation column, and may refer to a device for cooling the material flowing out of the main body in such a manner as to contact with the cooling water introduced from the outside.
  • the first condenser 101 of the first distillation apparatus condenses the first distillation column top outlet flow F 1-2 flowing out of the first top outlet 111 of the first distillation column 100.
  • the second condenser 201 of the second distillation apparatus to be described later is a second distillation column top effluent flow (F 2-2 ) flowing out of the second top outlet 211 of the second distillation column (200). It may be a device for condensing.
  • the term "reboiler” is a heating device installed on the outside of the distillation column, it may mean a device for heating and evaporating again the high boiling point flow.
  • the reboiler 102 of the first distillation apparatus heats the first distillation column bottom effluent stream F 1-3 flowing out of the first bottom outlet 131 of the first distillation column 100. It may be a device.
  • the first distillation column 100 is a raw material inlet 121, the raw material (F 1-1 ) is supplied, the first upper outlet portion for the low boiling point flow flows from the upper portion 110 of the first distillation column ( 111, a first upper inlet 112 through which a reflux flow of the flow flowing out of the upper part 110 of the first distillation column flows in, and a first lower outflow where the high boiling point flow flows from the lower part 130 of the first distillation column; Part 131, the first lower inlet 132 through which the reflux flow of the flow flowing out of the lower portion 130 of the first distillation column, the intermediate stage through which the middle boiling point flow flows from the intermediate stage 120 of the first distillation column An outlet 122 and an intermediate stage inlet 123 into which the flow flowing out from the lower portion 220 of the second distillation column to be described later is introduced.
  • the introduced raw material F 1-1 is introduced into the first distillation tower ( First distillation tower top outlet flow F 1-2 flowing out of the first top outlet 111 located at the top or the top 110 of 100, the middle or middle stage 120 of the first distillation column 100 In the middle stage outlet flow (F 1-4 ) and the first bottom outlet 131 located in the lower or lower end 130 of the first distillation column 100 is discharged from the intermediate stage outlet 122 is located in Each of the first distillation column bottom outflow flows (F 1-3 ) to be discharged may be separated out.
  • the first distillation tower top outlet flow (F 1-2 ) flowing out of the first top outlet 111 passes through a first condenser 101 and the top of the first distillation tower passed through the first condenser 101. Some or all of the effluent streams F 1-2 may be introduced into the first upper inlet 112 to be refluxed to the first distillation column 100 or may be stored as a product.
  • first distillation column bottom effluent flow F 1-3 flowing out of the first bottom outlet 131 of the first distillation column 100 passes through the reboiler 102 and the reboiler 102 Some or all of the first distillation column bottom effluent stream F 1-3 passing through the first distillation column 100 may be refluxed to the first distillation column 100 or stored as a product.
  • the intermediate stage outflow stream F 1-4 which is a high temperature gaseous flow flowing out of the intermediate stage outlet 122 of the first distillation column 100, is connected to the first distillation column 100. It is introduced into the lower portion 220 of the second distillation column 200, thereby supplying the necessary heat from the lower portion of the second distillation column 220.
  • low boiling point flow refers to a stream in which a relatively low boiling point component is rich among raw material streams including three components of low boiling point, middle boiling point, and high boiling point component, and the low boiling point flow is, for example, It means a flow flowing out of the first top outlet 111 of the first distillation column (100).
  • high boiling point flow refers to a stream in which a relatively high boiling point component is rich among raw material streams including three components of low boiling point, middle boiling point, and high boiling point component, and the high boiling point flow is, for example, A relatively high boiling point component flowing out of the first bottom outlet 131 of the first distillation column 100 means a rich flow.
  • the "medium boiling point flow” refers to a rich flow of a component having a boiling point between a low boiling point component and a high boiling point component in a raw material stream including three components of a low boiling point, a middle boiling point and a high boiling point component.
  • the flow refers to the flow flowing out of the intermediate stage outlet 122 of the first distillation column 100.
  • the middle boiling point component may be finally discharged from the upper portion 210 of the second distillation column, which will be described later, and stored as a product.
  • the term “rich flow” refers to the first upper outlet 111 of the first distillation column 100 than the content of the low boiling point component, the high boiling point component and the middle boiling point component contained in the raw material F 1-1 .
  • each of the low boiling point component included in the flow flowing out from the high boiling point component included in the flow flowing out of the first bottom outlet 131 and the middle boiling point component included in the flow flowing out of the intermediate stage outlet 122 is It means higher flow.
  • each content represented by the middle boiling point component included in the outflow stream F 1-4 may mean a flow having at least 50 wt%, at least 80 wt%, at least 90 wt%, at least 95 wt%, or at least 99 wt%. have.
  • the low boiling point stream and the first distillation column top effluent stream (F 1-2 ) of the first distillation column 100 may be used in the same sense, and the high boiling point flow and the first distillation column bottom of the first distillation column 100 may be used.
  • Effluent streams F 1-3 may be used in the same sense, and the middle boiling point stream and the middle stage effluent stream F 1-4 of the first distillation column 100 may be used in the same sense.
  • the middle stage outlet portion 122 of the first distillation column 100 may be located in the middle region or the middle stage 120 of the first distillation column 100.
  • the intermediate stage outlet 122 may be located below the raw material inlet 121, ie, below.
  • the middle stage inlet 123 may be located in the middle region or the middle stage 120 of the first distillation column 100, and may be located below, that is, below, the intermediate stage outlet 122. Can be.
  • the intermediate stage outlet 122 and the intermediate stage inlet 123 may be located at the same stage.
  • the middle stage outlet 122 and the middle stage inlet 123 may be located at the same stage in the middle region 120 of the first distillation column 100, in which case, in the same stage, The intermediate stage inlet 123 may be located below the intermediate stage outlet 122. Accordingly, the intermediate stage outlet flow F 1-4 flowing out of the intermediate stage outlet 122 of the first distillation tower 100 and the intermediate stage inlet 123 of the first distillation tower 100 are introduced.
  • the second distillation column bottom effluent stream (F 2-1 ) may be discharged and introduced in the same stage of the first distillation column (100).
  • the theoretical stage of the first distillation column 100 may be 30 to 80 stages, 40 to 70 stages, 25 to 50 stages or 45 to 60 single stages.
  • the raw material inlet 121 of the first distillation column 100 may be 5 to 30 of the middle region or the middle stage 120 of the first distillation column 100, for example, the first distillation column 100. However, it may be located in 5 to 25 steps, 5 to 15 steps or 10 to 20 steps.
  • the intermediate stage outlet 122 of the first distillation column 100 is located below the raw material inlet 121, for example, 20 to 78 stages, 22 to 45 of the first distillation column 100. However, it may be located at 30 to 78 steps, or 40 to 75 steps.
  • the intermediate stage inlet 123 of the first distillation column 100 may be located at the same stage as the intermediate stage outlet 122, but may be located below the intermediate stage outlet 122.
  • theoretical stage number is a virtual region or stage in which two phases such as gaseous phase and liquid phase are in equilibrium with each other in a separation process using a distillation apparatus including the first distillation column 100 and the second distillation column 200. Means the number of.
  • the first top outlet 111 and the first top inlet 112 of the first distillation column 100 may be located at the top 110 of the first distillation column, the first top The outlet 111 may be preferably located at the top of the first distillation column 100.
  • the first bottom outlet 131 and the first bottom inlet 132 of the first distillation column 100 may be located at the bottom 130 of the first distillation column, and the first bottom outlet ( 131 may be preferably located at the bottom of the first distillation column 100.
  • “top” means the top of the distillation column, and may be located at the top of the above-described distillation column
  • “top” means the bottom of the distillation column, and may be located at the bottom of the distillation column. .
  • the first top outlet 111 of the first distillation tower 100 may be located at the top of the first distillation tower 100, and the first top inlet 112 of the first distillation tower 100. ) May be located at the top of the first distillation column 100, for example, at the first stage of the first distillation column 100.
  • the first bottom outlet 131 of the first distillation column 100 may be located at the bottom of the first distillation column 100, the first bottom inlet 132 of the first distillation column 100 Located at the bottom end of the first distillation column 100, for example, may be located at 80, 70 or 60 stages of the first distillation column (100).
  • the second distillation apparatus includes a second distillation column 200 connected to the first distillation column 100 and a second condenser 201 connected to the second distillation column 200. do.
  • the second distillation column 200 includes a second lower inlet 221, a second lower outlet 222, a second upper inlet 212, and a second upper outlet 211.
  • the middle stage effluent stream F 1-4 which is a high temperature gaseous flow flowing out of the middle stage outlet 122 of the first distillation column 100, is the second bottom of the second distillation column 200.
  • the second distillation column bottom effluent stream F 2-1 which is introduced into the inlet 221 and is a high temperature liquid stream including the bottom product of the second distillation column 200, is formed at the second bottom outlet 222. After the outflow, it is introduced into the middle stage inlet 123 of the first distillation column 100.
  • the middle stage outflow stream F 1-4 which is a high temperature gaseous flow flowing out of the middle stage outlet portion 122 of the first distillation column 100, is obtained by the second distillation column 200.
  • the heat required for the second distillation column 220 may be supplied without a separate reboiler for heating the reflux flow of the flow flowing out of the second distillation column bottom 220. It can exhibit excellent purification efficiency without additional supply of hot steam, which is an external heat source supplied to the reboiler.
  • the middle stage effluent stream F 1-4 may raise the temperature of the second distillation column bottom effluent stream F 2-1 , which is a liquid flow including the bottom product of the second distillation column 200.
  • the second distillation apparatus of the present application does not require a separate external heat source for heating the second distillation column bottom effluent stream (F 2-1 ) of the second distillation column 200, so the cost required in the process Can reduce the cost.
  • the temperature of the second distillation column bottom effluent stream F 2-1 can be efficiently increased with less thermal energy than using the sensible heat of the liquid. Accordingly, the distillation apparatus of the present application can exhibit excellent economics in terms of energy efficiency and equipment cost of the apparatus.
  • the second bottom outlet 222 and the second bottom inlet 221 of the second distillation column 200 may be located at the same stage of the second distillation column 200. Accordingly, the second distillation column bottom outlet flow F 2-1 flowing out of the second bottom outlet portion 222 of the second distillation column 200 and the second bottom inlet portion 221 of the second distillation column 200.
  • the middle stage effluent stream (F 1-4 ) flowing into) may be discharged and introduced in the same stage of the second distillation column (200).
  • outflow occurs at the same stage so that gas / liquid contact is smooth and hydraulic flow is smooth. Can happen.
  • the second top outlet 211 and the second top inlet 212 of the second distillation column 200 may be located in the upper portion 210 of the second distillation column, the second top The outlet 211 is preferably located at the top of the second distillation column 200.
  • the second bottom outlet 222 and the second bottom inlet 221 of the second distillation column 200 may be located at the lower portion 220 of the second distillation column, preferably, the second distillation column ( 200 may be located at the bottom.
  • the theoretical stage of the second distillation column 200 may be 5 to 40 stages, preferably 10 to 30 stages, and more preferably 15 to 25 stages.
  • the second top outlet 211 of the second distillation column 200 may be located at the top of the second distillation column 200, and the second top inlet 212 of the second distillation column 200 may be used. May be positioned at the top of the second distillation column 200, for example, at the first stage of the second distillation column 200.
  • the second bottom outlet 222 and the second bottom inlet 221 of the second distillation column 200 may be located at the bottom of the second distillation column 200.
  • the second distillation column top effluent stream F 2-2 including the top product of the second distillation column 200 flows out of the second top outlet 211 of the second distillation column 200 to allow the second condenser 201 to flow.
  • a part or all of the second distillation tower top effluent stream F 2-2 passing through the second condenser 201 is introduced into the second upper inlet 212 to allow the second distillation tower 200 to flow.
  • the second distillation column top effluent stream (F 2-2 ) is a stream enriched in the middle boiling point component of the raw material (F 1-1 ) component, in one example, may be a stream rich in 2-ethyl hexyl acrylate have.
  • the raw material (F 1-1 ) is a first distillation column (Fig. 1) 100 may flow into the raw material inlet 121.
  • the intermediate stage outlet flow F 1-4 of the first distillation column 100 may be introduced into the second lower inlet 221 of the second distillation column 200.
  • the low boiling point flow having a relatively low boiling point among the components included in the raw material (F 1-1 ) in the first top outlet 111 A high boiling point flow, which has a relatively high boiling point, may flow out of the first bottom outlet 131, and a middle boiling point flow may flow out of the middle end outlet 122.
  • the flow out of the middle stage outlet 122 of the first distillation column 100 flows into the second bottom inlet 221 of the second distillation column 200 connected to the first column 100, and the second A relatively low boiling point of the middle boiling point components introduced into the distillation column 200 flows out of the second upper outlet 211.
  • a relatively high boiling point flow of the components introduced into the second distillation column 200 flows out of the second lower outlet 222 and is connected to the second distillation column 200. It may be introduced into the middle stage inlet 123 of the).
  • the raw material (F 1-1 ) including the low boiling point component, 2-ethylhexyl acrylate and the high boiling point component is introduced into the raw material inlet 121 of the first distillation column 100
  • a low boiling point component among the components of the raw material F 1-1 flows out into the first distillation column top outlet flow F 1-2 , and is discharged.
  • the first distillation column top effluent stream (F 1-2 ) is passed through the first condenser 101, a part of it is returned to the first top inlet 112 of the first distillation column 100 and the other part to be stored as a product Can be.
  • the first bottom outlet 131 of the first distillation column 100 the high boiling point component of the components of the raw material (F 1-1 ) is discharged to the first distillation column bottom outflow (F 1-3 ),
  • the first distillation column bottom effluent stream (F 1-3 ) flowed out through the reboiler 102, a part of it is refluxed to the first bottom inlet 132 of the first distillation column 100, the other part of the product Can be produced.
  • an intermediate stage outlet flow F 1-4 including a middle boiling point component among the components of the raw material F 1-1 flows out. 1 may be introduced into the second lower inlet 221 of the second distillation column 200 connected to the distillation column 100.
  • the flow introduced into the second lower inlet 221 of the second distillation column 200 is the second distillation column top outlet flow F 2-2 and the second distillation column bottom outlet flow from the second distillation column 200. (F 2-1 ) can be separated and spilled.
  • An upper product of the second distillation column 200 for example, 2-ethylhexyl acrylate, which is a stream including a component having a relatively low boiling point among components included in the flow introduced into the second distillation column 200.
  • Some or all of the second distillation column top outlet flow F 2-2 is discharged from the second top outlet 211, and the second distillation column top outlet flow F 2-2 is discharged to the second condenser ( Part 20 is refluxed to the second top inlet 212 of the second distillation column 200, and the other part may be stored as a product.
  • the second distillation column bottom effluent flow (F) including the bottom product of the second distillation column 200 is a flow containing a relatively high boiling point components of the components contained in the flow introduced into the second distillation column (200) (F) 2-1 ) may be introduced into the intermediate stage inlet 123 of the first distillation column 100 connected to the second distillation column 200.
  • the temperature of the upper portion 110 of the first distillation column may be 80 to 115 ° C, 85 to 100 ° C, or 90 to 105 ° C
  • the temperature of the lower portion 130 of the first distillation column is 120 to 160 ° C. , 130 to 155 ° C, or 135 to 147 ° C.
  • first distillation column top effluent flow (F 1-2 ) of the first distillation column top effluent stream (F 1-2 ) of the first distillation column 100 refluxed to the first top outlet 111 of the first distillation column (100).
  • the reflux ratio of 1-2 ) may be 1 to 10, preferably from 1.2 to 7.0, or 1.5 to 4.5 from a thermodynamic point of view.
  • first distillation column bottom outlet flow of the first distillation column 100 (F 1-3) of the first column (100) comprising: a first distillation column bottom outlet flow of the reflux at the bottom into the inlet portion 132 of the (F 1-
  • the reflux ratio of 3 ) may be 1 to 30, preferably 5 to 25, or 10 to 20 from the thermodynamic point of view.
  • the temperature of the upper portion 210 of the second distillation column may be 100 to 130 ° C, 104 to 125 ° C, or 108 to 120 ° C, and the temperature of the lower portion 220 of the second distillation column may be 120 to 150 ° C or 120 ° C. To 140 ° C, or 123 to 133 ° C.
  • the second distillation column top outlet flow (F 2-2 ) of the second distillation column top outlet flow (F 2-2 ) of the second distillation column 200 refluxed to the second top inlet 212 of the second distillation column (200).
  • the reflux ratio of 2-2 ) may be 0.01 to 5.0, preferably from 0.05 to 1.0, or 0.1 to 2.0 from the thermodynamic point of view.
  • the term "reflux ratio" as used herein refers to the ratio of the flow rate refluxed with respect to the outflow flow rate flowing out of the distillation column (100).
  • FIG. 4 is a view exemplarily showing a distillation apparatus according to an embodiment of the present application.
  • the distillation apparatus may include a heater 300 for preheating the raw material F 1-1 .
  • the heater 300 may be located at the front end of the portion in which the raw material of the first distillation column 100 is introduced, and may heat the raw material F 1-1 flowing into the raw material inlet 121. Therefore, before the raw material F 1-1 is introduced into the first distillation column 100, the temperature of the raw material F 1-1 may be increased, thereby minimizing the loss of energy generated in the separation process and refining. It is possible to minimize the size of the distillation apparatus used in the. In one example, the raw material F 1-1 at a temperature of 20 to 40 ° C. may be heated in the heater 300 to a temperature of 50 to 110 ° C., preferably 60 to 100 ° C., or 70 to 90 ° C. have.
  • the preheated raw material F 1-1 may flow into the raw material inlet 121 of the first distillation column 100, and the components included in the raw material F 1-1 may have a first boiling point.
  • the distillation column top effluent stream (F 1-2 ), the first distillation column bottom effluent stream (F 1-3 ) and the middle stage effluent stream (F 1-4 ) can be separated and discharged.
  • the heater 300 is a device capable of raising the temperature of the raw material (F 1-1 ) may use a variety of devices known in the art, depending on the type and temperature of the desired raw material (F 1-1 ). Although it can select suitably and use it, it is not specifically limited.
  • FIG. 5 is a view exemplarily showing the distillation apparatus according to another embodiment of the present application.
  • the distillation apparatus of the present application may further include a first heat exchanger 301.
  • the first heat exchanger 301 is located at the front end of the first condenser 101 of the first distillation column 100, and the first distillation column top effluent flow (F 1-2 ) and the raw material (F 1-1 ) It can be heat exchanged.
  • the first heat exchanger 301 may be positioned to be directly or indirectly connected to a pipe through which the first distillation column top outlet flow F 1-2 of the first distillation column 100 flows.
  • the first heat exchanger 301 is directly connected to a pipe through which the first distillation column top effluent flow (F 1-2 ) of the first distillation column 100 flows, thereby the raw material (F 1-1 ).
  • the first heat exchanger 301 may be located at the front end of the first condenser 101, and is preferably directly connected to a pipe through which the raw material F 1-1 flows, thereby allowing the top of the first distillation column to flow.
  • the effluent streams F 1-2 may be heat exchanged with the raw material F 1-1 before entering the first condenser 101.
  • the low boiling point flow flowing out of the first distillation column 100 passes through the first heat exchanger 301. Heat is supplied to the first heat exchanger 301. Accordingly, the first distillation column top effluent stream (F 1-2 ) flowing out of the first distillation column 100 may be refluxed to the first distillation column 100 at a relatively low temperature.
  • the first distillation column 100 including the first heat exchanger 301 as described above to condense the first distillation column top outlet flow (F 1-2 ) flowing out of the first top outlet 111. Calories can be reduced. Accordingly, by reducing the amount of cooling water used in the condensation process using the first condenser 101, the cost required for the condensation process can be reduced.
  • the first heat exchanger 301 exchanges heat with the relatively high temperature of the first distillation column top outlet flow F 1-2 . By doing so, the temperature of the raw material F 1-1 can be increased. Accordingly, in the reboiler 102 to heat a portion of the first distillation column bottom effluent flow (F 1-3 ) flowing out from the first distillation column 100 to be returned to the first bottom inlet 132. It can reduce the consumption of steam. In addition, by using the latent heat generated from the high temperature steam, the temperature of the raw material can be efficiently increased even with a small amount of thermal energy as compared with utilizing the sensible heat of the liquid. As such, by utilizing the waste heat that is discarded, the energy efficiency can be increased, and the compound can be separated with high purity while minimizing the size of the distillation column used for purification.
  • the raw material F 1-1 at a temperature of 20 to 40 ° C. exchanges heat with the first distillation column top effluent stream F 1-2 at a temperature of 80 to 115 ° C. in the first heat exchanger 301.
  • the raw material (F 1-1 ) is heated to a temperature of 50 to 110 °C, preferably 60 to 100 °C, more preferably 70 to 90 °C, the raw material inlet of the first distillation column 100 It may flow into the portion 121.
  • first distillation column top outlet flow (F 1-2 ) of 80 to 115 °C heat exchanged with the raw material (F 1-1 ) after passing through the first condenser 101 is condensed to 25 to 40 °C to the product Stored or refluxed to the first top inlet 112.
  • FIG. 6 is a view exemplarily showing the distillation apparatus according to another embodiment of the present application.
  • the distillation apparatus of the present application may further include a second heat exchanger 302.
  • the second heat exchanger 302 is located at the front end of the second condenser 201 of the second distillation column 200, the second distillation column top effluent flow (F 2-2 ) and the raw material (F 1-1 ) It can be heat exchanged.
  • the second heat exchanger 302 may be positioned to be directly or indirectly connected to a pipe through which the second distillation column top outlet flow F 2-2 of the second distillation column 200 flows.
  • the second heat exchanger 302 is directly connected to the pipe through which the second distillation column top effluent flow (F 2-2 ) of the second distillation column 200 flows, whereby the raw material (F 1-1 ) And it is possible to efficiently heat exchange the second distillation column top effluent flow (F 2-2 ).
  • the second heat exchanger 302 may be located at the front end of the second condenser 201, and is preferably directly connected to the pipe through which the raw material F 1-1 flows, thereby allowing the second distillation column to flow out.
  • the flow F 2-2 may be exchanged with the raw material F 1-1 before the flow into the second condenser 201.
  • the middle boiling point flow flowing out of the second distillation column 200 is via the second heat exchanger 302, the second heat exchanger 302 ) To supply heat. Accordingly, the second distillation column top effluent stream F 2-2 flowing out of the second distillation column 200 may be refluxed to the second distillation column 200 at a relatively low temperature.
  • the second distillation column top outlet flow F 2-2 discharged from the second top outlet 211 is condensed. Calories can be reduced. Accordingly, the cost required for the condensation process can be reduced by reducing the amount of cooling water used in the condensation process using the second condenser 201.
  • the second distillation column top outlet flowing out of the relatively high temperature distillation column 200 is discharged.
  • the temperature of the said raw material F 1-1 can be raised.
  • the raw material F 1-1 at a temperature of 20 to 40 ° C. exchanges heat with the second distillation column top effluent stream F 2-2 at a temperature of 100 to 130 ° C. in the second heat exchanger 302. Can be.
  • the raw material (F 1-1 ) is heated to a temperature of 50 to 120 °C, 60 to 120 °C, or 90 to 110 °C, and then introduced into the raw material inlet 121 of the first distillation column (100). Can be.
  • the second distillation column top effluent stream (F 2-2 ) of 100 to 130 °C heat exchanged with the raw material (F 1-1 ) is passed through the second condenser 201 and condensed to 40 to 90 °C to the product Stored or refluxed to the second top inlet 212.
  • Details of the distillation apparatus including the second heat exchanger 302 are the same as those of the distillation apparatus including the first heat exchanger 301 described above, and thus will be omitted.
  • the raw material inlet 121, the first top inlet 112, the intermediate stage outlet 122, the intermediate stage inlet 123 of the first distillation column 100, and the first At least one of the first lower inlet 132 and the second lower inlet 222, the second lower inlet 221, and the second upper inlet 212 of the second distillation column 200 are spaced apart from each other. It may be formed of two or more openings. Accordingly, by blocking the drift phenomenon occurring in the purification process of the raw material (F 1-1 ) it is possible to minimize the energy loss and improve the economics of the process.
  • the “drift phenomenon” refers to a phenomenon in which contact between the vapor and the liquid mixture does not occur smoothly in a distillation column, or in the case of a dividing wall distillation column, a fluid flowing out to a specific portion of a wall surface, and refers to a phenomenon The phenomenon causes a significant decrease in the separation efficiency of raw materials and causes additional energy to be consumed.
  • the two or more openings are introduced into or out of the first distillation column 100 and / or the second distillation column 200 in two or more directions or in two or more directions. It can be located so that it can flow out.
  • the first distillation column 100 and / or the second distillation column 200 may include two or more small areas that divide the horizontal cross-sectional area evenly.
  • 7 is a cross-sectional view parallel to the ground of an exemplary first distillation column 100.
  • the first distillation column 100 is an arbitrary small region that divides the horizontal cross-sectional area of the first distillation column 100 by an equal area, for example, a plurality of small regions A 1-1 and A 1. -2 , A 1-3 , A 1-4 ). This may be equally applied to the second distillation column 200.
  • the raw material inlet 121, the first top inlet 112, the middle end outlet 122, the middle end inlet 123 and the first bottom inlet of the first distillation column 100 may be formed of two or more openings spaced apart from each other, and the two or more openings may be located in two or more small regions that equally divide the horizontal cross-sectional area of the first distillation column 100. .
  • the two or more openings may be “each located” may mean that one opening is located in one area in an area divided evenly by the number of the openings.
  • 8 is a view exemplarily showing a cross section parallel to the ground of the first distillation column 100 according to the present application in which two openings are formed. For example, as shown in FIG.
  • the cross section of the first distillation column 100 may be divided into two equal subregions A 1-1 and A 1-2 .
  • one opening of the two openings is located in one small region A 1-1 of the small regions divided into two, and the remaining one opening is One opening may be located in each region by being located in the other small region A 1-2 adjacent to the region where the opening is located.
  • the first raw material inlet 121, the first top inlet 112, the middle end outlet 122, the middle end inlet 123 and the first bottom inlet 132 is formed of a first opening
  • the raw material or the reflux flow is supplied only in one direction, or the middle stage inflow and outflow flows only in one direction or flows out, in which case, a drift phenomenon may occur.
  • the raw material inlet 121, the first upper inlet 112, the intermediate stage outlet 122, the intermediate stage inlet 123, and the first lower inlet 132 of the first distillation column 100 is formed of a first opening.
  • the raw material F 1-1 , the reflux flow, the intermediate stage outflow, and / or the inflow stream flow in evenly in two or more directions, or the outflow flows uniformly, thereby causing the drift phenomenon. It can be prevented from occurring.
  • the drift phenomenon can be effectively suppressed by adjusting the position of each opening, the flow rate and the direction of the flow into or out of each opening according to the number of two or more openings.
  • the raw material inlet 121, the first top inlet 112, the middle stage outlet 122, the middle stage inlet 123 and the first bottom inlet of the first distillation column 100 ( If one or more of the 132 is formed by two openings spaced apart from each other, as described above, the two openings may be divided into two regions (evenly divided sections parallel to the ground of the first distillation column 100) A 1-1 , A 1-2 ), respectively. Specifically, as shown in FIG.
  • the two openings may be installed on opposite sides with respect to the cross-sectional center point, and the raw materials F 1-1 may be respectively introduced into the two raw material inlets 121.
  • the drift phenomenon generated while the raw material F 1-1 is introduced can be efficiently suppressed.
  • the raw material inlet 121, the first top outlet 111, the first top inlet 112, the middle end outlet 122, the middle end inlet 123 and the first bottom When at least one of the inlets 132 is formed with two openings spaced apart from each other, an extension line extending from one of the two openings to the center of the distillation column extends from the other opening to the center of the distillation column.
  • the angle formed with the extension line may be 175 ° to 185 °, 177 ° to 183 °, or 179 ° to 181 °, by adjusting the angle in the above range, to maximize the drift blocking can do.
  • FIG. 10 is a view exemplarily showing a cross section parallel to the ground of the first distillation column 100 according to the present application in which three openings are formed.
  • One or more of the first lower inlets 132 may be formed of three openings spaced apart from each other, and the three openings may be three equally divided cross sections parallel to the ground of the first distillation column 100. It may be located in the regions A 1-1 , A 1-2 , A 1-3 . Specifically, as shown in FIG.
  • the three openings may be installed to be equally spaced from each other, and may be positioned to allow the flow of fluid to flow in or out of the three openings, respectively.
  • one or more of the raw material inlet 121, the first top inlet 112, the middle end outlet 122, the middle end inlet 123 and the first bottom inlet 132 may be When formed of three openings spaced apart from each other, the angle formed by the extension line extending from the one of the three openings to the center of the distillation column and the extension line extending from the other two openings to the center of the distillation column, Fig. 11 As in, for example, may be 115 ° to 125 °, 117 ° to 123 °, or 119 ° to 121 °, by adjusting the angle in the above range, it is possible to maximize the drift blocking.
  • FIG. 12 is a view exemplarily showing a cross section parallel to the ground of the first distillation column 100 according to the present application in which four openings are formed.
  • the raw material inlet 121, the first upper inlet 112, the intermediate stage outlet 122, the intermediate stage inlet 123, and the first stage of the first distillation column 100 may be formed of four openings spaced apart from each other, and the four openings may be divided into four regions equally divided in a section parallel to the ground of the first distillation column 100. (A 1-1 , A 1-2 , A 1-3 , A 1-4 ), respectively.
  • FIG. 12 is a view exemplarily showing a cross section parallel to the ground of the first distillation column 100 according to the present application in which four openings are formed.
  • the raw material inlet 121, the first upper inlet 112, the intermediate stage outlet 122, the intermediate stage inlet 123, and the first stage of the first distillation column 100 may be formed of four openings spaced apart from each other, and the four openings may be divided
  • the four openings may be installed to be equal to each other, and may be positioned to allow the flow of fluid to flow into or out of the four openings, respectively.
  • at least one of the raw material inlet 121, the first top inlet 112, the middle end outlet 122, the middle end inlet 123 and the first bottom inlet 132 may be When formed of four openings spaced apart from each other, an extension line extending from one of the four openings to the center of the distillation column extends from two openings adjacent to the one opening to the center of the distillation column and
  • the angle to be made may be, for example, from 85 ° to 95 °, preferably from 87 ° to 93 °, more preferably from 89 ° to 91 °, as shown in FIG. 13, by adjusting the angle to the above range, Drift cutoff can be maximized.
  • the raw material inlet 121 and the first top inlet 112 of the first distillation column 100 are used.
  • the purification efficiency can be improved. . That is, the raw material inlet 121, the first upper inlet 112, the intermediate stage outlet 122, the intermediate stage inlet 123 and the first opening formed by two or more openings of the first distillation column 100.
  • flow rate (F) means the flow rate (volume per unit time) flowing through each inlet
  • inflow velocity vector component is parallel to the ground inlet velocity (distance per unit time) vector through each inlet It means a vector component projected on the cross section of the distillation column.
  • the raw material inlet 121 of the first distillation column 100 may be formed of two or more openings are spaced apart from each other, the two or more openings and the ground of the first distillation column 100 It can be located in two or more small areas which divide a parallel cross section evenly.
  • a liquid flow falls to supply only the lower region of the distillation column without being uniformly dropped, which may cause a drift phenomenon, so that the raw material (F 1 -1 ) separation efficiency may be reduced.
  • the raw material inlet 121 of the first distillation column 100 is formed with two or more openings, the flow of liquid falling into the lower portion of the raw material supply stage of the first distillation column 100 may be maintained uniformly.
  • the raw material F 1-1 can be separated efficiently.
  • the two or more openings may be located on the same stage in the first distillation column 100, preferably on the same plane parallel to the ground. Accordingly, the raw material (F 1-1 ) introduced into each of the two or more openings can be effectively introduced to the hydraulic flow (hydraulics) flow to prevent the drift phenomenon.
  • the two or more raw material inlet 121 may be located at the same stage of the first distillation column 100, the theoretical stage is 30 to 80 stages, 40 to 70 stages, preferably 45 to 60 stages.
  • the raw material inlet 121 forming the two or more openings is 5 to 30 stages, preferably 5 to 25 stages, more preferably 10 to 10 of the first distillation column 100. It can be located at 20 stages. Further, the raw material (F 1-1) The (1- F when the respective inlet at the same flow rate as a raw material inlet 121 is formed of two or more openings facilitate the blocking of the drift phenomenon, and is excellent in ease of operation of the column material 1 ) can be separated with high efficiency.
  • the first top inlet 112 of the first distillation column 100 may be formed of two or more openings are spaced apart from each other, the two or more openings are horizontal to the first distillation column 100 It may be located in each of two or more small regions that evenly divide the cross-sectional area.
  • the reflux flow of the first distillation column top outlet flow F 1-2 is in the direction of the first distillation column 100. Drift may occur as it flows into the furnace. Accordingly, the separation efficiency of the raw material (F 1-1 ) may be reduced, in this case, additional energy is consumed to maintain the low boiling point concentration of the first distillation column top effluent stream (F 1-2 ).
  • the first top inlet 112 of the first distillation column 100 is formed with two or more openings, the reflux flow of the first distillation column top outlet flow F 1-2 is in the direction of two or more directions. Since the drift phenomenon is suppressed by flowing into the distillation column, the raw material F 1-1 can be efficiently separated.
  • the two or more first top inlets 112 may be located on the same stage, preferably on the same plane parallel to the ground, at the top of the first distillation column 100, and the theoretical stage of 30 to In the case of the first distillation column 100 having 80 stages, 40 to 70 stages, and preferably 45 to 60 stages, the first upper inlet 112 formed of the two or more openings may be formed at the top of the first distillation column 100. For example, it may be located in the first stage.
  • first lower inlet 132 of the first distillation column 100 may be formed of two or more openings spaced apart from each other, and the two or more openings equalize the horizontal cross-sectional area of the first distillation column 100. It can be located in two or more subdivisions.
  • first distillation column bottom effluent stream (F 1-3 ) through the reboiler 102 can be refluxed in two or more directions to improve the separation efficiency of the raw material (F 1-1 ).
  • the first lower inlet 132 formed by the two or more openings may be located on the same stage, preferably on the same plane parallel to the ground of the bottom of the first distillation column 100, In the case of the first distillation column 100 having 30 to 80 stages, 40 to 70 stages, and preferably 45 to 60 stages, the first lower inlet 132 formed by the two or more openings has the first distillation column 100. It may be located at the lowest stage, for example, 80 stages, 70 stages or 60 stages.
  • the middle stage outlet portion 122 of the first distillation column 100 may be formed of two or more openings are spaced apart from each other, the two or more openings are horizontal cross-sectional area of the first distillation column 100 It can be located in two or more small regions that divide evenly.
  • the intermediate stage outflow flow F 1-4 flowing out of the intermediate stage outlet portion 122 of the first distillation column 100 is discharged and discharged in two or more directions, so that the hydraulic flow can be smoothly maintained.
  • the intermediate stage outlet 122 formed of the two or more openings may be located on the same stage, preferably on the same plane parallel to the ground of the middle stage of the first distillation column 100. It may be located below the raw material inlet 121.
  • the 20 to 78 stages, 22 to 45 stages, 30 of the first distillation column 100 To 78 stages, or 40 to 75 stages.
  • the intermediate stage inlet 123 of the first distillation column 100 may be formed of two or more openings which are spaced apart from each other, the two or more openings are horizontal cross-sectional area of the first distillation column 100. It can be located in two or more small regions that divide evenly.
  • the second distillation column bottom effluent flow (F 2-1 ) flowing from the second distillation column 200 to the middle stage inlet 123 of the first distillation column 100 is introduced in two or more directions, so that the raw material F The separation efficiency of 1-1 ) can be improved.
  • the intermediate stage inlet 123 formed by the two or more openings may be located on the same stage, preferably on the same plane parallel to the ground of the intermediate stage of the first distillation column 100. It may be located at the stage where the intermediate stage outlet 122 is located. In this case, the intermediate stage inlet 123 may be located below the intermediate stage outlet 122.
  • first upper inlet 112 the first lower inlet 132, the middle end outlet 122, and the middle end inlet 123 formed by the two or more openings may include the two or more raw materials. Since the inflow part 121 is the same as described above, it will be omitted.
  • the second distillation column 200 may include two or more small regions that divide the horizontal cross-sectional area evenly. At this time, one or more of the second top inlet 212, the second bottom outlet 222, and the second bottom inlet 221 of the second distillation column 200 are two or more openings spaced apart from each other. The two or more openings may be located in two or more small regions that equally divide the horizontal cross-sectional area of the second distillation column 200.
  • the second bottom outlet 222 of the second distillation column 200 may be formed of two or more openings which are spaced apart from each other, wherein the two or more openings are horizontal to the second distillation column 200. It may be located in each of two or more small regions that evenly divide the cross-sectional area.
  • the second distillation column bottom effluent flow F 2-1 flowing out from the second bottom outlet 222 of the second distillation column 200 may flow out in two or more directions, and thus, the second Hydrodynamic flow inside the distillation column 200 can be maintained smoothly.
  • the second bottom outlet 222 formed by the two or more openings may be located at the same end of the bottom of the second distillation column 200, preferably at the bottom of the second distillation column 200. Can be located.
  • the second lower inlet 221 of the second distillation column 200 may be formed of two or more openings spaced apart from each other, and the two or more openings may equally divide a horizontal cross-sectional area of the second distillation column 200. It can be located in two or more small areas, respectively.
  • the intermediate stage outlet flow F 1-4 flowing into the second lower inlet 221 of the second distillation column 200 from the first distillation column 100 may be introduced in two or more directions.
  • the second lower inlet 221 formed by the two or more openings may be located at the same end of the lower end of the second distillation column 200, preferably at the bottom of the second distillation column 200. Can be located.
  • the second top inlet 212 of the second distillation column 200 may be formed of two or more openings spaced apart from each other, and the two or more openings divide the horizontal cross-sectional area of the second distillation column 200 evenly. It can be located in two or more small areas, respectively.
  • the second distillation column top effluent stream F 2-2 passing through the second condenser 201 may be refluxed in two or more directions to improve separation efficiency of the raw material F 1-1 .
  • the second top inlet 212 formed by the two or more openings may be located on the same stage, preferably on the same plane parallel to the ground, on the top of the second distillation column 200, In the case of the second distillation column 200 having 5 to 40 stages, 10 to 30 stages, and preferably 15 to 25 stages, the second upper inlet portion 212 forming the two or more openings is the second distillation column 200. It may be located at the top of, for example, 1st stage.
  • Details of the second bottom outlet 222, the second bottom inlet 221, and the second top inlet 212 of the second distillation column 200 formed by the two or more openings may include the two or more openings. Since the raw material inlet 121 is the same as described above, it will be omitted.
  • FIG. 14 is a view exemplarily showing a distillation apparatus according to another embodiment of the present application.
  • the distillation apparatus includes a first distillation apparatus and a second distillation apparatus, and the first distillation tower 400 included in the first distillation apparatus has a partition wall type having a dividing wall 401 therein. It may be a distillation column 400.
  • the dividing wall distillation column 400 is a device designed for the distillation of the raw material F 1-1 including three components of low boiling point, middle boiling point, and high boiling point, and is similar in terms of thermodynamic distillation column (Petlyuk column). Device.
  • the thermocomposite distillation column is designed to separate low boiling point and high boiling point materials in a preliminary separator and to separate low boiling point, middle boiling point and high boiling point materials in a main separator, respectively.
  • the dividing wall distillation column 400 is a type in which the preliminary separator is integrated into the main separator by installing the dividing wall 401 in the tower.
  • the low boiling point, the middle boiling point, and the high boiling point material are separated from the first distillation tower 400, which is primarily a dividing wall distillation column, and the intermediate stage effluent stream F 1-4 including the middle boiling point material is
  • the second distillation column 200 may be introduced into and purified.
  • the first distillation column 400 is divided inside by the dividing wall 401, and the inside of the first distillation column 400 is divided by a virtual dotted line in the drawing, the dividing wall (
  • the middle region divided by 401 may be divided into an upper region 410 and a lower region 440 where no partition wall is located.
  • the middle region may be divided into a first middle region 420 and a second middle region 430 divided by the dividing wall 401, and the second middle region 430 may be divided into
  • the distillation column 400 may be divided into a third middle portion region 431 and a fourth middle portion region 432 that are divided into two in the longitudinal direction.
  • the third middle region 431 may be in contact with the upper region 410
  • the fourth middle region 432 may be in contact with the lower region 440.
  • the inside of the first distillation column 400 may be divided into an upper region 410, a lower region 440, and an intermediate region.
  • the intermediate region may include a first intermediate region 420 and a first intermediate region.
  • the second middle region 430 may be divided into a second middle region 430 and a third middle region 431 and a fourth middle region 432.
  • the first distillation column 400 is the first middle region 420 and the second middle region 430 is separated or separated from each other by the separation wall 401 ( isolation).
  • the flow in the first middle region 420 and the flow in the second middle region 430 may be prevented from being mixed with each other.
  • separation or isolation means that the flow in each region flows or exists independently in the region divided by the separating wall 401.
  • the dividing wall 401 located inside the first distillation column 400 may be located in the middle region. Specifically, when the length of the separation wall 401 is calculated based on the theoretical number of stages of the first distillation column 400, the length of the separation wall 401 may be a length corresponding to more than 40% of the number of theoretical stages, preferably 50%. Above, more preferably, may be a length corresponding to the singular of 60% or more.
  • the dividing wall 401 of the first distillation column 400 is located inside the first distillation column 400 in the length of the range, thereby the flow in the first middle region 420 and the second middle region 430. The flow in the interior can be effectively blocked.
  • a low boiling point component is introduced into the flow flowing out of the intermediate stage outlet 433. It can be prevented from mixing out.
  • the raw material inlet 421 of the first distillation column 400 may be located in the first middle region 420 of the first distillation column 400.
  • the first top outlet 411 and the first top inlet 412 may be located in the upper region 410 of the first distillation column 400, preferably the first top outlet ( 411 may be located at the top of the upper region 410 of the first distillation column (400).
  • the first bottom outlet 441 and the first bottom inlet 442 may be located in the lower region 440 of the first distillation column 400, preferably, the first bottom outlet ( 441 may be located at the bottom of the lower region 440 of the first distillation column 400.
  • the middle stage inlet 443 and the middle stage inlet 434 of the first distillation column 400 may be located in the second middle region 430 of the first distillation column 400. May be positioned in the fourth intermediate region 432 included in the second intermediate region 430. At this time, the intermediate stage outlet 433 is located in the fourth intermediate region 432, which is a relatively lower portion of the second intermediate region 430, so that the intermediate stage outlet of the first distillation column 400 is discharged. It is possible to prevent the low boiling point component from being included in the flow flowing out of the portion 433.
  • the intermediate stage outlet 433 may be located below the raw material inlet 421, and the intermediate stage inlet 434 may be located below the intermediate stage outlet 433. can do. As described above, since the intermediate stage inlet 434 is positioned below the intermediate stage outlet 433, gas / liquid contact may be smoothly maintained to maintain separation performance.
  • the middle stage outlet 433 and the middle stage inlet 434 may be located at the same stage.
  • the middle stage outlet 433 and the middle stage inlet 434 may be located at the same stage in the second middle region 430 of the dividing wall distillation column 400, in which case the same stage The middle stage inlet 434 may be located below the middle stage outlet 433.
  • the intermediate stage outlet flow F 1-4 flowing out of the intermediate stage outlet 433 of the first distillation tower 400 and the intermediate stage inlet 434 of the first distillation tower 400 are introduced.
  • the second distillation column bottom effluent stream (F 2-1 ) may be discharged and introduced in the same stage of the first distillation column (400).
  • the raw material (F 1-1 ) in order to perform the separation process from the raw material (F 1-1 ) containing three components of low boiling point, middle boiling point and high boiling point, the raw material (F 1-1 ) is a first distillation column (Fig. 14) It may be introduced into the first intermediate region 420 of the 400.
  • the raw material (F 1-1 ) is introduced into the raw material inlet 421 located in the first middle region 420 of the first distillation column 400, the raw material (F 1-1 ) Among the components included in the low boiling point flow having a relatively low boiling point flows into the upper region 410, the high boiling point flow having a relatively high boiling point is introduced into the lower region 440.
  • the flow introduced into the upper region 410 flows from the first top outlet 411 to the first distillation tower top outlet flow F 1-2 , and part of the first distillation tower via the condenser 402.
  • the first top inlet 412 of 400 is refluxed or stored as a product.
  • the flow flowing into the lower region 440 flows from the first bottom outlet 441 to the first distillation tower bottom outlet flow F 1-3 and partially passes through the reboiler 403.
  • the first bottom inlet 442 of 400 is refluxed or stored as a product.
  • the flow of the component having a relatively high boiling point among the flow introduced into the upper region 410 and the flow of the component having a relatively low boiling point among the flow introduced into the lower region 440 are directed to the second middle region 430. Inflow, outflow from the middle end outlet 433 of the third middle portion region 432 may be introduced into the second distillation column (200).
  • the temperature of the upper region 410 of the first distillation column 400 may be 80 to 115 ° C., 85 to 100 ° C., or 90 to 105 ° C., and the lower region 440 of the first distillation column 400. ) May be 120 to 160 °C, 130 to 155 °C, or 135 to 147 °C, the temperature of the second middle region 430 of the first distillation column 400 is 100 to 150 °C, 110 to 140 Or 120 to 135 ° C.
  • the first distillation column top effluent flow (F 1-2 ) of the first distillation column top effluent stream (F 1-2 ) of the first distillation column 400 refluxed to the first top outlet 411 of the first distillation column (400).
  • the reflux ratio of 1-2 may be 1 to 10, preferably from 1.2 to 7.0, or 1.5 to 4.5 from a thermodynamic point of view.
  • the first distillation column bottom outlet flow of the first distillation column 400 (F 1-3) of the first column (400) comprising: a first distillation column bottom outlet flow of the reflux at the bottom into the inlet portion 442 of the (F 1-
  • the reflux ratio of 3 may be 1 to 30, preferably 5 to 25, or 10 to 20 from the thermodynamic point of view.
  • the temperature of the upper portion 210 of the second distillation column may be 100 to 130 ° C, 104 to 125 ° C, or 108 to 120 ° C
  • the temperature of the lower portion 220 of the second distillation column may be 120 to 150 ° C or 120 ° C. To 140 ° C, or 123 to 133 ° C.
  • the second distillation column top outlet flow (F 2-2 ) of the second distillation column top outlet flow (F 2-2 ) of the second distillation column 200 refluxed to the second top inlet 212 of the second distillation column (200).
  • the reflux ratio of 2-2 ) may be 0.01 to 5.0, preferably from 0.05 to 1.0, or 0.1 to 2.0 from the thermodynamic point of view.
  • the distillation apparatus including the first distillation column 400 may include a heater 300 or a heat exchanger to preheat the raw material F 1-1 .
  • at least one of the inlet and the outlet of the first distillation column 400 may be formed by two or more openings to improve separation efficiency of the raw material F 1-1 . Detailed description thereof is the same as described in the above-described distillation apparatus, and thus will be omitted.
  • the distillation apparatus includes a first distillation apparatus and a second distillation apparatus, and the first distillation tower 500 included in the first distillation apparatus has a partition wall type having a dividing wall 501 therein. It may be a distillation column.
  • the first distillation column 500 may have a structure in which the dividing wall 501 is in contact with the top of the first distillation column 500 and spaced apart from the bottom of the column. Accordingly, the interior of the first distillation column 500 is divided into the first dotted line 510 and the third region 530 divided by the dividing wall 501, as shown in FIG.
  • the dividing wall 501 is not located and may be divided into a second region 520 disposed at a lower end of the first region 510 and the third region 530.
  • the first region 510 may be divided into a first upper region 511 and a first lower region 512 dividing the first distillation column 500 in the longitudinal direction, and the first upper region 511. May not contact the second region 520, and the first lower region 512 may contact the second region 520.
  • the third region 530 is divided into a third upper region 531 and a third lower region 532 dividing the first distillation column 500 in two lengthwise directions, and the third upper region 531. May not contact the second region 520, and the third lower region 532 may contact the second region 520. Accordingly, the interior of the first distillation column 500 is divided into a first region 510, a second region 520, and a third region 530, and the first region 510 is a first upper region 511.
  • a first lower region 512, and the third region 530 may be further divided into a third upper region 531 and a third lower region 532.
  • the first region 510 and the third region 530 are separated or isolated from each other by the separation wall 501. Accordingly, the flow flowing out of the first region 510 and the flow flowing out of the third region 530 may be prevented from being mixed with each other.
  • the length of the dividing wall 501 may be a length corresponding to more than 40% of the number of theoretical stages. It may have a length corresponding to 50% or more, more preferably 60% or more singular.
  • the dividing wall 501 of the first distillation column 500 is located inside the first distillation column 500 in the length of the range, thereby the flow in the first region 510 and the third region 530. It is possible to effectively block the flow in the).
  • the flow of the second distillation column 200 flows out of the intermediate stage outlet 533, as compared with the distillation column having the dividing wall 401 of FIG. 14.
  • the second lower inlet 221 it is possible to more effectively prevent the low-boiling components are mixed out in the flow flowing out of the intermediate end outlet 533.
  • the first region 510 includes a raw material inlet 513, a first top outlet 514, and a first top inlet 515, wherein the second region 520 is formed of a first top inlet 515.
  • the raw material inlet 513, the first upper outlet 514 and the first upper inlet 515 are located in the first region 510 of the first distillation column 500, and the third upper end.
  • the inlet portion 536, the third upper outlet portion 535, the intermediate stage outlet portion 533, and the intermediate stage inlet portion 534 are located in the third region 530, and the first lower outlet portion 521 is provided.
  • the first lower inlet 522 may be located in the second region 520.
  • the raw material inlet 513 may be located at the point where the first lower region 512 or the first upper region 511 and the first lower region 512 contact each other.
  • the point where the first upper region 511 and the first lower region 512 contact each other may mean a point at which the first distillation column 500 is divided into two equal parts in the longitudinal direction.
  • first upper outlet 514 and the first upper inlet 515 may be located in the first upper region 511 included in the first region 510 of the first distillation column 500.
  • first upper outlet 514 may be located at the top of the first upper region 511 of the first distillation column 500.
  • first bottom outlet 521 and the first bottom inlet 522 may be located in the second region 520 of the first distillation column 500, preferably the first bottom outlet 521. 521 may be located at the bottom of the second region 520 of the first distillation column 500.
  • the third upper inlet 536, the third upper outlet 535, the intermediate stage outlet 533, and the intermediate stage inlet 534 may include a third region 530 of the first distillation column 500.
  • the third upper inlet 536 and the third upper outlet 53 may be located in the second upper region 531, wherein the third upper inlet 536 is a third region.
  • the third top outlet 535 may be located at the top of the third region 530, and is positioned at the top of, for example, the first stage of the 530.
  • the intermediate stage inlet portion 533 and the intermediate stage inlet portion 534 may be located in the third lower region 532.
  • the intermediate stage inlet portion 533 and the intermediate stage inlet portion 534 are located in the third lower region 532 so that the low boiling point component in the flow out of the intermediate stage outlet portion 533 of the first distillation column 500 It can be prevented from being included.
  • the intermediate stage outlet 533 may be located below the raw material inlet 513, and the intermediate stage inlet 534 is located below the intermediate stage outlet 533. The description thereof is the same as described above, and thus will be omitted.
  • the raw material (F 1-1 ) in order to perform the separation process from the raw material (F 1-1 ) containing three components of low boiling point, middle boiling point and high boiling point, the raw material (F 1-1 ) is a first distillation column (Fig. 15) It may flow into the first region 510 of the 500.
  • the raw material F 1-1 flows into the raw material inlet 513 located in the first region 510 of the first distillation column 500 and is included in the raw material F 1-1 .
  • the low boiling point stream having a relatively low boiling point is introduced into the first upper region 511 and the high boiling point stream having a relatively high boiling point is introduced into the second region 520 via the first lower region 512.
  • the flow flowing into the first upper region 511 flows from the first upper outlet 514 to the first region upper outlet flow F 1-2 , and partially through the first condenser 502. It may flow into the first upper inlet 515 of the first region 510.
  • the high boiling point stream having a relatively high boiling point among the flows flowing into the second region 520 is discharged from the first bottom outlet 521 to the first distillation column bottom outlet flow F 1-3 and reboiled ( A portion of the second region 520 may be introduced into the first lower inlet 522 of the second region 520.
  • the middle boiling point stream having a relatively low boiling point among the flows introduced into the second region 520 is introduced into the third region 530 and has a relatively low boiling point among the components introduced into the third region 530.
  • the component may be separated into a component having a high boiling point, and some may be reintroduced into the first region 510.
  • a component having a relatively low boiling point among the components introduced into the third region 530 may have a third region upper outlet flow F 1-5 at the third upper outlet 535 of the third upper region 531. And a portion of the third upper inlet portion 536 of the third region 530 may flow through the third condenser 503.
  • a component having a relatively high boiling point among the components introduced into the third region 530 flows out of the middle stage outlet 533 of the third lower region 532 and flows into the second distillation column 200. It may flow back into the second region 520.
  • the temperature of the first upper region 511 of the first distillation column 500 may be 80 to 115 ° C, 85 to 100 ° C, or 90 to 105 ° C
  • the second of the first distillation column 500 The temperature of the region 520 may be 120 to 160 ° C, 130 to 155 ° C, or 135 to 147 ° C
  • the temperature of the third upper region 531 of the first distillation column 500 may be 85 to 120 ° C or 90 ° C.
  • the reflux ratio of (F 1-2 ) may be 1 to 10, preferably from 1.2 to 7.0, or 1.5 to 4.5 from a thermodynamic point of view.
  • the reflux ratio of 1-5 ) may be 0.01 to 3.0, preferably from 0.03 to 2.0, or 0.1 to 1.0 from the thermodynamic point of view.
  • Said second region (520) a first distillation column bottom outlet flow (F 1-3) of the second region (520) comprising: a first distillation column bottom outlet flow of the reflux at the bottom into the inlet section 522 of the (F 1-
  • the reflux ratio of 3 ) may be 1 to 30, preferably 5 to 25, or 10 to 20 from the thermodynamic point of view.
  • the temperature of the upper portion 210 of the second distillation column may be 100 to 130 ° C, 104 to 125 ° C, or 108 to 120 ° C
  • the temperature of the lower portion 220 of the second distillation column may be 120 to 150 ° C or 120 ° C. To 140 ° C, or 123 to 133 ° C.
  • the second distillation column top outlet flow (F 2-2 ) of the second distillation column top outlet flow (F 2-2 ) of the second distillation column 200 refluxed to the second top inlet 212 of the second distillation column (200).
  • the reflux ratio of 2-2 ) may be 0.01 to 5.0, preferably from 0.05 to 1.0, or 0.1 to 2.0 from the thermodynamic point of view.
  • the distillation apparatus including the first distillation column 500 may include a heater 300 or a heat exchanger to preheat the raw material F 1-1 .
  • at least one of the inlet and the outlet of the first distillation column 500 may be formed by two or more openings to improve separation efficiency of the raw material F 1-1 . Detailed description thereof is the same as described in the above-described distillation apparatus, and thus will be omitted.
  • the present application also relates to a separation method of raw materials, for example, the separation method may be performed by the distillation apparatus described above.
  • How to remove the raw material (F 1-1) of the present application may include the step of phase separation and outflow of classifying the distillation step, the raw material (F 1-1) for introducing the raw material (F 1-1) .
  • the raw material (F 1-1) the step of flowing into the raw material inlet 121 of the first distillation column (100), the first distillation column 100 in the first distillation column to the inlet raw material (F 1-1) with Separating out the first top outlet 111, the middle end outlet 122, and the first bottom outlet 131 of 100, and outputting the flow out of the middle end outlet 122.
  • Each of the bottom outlet 222 may include a step of separating out.
  • the raw material (F 1-1 ) introduced into the first distillation column 100 may include the compound of Formula 1, for example, butyl acrylate, methyl acrylate, methyl methacrylate, 2-ethylhexyl Acrylate, acrylic acid, ethylene glycol, butyl alcohol, methyl alcohol, or isopropyl alcohol, preferably 2-ethylhexyl acrylate. Since the description of the raw material (F 1-1 ) is the same as described above, it will be omitted.
  • the separation method may include a separation step of the first distillation tower 100 and a separation step of the second distillation tower 200 connected to the first distillation tower 100.
  • Removing step of the first distillation column 100 may include the step of phase separation and distillation outlet of the stage, the raw material (F 1-1) for introducing the raw material (F 1-1).
  • the step of flowing the raw material (F 1-1) may be introduced into the material (F 1-1) as a raw material inlet 121 of the first distillation column (100).
  • a first top of the outlet section 111 of the raw material (F 1-1) separated by the first distillation column 100 it is introduced into the 100
  • the intermediate stage outlet 122 and the first bottom outlet 131 may be separated, respectively.
  • the relatively high boiling point flows from the first bottom outlet 131 of the first distillation column 100 to the first distillation column bottom outlet flow F 1-3 and has a relatively middle boiling point.
  • the flow may flow from the intermediate stage outlet 122 of the first distillation column 100 to the intermediate stage outlet flow F 1-4 .
  • the flow flowing out of the first top outlet 111 passes through the first condenser 101, and the first pass through the first condenser 101.
  • the separation method of the present application may include a separation step of the second distillation column 200 after the separation step of the first distillation tower 100.
  • Separation of the second distillation column 200 may include introducing a flow flowing out of the first distillation column 100, distilling the flow flowing from the first distillation column 100, and separating and distilling out the flow. Can be.
  • Separation step of the second distillation column 200 is to flow the flow out from the middle stage outlet 122 of the first distillation column 100 to the second lower inlet 221 of the second distillation column 200. It may include a step.
  • the flow introduced into the second lower inlet 221 of the second distillation column 200 is transferred to the second lower outlet 222 of the second distillation column 200.
  • the second lower outlet 222 of the second distillation column 200 receives a relatively high boiling point of the flow introduced into the second distillation column 200.
  • the relatively middle boiling point flow is the second distillation column top outlet flow (F) in the second top outlet 211 of the second distillation column (200) 2-2 ) may comprise the step of outflow.
  • a part or all of the flow flowing out of the second bottom outlet 222 is transferred to the middle stage inlet 123 of the first distillation column 100. And flowing the flow from the second top outlet 211 to the second condenser 201 and passing all or part of the flow through the second condenser 201 to the second condenser 201. Inflow to the upper inlet 212 may be included.
  • the separating step of the first distillation column 100 flows out from the bottom of the flow flowing from the raw material inlet 121 flows out of the middle stage outlet portion 122 of the first distillation column (100). It may include, and the step of introducing the flow flowing into the middle stage inlet 123 of the first distillation column 100 at the bottom than the flow flowing out of the intermediate stage outlet (122).
  • the flow flowing out of the middle stage inlet 123 of the first distillation column 100 is greater than the first bottom outlet 131 and the first bottom inlet 132 of the first distillation column 100. It may spill out at the top.
  • the step of introducing the flow flowing out of the first distillation column 100 into the second distillation column 200 may include flowing the flow flowing out of the middle stage outlet 122 of the first distillation column 100 in the second distillation column. It may include flowing into the bottom of the 200, for example, the second lower inlet 221.
  • each step organically
  • the order of the separation method is exemplary and not limited as described above.
  • each step may further include a process step that can be conventionally carried out in the art, the separation method is not limited to the above steps alone.
  • the raw material (F 1-1 ) may further include preheating before flowing into the first distillation column (100).
  • preheating or “preheating” is used by the same meaning as a preheating step below.
  • the preheating step is performed before the step of introducing the above-described raw material (F 1-1 ), and before the raw material (F 1-1 ) is introduced into the raw material inlet 121 of the first distillation column 100 to be heated. Therefore, it is possible to minimize the loss of energy generated in the separation process of the raw material (F 1-1 ).
  • the raw material (F 1-1 ) flowing into the first distillation column 100 may be preheated using an external heat source.
  • An exemplary preheating step may be to heat the raw material F 1-1 using the heater 300. Therefore, by heating the raw material (F 1-1 ) before flowing into the first distillation column 100, the first lower inlet ( 1-3 ) of the first distillation column bottom outflow (F 1-3 ) of the first distillation column (100) The amount of heat used in reboiler 102 to heat some of the flow back to 132 may be reduced. Details of the heater 300 are the same as described above, and thus will be omitted.
  • the first distillation column top effluent stream F 1-2 of the first distillation column 100 is heat-exchanged with the raw material F 1-1 using the first heat exchanger 301. It may include.
  • the first distillation column top outlet flow (F 1-2 ) flowing out of the first distillation column 100 supplies heat while passing through the first heat exchanger 301, and the first heat exchanger 301. It is possible to increase the temperature of the raw material (F 1-1 ) using.
  • the heat exchange of the second distillation column top effluent stream F 2-2 flowing out of the second distillation column 200 with the raw material F 1-1 using the second heat exchanger 302 is performed. It may include.
  • the second distillation column top effluent flow (F 2-2 ) flowing out of the second distillation column 200 supplies heat while passing through the second heat exchanger 302, and the second heat exchanger 302 It is possible to increase the temperature of the raw material (F 1-1 ) using. Accordingly, by utilizing the waste heat energy to be discharged from the separation process of the raw material (F 1-1), and heating the raw material (F 1-1) of the low-temperature flowing into the first distillation column 100, generated in the separation process The loss can be minimized. In addition, by using the latent heat generated from the high temperature steam, the temperature of the raw material can be efficiently increased even with a small amount of thermal energy as compared with utilizing the sensible heat of the liquid.
  • the first distillation column top effluent stream F 1-2 of the first distillation column 100 supplies heat to the first heat exchanger 301, and then the first distillation column 100 at a relatively low temperature. Is refluxed to the first top inlet 112, and the second distillation column top outlet flow (F 2-2 ) of the second distillation column 200 supplies relative heat to the second heat exchanger 302, and then At a low temperature as is refluxed to the second top inlet 212 of the second distillation column 200, respectively. Therefore, by reducing the amount of cooling water used in the condensation process using the first condenser 101 and the second condenser 201, it is possible to reduce the cost required in the condensation process.
  • the reboiler 102 for heating a part or all of the flow of the first distillation column bottom outflow flow (F 1-3 ) of the first distillation column 100 to the first bottom inlet 132 can be reduced. Accordingly, it is possible to improve the economics of the process by reducing the energy consumption to increase the temperature of the raw material (F 1-1 ) flowing into the first distillation column 100, minimizing the size of the distillation column used for purification. In this case, detailed descriptions of the temperature and the reflux ratio of the raw material F 1-1 and the respective flows are the same as those described in the above-described distillation apparatus, and thus the description thereof is omitted.
  • distillation apparatus of the present application and the separation method using the same, it is possible to reduce the energy consumption and to improve the economics of the process by minimizing the size of the distillation column used for the purification of the raw materials.
  • the material to be separated for example, 2-ethylhexyl acrylate can be separated with high purity at the time of separation of the mixture of three or more components, and the separation and purification process of the 2-ethylhexyl acrylate Can save energy.
  • FIG. 1 exemplarily shows a distillation apparatus according to an embodiment of the present application.
  • FIG. 2 and 3 is a view showing an exemplary distillation apparatus according to an embodiment of the present application.
  • FIG. 4 is a view exemplarily showing a distillation apparatus according to an embodiment of the present application.
  • FIG. 7 to 13 are views exemplarily showing a cross section parallel to the ground of the distillation apparatus according to one embodiment of the present application.
  • 15 is a view illustrating the distillation apparatus according to another embodiment of the present application by way of example.
  • 16 exemplarily shows a general separation apparatus used in a comparative example.
  • 2-ethylhexyl acrylate was prepared using the distillation apparatus of FIG. 1. Specifically, the raw material of 20 degreeC-40 degreeC containing 2-ethylhexyl acrylate was introduce
  • the operating pressure of the upper part of the first distillation column is about 20 to 30 torr, the operating temperature is about 90 to 105 °C, the operating pressure of the lower part of the first distillation column is about 80 to 90 torr, the operating temperature is 140 to 147 It was made to be ° C.
  • a part of the flow discharged from the first stage of the first distillation column was refluxed to the first distillation column via a first condenser, and a part of the flow discharged from the 60 stage of the first distillation column was refluxed to the first distillation column via a reboiler.
  • the reflux ratio of the first distillation column top effluent stream of the first distillation column was set to 1.5 to 4.5, and the reflux ratio of the first distillation column bottom effluent stream was set to 10 to 20.
  • the flow discharged from the intermediate stage outlet located at the 55 stage of the first distillation column flowed into the second bottom inlet of the bottom of the second distillation column, and is discharged from the second bottom outlet of the bottom of the second distillation column.
  • the stream was located at the 55 stage of the first distillation column and flowed into the intermediate stage inlet located below the intermediate stage outlet.
  • the pressure of the top of the second distillation column is about 20 to 30 torr
  • the operating temperature is about 108 to 120 °C
  • the operating pressure of the bottom of the second distillation column is about 40 to 60 torr
  • the operating temperature is about It was made to be 120-150 degreeC.
  • the reflux ratio of the second distillation column top effluent stream of the second distillation column was set to be 0.01 to 5.0.
  • the raw material was heated to 50 to 100 ° C. through a heater, and then purified in the same manner as in Example 1 except that the raw material was introduced into the first distillation column.
  • the first distillation tower top outlet flow flowing out of the first top outlet of the first distillation column flows into the first heat exchanger to perform heat exchange with the raw material introduced into the first distillation column before passing through the first condenser. Except that the purification was carried out in the same manner as in Example 1. After the heat exchange, the temperature of the raw material flowing into the first distillation column was adjusted to 50 to 100 ° C., and the temperature of the first distillation column top effluent flow flowing into the first condenser was adjusted to 50 to 90 ° C.
  • the operating pressure of the upper part of the first distillation column is about 20 to 30 torr
  • the temperature of the first distillation column top effluent flow flowing into the first heat exchanger is about 80 to 115 ° C.
  • the first distillation column The lower operating pressure was about 80 to 90 torr and the operating temperature was 140 to 147 ° C.
  • the reflux ratio of the first distillation column top effluent stream of the first distillation column was set to 1.5 to 4.5
  • the reflux ratio of the first distillation column bottom effluent stream was set to 10 to 20.
  • the pressure of the top of the second distillation column is about 20 to 30 torr
  • the operating temperature is about 108 to 120 °C
  • the operating pressure of the bottom of the second distillation column is about 40 to 60 torr
  • the operating temperature is about 120 To 150 ° C
  • the reflux ratio of the second distillation column top effluent stream of the second distillation column was set to be 0.1 to 2.0.
  • the second distillation tower top outlet flow flowing out of the second top outlet of the second distillation column flows into the second heat exchanger to perform heat exchange with the raw material introduced into the first distillation column before passing through the second condenser. Except that the purification was carried out in the same manner as in Example 3.
  • the temperature of the raw material flowing into the first distillation column after the heat exchange was adjusted to 90 to 110 °C
  • the temperature of the second distillation column top effluent flow flowing into the second condenser was adjusted to be 60 to 110 °C.
  • the operation pressure of the upper part of the second distillation column is about 20 to 30 torr
  • the temperature of the second distillation column top effluent flow flowing into the second heat exchanger is about 100 to 130 ° C.
  • the second distillation column The operating pressure at the bottom was about 40 to 60 torr and the operating temperature was 120 to 150 ° C.
  • the reflux ratio of the second distillation column top effluent stream of the second distillation column was set to be 0.01 to 5.0.
  • a raw material inlet and a first top inlet of the first distillation column are each formed by two openings, and the two raw material inlets are located at 15 stages of the first distillation column having a theoretical stage of 60 stages, and the two first top inlets are theoretical. Purification was carried out in the same manner as in Example 1, except that a distillation column formed to be located at one stage of the first distillation column having 60 stages was used.
  • the raw material inlet and the first bottom inlet of the first distillation column are each formed by two openings, and the two raw material inlets are located in 15 stages of the first distillation column having a theoretical stage of 60 stages, and the two first bottom inlets are theoretical. Purification was carried out in the same manner as in Example 1, except that the distillation column formed to be located at 60 stages of the first distillation column having 60 stages was used.
  • the raw material inlet, the first lower inlet and the first upper inlet of the first distillation column are each formed of two openings, and the two raw material inlets are located at 15 stages of the distillation column having a theoretical stage of 60 stages.
  • the first lower inlets are located at 60 stages of the distillation column having 60 theoretical stages of the distillation column, and the two first upper inlets are positioned at 1 stage of the distillation column having 60 theoretical stages, except that a distillation column is used. Purification was carried out in the same manner as 1.
  • the raw material inlet, the middle stage inlet, and the middle stage inlet of the first distillation column are each formed of two openings, and the two raw material inlets are located at 15 stages of the first distillation column having a theoretical stage of 60 stages, and the middle stage outlet portion A distillation column was used in the 55th stage of the first distillation column having a theoretical stage of 60 stages, and the middle stage inlet was positioned at the lower portion of the intermediate stage outlet of the 55 stage of the first distillation column having a theoretical stage of 60 stages.
  • the second bottom inlet of each was formed by two openings, and was purified in the same manner as in Example 1 except for using a distillation column in which the two second bottom inlets were located at the bottom of the second distillation column.
  • a raw material inlet, a first top inlet and a first bottom inlet of the first distillation column are each formed by two openings, and the raw material inlet is located at 15 stages of the first distillation column having a theoretical stage of 60, and the two first The upper inlet is located at the first stage of the first distillation column having 60 theoretical stages, and the two first lower inlets are located at the 60 stage of the first distillation column having 60 theoretical stages, and the two intermediate stage outlets And a middle column inlet part having a distillation column positioned at 55 stages of the first distillation column having a theoretical stage of 60 stages, each of the second lower inlets of the second distillation column having two openings, and the two second lower inlets being Purification was carried out in the same manner as in Example 1, except that the distillation column, which was positioned at the bottom of the second distillation column, was used.
  • Example 2 It was purified in the same manner as in Example 1 except for using a dividing wall type distillation column having a dividing wall as the first distillation column as shown in FIG.
  • a raw material containing 2-ethylhexyl acrylate was introduced into the raw material inlet located in the first middle region of the first distillation column, and specifically, into the 15 stages of the first distillation column having 60 theoretical stages.
  • the operating pressure in the upper region of the first distillation column was about 20 to 30 torr, the operating temperature was about 80 to 115 ° C, the operating pressure in the lower region of the first distillation column was about 80 to 90 torr, and the operating temperature was 120 To 160 ° C.
  • a portion of the flow discharged from the upper region of the first distillation column was refluxed to the first distillation column via a first condenser, and a portion of the flow discharged from the lower region of the first distillation column was refluxed to the first distillation column via reboiler. I was.
  • the reflux ratio of the first distillation column top effluent stream of the first distillation column was set to 1 to 10
  • the reflux ratio of the first distillation column bottom effluent stream was set to 1 to 30.
  • the flow discharged from the fourth middle region of the first distillation column specifically, 55 stages of the first distillation column, flows into the bottom of the second distillation column, and the flow discharged from the bottom of the second distillation column is the first distillation column.
  • the pressure of the top of the second distillation column is about 20 to 30 torr
  • the operating temperature is about 100 to 130 °C
  • the operating pressure of the bottom of the second distillation column is about 40 to 60 torr
  • the operating temperature is about It was made to be 120-150 degreeC.
  • the reflux ratio of the second distillation column top effluent stream of the second distillation column was set to be 0.01 to 5.0.
  • the distillation column was purified in the same manner as in Example 1 except that the dividing wall type distillation column having a dividing wall spaced apart from the top of the distillation column was used as the first distillation column.
  • a raw material containing 2-ethylhexyl acrylate was introduced into the raw material inlet located in the first lower region of the first distillation column, and specifically, into the 15 stage of the first distillation column having 60 theoretical stages.
  • the operating pressure of the first region of the first distillation column is about 20 to 30 torr
  • the operating temperature is about 80 to 115 °C
  • the operating pressure of the second region of the first distillation column is about 80 to 90 torr
  • Operation temperature was set to 120-160 degreeC.
  • Part of the flow exiting the first upper region of the first distillation column was refluxed to the first distillation column via a first condenser and part was stored as product.
  • a portion of the flow exiting the third upper region of the first distillation column was refluxed to the third upper region via a third condenser and part was stored as a product.
  • Part of the flow exiting the second zone of the first distillation column was refluxed to the second zone via a reboiler and part was stored as product.
  • the reflux ratio of the first region top effluent stream of the first distillation column was set to 1 to 10
  • the reflux ratio of the third region top effluent stream was set to be 0.01 to 3.0
  • the reflux ratio of the first distillation column bottom effluent stream was set to 1 to 30.
  • the flow discharged from the third lower region of the first distillation column specifically, the middle stage outlet of the 55 stage of the first distillation column, flowed into the bottom of the second distillation column, and the flow discharged from the bottom of the second distillation column is
  • the intermediate stage inlet is located in the third lower region of the first distillation column, specifically, 55 stages of the first distillation column and located below the intermediate stage outlet.
  • the pressure of the top of the second distillation column is about 20 to 30 torr
  • the operating temperature is about 100 to 130 °C
  • the operating pressure of the bottom of the second distillation column is about 40 to 60 torr
  • the operating temperature is about It was made to be 120-150 degreeC.
  • the reflux ratio of the second distillation column top effluent stream of the second distillation column was set to be 0.01 to 5.0.
  • 2-ethylhexyl acrylate was purified using a distillation apparatus connected to two distillation columns.
  • the low-boiling stream and water flowing out of the top section of the first distillation column were passed through the condenser and partly refluxed to the first distillation column, and the other part was produced as a product. It was refluxed to the bottom region of the distillation column and the remaining part was introduced to the second distillation column.
  • the middle boiling point flowing out of the top of the second distillation column was condensed using a condenser, partly refluxed to the top of the second distillation column, and the other part was separated into the product, and the high boiling point flowing out of the lower part of the second distillation column was re-condensed. Some were used to reflux back to the bottom region of the second distillation column. In this case, the reflux ratio of the overhead flow of the second distillation column was set to be 0.2 to 1.0.
  • Example 12 Product purity (% by weight) 99.95 99.95 99.95 99.95 99.95 99.96 99.96 Low boiling point content in the product 10 ppm 10 ppm 10 ppm 10 ppm 3 ppb 1 ppb Energy Consumption (Gcal / hr) 1.2 0.91 0.91 0.84 0.82 0.91 0.91 Energy reduction rate (%) - 24 24 30 32 24 24
  • the total amount of energy input in the purification process according to Examples 1 to 4, Examples 11 and 12 is 0.91 Gcal / hr, 0.91 Gcal / hr, 0.84 Gcal / hr, 0.82 Gcal / hr, 0.91 Gcal / hr, 0.91, respectively.
  • Gcal / hr it can be seen that the total energy consumption is significantly reduced compared to the total energy input in the purification process according to the comparative example. That is, when the 2-ethylhexyl acrylate is separated by the distillation apparatus according to the embodiment of the present application, the energy saving effect of up to 32% is shown.
  • Example 5 Example 6
  • Example 7 Example 8
  • Example 9 Example 10 The degree of drift ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • a 1-1 , A 1-2 , A 1-3 , A 1-4 Small area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 출원은, 증류 장치 및 분리 방법에 관한 것으로서, 본 출원의 증류 장치 및 분리 방법에 의하면, 3 성분 이상의 혼합물의 분리 시에 분리하고자 하는 물질, 예를 들어, 2-에틸헥실 아크릴레이트를 고순도로 분리할 수 있으며, 상기 2-에틸헥실 아크릴레이트의 분리 정제 과정에서 에너지 절감을 도모할 수 있다.

Description

증류 장치
본 출원은 증류 장치 및 그를 이용한 2-에틸헥실 아크릴레이트의 분리 방법에 관한 것이다.
원유(Crude Oil) 등과 같은 각종 원료는 다양한 물질, 예를 들어 다양한 화합물들의 혼합물이며, 상기 원료는 통상적으로 상기 각각의 화합물로 분리된 후 사용될 수 있다. 상기 혼합물을 분리하는 화학공정 중 대표적인 것이 증류공정이다.
예를 들어, 상기 혼합물은 하나 이상의 증류탑을 통과하여 증류될 수 있고, 상기 증류 공정에서 그 흐름의 일부 또는 전부가 응축기 또는 재비기를 통과한 후 증류탑으로 환류될 수 있으며, 이러한 공정을 통하여 고순도의 화합물을 얻을 수 있다. 일반적으로, 3 성분 이상의 물질을 포함하는 원료는 2 기 이상의 증류탑을 통과하여 각각의 성분으로 분리될 수 있다. 예를 들어 첫번째 증류탑의 상부에서 저비점 성분이 상기 원료로부터 우선적으로 분리되고, 상기 첫번째 증류탑에 연결된 두번째 증류탑의 상부와 하부에서 각각 중비점 성분과 고비점 성분이 상기 원료로부터 분리될 수 있다. 이 경우, 첫번째 증류탑의 하부 영역에서 중비점 성분의 재혼합 현상이 발생할 수 있으며, 이에 따라 추가적인 에너지의 소비가 발생할 수 있다.
본 출원은 증류 장치 및 상기 증류 장치를 이용하여 2-에틸헥실 아크릴레이트를 고순도로 분리하는 분리 방법을 제공하는 것을 목적으로 한다.
본 출원은 증류 장치에 관한 것이다. 예시적인 상기 증류 장치는 2 기의 증류 장치를 포함할 수 있다. 본 출원의 일 구현예에 따른 증류 장치는 제 1 증류 장치 및 제 2 증류 장치가 연결된 형태일 수 있으며, 혼합물, 예를 들어 하기 화학식 1의 화합물을 포함하는 원료의 정제 과정에서 발생하는 에너지 손실을 최소화하면서도 기존의 증류 장치를 활용하여 상기 원료를 정제할 수 있어 공정의 경제성을 향상시킬 수 있다.
이하, 도면을 참조하여 본 출원의 증류 장치를 설명하지만, 상기 도면은 예시적인 것으로 상기 증류 장치의 범위가 첨부된 도면에 제한되는 것은 아니다.
도 1은, 본 출원의 구현예에 따른 증류 장치를 예시적으로 보여주는 도면이다. 하나의 예시에서, 상기 증류장치는 하기 화학식 1의 화합물을 포함하는 원료(F1-1)가 유입되어 정제되는 증류 장치이다.
도 1에 나타나듯이, 상기 증류 장치는 제 1 증류 장치 및 제 2 증류 장치를 포함한다. 상기 제 1 증류 장치는 원료(F1-1)가 유입되는 제 1 증류탑(100)을 포함하고, 상기 제 2 증류 장치는 상기 제 1 증류탑(100)에 순차로 연결되며, 상기 제 1 증류탑(100)의 유출 흐름이 유입되는 제 2 증류탑(200)을 포함한다. 상기 증류 장치의 제 1 증류탑(100) 및 제 2 증류탑(200)은 연결 루트, 예를 들면, 배관에 의해 서로 연결되어 있을 수 있다.
[화학식 1]
Figure PCTKR2014006573-appb-I000001
상기 화학식 1에서 R1은, 수소, 탄소수 1 내지 10, 예를 들면, 탄소수 1 내지 8, 탄소수 1 내지 6 또는 탄소수 1 내지 4의 알킬기를 나타내며, R2는, 알킬기, 예를 들면, 탄소수 1 내지 24, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12 또는 탄소수 1 내지 8의 선형 또는 분지형의 알킬기를 나타낸다.
하나의 예시에서 상기 화학식 1의 성분은, 상기 화학식 1을 만족하는 화합물이라면 특별히 제한되는 것은 아니며, 예를 들면, 부틸 아크릴레이트, 메틸아크릴레이트, 메틸메타크릴레이트, 2-에틸헥실 아크릴레이트, 아크릴산, 에틸렌글리콜, 부틸알코올, 메틸알코올, 또는 이소프로필알코올, 바람직하게는, 2-에틸헥실 아크릴레이트 일 수 있다.
상기에서 제 1 증류 장치 및 제 2 증류 장치는, 원료(F1-1)에 포함된 다성분 물질을 각각의 비점 차이에 의해 분리할 수 있는 장치이다. 유입되는 원료(F1-1)의 성분 또는 분리하고자 하는 성분 등의 비점 등을 고려하여, 다양한 형태를 가지는 증류 장치가 본 출원에서 이용될 수 있다. 예를 들어, 본원의 증류 장치에서는 저비점 및 고비점 물질을 1 차적으로 제 1 증류탑(100)에서 분리하고, 중비점 물질을 포함하는 흐름이 제 2 증류탑(200)으로 유입되어 상기 제 2 증류탑(200)에서 생성물로 유출될 수 있다. 본 출원에서 혼합물의 증류 과정에서 사용할 수 있는 증류 장치의 구체적인 종류는 특별히 제한되지 않으며, 예를 들어, 도 1에 나타난 바와 같은 일반적인 구조의 제 1 증류탑(100) 및 제 2 증류탑(200)을 포함하는 증류 장치를 사용할 수 있다.
도 2는, 예시적인 본 출원에 따른 제 1 증류 장치를 모식적으로 나타낸 도면이다. 상기 제 1 증류 장치는, 도 2에 나타난 바와 같이, 제 1 증류탑(100), 상기 제 1 증류탑(100)에 각각 연결되어 있는 제 1 응축기(101), 및 재비기(102)를 포함한다. 예를 들어, 상기 제 1 증류탑(100)의 내부는 상단(110), 하단(130) 및 중간단(120)으로 구분되거나 또는 상부(110), 하부(130) 및 중간부(120)로 구분될 수 있다. 본 명세서에서 용어 「상단」 또는 「상부」는, 제 1 증류탑(100) 및 제 2 증류탑(200)의 구조에서 상대적으로 위쪽 부분을 의미하고, 예를 들어, 상기 제 1 증류탑(100) 및 제 2 증류탑(200)에서 각 증류탑의 높이 또는 길이 방향으로 2 등분 하였을 때에 나뉘어진 2 개의 영역 중 위쪽 부분을 의미할 수 있다. 또한, 상기에서 「하단」 또는 「하부」는, 각각 제 1 증류탑(100) 및 제 2 증류탑(200)의 구조에서 상대적으로 아래쪽 부분을 의미하고, 예를 들어, 상기 제 1 증류탑(100) 및 제 2 증류탑(200)에서 각 증류탑의 높이 또는 길이 방향으로 2 등분 하였을 때에 나뉘어진 2 개의 영역 중 아래쪽 부분을 의미할 수 있다. 또한, 본 명세서에서 「중간단」 또는 「중간부」는 제 1 증류탑(100)의 구조에서 각 증류탑의 높이 또는 길이 방향으로 3 등분 하였을 때에 나뉘어진 3 개의 영역 중 가운데 영역을 의미할 수 있으며, 상기 제 1 증류탑(100)의 상부 및 하부 사이의 영역을 의미할 수 있다. 본 명세서에서 상기 제 1 증류탑(100) 및 제 2 증류탑(200)의 상부, 하부 및 중간부는 서로 상대적인 개념으로 사용될 수 있다.
또한, 본 명세서에서 사용되는 용어 「응축기」는 증류탑과 별도로 설치된 장치로서, 상기 본체에서 유출된 물질을 외부에서 유입된 냉각수와 접촉시키는 등의 방식으로 냉각시키기 위한 장치를 의미할 수 있다. 예를 들어, 상기 제 1 증류 장치의 제 1 응축기(101)는 상기 제 1 증류탑(100)의 제 1 상단 유출부(111)에서 유출되는 제 1 증류탑 상단 유출 흐름(F1-2)을 응축시키는 장치이며, 후술할 상기 제 2 증류 장치의 제 2 응축기(201)는 상기 제 2 증류탑(200)의 제 2 상단 유출부(211)에서 유출되는 제 2 증류탑 상단 유출 흐름(F2-2)을 응축시키는 장치일 수 있다. 또한, 용어「재비기」는 증류탑의 외부에 설치된 가열 장치이고, 끓는점이 높은 흐름을 다시 가열 및 증발시키기 위한 장치를 의미할 수 있다. 예를 들어, 상기 제 1 증류 장치의 재비기(102)는 상기 제 1 증류탑(100)의 제 1 하단 유출부(131)에서 유출되는 제 1 증류탑 하단 유출 흐름(F1-3)을 가열하는 장치일 수 있다.
하나의 예시에서, 상기 제 1 증류탑(100)은 원료(F1-1)가 공급되는 원료 유입부(121), 제 1 증류탑의 상부(110)에서 저비점 흐름이 유출되는 제 1 상단 유출부(111), 상기 제 1 증류탑의 상부(110)에서 유출되는 흐름의 환류 흐름이 유입되는 제 1 상단 유입부(112), 제 1 증류탑의 하부(130)에서 고비점 흐름이 유출되는 제 1 하단 유출부(131), 제 1 증류탑의 하부(130)에서 유출되는 흐름의 환류 흐름이 유입되는 제 1 하단 유입부(132), 제 1 증류탑의 중간단(120)에서 중비점 흐름이 유출되는 중간단 유출부(122) 및 후술할 제 2 증류탑의 하부(220)에서 유출되는 흐름이 유입되는 중간단 유입부(123)를 포함한다. 예를 들어, 원료(F1-1)가 상기 제 1 증류탑(100)의 중간단에 위치하는 원료 유입부(121)로 유입되면, 유입된 상기 원료(F1-1)는 제 1 증류탑(100)의 상부 또는 상단(110)에 위치하는 제 1 상단 유출부(111)에서 유출되는 제 1 증류탑 상단 유출 흐름(F1-2), 제 1 증류탑(100)의 중간부 또는 중간단(120)에 위치하는 중간단 유출부(122)에서 유출되는 중간단 유출 흐름(F1-4) 및 제 1 증류탑(100)의 하부 또는 하단(130)에 위치하는 제 1 하단 유출부(131)에서 유출되는 제 1 증류탑 하단 유출 흐름(F1-3)으로 각각 분리되어 유출될 수 있다. 상기 제 1 상단 유출부(111)에서 유출되는 상기 제 1 증류탑 상단 유출 흐름(F1-2)은 제 1 응축기(101)를 통과하고, 상기 제 1 응축기(101)를 통과한 제 1 증류탑 상단 유출 흐름(F1-2) 중 일부 또는 전부는 상기 제 1 상단 유입부(112)로 유입되어 제 1 증류탑(100)으로 환류되거나, 제품으로 저장될 수 있다. 또한, 상기 제 1 증류탑(100)의 상기 제 1 하단 유출부(131)에서 유출되는 상기 제 1 증류탑 하단 유출 흐름(F1-3)은 재비기(102)를 통과하고 상기 재비기(102)를 통과한 제 1 증류탑 하단 유출 흐름(F1-3) 중 일부 또는 전부는 상기 제 1 하단 유입부(132)로 유입되어 제 1 증류탑(100)으로 환류되거나, 제품으로 저장될 수 있다.
일 구현예에서, 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 고온의 기상 흐름인 중간단 유출 흐름(F1-4)은 상기 제 1 증류탑(100)에 연결되어 있는 제 2 증류탑(200)의 하부(220)로 유입되며, 이에 따라, 제 2 증류탑 하부(220)에서 필요한 열을 공급하게 된다.
본 명세서에서 「저비점 흐름」은 저비점, 중비점 및 고비점 성분의 3 성분을 포함하는 원료 흐름 중 상대적으로 끓는점이 낮은 성분이 농후(rich)한 흐름을 의미하며, 상기 저비점 흐름은 예를 들어, 제 1 증류탑(100)의 제 1 상단 유출부(111)에서 유출되는 흐름을 의미한다. 상기 「고비점 흐름」은 저비점, 중비점 및 고비점 성분의 3 성분을 포함하는 원료 흐름 중 상대적으로 끓는점이 높은 성분이 농후(rich)한 흐름을 의미하며, 상기 고비점 흐름은 예를 들어, 제 1 증류탑(100)의 제 1 하단 유출부(131)에서 유출되는 상대적으로 비점이 높은 성분이 농후한 흐름을 의미한다. 상기 「중비점 흐름」은 저비점, 중비점 및 고비점 성분의 3 성분을 포함하는 원료 흐름 중 저비점 성분과 고비점 성분 사이의 끓는점을 가지는 성분이 농후(rich)한 흐름을 의미하며, 상기 중비점 흐름은 예를 들어, 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 흐름을 의미한다. 상기 중비점 성분은 최종적으로 후술할 제 2 증류탑의 상부(210)에서 유출되어 제품으로 저장될 수 있다. 상기에서 용어 「농후한 흐름」이란, 원료(F1-1)에 포함된 저비점 성분, 고비점 성분 및 중비점 성분 각각의 함량보다 상기 제 1 증류탑(100)의 제 1 상단 유출부(111)에서 유출되는 흐름에 포함된 저비점 성분, 제 1 하단 유출부(131)에서 유출되는 흐름에 포함된 고비점 성분 및 중간단 유출부(122)에서 유출되는 흐름에 포함된 중비점 성분 각각의 함량이 더 높은 흐름을 의미한다. 예를 들어, 상기 제 1 증류탑(100)의 제 1 증류탑 상단 유출 흐름(F1-2)에 포함된 저비점 성분, 제 1 증류탑 하단 유출 흐름(F1-3)에 포함된 고비점 성분 및 중간단 유출 흐름(F1-4)에 포함되는 중비점 성분이 나타내는 각각의 함량이 50 중량% 이상, 80 중량% 이상, 90 중량% 이상, 95 중량% 이상 또는 99 중량% 이상인 흐름을 의미할 수 있다. 본 명세서에서 상기 저비점 흐름과 제 1 증류탑(100)의 제 1 증류탑 상단 유출 흐름(F1-2)은 동일한 의미로 사용될 수 있으며, 고비점 흐름과 상기 제 1 증류탑(100)의 제 1 증류탑 하단 유출 흐름(F1-3)은 동일한 의미로 사용될 수 있고, 상기 중비점 흐름과 제 1 증류탑(100)의 중간단 유출 흐름(F1-4)은 동일한 의미로 사용될 수 있다.
도 2와 같이, 상기 제 1 증류탑(100)의 중간단 유출부(122)는 상기 제 1 증류탑(100)의 중간부 영역 또는 중간단(120)에 위치할 수 있으며, 하나의 예시에서, 상기 중간단 유출부(122)는 원료 유입부(121)보다 하부, 즉, 아래 쪽에 위치할 수 있다. 또한, 중간단 유입부(123)는 상기 제 1 증류탑(100)의 중간부 영역 또는 중간단(120)에 위치할 수 있으며, 상기 중간단 유출부(122)보다 하부, 즉, 아래 쪽에 위치할 수 있다. 상기와 같이, 중간단 유입부(123)가 상기 중간단 유출부(122)보다 하부에 위치함으로써, 기/액 접촉이 원활하게 되어 분리 효율이 유지되는 효과를 얻을 수 있다. 하나의 예시에서, 상기 중간단 유출부(122) 및 중간단 유입부(123)는 동일한 단에 위치할 수 있다. 예를 들어, 제 1 증류탑(100)의 중간부 영역(120) 내의 동일한 단에 상기 중간단 유출부(122) 및 중간단 유입부(123)가 위치할 수 있으며, 이 경우, 동일한 단 내에서 상기 중간단 유입부(123)는 중간단 유출부(122)보다 아래쪽에 위치할 수 있다. 이에 따라, 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 중간단 유출 흐름(F1-4) 및 상기 제 1 증류탑(100)의 중간단 유입부(123)로 유입되는 제 2 증류탑 하단 유출 흐름(F2-1)은 상기 제 1 증류탑(100)의 서로 같은 단에서 유출 및 유입될 수 있다. 상기 중간단 유출부(122) 및 중간단 유입부(123)가 동일한 단에 위치할 경우, 서로 동일한 단에서 유출입이 일어나게 되어 기/액 접촉이 원활하고 수력학적(hydraulics) 흐름이 원활하게 일어날 수 있다.
하나의 예시에서, 상기 제 1 증류탑(100)의 이론단수는 30 내지 80 단, 40 내지 70 단, 25 내지 50 단 또는 45 내지 60 단일 수 있다. 이 경우, 상기 제 1 증류탑(100)의 원료 유입부(121)는 제 1 증류탑(100)의 중간부 영역 또는 중간단(120), 예를 들어, 상기 제 1 증류탑(100)의 5 내지 30 단, 5 내지 25 단, 5 내지 15 단 또는 10 내지 20 단에 위치할 수 있다. 또한, 상기 제 1 증류탑(100)의 중간단 유출부(122)는 원료 유입부(121)보다 아래 쪽에 위치하며, 예를 들어, 상기 제 1 증류탑(100)의 20 내지 78 단, 22 내지 45 단, 30 내지 78 단, 또는 40 내지 75 단에 위치할 수 있다. 또한, 상기 제 1 증류탑(100)의 중간단 유입부(123)는 중간단 유출부(122)와 동일한 단에 위치하되, 상기 중간단 유출부(122)보다 아래 쪽에 위치할 수 있다. 상기에서, 「이론단수」는, 상기 제 1 증류탑(100) 및 제 2 증류탑(200)을 포함하는 증류 장치를 이용한 분리 공정에서 기상 및 액상과 같은 2개의 상이 서로 평형을 이루는 가상적인 영역 또는 단의 수를 의미한다.
하나의 예시에서, 상기 제 1 증류탑(100)의 제 1 상단 유출부(111) 및 제 1 상단 유입부(112)는 상기 제 1 증류탑의 상부(110)에 위치할 수 있으며, 상기 제 1 상단 유출부(111)는, 바람직하게는 상기 제 1 증류탑(100)의 탑정에 위치할 수 있다. 또한, 상기 제 1 증류탑(100)의 제 1 하단 유출부(131) 및 제 1 하단 유입부(132)는 상기 제 1 증류탑의 하부(130)에 위치할 수 있으며, 상기 제 1 하단 유출부(131)는, 바람직하게는 상기 제 1 증류탑(100)의 탑저에 위치할 수 있다. 상기에서, 「탑정」은 증류탑의 가장 꼭대기 부분을 의미하며, 전술한 증류탑의 상단에 위치할 수 있고, 「탑저」는 증류탑의 가장 바닥 부분을 의미하며, 전술한 증류탑의 하단에 위치할 수 있다. 예를 들어, 상기 제 1 증류탑(100)의 제 1 상단 유출부(111)는 제 1 증류탑(100)의 탑정에 위치할 수 있으며, 상기 제 1 증류탑(100)의 제 1 상단 유입부(112)는 제 1 증류탑(100)의 최상단, 예를 들어, 상기 제 1 증류탑(100)의 1 단에 위치할 수 있다. 또한, 상기 제 1 증류탑(100)의 제 1 하단 유출부(131)는 제 1 증류탑(100)의 탑저에 위치할 수 있으며, 상기 제 1 증류탑(100)의 제 1 하단 유입부(132)는 제 1 증류탑(100)의 최하단에 위치하며, 예를 들어, 상기 제 1 증류탑(100)의 80 단, 70 단 또는 60 단에 위치할 수 있다.
도 3은, 예시적인 본 출원에 따른 제 2 증류 장치를 모식적으로 나타낸 도면이다. 상기 제 2 증류 장치는, 도 3에 나타난 바와 같이, 제 1 증류탑(100)에 연결되어 있는 제 2 증류탑(200) 및 상기 제 2 증류탑(200)에 연결되어 있는 제 2 응축기(201)를 포함한다. 또한, 상기 제 2 증류탑(200)은 제 2 하단 유입부(221), 제 2 하단 유출부(222), 제 2 상단 유입부(212) 및 제 2 상단 유출부(211)를 포함한다.
하나의 예시에서, 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 고온의 기상 흐름인 중간단 유출 흐름(F1-4)은 상기 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입되고, 상기 제 2 증류탑(200)의 하부 생성물을 포함하는 고온의 액상 흐름인 제 2 증류탑 하단 유출 흐름(F2-1)은 상기 제 2 하단 유출부(222)에서 유출된 후, 상기 제 1 증류탑(100)의 중간단 유입부(123)로 유입된다.
본 출원의 증류 장치에서는, 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 고온의 기상 흐름인 중간단 유출 흐름(F1-4)을 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입시킴으로써, 제 2 증류탑 하부(220)에서 유출되는 흐름의 환류 흐름을 가열하기 위한 별도의 재비기가 없이도, 제 2 증류탑 하부(220)에 필요한 열을 공급할 수 있으며, 상기 재비기에 공급되는 외부 열원인 고온의 스팀의 추가적인 공급이 없이도 우수한 정제 효율을 나타낼 수 있다. 즉, 상기 중간단 유출 흐름(F1-4)은 상기 제 2 증류탑(200)의 하부 생성물을 포함하는 액상 흐름인 상기 제 2 증류탑 하단 유출 흐름(F2-1)의 온도를 상승시킬 수 있으며, 이에 따라, 본 출원의 제 2 증류 장치는 상기 제 2 증류탑(200)의 제 2 증류탑 하단 유출 흐름(F2-1)을 가열하기 위한 별도의 외부 열원을 필요로 하지 않으므로 공정에서 소요되는 비용을 절감할 수 있다. 또한, 고온의 증기로부터 발생하는 잠열을 이용함으로써 액체의 현열을 활용하는 것에 비해 적은 열에너지로도 상기 제 2 증류탑 하단 유출 흐름(F2-1)의 온도를 효율적으로 상승시킬 수 있다. 이에 따라, 본 출원의 증류 장치는 에너지 효율 및 장치의 설비 비용 측면에서 우수한 경제성을 나타낼 수 있다. 또한, 상기 제 2 증류탑의 하부(220)에서 유출되는 고온의 액상 흐름인 제 2 증류탑 하단 유출 흐름(F2-1)을 제 1 증류탑(100)의 중간단 유입부(123)로 유입시킴으로써, 제거되지 않은 미량의 고비점 물질을 제 1 증류탑 하부(130)에서 완벽하게 제거할 수 있다.
하나의 예시에서, 상기 제 2 증류탑(200)의 제 2 하단 유출부(222) 및 제 2 하단 유입부(221)는 상기 제 2 증류탑(200)의 같은 단에 위치할 수 있다. 이에 따라, 상기 제 2 증류탑(200)의 제 2 하단 유출부(222)에서 유출되는 제 2 증류탑 하단 유출 흐름(F2-1) 및 상기 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입되는 중간단 유출 흐름(F1-4)이 상기 제 2 증류탑(200)의 서로 같은 단에서 유출 및 유입될 수 있다. 상기 제 2 하단 유출부(222) 및 제 2 하단 유입부(221)가 동일한 단에 위치할 경우, 서로 동일한 단에서 유출입이 일어나게 되어 기/액 접촉이 원활하고 수력학적(hydraulics) 흐름이 원활하게 일어날 수 있다.
하나의 예시에서, 상기 제 2 증류탑(200)의 제 2 상단 유출부(211) 및 제 2 상단 유입부(212)는 상기 제 2 증류탑의 상부(210)에 위치할 수 있으며, 상기 제 2 상단 유출부(211)는, 바람직하게는 제 2 증류탑(200)의 탑정에 위치할 수 있다. 또한, 상기 제 2 증류탑(200)의 제 2 하단 유출부(222) 및 제 2 하단 유입부(221)는 상기 제 2 증류탑의 하부(220)에 위치할 수 있으며, 바람직하게는 제 2 증류탑(200)의 탑저에 위치할 수 있다. 예를 들어, 상기 제 2 증류탑(200)의 이론단수는 5 내지 40 단, 바람직하게는 10 내지 30 단, 보다 바람직하게는 15 내지 25 단일 수 있다. 이 경우, 상기 제 2 증류탑(200)의 제 2 상단 유출부(211)는 제 2 증류탑(200)의 탑정에 위치할 수 있으며, 상기 제 2 증류탑(200)의 제 2 상단 유입부(212)는 제 2 증류탑(200)의 최상단, 예를 들어, 상기 제 2 증류탑(200)의 1 단에 위치할 수 있다. 또한, 상기 제 2 증류탑(200)의 제 2 하단 유출부(222) 및 제 2 하단 유입부(221)는 제 2 증류탑(200)의 탑저에 위치할 수 있다.
상기 제 2 증류탑(200)의 상부 생성물을 포함하는 제 2 증류탑 상단 유출 흐름(F2-2)은 상기 제 2 증류탑(200)의 제 2 상단 유출부(211)에서 유출되어 제 2 응축기(201)를 통과하고, 상기 제 2 응축기(201)를 통과한 상기 제 2 증류탑 상단 유출 흐름(F2-2)의 일부 또는 전부는 상기 제 2 상단 유입부(212)로 유입되어 제 2 증류탑(200)으로 환류되거나 또는 제품으로 저장된다. 상기 제 2 증류탑 상단 유출 흐름(F2-2)은, 원료(F1-1) 성분 중 중비점 성분이 농후한 흐름으로서, 하나의 예시에서, 2-에틸 헥실 아크릴레이트가 농후한 흐름일 수 있다.
하나의 예시에서, 저비점, 중비점 및 고비점의 3성분을 포함하는 원료(F1-1)로부터 분리 공정을 수행하기 위하여, 상기 원료(F1-1)는 도 1과 같이 제 1 증류탑(100)의 원료 유입부(121)로 유입될 수 있다. 또한, 상기 제 1 증류탑(100)의 중간단 유출 흐름(F1-4)은 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입될 수 있다. 원료(F1-1)가 상기 제 1 증류탑(100)으로 유입되면, 상기 원료(F1-1)에 포함되는 성분 중 상대적으로 낮은 끓는점을 가지는 저비점 흐름은 제 1 상단 유출부(111)에서 유출되고, 상대적으로 높은 끓는점을 가지는 고비점 흐름은 제 1 하단 유출부(131)에서 유출되며, 중비점 흐름은 중간단 유출부(122)에서 유출될 수 있다. 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출된 흐름은 제 1 증류탑(100)에 연결된 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입되고, 상기 제 2 증류탑(200)으로 유입된 중비점 성분 중 상대적으로 끓는점이 낮은 성분의 흐름은 상기 제 2 상단 유출부(211)에서 유출된다. 또한, 상기 제 2 증류탑(200)으로 유입된 성분 중 상대적으로 끓는점이 높은 성분의 흐름은, 상기 제 2 하단 유출부(222)에서 유출되어 상기 제 2 증류탑(200)에 연결된 제 1 증류탑(100)의 중간단 유입부(123)로 유입될 수 있다. 하나의 예시에서, 상기 제 1 증류탑(100)의 원료 유입부(121)로 저비점 성분, 중비점 성분인 2-에틸헥실 아크릴레이트 및 고비점 성분을 포함하는 원료(F1-1)가 유입되면, 상기 제 1 증류탑(100)의 제 1 상단 유출부(111)에서 상기 원료(F1-1)의 성분 중 저비점 성분이 제 1 증류탑 상단 유출 흐름(F1-2)으로 유출되고, 유출된 상기 제 1 증류탑 상단 유출 흐름(F1-2)은 제 1 응축기(101)를 거쳐서 일부는 상기 제 1 증류탑(100)의 제 1 상단 유입부(112)로 환류되고 나머지 일부는 제품으로서 저장될 수 있다. 한편, 상기 제 1 증류탑(100)의 제 1 하단 유출부(131)에서는 상기 원료(F1-1)의 성분 중 고비점 성분이 제 1 증류탑 하단 유출 흐름(F1-3)으로 유출되고, 유출된 상기 제 1 증류탑 하단 유출 흐름(F1-3)은 재비기(102)를 거쳐 그 일부는 상기 제 1 증류탑(100)의 제 1 하단 유입부(132)로 환류되고, 나머지 일부는 제품으로 생산될 수 있다. 또한, 상기 제 1 증류탑(100)의 중간단 유출부(122)에서는 상기 원료(F1-1)의 성분 중 중비점 성분을 포함하는 중간단 유출 흐름(F1-4)이 유출되어 상기 제 1 증류탑(100)에 연결된 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입될 수 있다. 또한, 상기 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입된 흐름은 상기 제 2 증류탑(200)에서 제 2 증류탑 상단 유출 흐름(F2-2)과 제 2 증류탑 하단 유출 흐름(F2-1)으로 분리되어 유출될 수 있다. 상기 제 2 증류탑(200)으로 유입된 흐름 내에 포함된 성분 중 상대적으로 끓는 점이 낮은 성분을 포함하는 흐름인 상기 제 2 증류탑(200)의 상부 생성물, 예를 들면, 2-에틸헥실 아크릴레이트를 포함하는 제 2 증류탑 상단 유출 흐름(F2-2)의 일부 또는 전부는 제 2 상단 유출부(211)에서 유출되고, 유출된 상기 제 2 증류탑 상단 유출 흐름(F2-2)은 제 2 응축기(201)를 거쳐서 일부는 상기 제 2 증류탑(200)의 제 2 상단 유입부(212)로 환류되고, 나머지 일부는 제품으로서 저장될 수 있다. 한편, 상기 제 2 증류탑(200)으로 유입된 흐름 내에 포함된 성분 중 상대적으로 끓는 점이 높은 성분을 포함하는 흐름인 상기 제 2 증류탑(200)의 하부 생성물을 포함하는 제 2 증류탑 하단 유출 흐름(F2-1)은 제 2 증류탑(200)에 연결된 상기 제 1 증류탑(100)의 중간단 유입부(123)로 유입될 수 있다. 이 경우, 상기 제 1 증류탑의 상부(110)의 온도는 80 내지 115℃, 85 내지 100℃, 또는 90 내지 105℃일 수 있으며, 상기 제 1 증류탑의 하부(130)의 온도는 120 내지 160℃, 130 내지 155℃, 또는 135 내지 147℃일 수 있다. 또한, 상기 제 1 증류탑(100)의 제 1 증류탑 상단 유출 흐름(F1-2) 중 상기 제 1 증류탑(100)의 제 1 상단 유출부(111)로 환류되는 제 1 증류탑 상단 유출 흐름(F1-2)의 환류비는 1 내지 10일 수 있으며, 열역학적인 관점에서 바람직하게는 1.2 내지 7.0, 또는 1.5 내지 4.5일 수 있다. 상기 제 1 증류탑(100)의 제 1 증류탑 하단 유출 흐름(F1-3) 중 상기 제 1 증류탑(100)의 제 1 하단 유입부(132)로 환류되는 제 1 증류탑 하단 유출 흐름(F1-3)의 환류비는 1 내지 30일 수 있으며, 열역학적인 관점에서 바람직하게는 5 내지 25, 또는 10 내지 20일 수 있다. 또한, 제 2 증류탑의 상부(210)의 온도는 100 내지 130℃, 104 내지 125℃, 또는 108 내지 120℃일 수 있으며, 상기 제 2 증류탑의 하부(220)의 온도는 120 내지 150℃, 120 내지 140℃, 또는 123 내지 133℃일 수 있다. 또한, 상기 제 2 증류탑(200)의 제 2 증류탑 상단 유출 흐름(F2-2) 중 상기 제 2 증류탑(200)의 제 2 상단 유입부(212)로 환류되는 제 2 증류탑 상단 유출 흐름(F2-2)의 환류비는 0.01 내지 5.0일 수 있으며, 열역학적인 관점에서 바람직하게는 0.05 내지 1.0, 또는 0.1 내지 2.0일 수 있다. 본 명세서에서 사용되는 용어 「환류비」는 상기 증류탑(100)에서 유출되는 유출 유량에 대하여 환류되는 유량의 비를 의미한다.
도 4는 본 출원의 일 구현예에 의한 증류 장치를 예시적으로 나타낸 도면이다.
도 4에 나타나듯이, 본 출원의 일 구현예에 따른 상기 증류 장치는 원료(F1-1)를 예열하는 히터(300)를 포함할 수 있다.
상기 히터(300)는 제 1 증류탑(100)의 원료가 유입되는 부분의 전단에 위치할 수 있으며, 원료 유입부(121)로 유입되는 원료(F1-1)를 가열할 수 있다. 따라서, 상기 제 1 증류탑(100)으로 원료(F1-1)가 유입되기 전에, 상기 원료(F1-1)의 온도를 상승시킬 수 있으므로, 분리 과정에서 발생하는 에너지의 손실을 최소화 하면서도 정제에 사용되는 증류 장치의 크기를 최소화 할 수 있다. 하나의 예시에서, 20 내지 40℃의 온도의 원료(F1-1)는 상기 히터(300)에서 50 내지 110℃, 바람직하게는 60 내지 100℃, 또는 70 내지 90℃의 온도로 가열될 수 있다. 예열된 상기 원료(F1-1)는, 상기 제 1 증류탑(100)의 원료 유입부(121)로 유입될 수 있으며, 상기 원료(F1-1)에 포함된 성분은 비점에 따라 제 1 증류탑 상단 유출 흐름(F1-2), 제 1 증류탑 하단 유출 흐름(F1-3) 및 중간단 유출 흐름(F1-4)으로 분리되어 유출될 수 있다. 상기와 같이, 히터(300)를 통하여 원료(F1-1)를 예열하는 경우, 저압 스팀을 통하여 원료(F1-1)의 예열이 가능하며, 예열된 원료(F1-1)를 제 1 증류탑(100)으로 유입시킴으로써, 상기 제 1 증류탑(100)의 제 1 증류탑 하단 유출 흐름(F1-3) 중 제 1 하단 유입부(132)로 환류되는 일부 흐름을 가열하기 위하여, 재비기(102)에서 사용되는 고압 스팀의 소모량을 줄일 수 있다. 상기 제 1 증류탑(100)에서 원료(F1-1)가 분리되는 과정에 대한 구체적인 내용은, 전술한 바와 동일하므로 생략하기로 한다.
상기 히터(300)는 상기 원료(F1-1)의 온도를 상승시킬 수 있는 장치라면 기술 분야에서 공지된 다양한 장치를 이용할 수 있으며, 목적하는 원료(F1-1)의 종류 및 온도에 따라 적절히 선택하여 이용할 수 있으나, 특별히 제한되는 것은 아니다.
도 5는 본 출원의 또 다른 구현예에 의한 상기 증류 장치를 예시적으로 나타낸 도면이다.
도 5에 나타나듯이, 본 출원의 증류 장치는 제 1 열교환기(301)를 추가로 포함할 수 있다. 상기 제 1 열교환기(301)는 상기 제 1 증류탑(100)의 제 1 응축기(101)의 전단에 위치하며, 제 1 증류탑 상단 유출 흐름(F1-2)을 원료(F1-1)와 열교환시킬 수 있다. 상기 제 1 열교환기(301)는 상기 제 1 증류탑(100)의 제 1 증류탑 상단 유출 흐름(F1-2)이 흘러가는 배관에 직접 또는 간접적으로 연결되도록 위치할 수 있다. 하나의 예시에서, 상기 제 1 열교환기(301)는 제 1 증류탑(100)의 제 1 증류탑 상단 유출 흐름(F1-2)이 흘러가는 배관에 직접 연결됨으로써, 상기 원료(F1-1) 및 상기 제 1 증류탑(100)의 제 1 증류탑 상단 유출 흐름(F1-2)을 효율적으로 열교환시킬 수 있다. 예를 들어, 상기 제 1 열교환기(301) 는 제 1 응축기(101)의 전단에 위치할 수 있으며, 바람직하게는 원료(F1-1)가 흐르는 배관에 직접 연결됨으로써, 상기 제 1 증류탑 상단 유출 흐름(F1-2)을 상기 제 1 응축기(101)로 유입시키기 전에 상기 원료(F1-1)와 열교환시킬 수 있다.
상기와 같이 제 1 열교환기(301)를 추가로 포함하는 제 1 증류탑(100)에서, 상기 제 1 증류탑(100)에서 유출되는 저비점 흐름은 상기 제 1 열교환기(301)를 경유하게 되며, 상기 제 1 열교환기(301)에 열을 공급하게 된다. 이에 따라, 상기 제 1 증류탑(100)에서 유출되는 제 1 증류탑 상단 유출 흐름(F1-2)은 상대적으로 낮은 온도로 상기 제 1 증류탑(100)으로 환류될 수 있다. 상기와 같이 제 1 열교환기(301)를 포함하는 제 1 증류탑(100)을 사용하는 경우, 제 1 상단 유출부(111)에서 유출되는 제 1 증류탑 상단 유출 흐름(F1-2)을 응축시키는 열량을 줄일 수 있다. 이에 따라, 제 1 응축기(101)를 이용한 응축공정에서 사용되는 냉각수의 양을 줄임으로써, 상기 응축 공정에서 소요되는 비용을 절감할 수 있다.
또한, 상기 제 1 열교환기(301)에서는, 원료(F1-1)를 상기 제 1 증류탑(100)으로 유입시키기 전에, 상대적으로 고온인 제 1 증류탑 상단 유출 흐름(F1-2)과 열교환시킴으로써, 상기 원료(F1-1)의 온도를 상승시킬 수 있다. 이에 따라, 상기 제 1 증류탑(100)에서 유출되는 제 1 증류탑 하단 유출 흐름(F1-3) 중 제 1 하단 유입부(132)로 환류되는 일부 흐름을 가열하기 위하여 재비기(102)에서 사용되는 스팀의 소모량을 줄일 수 있다. 또한, 고온의 증기로부터 발생하는 잠열을 이용함으로써 액체의 현열을 활용하는 것에 비해 작은 열에너지로도 원료의 온도를 효율적으로 상승시킬 수 있다. 이와 같이, 버려지는 폐열을 활용함으로써 에너지 효율을 높일 수 있으며, 정제에 사용되는 증류탑의 크기는 최소화하면서도 화합물을 고순도로 분리할 수 있다.
예를 들어, 20 내지 40℃의 온도의 원료(F1-1)는, 상기 제 1 열교환기(301)에서 80 내지 115℃의 온도의 제 1 증류탑 상단 유출 흐름(F1-2)과 열교환될 수 있다. 이에 따라, 상기 원료(F1-1)는 50 내지 110℃, 바람직하게는 60 내지 100℃, 보다 바람직하게는 70 내지 90℃의 온도로 가열된 후, 상기 제 1 증류탑(100)의 원료 유입부(121)로 유입될 수 있다. 또한, 상기 원료(F1-1)와 열교환된 80 내지 115℃의 제 1 증류탑 상단 유출 흐름(F1-2)은 제 1 응축기(101)를 통과한 후 25 내지 40℃로 응축되어 제품으로 저장되거나 제 1 상단 유입부(112)로 환류될 수 있다.
도 6은 본 출원의 또 다른 구현예에 의한 상기 증류 장치를 예시적으로 나타낸 도면이다.
도 6에 나타나듯이, 본 출원의 증류 장치는 제 2 열교환기(302)를 추가로 포함할 수 있다. 상기 제 2 열교환기(302)는 상기 제 2 증류탑(200)의 제 2 응축기(201)의 전단에 위치하며, 제 2 증류탑 상단 유출 흐름(F2-2)을 원료(F1-1)와 열교환시킬 수 있다. 상기 제 2 열교환기(302)는 상기 제 2 증류탑(200)의 제 2 증류탑 상단 유출 흐름(F2-2)이 흘러가는 배관에 직접 또는 간접적으로 연결되도록 위치할 수 있다. 하나의 예시에서, 상기 제 2 열교환기(302)는 상기 제 2 증류탑(200)의 제 2 증류탑 상단 유출 흐름(F2-2)이 흘러가는 배관에 직접 연결됨으로써, 원료(F1-1) 및 상기 제 2 증류탑 상단 유출 흐름(F2-2)을 효율적으로 열교환시킬 수 있다. 예를 들어, 상기 제 2 열교환기(302)는 제 2 응축기(201)의 전단에 위치할 수 있으며, 바람직하게는 원료(F1-1)가 흐르는 배관에 직접 연결됨으로써, 제 2 증류탑 상단 유출 흐름(F2-2)을 상기 제 2 응축기(201)로 유입시키기 전에 상기 원료(F1-1)와 열교환시킬 수 있다.
상기와 같이 제 2 열교환기(302)를 추가로 포함함으로써, 상기 제 2 증류탑(200)에서 유출되는 중비점 흐름은 상기 제 2 열교환기(302)를 경유하게 되며, 상기 제 2 열교환기(302)에 열을 공급하게 된다. 이에 따라, 상기 제 2 증류탑(200)에서 유출되는 제 2 증류탑 상단 유출 흐름(F2-2)은 상대적으로 낮은 온도로 상기 제 2 증류탑(200)으로 환류될 수 있다. 상기와 같이 제 2 열교환기(302)를 포함하는 제 2 증류탑(200)을 사용하는 경우, 제 2 상단 유출부(211)에서 유출되는 제 2 증류탑 상단 유출 흐름(F2-2)을 응축시키는 열량을 줄일 수 있다. 이에 따라, 제 2 응축기(201)를 이용한 응축 공정에서 사용되는 냉각수의 양을 줄임으로써 상기 응축 공정에서 소요되는 비용을 절감할 수 있다. 또한, 상기 제 2 열교환기(302)에서는, 원료(F1-1)를 상기 제 1 증류탑(100)으로 유입시키기 전에, 상대적으로 고온인 제 2 증류탑(200)에서 유출되는 제 2 증류탑 상단 유출 흐름(F2-2)과 열교환시킴으로써, 상기 원료(F1-1)의 온도를 상승시킬 수 있다. 예를 들어, 20 내지 40℃의 온도의 원료(F1-1)는, 상기 제 2 열교환기(302)에서 100 내지 130℃의 온도의 제 2 증류탑 상단 유출 흐름(F2-2)과 열교환될 수 있다. 이에 따라, 상기 원료(F1-1)는 50 내지 120℃, 60 내지 120℃, 또는 90 내지 110℃의 온도로 가열된 후, 상기 제 1 증류탑(100)의 원료 유입부(121)로 유입될 수 있다. 또한, 상기 원료(F1-1)와 열교환된 100 내지 130℃의 제 2 증류탑 상단 유출 흐름(F2-2)은 제 2 응축기(201)를 통과한 후 40 내지 90℃로 응축되어 제품으로 저장되거나 제 2 상단 유입부(212)로 환류될 수 있다. 상기 제 2 열교환기(302)를 포함하는 증류 장치에 관한 구체적인 내용은 전술한 제 1 열교환기(301)를 포함하는 증류 장치에 대한 내용과 동일하므로 생략하기로 한다.
본 출원의 다른 구현예에서, 상기 제 1 증류탑(100)의 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123), 및 제 1 하단 유입부(132)와 제 2 증류탑(200)의 제 2 하단 유출부(222), 제 2 하단 유입부(221) 및 제 2 상단 유입부(212) 중 하나 이상은 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있다. 이에 따라, 원료(F1-1)의 정제 과정에서 발생하는 편류 현상을 차단함으로써 에너지 손실을 최소화하고, 공정의 경제성을 향상시킬 수 있다. 본 명세서에서 「편류 현상」이란, 증류탑 내에서 증기와 액체 혼합물의 접촉이 원활하게 일어나지 않는 현상, 또는, 분리벽형 증류탑의 경우 유체가 벽면의 특정 부위로 치우쳐 흐르는 액체의 쏠림 현상을 의미하며, 편류 현상은 원료의 분리 효율을 크게 떨어뜨리고 에너지를 추가로 소비하게 하는 원인이 된다.
하나의 예시에서, 상기 편류 현상을 막기 위하여, 상기 2 이상의 개구부는 상기 제 1 증류탑(100) 및/또는 제 2 증류탑(200)으로 유입되거나 유출되는 흐름이 2 이상의 방향에서 유입되거나 또는 2 이상의 방향으로 유출될 수 있도록 위치할 수 있다.
일 구현예에서, 상기 제 1 증류탑(100) 및/또는 제 2 증류탑(200)은 수평 단면적을 균등하게 나누는 2 이상의 소영역(small area)을 포함할 수 있다. 도 7은 예시적인 제 1 증류탑(100)의 지면과 평행한 단면을 나타낸 도면이다. 도 7에 나타나듯이, 제 1 증류탑(100)은, 제 1 증류탑(100)의 수평 단면적을 균등한 넓이로 나누는 임의의 소영역, 예를 들어, 복수의 소영역(A1-1, A1-2, A1-3, A1-4)을 포함할 수 있다. 이는, 제 2 증류탑(200)에서도 동일하게 적용될 수 있다.
하나의 예시에서, 상기 제 1 증류탑(100)의 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상은 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 1 증류탑(100)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다. 상기에서 2 이상의 개구부가 「각각 위치할 수 있다」는 것은, 상기 개구부의 수만큼 균등하게 구분된 영역에서, 하나의 영역에 개구부가 1 개씩 위치하는 것을 의미할 수 있다. 도 8은, 2 개의 개구부가 형성된 본 출원에 따른 제 1 증류탑(100)의 지면과 평행한 단면을 예시적으로 나타낸 도면이다. 예를 들어, 도 8에서 가상의 점선으로 분할되어 있는 바와 같이, 상기 제 1 증류탑(100)의 단면은 2 개의 균등한 소영역(A1-1, A1-2)으로 구분될 수 있으며, 상기 제 1 증류탑(100)의 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상이 서로 이격되어 위치하고 있는 2 개의 개구부로 형성되는 경우, 상기 2 개의 개구부 중 1 개의 개구부는 2 개로 구분된 상기 소영역 중 하나의 소영역(A1-1)에 위치하고, 나머지 1 개의 개구부는 상기 하나의 개구부가 위치하는 영역에 인접하는 나머지 하나의 소영역(A1-2)에 위치함으로써 각각의 영역에 개구부가 1 개씩 위치할 수 있다.
상기 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132)가 하나의 개구부로 형성되는 제 1 증류탑(100)의 경우, 오로지 한 방향으로만 원료 또는 환류 흐름이 공급되거나, 중간단 유입 및 유출 흐름이 오직 한 방향 방향으로 유입 또는 유출되며, 이 경우, 편류 현상이 발생할 수 있다. 그러나, 상기 제 1 증류탑(100)의 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상이 2 이상의 개구부로 형성되는 경우, 상기 원료(F1-1), 환류 흐름, 중간단 유출 및/또는 유입 흐름이 2 이상의 방향으로 균등하게 유입되거나, 균등하게 유출됨으로써 상기 편류 현상이 발생하는 것을 막을 수 있다.
본 출원에 따른, 상기 제 1 증류탑(100)에서는 2 이상의 개구부의 개수에 따라 각 개구부의 위치, 각 개구부로 유입 또는 유출되는 흐름의 유량 및 방향을 조절함으로써 편류 현상을 효과적으로 억제할 수 있다. 예를 들어, 상기 제 1 증류탑(100)의 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상이 서로 이격되어 위치하고 있는 2 개의 개구부로 형성되는 경우, 전술한 바와 같이, 상기 2 개의 개구부는 제 1 증류탑(100)의 지면과 평행한 단면을 균등하게 분할한 2 개의 영역(A1-1, A1-2)에 각각 위치할 수 있다. 구체적으로, 도 9에 나타난 바와 같이 상기 2 개의 개구부는 단면 중심점을 기준으로 서로 반대편에 설치될 수 있으며, 원료(F1-1)가 상기 2 개의 원료 유입부(121)로 각각 유입될 수 있으므로, 상기 원료(F1-1)가 유입되면서 발생하는 편류 현상을 효율적으로 억제할 수 있다. 하나의 예시에서, 상기 원료 유입부(121), 제 1 상단 유출부(111), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상이 서로 이격되어 위치하고 있는 2 개의 개구부로 형성되는 경우, 상기 2 개의 개구부 중 어느 하나의 개구부로부터 증류탑의 중심으로 연장되는 연장선이 나머지 하나의 개구부로부터 증류탑의 중심으로 연장되는 연장선과 이루는 각은, 도 9와 같이, 예를 들어, 175° 내지 185°, 177° 내지 183°, 또는 179° 내지 181°일 수 있으며, 상기 범위로 각도를 조절함으로써, 편류 차단을 극대화 할 수 있다.
도 10은, 3 개의 개구부가 형성된 본 출원에 따른 제 1 증류탑(100)의 지면과 평행한 단면을 예시적으로 나타낸 도면이다. 도 10과 같이, 예를 들어, 상기 제 1 증류탑(100)의 원료 유입부(121), 제 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상은 서로 이격되어 위치하고 있는 3 개의 개구부로 형성될 수 있으며, 상기 3 개의 개구부는 제 1 증류탑(100)의 지면과 평행한 단면을 균등하게 분할한 3 개의 영역(A1-1, A1-2, A1-3)에 각각 위치할 수 있다. 구체적으로, 도 10에 나타난 바와 같이, 상기 3 개의 개구부는 서로 간격이 동일하도록 설치될 수 있으며, 유체의 흐름이 상기 3 개의 개구부로 각각 유입 또는 유출될 수 있도록 위치할 수 있다. 하나의 예시에서, 상기 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상이 서로 이격되어 위치하고 있는 3 개의 개구부로 형성되는 경우, 상기 3 개의 개구부 중 어느 하나의 개구부로부터 증류탑의 중심으로 연장되는 연장선이 나머지 2 개의 개구부로부터 증류탑의 중심으로 연장되는 연장선과 이루는 각은, 도 11에서와 같이, 예를 들어, 115° 내지 125°, 117° 내지 123°, 또는 119° 내지 121°일 수 있으며, 상기 범위로 각도를 조절함으로써, 편류 차단을 극대화 할 수 있다.
도 12는, 4 개의 개구부가 형성된 본 출원에 따른 제 1 증류탑(100)의 지면과 평행한 단면을 예시적으로 나타낸 도면이다. 도 12와 같이, 예를 들어, 상기 제 1 증류탑(100)의 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상은 서로 이격되어 위치하고 있는 4 개의 개구부로 형성될 수 있으며, 상기 4 개의 개구부는 제 1 증류탑(100)의 지면과 평행한 단면을 균등하게 분할한 4 개의 영역(A1-1, A1-2, A1-3, A1-4)에 각각 위치할 수 있다. 구체적으로, 도 12에 나타난 바와 같이 상기 4 개의 개구부는 서로 간격이 동일하도록 설치될 수 있으며, 유체의 흐름이 상기 4 개의 개구부로 각각 유입되거나 유출될 수 있도록 위치할 수 있다. 하나의 예시에서, 상기 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132) 중 하나 이상은 서로 이격되어 위치하고 있는 4 개의 개구부로 형성되는 경우, 상기 4 개의 개구부 중 어느 하나의 개구부로부터 증류탑의 중심으로 연장되는 연장선이 상기 하나의 개구부에 인접하는 2 개의 개구부로부터 증류탑의 중심으로 연장되는 연장선과 이루는 각은, 도 13에서 나타나듯이, 예를 들어, 85° 내지 95°, 바람직하게는 87° 내지 93°, 보다 바람직하게는 89° 내지 91°일 수 있으며, 상기 범위로 각도를 조절함으로써, 편류 차단을 극대화 할 수 있다.
이와 같이 제 1 증류탑(100)으로 유입되거나 유출되는 유체의 흐름을 2 이상의 방향으로 공급 또는 유출하는 경우, 상기 제 1 증류탑(100)의 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132)가 위치하는 단의 하부 영역으로 떨어지는 액체의 흐름을 균등하게 유지할 수 있으므로, 정제 효율을 높일 수 있다. 즉, 상기 제 1 증류탑(100)의 2 이상의 개구부로 형성되는 원료 유입부(121), 제 1 상단 유입부(112), 중간단 유출부(122), 중간단 유입부(123) 및 제 1 하단 유입부(132)가 상기와 같은 조건을 만족하는 경우, 각각의 흐름이 유입되면서 발생하는 편류 현상을 효과적으로 차단할 수 있으며, 증류 장치의 설계 및 운전 편이성이 우수하여 원료(F1-1)를 고효율로 분리할 수 있다.
도 9, 도 11 및 도 13과 같이, 본 출원의 제 1 증류탑(100)에서는, 상기 제 1 증류탑(100)의 지면과 평행한 단면에 투영된 유입속도 벡터 성분이 모두 상기 단면의 중심점을 향하게 할 수 있다. 구체적으로, 상기 2 이상의 개구부를 통해 유입되는 유량 및 유입속도의 크기는 서로 동일하며, 유체 흐름의 유량(F)과 상기 단면에 투영된 유입속도 벡터 성분의 곱을 각각 합한 값이 0(제로)일 수 있다. 상기와 같이, 2 이상의 개구부를 통한 유체 흐름의 유량과 상기 단면에 투영된 유입속도 벡터 성분의 곱의 합이 서로 0(제로)로 상쇄되면, 2 이상의 유체 흐름에 의한 편류를 효과적으로 차단할 수 있다. 상기에서 용어 「유량(F)」은 각 유입부를 통해서 유입되는 유량(단위 시간 당 부피)을 의미하며, 「유입속도 벡터 성분」은 각 유입부를 통한 유입속도(단위 시간당 거리) 벡터가 지면과 평행한 상기 증류탑의 단면에 투영된 벡터 성분을 의미한다.
하나의 구현예에서, 상기 제 1 증류탑(100)의 원료 유입부(121)가 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 1 증류탑(100)의 지면과 평행한 단면을 균등하게 분할하는, 2 이상의 소영역에 각각 위치할 수 있다. 상기 원료 유입부(121)가 하나의 개구부로 형성되는 증류탑의 경우, 상기 증류탑의 공급 단 하부 영역으로 떨어지는 액체 흐름이 균등하게 떨어지기 않고, 편류 현상이 발생할 수 있으며, 이에 따라 상기 원료(F1-1)의 분리 효율이 떨어질 수 있다. 그러나 상기 제 1 증류탑(100)의 원료 유입부(121)가 2 이상의 개구부로 형성되는 경우, 상기 제 1 증류탑(100)의 원료 공급 단 하부로 떨어지는 액체의 흐름을 균등하게 유지시킬 수 있음으로써 편류 현상이 억제되므로 원료(F1-1)를 효율적으로 분리할 수 있다. 이 경우, 상기 2 이상의 개구부는 제 1 증류탑(100) 내의 동일한 단, 바람직하게는 지면과 평행한 동일 평면 상에 위치할 수 있다. 이에 따라, 2 이상의 개구부로 각각 유입되는 상기 원료(F1-1)가 수력학적(hydraulics) 흐름이 원활하도록 유입됨으로써 편류 현상을 효과적으로 방지할 수 있다. 예를 들어, 상기 2 이상의 원료 유입부(121)는 상기 제 1 증류탑(100)의 동일한 단에 위치할 수 있으며, 이론 단수가 30 내지 80 단, 40 내지 70 단, 바람직하게는 45 내지 60 단인 제 1 증류탑(100)의 경우, 상기 2 이상의 개구부를 형성하는 원료 유입부(121)는 상기 제 1 증류탑(100)의 5 내지 30 단, 바람직하게는 5 내지 25 단, 보다 바람직하게는 10 내지 20 단에 위치할 수 있다. 또한, 상기 원료(F1-1)가 2 이상의 개구부로 형성되는 원료 유입부(121)로 각각 동일한 유량으로 유입되면 편류 현상의 차단이 용이하고, 증류탑의 운전 편이성이 우수하여 원료(F1-1)를 고효율로 분리할 수 있다.
일 구현예에서, 상기 제 1 증류탑(100)의 제 1 상단 유입부(112)는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 1 증류탑(100)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다. 상기 제 1 상단 유입부(112)가 하나의 개구부로 형성되는 분리벽형 증류탑(100)에서는, 상기 제 1 증류탑 상단 유출 흐름(F1-2)의 환류 흐름이 한 방향으로 제 1 증류탑(100)으로 유입되면서 편류 현상이 발생할 수 있다. 이에 따라, 상기 원료(F1-1)의 분리 효율이 떨어질 수 있으며, 이 경우, 상기 제 1 증류탑 상단 유출 흐름(F1-2)의 저비점 농도를 유지하기 위하여 추가적인 에너지가 소비 된다. 그러나, 상기 제 1 증류탑(100)의 제 1 상단 유입부(112)가 2 이상의 개구부로 형성되는 경우, 상기 제 1 증류탑 상단 유출 흐름(F1-2)의 환류 흐름이 2 이상의 방향으로 상기 제 1 증류탑으로 유입됨으로써 편류 현상이 억제되므로 원료(F1-1)를 효율적으로 분리할 수 있다. 하나의 예시에서, 상기 2 이상의 제 1 상단 유입부(112)는 상기 제 1 증류탑(100) 상단의 동일한 단, 바람직하게는 지면과 평행한 동일 평면 상에 위치할 수 있으며, 이론 단수가 30 내지 80 단, 40 내지 70 단, 바람직하게는 45 내지 60 단인 제 1 증류탑(100)의 경우, 상기 2 이상의 개구부로 형성되는 제 1 상단 유입부(112)는 상기 제 1 증류탑(100)의 최상단, 예를 들어, 1 단에 위치할 수 있다.
또한, 상기 제 1 증류탑(100)의 제 1 하단 유입부(132)는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 1 증류탑(100)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다. 이 경우, 재비기(102)를 거친 상기 제 1 증류탑 하단 유출 흐름(F1-3)은 2 이상의 방향으로 환류됨으로써 원료(F1-1)의 분리 효율을 향상시킬 수 있다. 예를 들어, 상기 2 이상의 개구부로 형성되는 제 1 하단 유입부(132)는 상기 제 1 증류탑(100) 하단의 동일한 단, 바람직하게는 지면과 평행한 동일 평면 상에 위치할 수 있으며, 이론 단수가 30 내지 80 단, 40 내지 70 단, 바람직하게는 45 내지 60 단인 제 1 증류탑(100)의 경우, 상기 2 이상의 개구부로 형성되는 제 1 하단 유입부(132)는 상기 제 1 증류탑(100)의 최하단, 예를 들어 80 단, 70 단 또는 60 단에 위치할 수 있다.
하나의 예시에서, 상기 제 1 증류탑(100)의 중간단 유출부(122)는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 1 증류탑(100)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다. 이 경우, 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 중간단 유출 흐름(F1-4)이 2 이상의 방향으로 유출 유출됨으로써, 수력학적 흐름을 원활하게 유지할 수 있다. 예를 들어, 상기 2 이상의 개구부로 형성되는 중간단 유출부(122)는 상기 제 1 증류탑(100) 중간단의 동일한 단, 바람직하게는 지면과 평행한 동일 평면 상에 위치할 수 있으며, 또한, 상기 원료 유입부(121)보다 아래 쪽에 위치할 수 있다. 예를 들어, 이론 단수가 30 내지 80 단, 40 내지 70 단, 또는 45 내지 60 단인 제 1 증류탑(100)의 경우, 상기 제 1 증류탑(100)의 20 내지 78 단, 22 내지 45 단, 30 내지 78 단, 또는 40 내지 75 단에 위치할 수 있다.
일 구현예에서, 상기 제 1 증류탑(100)의 중간단 유입부(123)는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 1 증류탑(100)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다. 이 경우, 제 2 증류탑(200)으로부터 상기 제 1 증류탑(100)의 중간단 유입부(123)로 유입되는 제 2 증류탑 하단 유출 흐름(F2-1)은 2 이상의 방향으로 유입됨으로써 원료(F1-1)의 분리 효율을 향상시킬 수 있다. 예를 들어, 상기 2 이상의 개구부로 형성되는 중간단 유입부(123)는 상기 제 1 증류탑(100) 중간단의 동일한 단, 바람직하게는 지면과 평행한 동일 평면 상에 위치할 수 있으며, 전술한 중간단 유출부(122)가 위치하는 단에 위치할 수도 있다. 또한, 이 경우, 상기 중간단 유입부(123)는 중간단 유출부(122) 보다 아래 쪽에 위치할 수 있다.
상기 2 이상의 개구부로 형성되는 제 1 상단 유입부(112), 제 1 하단 유입부(132), 중간단 유출부(122) 및 중간단 유입부(123)에 대한 구체적인 내용은, 상기 2 이상의 원료 유입부(121)에 대하여 설명한 바와 동일하므로 생략하기로 한다.
본 출원의 다른 구현예에서, 상기 제 2 증류탑(200)은 수평 단면적을 균등하게 나누는 2 이상의 소영역을 포함할 수 있다. 이 때, 상기 제 2 증류탑(200)의 제 2 상단 유입부(212), 제 2 하단 유출부(222) 및 제 2 하단 유입부(221) 중 하나 이상은 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 2 증류탑(200)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다.
일 구현예에서, 상기 제 2 증류탑(200)의 제 2 하단 유출부(222)는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 2 증류탑(200)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다. 이 경우, 상기 제 2 증류탑(200)의 제 2 하단 유출부(222)에서 유출되는 제 2 증류탑 하단 유출 흐름(F2-1)이 2 이상의 방향으로 유출될 수 있으며, 이에 따라, 상기 제 2 증류탑(200) 내부의 수력학적 흐름을 원활하게 유지할 수 있다. 예를 들어, 상기 2 이상의 개구부로 형성되는 제 2 하단 유출부(222)는 상기 제 2 증류탑(200) 하단의 동일한 단에 위치할 수 있으며, 바람직하게는 상기 제 2 증류탑(200)의 탑저에 위치할 수 있다.
상기 제 2 증류탑(200)의 제 2 하단 유입부(221)는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 2 증류탑(200)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다. 이 경우, 상기 제 1 증류탑(100)으로부터 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입되는 중간단 유출 흐름(F1-4)은 2 이상의 방향으로 유입될 수 있다. 이에 따라, 상기 중간단 유출 흐름(F1-4)이 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입되면서 발생하는 편류 현상이 억제되므로 분리 효율을 향상시킬 수 있다. 예를 들어, 상기 2 이상의 개구부로 형성되는 제 2 하단 유입부(221)는 상기 제 2 증류탑(200) 하단의 동일한 단에 위치할 수 있으며, 바람직하게는 상기 제 2 증류탑(200)의 탑저에 위치할 수 있다.
상기 제 2 증류탑(200)의 제 2 상단 유입부(212)는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성될 수 있으며, 상기 2 이상의 개구부는 상기 제 2 증류탑(200)의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치할 수 있다. 이 경우, 제 2 응축기(201)를 거친 상기 제 2 증류탑 상단 유출 흐름(F2-2)은 2 이상의 방향으로 환류됨으로써 원료(F1-1)의 분리 효율을 향상시킬 수 있다. 예를 들어, 상기 2 이상의 개구부로 형성되는 제 2 상단 유입부(212)는 상기 제 2 증류탑(200) 상단의 동일한 단, 바람직하게는 지면에 평행한 동일 평면 상에 위치할 수 있으며, 이론 단수가 5 내지 40 단, 10 내지 30 단, 바람직하게는 15 내지 25 단인 제 2 증류탑(200)의 경우, 상기 2 이상의 개구부를 형성하는 제 2 상단 유입부(212)는 상기 제 2 증류탑(200)의 최상단, 예를 들어 1 단에 위치할 수 있다.
상기 2 이상의 개구부로 형성되는 제 2 증류탑(200)의 제 2 하단 유출부(222), 제 2 하단 유입부(221) 및 제 2 상단 유입부(212)에 대한 구체적인 내용은, 상기 2 이상의 개구부로 형성되는 원료 유입부(121)에 대하여 설명한 바와 동일하므로 생략하기로 한다.
도 14는, 본 출원의 또 다른 구현예에 따른 증류 장치를 예시적으로 보여주는 도면이다.
도 14에 나타나듯이, 상기 증류 장치는 제 1 증류 장치 및 제 2 증류 장치를 포함하며, 상기 제 1 증류 장치에 포함되는 제 1 증류탑(400)은 내부에 분리벽(401)이 구비된 분리벽형 증류탑(400)일 수 있다. 상기 분리벽형 증류탑(400)은 저비점, 중비점, 고비점의 3성분을 포함하는 원료(F1-1)의 증류를 위해 고안된 장치이며, 소위 열복합 증류 컬럼(Petlyuk column)과 열역학적 관점에서 유사한 장치이다. 상기 열복합 증류 컬럼은 저비점 및 고비점 물질을 1차적으로 예비 분리기에서 분리하고, 주분리기에서 저비점, 중비점 및 고비점 물질을 각각 분리하도록 고안되어 있다. 이에 대하여, 분리벽형 증류탑(400)은 탑 내에 분리벽(401)을 설치함으로써 예비분리기를 주분리기 내부에 통합시킨 형태이다. 본 출원의 증류 장치에서는 저비점, 중비점 및 고비점 물질을 1차적으로 분리벽형 증류탑인 상기 제 1 증류탑(400)에서 분리하고, 중비점 물질을 포함하는 중간단 유출 흐름(F1-4)이 제 2 증류탑(200)으로 유입되어 정제될 수 있다.
예를 들어, 상기 제 1 증류탑(400)은 내부가 분리벽(401)에 의해 분할되어 있고, 상기 제 1 증류탑(400)의 내부는 도면에서 가상의 점선으로 분할되어 있는 바와 같이, 분리벽(401)으로 나누어지는 중간부 영역과 분리벽이 위치하지 않는 상부 영역(410) 및 하부 영역(440)으로 구분될 수 있다. 또한, 상기 중간부 영역은 분리벽(401)에 의해 나누어지는 제 1 중간부 영역(420) 및 제 2 중간부 영역(430)으로 구분될 수 있으며, 상기 제 2 중간부 영역(430)은 제 1 증류탑(400)을 길이 방향으로 2 등분하는 제 3 중간부 영역(431) 및 제 4 중간부 영역(432)으로 구분될 수 있다. 구체적으로, 상기 제 3 중간부 영역(431)은 상기 상부 영역(410)과 접하며, 상기 제 4 중간부 영역(432)은 상기 하부 영역(440)과 접할 수 있다. 따라서 상기 제 1 증류탑(400)의 내부는 상부 영역(410), 하부 영역(440), 중간부 영역으로 구분될 수 있으며, 또한, 상기 중간부 영역은, 제 1 중간부 영역(420) 및 제 2 중간부 영역(430)으로 구분되고, 상기 제 2 중간부 영역은 다시 제 3 중간부 영역(431)과 제 4 중간부 영역(432)으로 구분될 수 있다. 본 출원의 분리벽형 증류탑에서는, 상기 제 1 증류탑(400)은 제 1 중간부 영역(420)과 제 2 중간부 영역(430)이 상기 분리벽(401)에 의하여 서로 분리(separation) 또는 고립(isolation)되어 있다. 이에 따라, 상기 제 1 중간부 영역(420) 내의 흐름과 상기 제 2 중간부 영역(430) 내의 흐름이 서로 혼합되는 것을 방지할 수 있다. 본 명세서에서 용어 「분리(separation) 또는 고립(isolation)」은, 각 영역에서의 흐름이 분리벽(401)에 의해 나뉘어지는 영역에서 독립적으로 흐르거나 존재하는 것을 의미한다.
하나의 예시에서, 상기 제 1 증류탑(400)의 내부에 위치하는 분리벽(401)은 중간부 영역에 위치할 수 있다. 구체적으로, 상기 분리벽(401)의 길이는 상기 제 1 증류탑(400)의 이론 단수를 기준으로 산출하였을 때, 전체 이론 단수의 40% 이상의 단수에 해당되는 길이일 수 있으며, 바람직하게는 50% 이상, 보다 바람직하게는 60% 이상의 단수에 해당하는 길이일 수 있다. 상기 제 1 증류탑(400)의 분리벽(401)이 상기 범위의 길이로 상기 제 1 증류탑(400) 내부에 위치함으로써, 제 1 중간부 영역(420) 내의 흐름과 제 2 중간부 영역(430) 내의 흐름이 혼합되는 것을 효과적으로 차단할 수 있다. 또한, 중간단 유출부(433)에서 유출되는 흐름이 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입되는 경우, 상기 중간단 유출부(433)에서 유출되는 흐름 내에 저비점 성분이 혼합되어 유출되는 것을 방지할 수 있다.
하나의 예시에서, 상기 제 1 증류탑(400)의 원료 유입부(421)는 상기 제 1 증류탑(400)의 제 1 중간부 영역(420)에 위치할 수 있다. 또한, 상기 제 1 상단 유출부(411) 및 제 1 상단 유입부(412)는 상기 제 1 증류탑(400)의 상부 영역(410)에 위치할 수 있으며, 바람직하게는 상기 제 1 상단 유출부(411)는 상기 제 1 증류탑(400)의 상부 영역(410) 내의 탑정에 위치할 수 있다. 또한, 상기 제 1 하단 유출부(441) 및 제 1 하단 유입부(442)는 상기 제 1 증류탑(400)의 하부 영역(440)에 위치할 수 있으며, 바람직하게는 상기 제 1 하단 유출부(441)는 상기 제 1 증류탑(400)의 하부 영역(440) 내의 탑저에 위치할 수 있다. 나아가, 상기 제 1 증류탑(400)의 중간단 유출부(433) 및 중간단 유입부(434)는 상기 제 1 증류탑(400)의 제 2 중간부 영역(430)에 위치할 수 있으며, 바람직하게는 상기 제 2 중간부 영역(430)에 포함되는 제 4 중간부 영역(432)에 위치할 수 있다. 이 때, 상기 중간단 유출부(433)가 상기 제 2 중간부 영역(430) 내에서 상대적으로 아래쪽 부분인 제 4 중간부 영역(432)에 위치함으로써 상기 제 1 증류탑(400)의 중간단 유출부(433)에서 유출되는 흐름 내에 저비점 성분이 포함되는 것을 방지할 수 있다.
상기 증류 장치에 있어서, 상기 중간단 유출부(433)는 원료 유입부(421)보다 하부에 위치할 수 있고, 상기 중간단 유입부(434)는 상기 중간단 유출부(433)보다 하부에 위치할 수 있다. 전술한 바와 같이, 중간단 유입부(434)가 상기 중간단 유출부(433)보다 하부에 위치함으로써, 기/액 접촉을 원활히 하여 분리 성능을 유지할 수 있다. 하나의 예시에서, 상기 중간단 유출부(433) 및 중간단 유입부(434)는 동일한 단에 위치할 수 있다. 예를 들어, 분리벽형 증류탑(400)의 제 2 중간부 영역(430) 내의 동일한 단에 상기 중간단 유출부(433) 및 중간단 유입부(434)가 위치할 수 있으며, 이 경우, 동일한 단 내에서 상기 중간단 유입부(434)는 중간단 유출부(433)보다 아래쪽에 위치할 수 있다. 이에 따라, 상기 제 1 증류탑(400)의 중간단 유출부(433)에서 유출되는 중간단 유출 흐름(F1-4) 및 상기 제 1 증류탑(400)의 중간단 유입부(434)로 유입되는 제 2 증류탑 하단 유출 흐름(F2-1)은 상기 제 1 증류탑(400)의 서로 같은 단에서 유출 및 유입될 수 있다. 상기 중간단 유출부(433) 및 중간단 유입부(434)가 동일한 단에 위치할 경우, 서로 동일한 단에서 유출입이 일어나게 되어 기/액 접촉이 원활하고 수력학적(hydraulics) 흐름이 원활하게 일어날 수 있다.
하나의 예시에서, 저비점, 중비점 및 고비점의 3성분을 포함하는 원료(F1-1)로부터 분리 공정을 수행하기 위하여, 상기 원료(F1-1)는 도 14와 같이 제 1 증류탑(400)의 제 1 중간부 영역(420)으로 유입될 수 있다. 하나의 예시에서, 원료(F1-1)는 상기 제 1 증류탑(400)의 제 1 중간부 영역(420)에 위치하는 원료 유입부(421)로 유입되며, 상기 원료(F1-1)에 포함되는 성분 중 상대적으로 낮은 끓는점을 가지는 저비점 흐름은 상부 영역(410)으로 유입되고, 상대적으로 높은 끓는점을 가지는 고비점 흐름은 하부 영역(440)으로 유입된다. 또한, 상부 영역(410)으로 유입된 흐름은 제 1 상단 유출부(411)에서 제 1 증류탑 상단 유출 흐름(F1-2)으로 유출되고, 응축기(402)를 거쳐서 일부는 상기 제 1 증류탑(400)의 제 1 상단 유입부(412)로 환류되거나 제품으로 저장된다. 또한, 하부 영역(440)으로 유입된 흐름은 제 1 하단 유출부(441)에서 제 1 증류탑 하단 유출 흐름(F1-3)으로 유출되고, 재비기(403)를 거쳐서 일부는 상기 제 1 증류탑(400)의 제 1 하단 유입부(442)로 환류되거나 제품으로 저장된다. 상기 상부 영역(410)으로 유입된 흐름 중 상대적으로 높은 끓는점을 가지는 성분의 흐름 및 하부 영역(440)으로 유입된 흐름 중 상대적으로 낮은 끓는점을 가지는 성분의 흐름은 제 2 중간부 영역(430)으로 유입되며, 제 3 중간부 영역(432)의 중간단 유출부(433)에서 유출되어 제 2 증류탑(200)으로 유입될 수 있다.
이 경우, 상기 제 1 증류탑(400)의 상부 영역(410)의 온도는 80 내지 115℃, 85 내지 100℃, 또는 90 내지 105℃일 수 있으며, 상기 제 1 증류탑(400)의 하부 영역(440)의 온도는 120 내지 160℃, 130 내지 155℃, 또는 135 내지 147℃일 수 있으며, 상기 제 1 증류탑(400)의 제 2 중간부 영역(430)의 온도는 100 내지 150℃, 110 내지 140℃, 또는 120 내지 135℃일 수 있다. 또한, 상기 제 1 증류탑(400)의 제 1 증류탑 상단 유출 흐름(F1-2) 중 상기 제 1 증류탑(400)의 제 1 상단 유출부(411)로 환류되는 제 1 증류탑 상단 유출 흐름(F1-2)의 환류비는 1 내지 10일 수 있으며, 열역학적인 관점에서 바람직하게는 1.2 내지 7.0, 또는 1.5 내지 4.5일 수 있다. 상기 제 1 증류탑(400)의 제 1 증류탑 하단 유출 흐름(F1-3) 중 상기 제 1 증류탑(400)의 제 1 하단 유입부(442)로 환류되는 제 1 증류탑 하단 유출 흐름(F1-3)의 환류비는 1 내지 30일 수 있으며, 열역학적인 관점에서 바람직하게는 5 내지 25, 또는 10 내지 20일 수 있다. 또한, 제 2 증류탑의 상부(210)의 온도는 100 내지 130℃, 104 내지 125℃, 또는 108 내지 120℃일 수 있으며, 상기 제 2 증류탑의 하부(220)의 온도는 120 내지 150℃, 120 내지 140℃, 또는 123 내지 133℃일 수 있다. 또한, 상기 제 2 증류탑(200)의 제 2 증류탑 상단 유출 흐름(F2-2) 중 상기 제 2 증류탑(200)의 제 2 상단 유입부(212)로 환류되는 제 2 증류탑 상단 유출 흐름(F2-2)의 환류비는 0.01 내지 5.0일 수 있으며, 열역학적인 관점에서 바람직하게는 0.05 내지 1.0, 또는 0.1 내지 2.0일 수 있다.
하나의 예시에서, 상기 제 1 증류탑(400)을 포함하는 증류 장치는 원료(F1-1)를 예열하는 히터(300) 또는 열교환기를 포함할 수 있다. 또한, 상기 제 1 증류탑(400)의 유입부 및 유출부 중 하나 이상은 2 이상의 개구부로 형성됨으로써 원료(F1-1)의 분리 효율을 향상시킬 수 있다. 이에 대한 자세한 설명은, 전술한 증류 장치에서 설명한 바와 동일하므로, 생략한다.
도 15는, 본 출원의 또 하나의 구현예에 따른 증류 장치를 예시적으로 보여주는 도면이다.
도 15에 나타나듯이, 상기 증류 장치는 제 1 증류 장치 및 제 2 증류 장치를 포함하며, 상기 제 1 증류 장치에 포함되는 제 1 증류탑(500)은 내부에 분리벽(501)이 구비된 분리벽형 증류탑일 수 있다. 상기 제 1 증류탑(500)은 분리벽(501)이 상기 제 1 증류탑(500)의 탑정과 맞닿아 있고, 탑저와는 이격되어 있는 구조를 가질 수 있다. 이에 따라, 상기 제 1 증류탑(500)의 내부는 도면에서 가상의 점선으로 분할되어 있는 바와 같이, 분리벽(501)에 의하여 나누어지는 제 1 영역(510) 및 제 3 영역(530)과, 상기 분리벽(501)이 위치하지 않으며 상기 제 1 영역(510) 및 제 3 영역(530)의 하단에 위치하는 제 2 영역(520)으로 구분될 수 있다. 상기 제 1 영역(510)은 제 1 증류탑(500)을 길이 방향으로 2 등분 하는 제 1 상부 영역(511) 및 제 1 하부 영역(512)으로 구분될 수 있으며, 상기 제 1 상부 영역(511)은 제 2 영역(520)과 접하지 않고, 상기 제 1 하부 영역(512)은 상기 제 2 영역(520)과 접할 수 있다. 또한, 상기 제 3 영역(530)은 제 1 증류탑(500)을 길이 방향으로 2 등분하는 제 3 상부 영역(531) 및 제 3 하부 영역(532)으로 구분되며, 상기 제 3 상부 영역(531)은 제 2 영역(520)과 접하지 않고, 상기 제 3 하부 영역(532)은 상기 제 2 영역(520)과 접할 수 있다. 따라서 상기 제 1 증류탑(500)의 내부는 제 1 영역(510), 제 2 영역(520), 제 3 영역(530)으로 구분되고, 상기 제 1 영역(510)은 제 1 상부 영역(511) 및 제 1 하부 영역(512)으로 구분되며, 상기 제 3 영역(530)은 다시 제 3 상부 영역(531) 및 제 3 하부 영역(532)으로 구분될 수 있다. 예를 들어, 상기 제 1 증류탑(500)은 제 1 영역(510) 및 제 3 영역(530)이 상기 분리벽(501)에 의하여 서로 분리(separation) 또는 고립(isolation)되어 있다. 이에 따라, 상기 제 1 영역(510)에서 유출되는 흐름과 상기 제 3 영역(530)에서 유출되는 흐름이 서로 혼합되는 것을 방지할 수 있다.
하나의 예시에서, 상기 분리벽(501)의 길이는 상기 제 1 증류탑(500)의 이론 단수를 기준으로 산출하였을 때, 전체 이론 단수의 40% 이상의 단수에 해당되는 길이일 수 있으며, 바람직하게는 50% 이상, 보다 바람직하게는 60% 이상의 단수에 해당하는 길이일 수 있다. 전술한 바와 같이, 상기 제 1 증류탑(500)의 분리벽(501)이 상기 범위의 길이로 상기 제 1 증류탑(500) 내부에 위치함으로써, 제 1 영역(510) 내의 흐름과 제 3 영역(530) 내의 흐름이 혼합되는 것을 효과적으로 차단할 수 있다. 또한, 상기와 같이 분리벽(501)이 탑정에 맞닿아 있음으로써, 도 14의 분리벽(401)을 가지는 증류탑의 경우보다, 중간단 유출부(533)에서 유출되는 흐름이 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입되는 경우, 상기 중간단 유출부(533)에서 유출되는 흐름 내에 저비점 성분이 혼합되어 유출되는 것을 보다 효과적으로 방지할 수 있다.
일 구현예에서, 상기 제 1 영역(510)은 원료 유입부(513), 제 1 상단 유출부(514) 및 제 1 상단 유입부(515)를 포함하고, 상기 제 2 영역(520)은 제 1 하단 유출부(521) 및 제 1 하단 유입부(522)를 포함하며, 상기 제 3 영역(530)은 제 3 상단 유입부(536), 제 3 상단 유출부(535), 중간단 유출부(533) 및 중간단 유입부(534)를 포함한다. 예를 들어, 상기 원료 유입부(513), 제 1 상단 유출부(514) 및 제 1 상단 유입부(515)는 상기 제 1 증류탑(500)의 제 1 영역(510)에 위치하고, 제 3 상단 유입부(536), 제 3 상단 유출부(535), 중간단 유출부(533) 및 중간단 유입부(534)는 상기 제 3 영역(530)에 위치하며, 제 1 하단 유출부(521) 및 제 1 하단 유입부(522)는 제 2 영역(520)에 위치할 수 있다. 구체적으로, 원료 유입부(513)는 상기 제 1 하부 영역(512) 또는 상기 제 1 상부 영역(511)과 제 1 하부 영역(512)이 접하는 지점에 위치할 수 있다. 상기 제 1 상부 영역(511)과 제 1 하부 영역(512)이 접하는 지점이란, 상기 제 1 증류탑(500)을 길이 방향으로 2 등분하는 지점을 의미할 수 있다. 또한, 상기 제 1 상단 유출부(514) 및 제 1 상단 유입부(515)는 상기 제 1 증류탑(500)의 제 1 영역(510)에 포함되는 제 1 상부 영역(511)에 위치할 수 있으며, 바람직하게는 상기 제 1 상단 유출부(514)는 상기 제 1 증류탑(500)의 제 1 상부 영역(511) 내의 탑정에 위치할 수 있다. 또한, 상기 제 1 하단 유출부(521) 및 제 1 하단 유입부(522)는 상기 제 1 증류탑(500)의 제 2 영역(520)에 위치할 수 있으며, 바람직하게는 상기 제 1 하단 유출부(521)는 상기 제 1 증류탑(500)의 제 2 영역(520) 내의 탑저에 위치할 수 있다. 또한, 상기 제 3 상단 유입부(536), 제 3 상단 유출부(535), 중간단 유출부(533) 및 중간단 유입부(534)는 상기 제 1 증류탑(500)의 제 3 영역(530)에 위치할 수 있다. 하나의 예시에서, 상기 제 3 상단 유입부(536) 및 제 3 상단 유출부(53)는 제 2 상부 영역(531)에 위치할 수 있으며, 상기 제 3 상단 유입부(536)는 제 3 영역(530)의 최상단, 예를 들어 1 단에 위치하고, 상기 제 3 상단 유출부(535)는 제 3 영역(530)의 탑정에 위치할 수 있다. 또한, 상기 중간단 유출부(533) 및 중간단 유입부(534)는 제 3 하부 영역(532)에 위치할 수 있다. 상기 중간단 유출부(533) 및 중간단 유입부(534)가 제 3 하부 영역(532)에 위치함으로써 상기 제 1 증류탑(500)의 중간단 유출부(533)에서 유출되는 흐름 내에 저비점 성분이 포함되는 것을 방지할 수 있다. 상기 증류 장치에 있어서, 상기 중간단 유출부(533)는 원료 유입부(513)보다 하부에 위치할 수 있고, 상기 중간단 유입부(534)는 상기 중간단 유출부(533)보다 하부에 위치할 수 있으며, 이에 대한 설명은 전술한 바와 동일하므로 생략한다.
하나의 예시에서, 저비점, 중비점 및 고비점의 3 성분을 포함하는 원료(F1-1)로부터 분리 공정을 수행하기 위하여, 상기 원료(F1-1)는 도 15와 같이 제 1 증류탑(500)의 제 1 영역(510)으로 유입될 수 있다. 하나의 예시에서, 원료(F1-1)는 상기 제 1 증류탑(500)의 제 1 영역(510)에 위치하는 원료 유입부(513)로 유입되며, 상기 원료(F1-1)에 포함되는 성분 중 상대적으로 낮은 끓는점을 가지는 저비점 흐름은 제 1 상부 영역(511)으로 유입되고, 상대적으로 높은 끓는점을 가지는 고비점 흐름은 제 1 하부 영역(512)을 거쳐 제 2 영역(520)으로 유입될 수 있다. 상기 제 1 상부 영역(511)으로 유입된 흐름은 제 1 상단 유출부(514)에서 제 1 영역 상단 유출 흐름(F1-2)으로 유출되고, 제 1 응축기(502)를 거쳐서 일부는 상기 제 1 영역(510)의 제 1 상단 유입부(515)로 유입될 수 있다. 상기 제 2 영역(520)으로 유입된 흐름 중 상대적으로 높은 끓는점을 가지는 고비점 흐름은 제 1 하단 유출부(521)에서 제 1 증류탑 하단 유출 흐름(F1-3)으로 유출되고, 재비기(504)를 거쳐서 일부는 상기 제 2 영역(520)의 제 1 하단 유입부(522)로 유입될 수 있다. 상기 제 2 영역(520)으로 유입된 흐름 중 상대적으로 낮은 끓는점을 가지는 중비점 흐름은 제 3 영역(530)으로 유입되어, 상기 제 3 영역(530)에 유입된 성분 중 상대적으로 낮은 끓는점을 가지는 성분과 높은 끓는점을 가지는 성분으로 분리되고, 일부는 제 1 영역(510)으로 재유입될 수도 있다. 상기 제 3 영역(530)에 유입된 성분 중 상대적으로 낮은 끓는점을 가지는 성분은, 제 3 상부 영역(531)의 제 3 상단 유출부(535)에서 제 3 영역 상단 유출 흐름(F1-5)으로 유출되며, 제 3 응축기(503)를 거쳐서 일부는 상기 제 3 영역(530)의 제 3 상단 유입부(536)로 유입될 수 있다. 또한, 상기 제 3 영역(530)에 유입된 성분 중 상대적으로 높은 끓는점을 가지는 성분은 제 3 하부 영역(532)의 중간단 유출부(533)에서 유출되어 제 2 증류탑(200)으로 유입되거나 또는 다시 제 2 영역(520)으로 유입될 수 있다.
이 경우, 상기 제 1 증류탑(500)의 제 1 상부 영역(511)의 온도는 80 내지 115℃, 85 내지 100℃, 또는 90 내지 105℃일 수 있으며, 상기 제 1 증류탑(500)의 제 2 영역(520)의 온도는 120 내지 160℃, 130 내지 155℃, 또는 135 내지 147℃일 수 있으며, 상기 제 1 증류탑(500)의 제 3 상부 영역(531)의 온도는 85 내지 120℃, 90 내지 105℃, 또는 95 내지 110℃일 수 있다. 또한, 상기 제 1 영역(510)에서 유출되는 제 1 영역 상단 유출 흐름(F1-2) 중 상기 제 1 영역(510)의 제 1 상단 유입부(515)로 환류되는 제 1 영역 상단 유출 흐름(F1-2)의 환류비는 1 내지 10일 수 있으며, 열역학적인 관점에서 바람직하게는 1.2 내지 7.0, 또는 1.5 내지 4.5일 수 있다. 상기 제 3 영역(530)에서 유출되는 제 3 영역 상단 유출 흐름(F1-5) 중 상기 제 3 영역(530)의 제 3 상단 유입부(536)로 환류되는 제 3 영역 상단 유출 흐름(F1-5)의 환류비는 0.01 내지 3.0일 수 있으며, 열역학적인 관점에서 바람직하게는 0.03 내지 2.0, 또는 0.1 내지 1.0일 수 있다. 상기 제 2 영역(520)의 제 1 증류탑 하단 유출 흐름(F1-3) 중 상기 제 2 영역(520)의 제 1 하단 유입부(522)로 환류되는 제 1 증류탑 하단 유출 흐름(F1-3)의 환류비는 1 내지 30일 수 있으며, 열역학적인 관점에서 바람직하게는 5 내지 25, 또는 10 내지 20일 수 있다. 또한, 제 2 증류탑의 상부(210)의 온도는 100 내지 130℃, 104 내지 125℃, 또는 108 내지 120℃일 수 있으며, 상기 제 2 증류탑의 하부(220)의 온도는 120 내지 150℃, 120 내지 140℃, 또는 123 내지 133℃일 수 있다. 또한, 상기 제 2 증류탑(200)의 제 2 증류탑 상단 유출 흐름(F2-2) 중 상기 제 2 증류탑(200)의 제 2 상단 유입부(212)로 환류되는 제 2 증류탑 상단 유출 흐름(F2-2)의 환류비는 0.01 내지 5.0일 수 있으며, 열역학적인 관점에서 바람직하게는 0.05 내지 1.0, 또는 0.1 내지 2.0일 수 있다.
하나의 예시에서, 상기 제 1 증류탑(500)을 포함하는 증류 장치는 원료(F1-1)를 예열하는 히터(300) 또는 열교환기를 포함할 수 있다. 또한, 상기 제 1 증류탑(500)의 유입부 및 유출부 중 하나 이상은 2 이상의 개구부로 형성됨으로써 원료(F1-1)의 분리 효율을 향상시킬 수 있다. 이에 대한 자세한 설명은, 전술한 증류 장치에서 설명한 바와 동일하므로, 생략한다.
본 출원은, 또한 원료의 분리 방법에 대한 것이며, 예를 들어 상기 분리 방법은, 전술한 증류 장치에 의해 수행될 수 있다.
본 출원의 원료(F1-1)를 분리하는 방법은 원료(F1-1)를 유입하는 단계, 원료(F1-1)를 증류하여 분류하는 단계 및 분리 유출하는 단계를 포함할 수 있다. 구체적으로, 원료(F1-1)를 제 1 증류탑(100)의 원료 유입부(121)로 유입하는 단계, 상기 제 1 증류탑(100)으로 유입된 원료(F1-1)를 제 1 증류탑(100)의 제 1 상단 유출부(111), 중간단 유출부(122) 및 제 1 하단 유출부(131)로 분리 유출하는 단계, 상기 중간단 유출부(122)에서 유출되는 흐름을 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입하는 단계 및 상기 제 2 증류탑(200)으로 유입된 흐름을 분리하여 제 2 증류탑(200)의 제 2 상단 유출부(211) 및 제 2 하단 유출부(222)에서 각각 분리 유출하는 단계를 포함할 수 있다.
[화학식 1]
Figure PCTKR2014006573-appb-I000002
상기 제 1 증류탑(100)으로 유입되는 원료(F1-1)는 상기 화학식 1의 화합물을 포함할 수 있으며, 예를 들면, 부틸 아크릴레이트, 메틸아크릴레이트, 메틸메타크릴레이트, 2-에틸헥실 아크릴레이트, 아크릴산, 에틸렌글리콜, 부틸알코올, 메틸알코올, 또는 이소프로필알코올, 바람직하게는 2-에틸헥실 아크릴레이트일 수 있다. 상기 원료(F1-1)에 관한 설명은 전술한 바와 동일하므로, 생략하기로 한다.
상기 분리 방법은, 상기 제 1 증류탑(100)의 분리 단계 및 상기 제 1 증류탑(100)에 연결된 제 2 증류탑(200)의 분리 단계를 포함할 수 있다. 상기 제 1 증류탑(100)의 분리 단계는 상기 원료(F1-1)를 유입하는 단계, 상기 원료(F1-1)를 증류하는 단계 및 분리 유출시키는 단계를 포함할 수 있다. 상기 원료(F1-1)를 유입하는 단계에서는 상기 원료(F1-1)를 상기 제 1 증류탑(100)의 원료 유입부(121)로 유입할 수 있다. 또한, 상기 원료(F1-1)를 증류하는 단계에서는 상기 제 1 증류탑(100)으로 유입된 원료(F1-1)를 분리하여 제 1 증류탑(100)의 제 1 상단 유출부(111), 중간단 유출부(122) 및 제 1 하단 유출부(131)로 각각 분리할 수 있다. 나아가, 분리 유출하는 단계에서는 상기 원료(F1-1) 중 상대적으로 저비점인 흐름을 상기 제 1 증류탑(100)의 제 1 상단 유출부(111)에서 제 1 증류탑 상단 유출 흐름(F1-2)으로 유출시키고, 상대적으로 고비점인 흐름은 상기 제 1 증류탑(100)의 제 1 하단 유출부(131)에서 제 1 증류탑 하단 유출 흐름(F1-3)으로 유출시키고, 상대적으로 중비점인 흐름은 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 중간단 유출 흐름(F1-4)으로 유출시킬 수 있다. 또한, 상기 제 1 증류탑(100)의 분리 단계는, 상기 제 1 상단 유출부(111)에서 유출되는 흐름을 제 1 응축기(101)에 통과시키고, 상기 제 1 응축기(101)를 통과한 제 1 증류탑 상단 유출 흐름(F1-2) 중 일부 또는 전부를 상기 제 1 상단 유입부(112)로 유입시키는 단계를 포함하며, 상기 제 1 하단 유출부(131)에서 유출되는 흐름을 재비기(102)에 통과시키고, 상기 재비기(102)를 통과한 제 1 증류탑 하단 유출 흐름(F1-3) 중 일부 또는 전부를 상기 제 1 하단 유입부(132)로 유입시키는 단계를 포함하며, 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 흐름을 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입시키는 단계를 포함할 수 있다.
본 출원의 분리 방법은 상기 제 1 증류탑(100)의 분리 단계 이후에, 상기 제 2 증류탑(200)의 분리 단계를 포함할 수 있다. 상기 제 2 증류탑(200)의 분리 단계는 상기 제 1 증류탑(100)으로부터 유출된 흐름을 유입시키는 단계, 상기 제 1 증류탑(100)으로부터 유입된 흐름을 증류하는 단계 및 분리 유출시키는 단계를 포함할 수 있다. 상기 제 2 증류탑(200)의 분리 단계는 상기 제 1 증류탑(100)의 중간단 유출부(122)로부터 유출된 흐름을 상기 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입시키는 단계를 포함할 수 있다. 또한, 상기 제 2 증류탑(200)의 증류하는 단계에서는, 제 2 증류탑(200)의 제 2 하단 유입부(221)로 유입된 흐름을 제 2 증류탑(200)의 제 2 하단 유출부(222) 및 제 2 상단 유출부(211)로 각각 분리할 수 있다. 나아가, 상기 제 2 증류탑(200)의 분리 유출하는 단계에서는, 상기 제 2 증류탑(200)으로 유입된 흐름 중 상대적으로 고비점인 흐름을 상기 제 2 증류탑(200)의 제 2 하단 유출부(222)에서 제 2 증류탑 하단 유출 흐름(F2-1)으로 유출시키고, 상대적으로 중비점인 흐름은 상기 제 2 증류탑(200)의 제 2 상단 유출부(211)에서 제 2 증류탑 상단 유출 흐름(F2-2)으로 유출시키는 단계를 포함할 수 있다. 또한, 상기 제 2 증류탑(200)의 분리 유출시키는 단계에서는, 상기 제 2 하단 유출부(222)에서 유출된 흐름의 일부 또는 전부를 상기 제 1 증류탑(100)의 중간단 유입부(123)로 유입시키는 단계를 포함하며, 상기 제 2 상단 유출부(211)에서 유출된 흐름을 제 2 응축기(201)에 통과시키고, 상기 제 2 응축기(201)를 통과한 흐름의 일부 또는 전부를 상기 제 2 상단 유입부(212)로 유입시키는 단계를 포함할 수 있다.
하나의 예시에서, 상기 제 1 증류탑(100)의 분리 단계는 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 흐름을 원료 유입부(121)에서 유입되는 흐름보다 하단에서 유출시키는 것을 포함하며, 상기 제 1 증류탑(100)의 중간단 유입부(123)로 유입되는 흐름을 중간단 유출부(122)에서 유출되는 흐름보다 하단에서 유입시키는 단계를 포함할 수 있다. 예를 들어, 상기 제 1 증류탑(100)의 중간단 유입부(123)에서 유출되는 흐름은 상기 제 1 증류탑(100)의 제 1 하단 유출부(131) 및 제 1 하단 유입부(132)보다 상단에서 유출될 수 있다. 또한, 상기 제 1 증류탑(100)으로부터 유출되는 흐름을 상기 제 2 증류탑(200)으로 유입시키는 단계는, 상기 제 1 증류탑(100)의 중간단 유출부(122)에서 유출되는 흐름을 제 2 증류탑(200)의 탑저, 예를 들면, 제 2 하단 유입부(221)로 유입시키는 것을 포함할 수 있다. 한편, 상기 제 2 증류탑(200)으로 유입된 흐름을 분리 유출시키는 단계는, 상기 제 2 증류탑(200)의 하부 생성물을 포함하는 흐름을 상기 제 2 증류탑(200)의 탑저, 예를 들면, 제 2 하단 유출부(222)에서 유출시키며, 상기 제 2 증류탑(200)의 제 2 하단 유출부(222)에서 유출된 흐름의 일부 또는 전부를 상기 제 1 증류탑(100)의 중간단 유입부(123)로 유입시키는 것을 포함할 수 있다. 이 경우, 상기 제 1 증류탑(100)의 이론 단수, 상기 제 1 증류탑(100)의 유입부 및 유출부가 위치하는 단, 각 흐름의 온도 및 환류비에 대한 자세한 설명은, 전술한 증류 장치에서 설명한 바와 동일하므로, 생략한다.
상기 분리 방법은 각각의 단계를 유기적으로 연결하여 설명하지만, 상기 분리 방법의 순서는 예시적인 것으로 상기와 같이 제한되는 것은 아니다. 또한, 상기 각 단계의 이전 또는 이후에 본 발명이 속하는 기술분야에서 통상적으로 수행될 수 있는 공정 단계를 추가적으로 포함할 수 있으므로, 상기 단계들만으로 분리 방법이 제한되는 것은 아니다.
또한, 본 출원의 분리 방법에서는, 상기 원료(F1-1)를 제 1 증류탑(100)으로 유입하기 전에 예열하는 것을 추가로 포함할 수 있다. 상기 「예열하는 것」 또는 「예열」은 이하에서 예열 단계와 동일한 의미로 사용된다. 상기 예열 단계는 전술한 원료(F1-1)를 유입하는 단계 이전에 수행되며, 상기 원료(F1-1)를 제 1 증류탑(100)의 원료 유입부(121)로 유입하기 전에 가열할 수 있으므로, 상기 원료(F1-1)의 분리 과정에서 발생하는 에너지의 손실을 최소화 할 수 있다. 상기 예열 단계에서는, 상기 제 1 증류탑(100)으로 유입되는 원료(F1-1)를 외부의 열원을 이용하여 예열할 수 있다. 예시적인 예열 단계는, 히터(300)를 사용하여 원료(F1-1)를 가열하는 것일 수 있다. 따라서 상기 원료(F1-1)를 제 1 증류탑(100)으로 유입시키기 전에 가열함으로써, 상기 제 1 증류탑(100)의 제 1 증류탑 하단 유출 흐름(F1-3) 중 제 1 하단 유입부(132)로 환류되는 일부 흐름을 가열하기 위해 재비기(102)에서 사용되는 열의 소모량을 줄일 수 있다. 상기 히터(300)에 관한 구체적인 내용은 전술한 바와 동일하므로 생략하기로 한다.
또한, 본 출원의 분리 방법은, 상기 제 1 증류탑(100)의 제 1 증류탑 상단 유출 흐름(F1-2)을 제 1 열교환기(301)를 사용하여 원료(F1-1)와 열교환시키는 것을 포함할 수 있다. 이 경우, 상기 제 1 증류탑(100)에서 유출되는 제 1 증류탑 상단 유출 흐름(F1-2)은 상기 제 1 열교환기(301)를 경유하면서 열을 공급하고, 상기 제 1 열교환기(301)를 사용하여 원료(F1-1)의 온도를 상승시킬 수 있다. 또한, 하나의 예시에서, 제 2 증류탑(200)에서 유출되는 제 2 증류탑 상단 유출 흐름(F2-2)을 제 2 열교환기(302)를 사용하여 원료(F1-1)와 열교환시키는 것을 포함할 수 있다. 이 경우, 상기 제 2 증류탑(200)에서 유출되는 제 2 증류탑 상단 유출 흐름(F2-2)은 상기 제 2 열교환기(302)를 경유하면서 열을 공급하고, 상기 제 2 열교환기(302)를 사용하여 원료(F1-1)의 온도를 상승시킬 수 있다. 이에 따라, 상기 원료(F1-1)의 분리 공정에서 유출되는 폐열을 활용하여 상기 제 1 증류탑(100)으로 유입되는 저온의 원료(F1-1)를 가열하고, 분리 과정에서 발생하는 에너지 손실을 최소화할 수 있다. 또한, 고온의 증기로부터 발생하는 잠열을 이용함으로써 액체의 현열을 활용하는 것에 비해 작은 열에너지로도 원료의 온도를 효율적으로 상승시킬 수 있다.
나아가, 상기 제 1 증류탑(100)의 제 1 증류탑 상단 유출 흐름(F1-2)은 상기 제 1 열교환기(301)에 열을 공급한 후, 상대적으로 낮은 온도로 상기 제 1 증류탑(100)의 제 1 상단 유입부(112)로 환류되며, 상기 제 2 증류탑(200)의 제 2 증류탑 상단 유출 흐름(F2-2)은 상기 제 2 열교환기(302)에 열을 공급한 후, 상대적으로 낮은 온도로 상기 제 2 증류탑(200)의 제 2 상단 유입부(212)로 각각 환류된다. 따라서 상기 제 1 응축기(101) 및 제 2 응축기(201)를 이용한 응축 공정에서 사용되는 냉각수의 양을 줄임으로써, 상기 응축 공정에서 소요되는 비용을 절감할 수 있다. 또한, 상기 제 1 증류탑(100)의 제 1 증류탑 하단 유출 흐름(F1-3) 중 제 1 하단 유입부(132)로 환류되는 일부 또는 전부의 흐름을 가열하기 위한 재비기(102)에서 사용되는 열의 소모량을 줄일 수 있다. 이로써 상기 제 1 증류탑(100)으로 유입되는 원료(F1-1)의 온도를 높이기 위한 에너지 소모량을 줄이고, 정제에 사용되는 증류탑의 크기도 최소화함으로써 상기 공정의 경제성을 향상시킬 수 있다. 이 경우, 원료(F1-1)와 각 흐름의 온도 및 환류비에 대한 자세한 설명은, 전술한 증류 장치에서 설명한 바와 동일하므로 생략한다.
본 출원의 증류장치 및 이를 이용한 분리방법에 의하면, 에너지 소모량을 줄이고, 원료의 정제에 사용되는 증류탑의 크기도 최소화함으로써 공정의 경제성을 향상시킬 수 있다.
본 출원의 증류 장치에 의하면, 3 성분 이상의 혼합물의 분리 시에 분리하고자 하는 물질, 예를 들어, 2-에틸헥실 아크릴레이트를 고순도로 분리할 수 있으며, 상기 2-에틸헥실 아크릴레이트의 분리 정제 과정에서 에너지 절감을 도모할 수 있다.
도 1은 본 출원의 구현예에 따른 증류 장치를 예시적으로 보여주는 도면이다.
도 2 및 도 3은 본 출원의 일 구현예에 의한 증류 장치를 예시적으로 나타낸 도면이다.
도 4는 본 출원의 일 구현예에 의한 증류 장치를 예시적으로 나타낸 도면이다.
도 5 및 도 6은 본 출원의 또 다른 구현예에 의한 상기 증류 장치를 예시적으로 나타낸 도면이다.
도 7 내지 도 13은 본 출원의 일 구현예에 의한 상기 증류 장치의 지면과 평행한 단면을 예시적으로 나타낸 도면이다.
도 14는 본 출원의 또 다른 구현예에 의한 상기 증류 장치를 예시적으로 나타낸 도면이다.
도 15는 본 출원의 또 다른 구현예에 의한 상기 증류 장치를 예시적으로 나타낸 도면이다.
도 16은 비교예에서 사용한 일반적인 분리 장치를 예시적으로 나타낸 도면이다.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
도 1의 증류 장치을 사용하여 2-에틸헥실 아크릴레이트를 제조하였다. 구체적으로는, 2-에틸헥실 아크릴레이트를 포함하고 20 ℃ 내지 40 ℃의 원료를 이론 단수가 60 단인 제 1 증류탑의 15 단에 도입하였다.
상기 제 1 증류탑 상부의 운전 압력은 약 20 내지 30 torr 이고, 운전 온도는 약 90 내지 105 ℃가 되도록 하였고, 상기 제 1 증류탑 하부의 운전 압력은 약 80 내지 90 torr이고, 운전 온도는 140 내지 147 ℃가 되도록 하였다. 상기 제 1 증류탑의 1 단에서 배출되는 흐름의 일부는 제 1 응축기를 거쳐서 상기 제 1 증류탑으로 환류시켰고, 제 1 증류탑의 60 단에서 배출되는 흐름의 일부는 재비기를 거쳐서 상기 제 1 증류탑으로 환류시켰으며, 이 때, 상기 제 1 증류탑의 제 1 증류탑 상단 유출 흐름의 환류비는 1.5 내지 4.5가 되도록 설정하였고, 제 1 증류탑 하단 유출 흐름의 환류비는 10 내지 20이 되도록 설정하였다. 또한, 상기 제 1 증류탑의 55 단에 위치하는 중간단 유출부에서 배출되는 흐름은 제 2 증류탑의 탑저의 제 2 하단 유입부로 유입 하였으며, 상기 제 2 증류탑의 탑저의 제 2 하단 유출부에서 배출되는 흐름은 상기 제 1 증류탑의 55 단에 위치하고, 상기 중간단 유출부 하부에 위치하는 중간단 유입부로 유입하였다. 이 경우, 상기 제 2 증류탑 상부의 압력은 약 20 내지 30 torr 이고, 운전 온도는 약 108 내지 120 ℃가 되도록 하였고, 상기 제 2 증류탑 하부의 운전 압력은 약 40 내지 60 torr이고, 운전 온도는 약 120 내지 150 ℃가 되도록 하였다. 상기 제 2 증류탑의 상부로 배출되는, 2-에틸헥실 아크릴레이트를 포함하는 흐름의 일부는 제 2 응축기를 거쳐서 상기 제 2 증류탑으로 환류시켰으며, 다른 일부는 제품으로 분리하였다. 이 경우, 상기 제 2 증류탑의 제 2 증류탑 상단 유출 흐름의 환류비는 0.01 내지 5.0이 되도록 설정하였다.
실시예 2
도 4와 같이, 히터를 통하여 원료를 50 내지 100 ℃로 승온시킨 후, 제 1 증류탑으로 유입시킨 것을 제외하고는 실시예 1과 동일한 방법에 의하여 정제하였다.
실시예 3
도 5와 같이, 제 1 증류탑의 제 1 상단 유출부에서 유출되는 제 1 증류탑 상단 유출 흐름이 제 1 열교환기로 유입되어, 제 1 응축기를 거치기 전에 제 1 증류탑으로 도입되는 원료와 열교환을 수행하도록 한 것을 제외하고는 실시예 1과 동일한 방법에 의하여 정제하였다. 상기 열교환 후 제 1 증류탑으로 유입되는 원료의 온도는 50 내지 100 ℃로 조절하였고, 제 1 응축기로 유입되는 제 1 증류탑 상단 유출 흐름의 온도는 50 내지 90 ℃가 되도록 조절하였다. 또한, 이 경우, 상기 제 1 증류탑 상부의 운전 압력은 약 20 내지 30 torr이고, 상기 제 1 열교환기로 유입되는 제 1 증류탑 상단 유출 흐름의 온도가 약 80 내지 115 ℃가 되도록 하였고, 상기 제 1 증류탑 하부의 운전 압력은 약 80 내지 90 torr이고, 운전 온도는 140 내지 147 ℃가 되도록 하였다. 이 때, 상기 제 1 증류탑의 제 1 증류탑 상단 유출 흐름의 환류비는 1.5 내지 4.5가 되도록 설정하였고, 제 1 증류탑 하단 유출 흐름의 환류비는 10 내지 20이 되도록 설정하였다. 또한, 상기 제 2 증류탑 상부의 압력은 약 20 내지 30 torr이고, 운전 온도는 약 108 내지 120 ℃가 되도록 하였고, 상기 제 2 증류탑 하부의 운전 압력은 약 40 내지 60 torr이고, 운전 온도는 약 120 내지 150 ℃가 되도록 하였으며, 상기 제 2 증류탑의 제 2 증류탑 상단 유출 흐름의 환류비는 0.1 내지 2.0이 되도록 설정하였다.
실시예 4
도 6과 같이, 제 2 증류탑의 제 2 상단 유출부에서 유출되는 제 2 증류탑 상단 유출 흐름이 제 2 열교환기로 유입되어, 제 2 응축기를 거치기 전에 제 1 증류탑으로 도입되는 원료와 열교환을 수행하도록 한 것을 제외하고는 실시예 3과 동일한 방법에 의하여 정제하였다. 상기 열교환 후 제 1 증류탑으로 유입되는 원료의 온도는 90 내지 110 ℃로 조절하였고, 제 2 응축기로 유입되는 제 2 증류탑 상단 유출 흐름의 온도는 60 내지 110 ℃가 되도록 조절하였다. 또한, 이 경우, 상기 제 2 증류탑 상부의 운전 압력은 약 20 내지 30 torr이고, 상기 제 2 열교환기로 유입되는 제 2 증류탑 상단 유출 흐름의 온도가 약 100 내지 130 ℃가 되도록 하였고, 상기 제 2 증류탑 하부의 운전 압력은 약 40 내지 60 torr이고, 운전 온도는 120 내지 150 ℃가 되도록 하였다. 이 때, 상기 제 2 증류탑의 제 2 증류탑 상단 유출 흐름의 환류비는 0.01 내지 5.0이 되도록 설정하였다.
실시예 5
제 1 증류탑의 원료 유입부가 2 개의 개구부로 형성되며, 상기 2 개의 원료 유입부가 이론 단수가 60 단인 제 1 증류탑의 15 단에 위치하도록 형성된 증류탑을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 정제하였다.
실시예 6
제 1 증류탑의 원료 유입부 및 제 1 상단 유입부가 각각 2 개의 개구부로 형성되며, 상기 2 개의 원료 유입부가 이론 단수가 60 단인 제 1 증류탑의 15 단에 위치하고, 상기 2 개의 제 1 상단 유입부가 이론 단수가 60 단인 제 1 증류탑의 1 단에 위치하도록 형성된 증류탑을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 정제하였다.
실시예 7
제 1 증류탑의 원료 유입부 및 제 1 하단 유입부가 각각 2 개의 개구부로 형성되며, 상기 2 개의 원료 유입부가 이론 단수가 60 단인 제 1 증류탑의 15 단에 위치하고, 상기 2 개의 제 1 하단 유입부가 이론 단수가 60 단인 제 1 증류탑의 60 단에 위치하도록 형성된 증류탑을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 정제하였다.
실시예 8
제 1 증류탑의 원료 유입부, 제 1 하단 유입부 및 제 1 상단 유입부가 각각 2 개의 개구부로 형성되고, 상기 2 개의 원료 유입부가 이론 단수가 60 단인 증류탑의 15 단에 위치하며, 또한, 상기 2 개의 제 1 하단 유입부는 증류탑의 이론 단수가 60 단인 증류탑의 60 단에 위치하고, 상기 2 개의 제 1 상단 유입부는 이론 단수가 60 단인 증류탑의 1 단에 위치하도록 한 증류탑을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 정제하였다.
실시예 9
제 1 증류탑의 원료 유입부, 중간단 유출부 및 중간단 유입부가 각각 2 개의 개구부로 형성되고, 상기 2 개의 원료 유입부가 이론 단수가 60 단인 제 1 증류탑의 15 단에 위치하고, 상기 중간단 유출부는 이론 단수가 60 단인 제 1 증류탑의 55 단에 위치하며, 상기 중간단 유입부는 이론 단수가 60 단인 제 1 증류탑의 55 단의 상기 중간단 유출부의 하부에 위치하도록 한 증류탑을 사용하였으며, 제 2 증류탑의 제 2 하단 유입부가 각각 2개의 개구부로 형성되고, 상기 2 개의 제 2 하단 유입부가 제 2 증류탑의 탑저에 위치하도록 한 증류탑을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 정제하였다.
실시예 10
제 1 증류탑의 원료 유입부, 제 1 상단 유입부 및 제 1 하단 유입부가 각각 2 개의 개구부로 형성되며, 상기 원료 유입부가 이론 단수가 60 단인 제 1 증류탑의 15 단에 위치하고, 상기 2 개의 제 1 상단 유입부는 이론 단수가 60 단인 제 1 증류탑의 1 단에 위치하며, 상기 2 개의 제 1 하단 유입부는 이론 단수가 60 단인 상기 제 1 증류탑의 60 단에 위치하며, 상기 2 개의 상기 중간단 유출부 및 중간단 유입부는 이론 단수가 60 단인 제 1 증류탑의 55 단에 위치하도록 한 증류탑을 사용하였으며, 제 2 증류탑의 제 2 하단 유입부가 각각 2개의 개구부로 형성되고, 상기 2 개의 제 2 하단 유입부는 제 2 증류탑의 탑저에 위치하도록 한 증류탑을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 정제하였다.
실시예 11
도 14과 같이 분리벽을 가지는 분리벽형 증류탑을 제 1 증류탑으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 정제 하였다. 2-에틸헥실 아크릴레이트를 포함하는 원료를 제 1 증류탑의 제 1 중간부 영역에 위치하는 원료 유입부에 도입하였으며, 구체적으로, 이론 단수가 60 단인 제 1 증류탑의 15 단에 도입하였다. 상기 제 1 증류탑 상부 영역의 운전 압력은 약 20 내지 30 torr 이고, 운전 온도는 약 80 내지 115 ℃가 되도록 하였고, 상기 제 1 증류탑 하부 영역의 운전 압력은 약 80 내지 90 torr 이고, 운전 온도는 120 내지 160 ℃가 되도록 하였다. 상기 제 1 증류탑의 상부 영역에서 배출되는 흐름의 일부는 제 1 응축기를 거쳐서 상기 제 1 증류탑으로 환류시켰으며, 제 1 증류탑의 하부 영역에서 배출되는 흐름의 일부는 재비기를 거쳐서 상기 제 1 증류탑으로 환류시켰다. 이 때, 상기 제 1 증류탑의 제 1 증류탑 상단 유출 흐름의 환류비는 1 내지 10이 되도록 설정하였고, 제 1 증류탑 하단 유출 흐름의 환류비는 1 내지 30이 되도록 설정하였다. 또한, 상기 제 1 증류탑의 제 4 중간부 영역, 구체적으로 제 1 증류탑의 55 단에서 배출되는 흐름은 제 2 증류탑의 탑저로 유입하였으며, 상기 제 2 증류탑의 탑저에서 배출되는 흐름은 상기 제 1 증류탑의 제 4 중간부 영역, 구체적으로 제 1 증류탑의 55 단으로 유입하였다. 이 경우, 상기 제 2 증류탑 상부의 압력은 약 20 내지 30 torr 이고, 운전 온도는 약 100 내지 130 ℃가 되도록 하였고, 상기 제 2 증류탑 하부의 운전 압력은 약 40 내지 60 torr 이고, 운전 온도는 약 120 내지 150 ℃가 되도록 하였다. 상기 제 2 증류탑의 상부로 배출되는, 2-에틸헥실 아크릴레이트를 포함하는 흐름의 일부는 제 2 응축기를 거쳐서 상기 제 2 증류탑으로 환류시켰으며, 다른 일부는 제품으로 분리하였다. 이 경우, 상기 제 2 증류탑의 제 2 증류탑 상단 유출 흐름의 환류비는 0.01 내지 5.0이 되도록 설정하였다.
실시예 12
도 15와 같이 증류탑의 탑정과 맞닿아 있고 탑저와 이격된 분리벽을 가지는 분리벽형 증류탑을 제 1 증류탑으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 정제하였다. 2-에틸헥실 아크릴레이트를 포함하는 원료를 제 1 증류탑의 제 1 하부 영역에 위치하는 원료 유입부로 도입하였으며, 구체적으로, 이론 단수가 60 단인 제 1 증류탑의 15 단에 도입하였다. 상기 제 1 증류탑의 제 1 영역의 운전 압력은 약 20 내지 30 torr 이고, 운전 온도는 약 80 내지 115 ℃가 되도록 하였고, 상기 제 1 증류탑의 제 2 영역의 운전 압력은 약 80 내지 90 torr 이고, 운전 온도는 120 내지 160 ℃가 되도록 하였다. 상기 제 1 증류탑의 제 1 상부 영역에서 배출되는 흐름의 일부는 제 1 응축기를 거쳐서 상기 제 1 증류탑으로 환류시켰으며, 일부는 제품으로 저장하였다. 또한, 상기 제 1 증류탑의 제 3 상부 영역에서 배출되는 흐름의 일부는 제 3 응축기를 거쳐서 상기 제 3 상부 영역으로 환류시켰으며, 일부는 제품으로 저장하였다. 제 1 증류탑의 제 2 영역에서 배출되는 흐름의 일부는 재비기를 거쳐서 상기 제 2 영역으로 환류시켰으며, 일부는 제품으로 저장하였다. 이 때, 상기 제 1 증류탑의 제 1 영역 상단 유출 흐름의 환류비는 1 내지 10이 되도록 설정하였고, 제 3 영역 상단 유출 흐름의 환류비는 0.01 내지 3.0이 되도록 설정하였으며, 제 1 증류탑 하단 유출 흐름의 환류비는 1 내지 30이 되도록 설정하였다. 또한, 상기 제 1 증류탑의 제 3 하부 영역, 구체적으로 제 1 증류탑의 55 단의 중간단 유출부에서 배출되는 흐름은 제 2 증류탑의 탑저로 유입하였으며, 상기 제 2 증류탑의 탑저에서 배출되는 흐름은 상기 제 1 증류탑의 제 3 하부 영역, 구체적으로 제 1 증류탑의 55 단에 위치하고 상기 중간단 유출부의 하부에 위치하는 중간단 유입부로 유입하였다. 이 경우, 상기 제 2 증류탑 상부의 압력은 약 20 내지 30 torr이고, 운전 온도는 약 100 내지 130 ℃가 되도록 하였고, 상기 제 2 증류탑 하부의 운전 압력은 약 40 내지 60 torr이고, 운전 온도는 약 120 내지 150 ℃가 되도록 하였다. 상기 제 2 증류탑의 상부로 배출되는, 2-에틸헥실 아크릴레이트를 포함하는 흐름의 일부는 제 2 응축기를 거쳐서 상기 제 2 증류탑으로 환류시켰으며, 다른 일부는 제품으로 분리하였다. 이 경우, 상기 제 2 증류탑의 제 2 증류탑 상단 유출 흐름의 환류비는 0.01 내지 5.0이 되도록 설정하였다.
비교예
도 16과 같이, 2 기의 증류탑이 연결되어 있는 증류장치를 이용하여 2-에틸헥실 아크릴레이트를 정제하였다. 첫번째 증류탑의 탑정 영역에서 유출되는 저비점 흐름 및 물은 응축기를 거쳐 일부는 첫번째 증류탑으로 환류되며, 나머지 일부는 제품으로 생산되었으며, 첫번째 증류탑의 탑저 영역에서 유출되는 흐름은 재비기를 이용하여 일부는 다시 첫번째 증류탑의 탑저 영역으로 환류시키고, 나머지 일부는 두번째 증류탑으로 도입시켰다. 두번째 증류탑의 상부에서 유출되는 중비점 흐름은 응축기를 이용하여 응축시켜, 일부는 다시 두번째 증류탑의 탑정 영역으로 환류시키고, 다른 일부는 제품으로 분리하였으며, 두번째 증류탑의 하부에서 유출되는 고비점 흐름은 재비기를 이용하여 일부는 다시 두번째 증류탑의 탑저 영역으로 환류시켰다. 이 경우, 두번째 증류탑의 탑정 흐름의 환류비는 0.2 내지 1.0이 되도록 설정하였다.
상기 실시예 및 비교예에 따라 2-에틸헥실 아크릴레이트를 정제한 후, 상기 2-에틸헥실 아크릴레이트의 순도, 제품 내의 저비점 물질의 함량, 에너지 소비량을 측정하여 하기 표 1에 나타내었다.
표 1
비교예 실시예1 실시예2 실시예3 실시예4 실시예11 실시예12
제품 순도 (중량%) 99.95 99.95 99.95 99.95 99.95 99.96 99.96
제품 내 저비점 물질 함량 10 ppm 10 ppm 10 ppm 10 ppm 10 ppm 3 ppb 1 ppb
에너지 소비량 (Gcal/hr) 1.2 0.91 0.91 0.84 0.82 0.91 0.91
에너지 저감율 (%) - 24 24 30 32 24 24
상기 표 1에 나타나듯이, 실시예 1 내지 4, 실시예 11 및 12에 따라 2-에틸헥실 아크릴레이트를 정제할 경우에는, 비교예에 따라 정제를 수행한 경우에 비해 고순도의 2-에틸헥실 아크릴레이트를 얻을 수 있었다.
또한, 실시예 1 내지 4, 실시예 11 및 12에 따른 정제 공정에서 투입된 에너지의 총량은 각각 0.91 Gcal/hr, 0.91 Gcal/hr, 0.84 Gcal/hr, 0.82 Gcal/hr, 0.91 Gcal/hr, 0.91 Gcal/hr로서, 비교예에 따른 정제 공정에서 투입된 에너지 총량에 비해 총 에너지 소비량이 크게 줄어들었음을 확인할 수 있다. 즉, 본 출원의 실시예에 따른 증류 장치에 의하여 2-에틸헥실 아크릴레이트을 분리할 경우, 최대 32%의 에너지 절감효과가 나타나고 있다.
상기 실시예 및 비교예에 따라 원료를 분리시킨 후, 분리 공정에서 편류 현상이 발생되는 정도를 하기 표 2에 나타내었다.
표 2
비교예 실시예1 실시예5 실시예6 실시예7 실시예8 실시예9 실시예10
편류현상의 발생 정도 × × × × × ×
*×: 편류 현상이 발생하지 않음
* ○: 편류 현상이 발생함
상기 표 2에 나타나듯이, 일반 분리벽형 증류탑을 사용하여 비교예에 따라 원료를 분리시킨 경우 및 원료 유입부 및 환류 유입부가 하나의 개구부로 형성된 증류탑을 사용하여 실시예 1에 따라 원료를 분리시킨 경우, 편류 현상 발생하였나, 원료 유입부 및 환류 유입부 중 하나 이상이 2 이상의 개구부로 형성된 실시예 5 내지 실시예 10의 경우, 비교예 및 실시예 1에 비하여 원료의 분리 공정 중 편류 현상이 발생하지 않았음을 확인할 수 있다. 따라서 본 출원의 2 이상의 유입부 및 유출부를 형성하는 분리벽형 증류탑에 의해 원료를 정제시킬 경우, 비교예에 따른 증류 장치에 비하여 원료의 분리 효율을 높일 수 있다.
[부호의 설명]
F1-1: 원료
F1-2: 제 1 증류탑 상단 유출 흐름, 제 1 영역 상단 유출 흐름
F1-3: 제 1 증류탑 하단 유출 흐름
F1-4: 중간단 유출 흐름
F1-5: 제 2 영역 상단 유출 흐름
F2-1: 제 2 증류탑 하단 유출 흐름
F2-2: 제 2 증류탑 상단 유출 흐름
A1-1, A1-2, A1-3, A1-4: 소영역
100, 400, 500: 제 1 증류탑
101, 402, 502: 제 1 응축기
102, 403, 504: 재비기
110: 제 1 증류탑 상부
111, 411, 514: 제 1 상단 유출부
112, 412, 515: 제 1 상단 유입부
120: 제 1 증류탑 중간부
121, 421, 513: 원료 유입부
122, 433, 533: 중간단 유출부
123, 434, 534: 중간단 유입부
130: 제 1 증류탑 하부
131, 441, 521: 제 1 하단 유출부
132, 442, 522: 제 1 하단 유입부
200: 제 2 증류탑
210: 제 2 증류탑 상부
220: 제 2 증류탑 하부
211: 제 2 상단 유출부
212: 제 2 상단 유입부
221: 제 2 하단 유입부
222: 제 2 하단 유출부
201: 제 2 응축기
300: 히터
301: 제 1 열교환기
302: 제 2 열교환기
410: 상부 영역
420: 제 1 중간부 영역
440: 하부 영역
430: 제 2 중간부 영역
431: 제 3 중간부 영역
432: 제 4 중간부 영역
401, 501: 분리벽
503: 제 3 응축기
510: 제 1 영역
511: 제 1 상부 영역
512: 제 1 하부 영역
520: 제 2 영역
530: 제 3 영역
531: 제 3 상부 영역
532: 제 3 하부 영역
535: 제 3 상단 유출부
536: 제 3 상단 유입부

Claims (53)

  1. 제 1 증류탑, 상기 제 1 증류탑에 각각 연결되어 있는 제 1 응축기, 및 재비기를 포함하는 제 1 증류 장치; 및 제 2 증류탑, 상기 제 2 증류탑에 연결되어 있는 제 2 응축기를 포함하는 제 2 증류 장치를 포함하고,
    상기 제 1 증류탑은 원료 유입부, 제 1 상단 유입부, 제 1 상단 유출부, 중간단 유입부, 중간단 유출부, 제 1 하단 유입부 및 제 1 하단 유출부를 포함하고, 상기 제 2 증류탑은 제 2 하단 유입부, 제 2 하단 유출부, 제 2 상단 유입부 및 제 2 상단 유출부를 포함하며,
    원료가 상기 제 1 증류탑의 원료 유입부로 유입되고, 유입된 원료는 상기 제 1 증류탑의 제 1 상단 유출부에서 유출되는 제 1 증류탑 상단 유출 흐름, 중간단 유출부에서 유출되는 중간단 유출 흐름 및 제 1 하단 유출부에서 유출되는 제 1 증류탑 하단 유출 흐름으로 분리되어 유출되며,
    상기 제 1 상단 유출부에서 유출되는 상기 제 1 증류탑 상단 유출 흐름은 제 1 응축기를 통과하고, 상기 제 1 응축기를 통과한 제 1 증류탑 상단 유출 흐름 중 일부 또는 전부는 상기 제 1 상단 유입부로 유입되어 제 1 증류탑으로 환류되며,
    상기 제 1 하단 유출부에서 유출되는 상기 제 1 증류탑 하단 유출 흐름은 재비기를 통과하고 상기 재비기를 통과한 제 1 증류탑 하단 유출 흐름 중 일부 또는 전부는 상기 제 1 하단 유입부로 유입되어 제 1 증류탑으로 환류되며,
    중간단 유출부에서 유출되는 중간단 유출 흐름은 상기 제 2 증류탑의 상기 제 2 하단 유입부로 유입되고, 상기 제 2 하단 유출부에서 유출되는 제 2 증류탑 하단 유출 흐름의 일부 또는 전부는 상기 제 1 증류탑의 중간단 유입부로 유입되며,
    상기 제 2 증류탑의 상기 제 2 상단 유출부에서 유출되는 제 2 증류탑 상단 유출 흐름은 제 2 응축기를 통과하고, 상기 제 2 응축기를 통과한 상기 제 2 증류탑 상단 유출 흐름의 일부 또는 전부는 상기 제 2 상단 유입부로 유입되어 제 2 증류탑으로 환류되는 증류 장치.
  2. 제 1 항에 있어서, 원료는 하기 화학식 1의 화합물을 포함하는 증류 장치:
    [화학식 1]
    Figure PCTKR2014006573-appb-I000003
    화학식 1에서,
    R1은 수소 또는 탄소수 1 내지 10의 알킬기를 나타내고,
    R2는 탄소수 1 내지 24의 선형 또는 분지형의 알킬기를 나타낸다.
  3. 제 2 항에 있어서, 화학식 1의 화합물은 2-에틸헥실 아크릴레이트인 증류 장치.
  4. 제 1 항에 있어서, 중간단 유출부는 원료 유입부보다 하부에 위치하는 증류 장치.
  5. 제 1 항에 있어서, 중간단 유입부는 중간단 유출부보다 하부에 위치하는 증류 장치.
  6. 제 5 항에 있어서, 중간단 유입부 및 중간단 유출부는 동일한 단에 위치하는 증류 장치.
  7. 제 1 항에 있어서, 제 2 하단 유입부 및 제 2 하단 유출부는 제 2 증류탑의 탑저에 위치하는 증류 장치.
  8. 제 1 항에 있어서, 제 1 증류탑의 이론 단수는 30 내지 80 단인 증류 장치.
  9. 제 8 항에 있어서, 원료 유입부는 제 1 증류탑의 5 내지 30 단에 위치하는 증류 장치.
  10. 제 8 항에 있어서, 중간단 유출부는 제 1 증류탑의 20 내지 78 단에 위치하는 증류 장치.
  11. 제 8 항에 있어서, 중간단 유입부는 제 1 증류탑의 20 내지 78 단에 위치하는 증류 장치
  12. 제 1 항에 있어서, 제 1 상단 유출부는 제 1 증류탑의 탑정에 위치하는 증류 장치.
  13. 제 1 항에 있어서, 제 1 하단 유출부는 제 1 증류탑의 탑저에 위치하는 증류 장치
  14. 제 1 항에 있어서, 제 2 상단 유출부는 제 2 증류탑의 탑정에 위치하는 증류 장치.
  15. 제 1 항에 있어서, 제 1 증류탑 상단 유출 흐름의 환류비는 1 내지 10인 증류 장치.
  16. 제 1 항에 있어서, 제 1 증류탑의 상부의 온도는 80 내지 115℃인 증류 장치.
  17. 제 1 항에 있어서, 제 1 증류탑 하단 유출 흐름의 환류비는 1 내지 30인 증류 장치.
  18. 제 1 항에 있어서, 제 1 증류탑의 하부의 온도는 120 내지 160℃인 증류 장치.
  19. 제 1 항에 있어서, 제 2 증류탑 상단 유출 흐름의 환류비는 0.01 내지 5인 증류 장치
  20. 제 1 항에 있어서, 제 2 증류탑의 상부의 온도는 100 내지 130℃인 증류 장치.
  21. 제 1 항에 있어서, 제 2 증류탑의 하부의 온도는 120 내지 150℃인 증류 장치.
  22. 제 1 항에 있어서, 원료가 유입되기 전에 상기 원료를 예열하는 히터를 추가로 포함하는 증류 장치
  23. 제 1 항에 있어서, 제 1 응축기의 전단에 위치하며, 제 1 증류탑 상단 유출 흐름과 원료를 열교환시키는 제 1 열교환기를 추가로 포함하는 증류 장치.
  24. 제 1 항에 있어서, 제 2 응축기의 전단에 위치하며, 제 2 증류탑 상단 유출 흐름과 원료를 열교환시키는 제 2 열교환기를 추가로 포함하는 증류 장치.
  25. 제 1 항에 있어서, 원료 유입부, 제 1 상단 유입부, 중간단 유입부, 중간단 유출부, 제 1 하단 유입부, 제 2 하단 유입부, 제 2 하단 유출부 및 제 2 상단 유입부 중 하나 이상은 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되는 증류 장치.
  26. 제 25 항에 있어서, 원료 유입부, 제 1 상단 유입부, 중간단 유입부, 중간단 유출부 및 제 1 하단 유입부 중 하나 이상은 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 상기 제 1 증류탑의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치하고 있는 증류 장치.
  27. 제 26 항에 있어서, 원료 유입부는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 제 1 증류탑 내의 동일한 단에 위치하고 있는 증류 장치.
  28. 제 26 항에 있어서, 제 1 상단 유입부는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 제 1 증류탑 내의 동일한 단에 위치하고 있는 증류 장치.
  29. 제 26 항에 있어서, 중간단 유입부는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 제 1 증류탑 내의 동일한 단에 위치하고 있는 증류 장치.
  30. 제 26 항에 있어서, 중간단 유출부는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 제 1 증류탑 내의 동일한 단에 위치하고 있는 증류 장치.
  31. 제 26 항에 있어서, 제 1 하단 유입부는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 제 1 증류탑 내의 동일한 단에 위치하고 있는 증류 장치.
  32. 제 25 항에 있어서, 제 2 하단 유입부, 제 2 하단 유출부 및 제 2 상단 유입부 중 하나 이상은 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 상기 제 2 증류탑의 수평 단면적을 균등하게 나누는 2 이상의 소영역에 각각 위치하고 있는 증류 장치.
  33. 제 32 항에 있어서, 제 2 하단 유입부는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 제 2 증류탑 내의 동일한 단에 위치하고 있는 증류 장치.
  34. 제 32 항에 있어서, 제 2 하단 유출부는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 제 2 증류탑 내의 동일한 단에 위치하고 있는 증류 장치.
  35. 제 32 항에 있어서, 제 2 상단 유입부는 서로 이격되어 위치하고 있는 2 이상의 개구부로 형성되고, 상기 2 이상의 개구부는 제 2 증류탑 내의 동일한 단에 위치하고 있는 증류 장치.
  36. 제 1 항에 있어서, 제 1 증류탑은 내부에 분리벽이 구비된 분리벽형 증류탑인 증류 장치.
  37. 제 36 항에 있어서, 제 1 증류탑은 상부 영역, 하부 영역 및 분리벽이 위치하는 상기 상부 영역과 하부 영역 사이의 중간부 영역을 포함하고, 상기 중간부 영역은 상기 분리벽에 의하여 나뉘어져 있는 제 1 중간부 영역 및 제 2 중간부 영역을 포함하며,
    원료 유입부는 상기 제 1 중간부 영역에 위치하고, 제 1 상단 유입부 및 제 1 상단 유출부는 상기 상부 영역에 위치하며, 중간단 유입부 및 중간단 유출부는 상기 제 2 중간부 영역에 위치하고, 제 1 하단 유입부 및 제 1 하단 유출부는 상기 하부 영역에 위치하고 있는 증류 장치.
  38. 제 37 항에 있어서, 제 2 중간부 영역은 제 1 증류탑을 길이 방향으로 2 등분하는 제 3 중간부 영역 및 제 4 중간부 영역으로 구분되며, 상기 제 3 중간부 영역은 상부 영역과 접하고, 상기 제 4 중간부 영역은 하부 영역과 접하고 있으며, 중간단 유입부 및 중간단 유출부는 상기 제 4 중간부 영역에 위치하고 있는 증류 장치.
  39. 제 36 항에 있어서, 제 3 상단 유입부, 제 3 상단 유출부 및 제 3 응축기를 추가로 포함하고, 분리벽은 제 1 증류탑의 탑정과 맞닿아 있고 탑저와 이격되어 있으며,
    상기 제 1 증류탑은 상기 분리벽에 의하여 나뉘어지는 제 1 영역 및 제 3 영역과, 상기 분리벽이 위치하지 않으며 상기 제 1 영역 및 제 3 영역의 하단의 제 2 영역으로 구분되며,
    원료 유입부, 제 1 상단 유입부 및 제 1 상단 유출부는 상기 제 1 영역에 위치하고, 제 1 하단 유입부 및 제 1 하단 유출부는 상기 제 2 영역에 위치하며, 제 3 상단 유입부, 제 3 상단 유출부, 중간단 유입부 및 중간단 유출부는 상기 제 3 영역에 위치하고,
    원료가 상기 제 1 영역의 원료 유입부로 유입되며, 유입된 상기 원료는 상기 제 1 영역의 상기 제 1 상단 유출부에서 유출되는 제 1 영역 상단 유출 흐름; 상기 제 2 영역의 제 1 하단 유출부에서 유출되는 제 1 증류탑 하단 유출 흐름; 상기 제 3 영역의 중간단 유출부에서 유출되는 중간단 유출 흐름; 및 상기 제 3 영역의 상기 제 3 상단 유출부에서 유출되는 제 3 영역 상단 유출 흐름으로 분리되어 유출되고,
    상기 제 1 상단 유출부에서 유출되는 제 1 영역 상단 유출 흐름은 제 1 응축기를 통과하며, 상기 제 1 응축기를 통과한 제 1 영역 상단 유출 흐름 중 일부 또는 전부는 상기 제 1 상단 유입부로 유입되어 제 1 영역으로 환류되고,
    상기 제 3 상단 유출부에서 유출되는 제 3 영역 상단 유출 흐름은 상기 제 3 응축기를 통과하며, 상기 제 3 응축기를 통과한 제 3 영역 상단 유출 흐름 중 일부 또는 전부는 상기 제 3 상단 유입부로 유입되어 제 2 영역으로 환류되는 증류 장치.
  40. 제 39 항에 있어서, 제 1 영역은 제 1 증류탑을 길이 방향으로 2 등분하는 제 1 상부 영역 및 제 1 하부 영역으로 구분되며, 상기 제 1 상부 영역은 제 2 영역과 접하지 않고, 상기 제 1 하부 영역은 상기 제 2 영역과 접하고 있으며, 원료 유입부는 상기 제 1 하부 영역 또는 상기 제 1 상부 영역과 제 1 하부 영역이 접하는 지점에 위치하고, 제 1 상단 유입부 및 제 1 상단 유출부는 상기 제 1 상부 영역에 위치하는 증류 장치.
  41. 제 39 항에 있어서, 제 3 영역은 제 1 증류탑을 길이 방향으로 2 등분하는 제 3 상부 영역 및 제 3 하부 영역으로 구분되며, 상기 제 3 상부 영역은 제 2 영역과 접하지 않고, 상기 제 3 하부 영역은 상기 제 2 영역과 접하고 있으며, 중간단 유입부 및 중간단 유출부는 상기 제 3 하부 영역에 위치하는 증류 장치.
  42. 제 38 항 또는 제 41 항에 있어서, 중간단 유출부는 원료 유입부보다 하부에 위치하는 증류 장치.
  43. 제 42 항에 있어서, 중간단 유입부는 중간단 유출부보다 하부에 위치하는 증류 장치.
  44. 제 1 증류탑의 원료 유입부로 원료를 유입하는 단계;
    상기 제 1 증류탑에서 상기 원료를 증류하여 분리하는 단계;
    상기 제 1 증류탑에서 분리된 원료를 상기 제 1 증류탑의 제 1 상단 유출부, 중간단 유출부 및 제 1 하단 유출부에서 각각 분리 유출하는 단계;
    상기 제 1 상단 유출부에서 유출되는 흐름을 제 1 응축기를 통과시키고, 상기 제 1 응축기를 통과한 흐름 중 일부 또는 전부를 상기 제 1 상단 유입부로 유입시키는 단계;
    상기 제 1 하단 유출부에서 유출되는 흐름을 재비기를 통과시키고, 상기 재비기를 통과한 제 1 증류탑 하단 유출 흐름 중 일부 또는 전부를 상기 제 1 하단 유입부로 유입시키는 단계;
    상기 중간단 유출부에서 유출되는 흐름을 제 2 증류탑의 제 2 하단 유입부로 유입시키는 단계;
    상기 제 2 하단 유입부로 유입된 흐름을 제 2 증류탑에서 증류하여 분리하는 단계;
    상기 제 1 증류탑에서 분리된 성분을 각각 상기 제 2 증류탑의 제 2 하단 유출부 및 제 2 상단 유출부에서 분리 유출시키는 단계;
    상기 제 2 하단 유출부에서 유출된 흐름의 일부 또는 전부를 상기 제 1 증류탑의 중간단 유입부로 유입시키는 단계; 및
    상기 제 2 상단 유출부에서 유출된 흐름을 제 2 응축기를 통과시키고, 상기 제 2 응축기를 통과한 흐름의 일부 또는 전부를 상기 제 2 상단 유입부로 유입시키는 단계를 포함하는 분리 방법.
  45. 제 44 항에 있어서, 중간단 유출부에서 유출되는 흐름을 원료 유입부에서 유입되는 흐름보다 하단에서 유출시키는 것을 포함하는 분리 방법.
  46. 제 44 항에 있어서, 중간단 유입부로 유입되는 흐름을 중간단 유출부에서 유출되는 흐름보다 하단에서 유입시키는 것을 포함하는 분리 방법.
  47. 제 44 항에 있어서, 중간단 유출부에서 유출되는 흐름을 제 2 증류탑의 탑저로 유입시키고, 상기 제 2 증류탑의 하부 생성물을 포함하는 흐름을 상기 제 2 증류탑의 탑저에서 유출시키며, 상기 제 2 증류탑의 탑저에서 유출된 흐름의 일부 또는 전부를 상기 제 1 증류탑의 중간단 유입부로 유입시키는 것을 포함하는 분리 방법.
  48. 제 44 항에 있어서, 원료는 하기 화학식 1의 화합물을 포함하는 분리 방법:
    [화학식 1]
    Figure PCTKR2014006573-appb-I000004
    화학식 1에서,
    R1은 수소 또는 탄소수 1 내지 10의 알킬기를 나타내고,
    R2는 탄소수 1 내지 24의 선형 또는 분지형의 알킬기를 나타낸다.
  49. 제 48 항에 있어서, 화학식 1의 화합물은 2-에틸헥실 아크릴레이트인 제조방법.
  50. 제 44 항에 있어서, 원료를 증류탑으로 유입하기 전에 원료를 예열하는 것을 추가로 포함하는 분리 방법.
  51. 제 50 항에 있어서, 히터를 사용하여 원료를 가열하는 분리 방법.
  52. 제 50 항에 있어서, 제 1 증류탑 상부의 흐름을 열교환기를 사용하여 원료와 열교환시키는 분리 방법.
  53. 제 50 항에 있어서, 제 2 증류탑 상부의 흐름을 열교환기를 사용하여 원료와 열교환시키는 분리 방법.
PCT/KR2014/006573 2013-07-18 2014-07-18 증류 장치 WO2015009116A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480051772.6A CN105555380B (zh) 2013-07-18 2014-07-18 蒸馏装置
JP2016527941A JP2016529096A (ja) 2013-07-18 2014-07-18 蒸留装置
US14/905,618 US9919238B2 (en) 2013-07-18 2014-07-18 Distillation apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2013-0084495 2013-07-18
KR20130084495 2013-07-18
KR20130084496 2013-07-18
KR10-2013-0084496 2013-07-18
KR10-2013-0106471 2013-09-05
KR20130106471 2013-09-05
KR1020140091326A KR101583145B1 (ko) 2013-07-18 2014-07-18 증류 장치
KR10-2014-0091326 2014-07-18

Publications (1)

Publication Number Publication Date
WO2015009116A1 true WO2015009116A1 (ko) 2015-01-22

Family

ID=52346485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006573 WO2015009116A1 (ko) 2013-07-18 2014-07-18 증류 장치

Country Status (1)

Country Link
WO (1) WO2015009116A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029068A1 (en) * 1996-02-09 1997-08-14 E.I. Du Pont De Nemours And Company Azeotropic distillation process
US20040000470A1 (en) * 2002-07-01 2004-01-01 Mallinckrodt Inc. Purification of N,N-dimethylacetamide
US20050038282A1 (en) * 2002-03-18 2005-02-17 Ube Industries, Ltd. Process for producing alkyl nitrite
US20110172458A1 (en) * 2008-10-02 2011-07-14 Dow Global Technologies Llc Apparatus, Systems, and Methods for Purification of Isocyanate Mixtures
KR20120076193A (ko) * 2010-12-29 2012-07-09 주식회사 엘지화학 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997029068A1 (en) * 1996-02-09 1997-08-14 E.I. Du Pont De Nemours And Company Azeotropic distillation process
US20050038282A1 (en) * 2002-03-18 2005-02-17 Ube Industries, Ltd. Process for producing alkyl nitrite
US20040000470A1 (en) * 2002-07-01 2004-01-01 Mallinckrodt Inc. Purification of N,N-dimethylacetamide
US20110172458A1 (en) * 2008-10-02 2011-07-14 Dow Global Technologies Llc Apparatus, Systems, and Methods for Purification of Isocyanate Mixtures
KR20120076193A (ko) * 2010-12-29 2012-07-09 주식회사 엘지화학 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법

Similar Documents

Publication Publication Date Title
WO2010107284A2 (ko) 고순도 아크릴산 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
WO2010085072A2 (ko) 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법
WO2016159707A1 (ko) 증류 장치
KR101583146B1 (ko) 분리벽형 증류탑
WO2017003247A1 (ko) 증류 장치
WO2012091397A2 (ko) 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법
WO2014112808A1 (ko) 알칸올의 제조 장치
WO2011010846A2 (ko) 에너지 절감형 증류탑 어셈블리
WO2017217708A1 (ko) 용매 회수 장치 및 용매 회수 방법
WO2017047923A1 (ko) 음이온 중합개시제의 제조방법, 제조장치 및 이로부터 제조되는 음이온 중합개시제
WO2015026073A1 (en) Method for preparing glycol ester using reactive distillation
WO2015009116A1 (ko) 증류 장치
WO2018124579A1 (ko) 부타디엔 제조방법
WO2015009117A1 (ko) 분리벽형 증류탑
WO2015178718A1 (ko) 큐멘의 정제 장치 및 정제 방법
WO2016068676A1 (ko) 증류 장치
WO2023177133A1 (ko) Pgme, pgmea, 물의 혼합물로부터 물을 분리하는 방법
WO2020067797A1 (ko) 아미드계 화합물의 회수 방법 및 장치
WO2015178717A1 (ko) 큐멘의 정제 장치 및 정제 방법
WO2020130367A1 (ko) 아미드계 화합물의 회수 방법
WO2018128402A1 (ko) 메틸 3급-부틸 에테르 제조방법
US6175049B1 (en) Process for the production of 1, 2-butadiene
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2015190823A1 (ko) 열 회수 장치
WO2020204554A1 (ko) 에스터계 조성물의 제조 시스템 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051772.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527941

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905618

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826051

Country of ref document: EP

Kind code of ref document: A1