WO2012091397A2 - 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법 - Google Patents

고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법 Download PDF

Info

Publication number
WO2012091397A2
WO2012091397A2 PCT/KR2011/010132 KR2011010132W WO2012091397A2 WO 2012091397 A2 WO2012091397 A2 WO 2012091397A2 KR 2011010132 W KR2011010132 W KR 2011010132W WO 2012091397 A2 WO2012091397 A2 WO 2012091397A2
Authority
WO
WIPO (PCT)
Prior art keywords
zone
column
dividing wall
distillation column
ethylhexyl
Prior art date
Application number
PCT/KR2011/010132
Other languages
English (en)
French (fr)
Other versions
WO2012091397A3 (ko
Inventor
이성규
신준호
이종구
김성균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2013547327A priority Critical patent/JP5696954B2/ja
Priority to CN201180063715.6A priority patent/CN103298531B/zh
Priority to EP11852295.2A priority patent/EP2659943B1/en
Publication of WO2012091397A2 publication Critical patent/WO2012091397A2/ko
Publication of WO2012091397A3 publication Critical patent/WO2012091397A3/ko
Priority to US13/929,520 priority patent/US8894821B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a dividing wall distillation column for producing high-purity 2-ethylhexyl-acrylate and a manufacturing method using the same.
  • Various raw materials such as crude oil are usually a mixture of many compounds, so they are rarely used in industry by itself, and are usually used after being separated into each compound.
  • a typical chemical process for separating a mixture is distillation.
  • the distillation process divides the high boiling point component and the low boiling point component, one distillation column (n-1) is used which is one less than the number n of components of the mixture to be separated. That is, in the conventional distillation industry, the process for separating high-purity products from crude raw materials uses two continuous distillation column structures.
  • the conventional distillation process is as shown in FIG.
  • the conventional process is a two tower method in which the lowest boiling point component (D) is separated from the first tower 11 and the middle boiling point component (S) and the high boiling point component (B) are separated from the second tower 21.
  • the composition profile in the first column in the conventional two-column distillation method which is a conventional alcohol distillation process, is shown in FIG. 2.
  • remixing of the middle boiling point (B) material generally occurs in the first column lower region.
  • the composition profile in the first column is shown in FIG. 3.
  • FIG. 3 it can be seen that re-mixing occurs in the first column lower region even in the case of 2-ethylhexyl-acrylate.
  • the Petlyuk distillation column arranges the pre-separator 12 and the main separator 22 in a thermally integrated structure to separate low-boiling material and high-boiling material from the pre-separator first, and then to the top part of the pre-separator.
  • the bottom part is respectively introduced into the feed stage of the main separator to separate the low boiling point (D), the middle boiling point (S), the high boiling point (B) material in the main separator.
  • This structure makes the distillation curve in the Petlyuk distillation column similar to the equilibrium distillation curve, making the energy efficiency higher.
  • the design and operation of the process is not easy and in particular, it is difficult to balance the pressure in the tower.
  • the present invention provides a dividing wall distillation column for producing high-purity 2-ethylhexyl-acrylate and a manufacturing method using the same.
  • the present invention a condenser; Reboiling; And a main tower including a partition wall, wherein the main tower is divided into a tower top zone, an upper feed zone, an upper outlet zone, a lower feed zone, a lower outlet zone, and a tower bottom zone, and includes one or more inflow streams and three or more outflow streams.
  • the inlet stream is the feed containing crude 2-ethylhexyl-acrylate into the feed intermediate stage where the upper feed zone and the lower feed zone of the main column meet, and at least one of the outlet streams is 2-ethylhexyl-acrylic
  • the present invention provides a distillation column type distillation column, which is a rate flow, and a method for producing high purity 2-ethylhexyl-acrylate using the same.
  • the dividing wall distillation column according to the present invention can exert the effect of two distillation columns with one distillation column, and can save energy compared to the conventional process equipment for producing high-purity 2-ethylhexyl-acrylate, and the equipment cost of the equipment Can be reduced.
  • 1 is a schematic representation of a conventional distillation process for producing high purity 2-ethylhexyl-acrylate
  • Figure 2 shows the composition profile in the first column in the distillation process of a two-column column
  • Figure 3 shows the composition profile of 2-ethylhexyl-acrylate in the first column in the distillation process of a two-column column
  • FIG. 5 is a schematic diagram showing the structure of a dividing wall distillation column according to an embodiment of the present invention.
  • FIG. 6 shows a composition profile in a column of a dividing wall distillation column according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a process of distilling 2-ethylhexyl-acrylate using a dividing wall distillation column according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing a process of distilling 2-ethylhexyl-acrylate using a two column column distillation column.
  • a dividing wall type distillation column comprising a main column including a condenser, a reboiler and a dividing wall,
  • the main tower is divided into a tower top zone, an upper feed zone, an upper outlet zone, a lower supply zone, a lower outlet zone and a tower bottom zone, and has one or more inflow streams and three or more outflow streams.
  • the inflow stream is where the raw material (F) containing crude 2-ethylhexyl-acrylate enters the feed intermediate stage (NR1), which is in contact with the upper feed zone and the lower feed zone of the main column,
  • At least one of the effluent streams is characterized as a 2-ethylhexyl-acrylate stream.
  • the dividing wall column is similar to the PETLYUK distillation column in terms of thermodynamics, but the dividing wall column is formed by integrating a preliminary separator into the main separator by installing a dividing wall in the column from a structural point of view.
  • the distillation column of this structure is easy to operate by naturally relieving the pressure balance between the preliminary separator and the main separator and the operational difficulties caused by the distillation column. You have an advantage.
  • the present invention is a dividing wall distillation column comprising a main column including a condenser, a reboiler, and a dividing wall,
  • the main tower is divided into a tower top zone, an upper supply zone, an upper outlet zone, a lower supply zone, a lower outlet zone and a tower bottom zone,
  • the raw material (F) containing crude 2-ethylhexyl-acrylate flows into the feed intermediate stage (NR1), which is in contact with the upper feed zone and the lower feed zone of the main column, and the low boiling point component (D) flows out of the tower top zone,
  • the high boiling point component (B) flows out of the top bottom zone, and the middle boiling point component (S) flows out of the outflow intermediate stage (NR2) in contact with the upper outflow zone and the lower outflow zone,
  • the middle boiling point component provides a dividing wall distillation column, characterized in that substantially 2-ethylhexyl-acrylate.
  • the raw material (F) may be 80% by weight or more of 2-ethylhexyl-acrylate 2-ethylhexyl-acrylate.
  • the dividing wall distillation column includes a main tower 1 and a condenser 31 and a reboiler 41 connected to the top and bottom of the main tower 1, respectively.
  • the condenser 31 is a device that takes away the heat of vaporization of the gaseous mixture to condense, it can be used without limitation the condenser used in the conventional chemical engineering device.
  • the reboiler 41 is a device for providing a vaporization heat to the mixture in the liquid state to vaporize, it can be used without limitation the reboiler used in the conventional chemical engineering device.
  • the main tower 1 can be largely divided into six sections.
  • Pagoda section 100 refers to the area of the top of the main tower without a partition wall.
  • the upper feed zone 200 is a region in which one side is partitioned by the dividing wall, and is a subregion located above the inflow (raw material) flow.
  • the upper outlet area 300 is an area in which one surface is partitioned by the dividing wall, and is a sub area located above the effluent stream.
  • the lower feed zone 400 is an area where one surface is partitioned by the dividing wall, and is a sub area located below the inflow stream.
  • the lower outlet area 500 is an area where one surface is partitioned by the dividing wall, and is a sub area located below the effluent flow.
  • the tower bottom region 600 means the lower region of the main column without a partition wall.
  • the main column 1 also has at least one inflow stream and at least three outflow streams.
  • the inlet flow is the feed intermediate (NR1) where the raw material (F), which is crude 2-ethylhexyl-acrylate (crude 2-EHA), is in contact with the upper feed zone (200) and the lower feed zone (400) of the main column (1). It includes the flow into.
  • the outflow flow the low boiling point component (D) flowing out from the tower top section 100, the high boiling point component (B) flowing out from the top bottom zone 600, the outflow contact with the upper outlet 300 and lower outlet 500 It may include a middle boiling point component (S) flowing out to the intermediate stage (NR2).
  • the middle boiling point component (S) which flows out to the middle stage of the outflow (NR2) may be substantially 2-ethylhexyl-acrylate.
  • 'crude 2-ethylhexyl-acrylate raw material' refers to a mixture whose main component is 2-ethylhexyl-acrylate, and refers to a target (distillation target) of the distillation process, wherein the 'main component' is It refers to the one component which contains the most among the individual components of each mixture.
  • the higher the 2-ethylhexyl-acrylate content of the crude 2-ethylhexyl-acrylate raw material is preferable, and the higher purity 2-ethylhexyl-acrylate is 99% by weight or more. It is preferable that it is 80 weight% or more in order to obtain.
  • substantially 2-ethylhexyl-acrylate means that the mixture itself can be regarded as substantially 2-ethylhexyl-acrylate, specifically, 2-ethylhexyl It refers to an acrylate-based component, having a higher 2-ethylhexyl-acrylate content relative to the feedstock and a 2-ethylhexyl-acrylate component in excess of at least 90% by weight in the total mixture.
  • the reason why the dividing wall distillation process requires less energy than the conventional continuous two-stage distillation process can be interpreted as a structural difference.
  • the space divided by the dividing wall acts as a preliminary separator, so that the liquid composition is almost in line with the equilibrium distillation curve due to the separation of the high boiling point material and the low boiling point material, and the remixing effect is suppressed. Thermodynamic efficiency is improved.
  • the upper feed zone and the lower feed zone play a similar role to the preliminary separator of the conventional process. That is, the upper supply zone and the lower supply zone may be collectively referred to as a preliminary separation zone.
  • Raw material flowing into the preliminary separation zone is separated into low boiling point material and high boiling point material.
  • Some of the low boiling point components and the high boiling point components separated from the preliminary separation zone flow into the top top zone, and some of the low boiling point components and the high boiling point components flow into the upper outlet zone and the lower outlet zone.
  • the upper and lower outlet zones serve as the main separator of the conventional process. That is, the upper outlet area and the lower outlet area may be collectively referred to as the main separation area.
  • the main separation area In the upper portion of the separation wall of the main separation region, mainly the low boiling point material and the middle boiling point material are separated, and in the lower part, the middle boiling point material and the high boiling point material are mainly separated.
  • composition profile in the dividing wall distillation column according to an embodiment of the present invention is shown in FIG. 6.
  • the low boiling point component passes through the tower top section and the condenser, and part of it is produced as a low boiling point product (D), and the rest is returned to the tower top section at the liquid flow rate (LD).
  • LD liquid flow rate
  • B high boiling point product
  • B the high boiling point product
  • VB gas phase flow rate
  • the design of the combined column distillation column system with the dividing wall is based on the design of the existing combined column distillation column and the minimum tower design.
  • the efficiency of the distillation column is maximum when the liquid composition distribution of the column distillation stage is similar to the equilibrium distillation curve, so the first stage distillation system is designed assuming that the distillation column is operated by conversion flow operation.
  • the upper supply zone and the lower supply zone are designed, and the upper outlet zone and the lower outlet zone are designed by the stepwise equilibrium design method starting from the concentration of the middle boiling point product.
  • the liquid composition in the tower was calculated from the middle of the tower to the top, and the liquid phase inside the tower was sequentially calculated by the method of equilibrium composition from the middle of the tower to the bottom of the lower outlet area serving as the main separator. .
  • the number of stages having the composition of the raw material supply stage and the product is counted as the upper feed zone and the lower feed zone serving as the preliminary separator, and the upper outlet zone and the lower outlet zone serving as the main separator, respectively. I can figure it out.
  • the number of stages of the tower obtained here is the theoretical number of stages, and since the number of stages in the actual tower may vary according to conventional design criteria.
  • the number of stages respectively provided in the tower top zone, the upper feed zone, the upper outflow zone, the lower feed zone, the lower outflow zone and the bottom bottom zone is 90 to 140% of the theoretical stage calculated by the distillation curve. It can be within. If it is less than 90% of the calculated theoretical number, the low boiling point and high boiling point material may not be separated in the preliminary separation zone. If it exceeds 140%, the energy saving effect does not increase any more because it is the minimum reflux ratio area. It is not desirable because it is increased.
  • the length of the dividing wall installed inside the main column is the upper supply section and the lower supply section; Alternatively, the length is determined by the number of stages calculated according to the distillation curves of the upper and lower outlet zones.
  • the optimal partition wall section in a distillation column type distillation column there are a variety of methods for determining theoretical section and reflux amount by determining the partition wall section by the equilibrium distillation curve method for the liquid composition between the preliminary section and the main section.
  • the theoretical singular was obtained by using the Fenske-Underwood equation.
  • the Penske-Underwood equation is known to one of ordinary skill in the art.
  • the length of the dividing wall may be in the range of 40 to 85% of the total theoretical stage of the top section, the upper feed section, the bottom outlet section and the bottom section calculated by the distillation curve. If it is less than 40%, some of the low boiling point material may fall down into the main separator product in the preliminary separation zone, and if it is more than 85%, the liquid / gas and medium / high boiling point of the low boiling point / medium point material inside the column. Difficulties in maintaining a good equilibrium flow of the liquid / phase of the material can lead to problems in column fabrication.
  • the operating conditions of the dividing wall distillation column to prepare high-purity 2-ethylhexyl-acrylate are as follows.
  • the temperature of the overhead zone is preferably in the range of 88-98 ° C. at a pressure of 15-25 torr of overhead tower. If it is below 88 °C, low boiling point material may sag below the preliminary separation zone, affecting product purity. If it exceeds 98 °C, high boiling point material (HEAVIES) rises above the preliminary separation zone and affect product purity. There is concern.
  • HEAVIES high boiling point material
  • the temperature of the column bottom zone is preferably in the range of 138 to 148 ° C at a pressure in the column top section of 15 to 25 torr. If it is below 138 ° C, the product's middle boiling point material falls to the bottom and the product yield decreases. If it exceeds 148 ° C, HEVIES may flow sideways with the product's middle boiling point material.
  • the temperature of the outflow intermediate stage (NR2) at which the upper outlet region and the lower outlet region are in contact with each other and the middle boiling point S component flows out is in the range of 124 to 134 ° C. at the pressure of the top region of 15 to 25 torr. desirable. If it is less than 124 °C low boiling point material is not easy to remove, if it exceeds 134 °C it is not easy to remove the high boiling point material can have a big impact on product purity.
  • the temperature range may be changed.
  • the upper limit temperature and the lower limit temperature tend to increase.
  • the pressure in the top zone is about 15 torr, about 83 to about 93 ° C in the top zone, about 135 to about 145 ° C in the top bottom zone, and about 120 to about 130 ° C in the middle effluent stream (NR2).
  • NR2 middle effluent stream
  • the temperature of the top zone may range from a lower limit temperature (T 1a ) to an upper limit temperature (T 2a ) according to Equation 1 below.
  • T 1a -0.02P 2 + 1.7P + 62
  • T 1a And T 2a Is the temperature, the unit is °C; P is the pressure in the tower top section, unit is torr ; 1 ⁇ P ⁇ 70)
  • the temperature of the column bottom zone may be in the range of the lower limit temperature T 1b to the upper limit temperature T 2b according to Equation 2 below.
  • T 1b -0.0267P 2 + 1.5333P + 118
  • T 1b And T 2b Is the temperature, the unit is °C; P is the pressure in the tower top section, unit is torr ; 1 ⁇ P ⁇ 70)
  • the temperature of the upper outflow zone and the lower outflow zone is provided in the contact position intermediate boiling point (S) simple (NR2) of the outlet which component outlet is to the lower limit temperature according to the equation 3 (T 1c) to the upper limit temperature (T 2c ) range.
  • T 1c -0.0267P 2 + 1.7333P + 100
  • T 1c And T 2c Is the temperature, the unit is °C; P is the pressure in the tower top section, unit is torr ; 0.1 ⁇ P ⁇ 70)
  • Dividing wall thermocomposition distillation column system aims to improve the tower efficiency of the distillation system for the three-component mixture, this system is similar to the distillation system of equilibrium distillation system of high efficiency equilibrium distillation It has the same effect as that composed of two distillation towers to form a space which functions as a pre separator and a main separator having a composition distribution.
  • the present invention provides a method for producing 2-ethylhexyl-acrylate using the dividing wall distillation column.
  • High-purity 2-ethylhexyl-acrylate can be produced by providing crude 2-ethylhexyl-acrylate raw material in a dividing wall distillation column and fractionally distilling 2-ethylhexyl-acrylate.
  • the dividing wall distillation column includes a main column including a condenser, a reboiler and a dividing wall,
  • the main tower is divided into a tower top zone, an upper feed zone, an upper outlet zone, a lower supply zone, a lower outlet zone and a tower bottom zone, and has one or more inflow streams and three or more outflow streams.
  • the inflow stream is where the raw material (F) containing crude 2-ethylhexyl-acrylate enters the feed intermediate stage (NR1), which is in contact with the upper feed zone and the lower feed zone of the main column,
  • the outflow flow includes the low boiling point component (D) flowing out from the top top zone, the high boiling point component (B) flowing out from the top bottom zone, and the middle boiling point component flowing out to the outflow intermediate end (NR2) in contact with the upper outlet zone and the lower outlet zone ( S), and the stream exiting effluent intermediate (NR2) may be substantially 2-ethylhexyl-acrylate.
  • a dividing wall distillation column (DWC) was designed and manufactured and operated. It was confirmed that the composition of the required product was obtained through actual operation.
  • the comparative example uses two distillation columns without a conventional dividing wall, and the example uses one distillation column with a dividing wall.
  • FIGS. 7 and 8 illustrate examples and comparative examples of the present invention, respectively.
  • 7 illustrates a case of using a dividing wall distillation column according to an embodiment of the present invention
  • FIG. 8 illustrates a case of using a distillation column including two conventional columns.
  • Numbers 1 to 8 in FIGS. 7 and 8 are identification numbers representing individual streams shown in the drawings of the examples and the comparative examples, respectively.
  • Table 3 shows the flow conditions and composition according to the embodiment
  • Table 4 shows the flow conditions and composition according to the comparative example.
  • the separation wall type steam tower according to the embodiment was able to more efficiently obtain high purity 2-ethylhexyl-acrylate of 99.9 wt% due to the removal of remixing and the increase in separation efficiency. Additional rectification recycle steps of 2-ethylhexyl-acrylate due to increased product purity can be reduced and productivity can be improved.
  • Table 5 is the result of measuring the energy consumption according to the Example (DWC) and Comparative Example (existing), and calculated the reduction rate.
  • Comparative example using an existing distillation column requires two columns and four heat exchangers, but the dividing wall distillation column according to the present invention may be composed of one column and two heat exchangers. Therefore, the dividing wall distillation column according to an embodiment of the present invention can reduce about 30% of the existing investment in terms of investment cost. In particular, the energy saving rate was significantly reduced to 25.9%.
  • main tower 11 first tower
  • tower top zone 200 upper feed zone
  • the dividing wall distillation column according to the present invention can be variously used in the field using 2-ethylhexyl-acrylate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

본 발명은 고순도 2-에틸헥실-아크릴레이트 생산용 분리벽형 증류탑, 및 2-에틸헥실-아크릴레이트 증류방법에 관한 것이다. 본 발명의 분리벽형 증류탑은 1기의 증류탑으로 2기의 증류탑의 효과를 가지므로, 고순도 2-에틸헥실-아크릴레이트를 생산하는데 있어서 종래의 공정 장치에 비해 에너지 절감 효과는 물론 장치의 설비비도 줄일 수 있는 효과가 있다.

Description

고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법
본 발명은 고순도 2-에틸헥실-아크릴레이트 제조용 분리벽형 증류탑 및 이를 이용한 제조방법에 관한 것이다.
원유(Crude Oil)등과 같은 각종 원료물질은 통상적으로 수많은 화합물질의 혼합물인 경우가 많아 그 자체로 산업에 이용되는 것은 드물고 각각의 화합물로 분리된 후 사용되는 것이 보통이다. 혼합물을 분리하는 화학공정 중 대표적인 것이 증류공정이다. 통상적으로 증류공정은 고비점 성분과 저비점 성분을 양분하므로, 분리하고자 하는 혼합물의 성분 개수(n)보다 하나 적은 개수(n-1)의 증류탑을 사용하게 된다. 즉, 종래의 증류산업 현장에서 크루드 원료로부터 고순도의 제품을 분리하기 위한 공정은 대부분 연속 2기의 증류탑 구조를 사용하고 있다.
종래의 증류공정은 도 1에 도시한 것과 같다. 종래의 공정은 제1탑(11)에서 가장 저비점 성분(D)을 분리하고, 제2탑(21)에서 중비점 성분(S)과 고비점 성분(B)을 분리하는 2 탑 방식이다.
통상적인 알코올류의 증류공정인 기존의 2기 컬럼 증류방식에서 첫번째 컬럼 내의 조성 프로파일(profile)은 도 2과 같다. 도 2에 도시한 것과 같이 첫번째 컬럼 하부 영역에서 중비점(B)물질의 재혼합 현상이 발생하는 것이 일반적이다. 특히, 2-에틸헥실-아크릴레이트를 중비점으로 분리할 경우 첫번째 컬럼 내의 조성 프로파일은 도 3과 같다. 도 3에 도시한 바와 같이, 2-에틸헥실-아크릴레이트의 경우도 첫번째 컬럼 하부 영역에서 재혼합 현상이 발생함을 알 수 있다.
이러한 종래의 공정은 제품 생산물의 조성은 쉽게 제어할 수 있는 반면, 첫번째 증류탑 내에서 중간 비점 물질의 재혼합 과정이 일어나게 된다. 이는 증류탑에서의 열역학적 효율을 떨어뜨리는 주요 요인이 되어 에너지를 불필요하게 추가로 소비하는 결과를 가져온다.
이러한 문제점을 개선하기 위하여 새로운 증류 구조에 대한 많은 연구가 진행되어 왔다. 열통합 구조에 의하여 분리 효율을 향상시키고자 하는 대표적인 예로 도 4와 같이 페트류크(Petlyuk) 증류탑 구조를 들 수 있다. 페트류크(Petlyuk) 증류탑은 예비분리기(12)와 주분리기(22)를 열적으로 통합된 구조로 배열함으로써 저비점 물질과 고비점 물질을 1 차적으로 예비분리기에서 분리한 다음, 예비분리기의 탑정 부분과 탑저 부분이 주분리기의 공급단으로 각각 유입되어 주분리기에서 저비점(D), 중비점(S), 고비점(B) 물질을 각각 분리하게 된다. 이러한 구조는 페트류크(Petlyuk) 증류탑 내의 증류곡선이 평형증류곡선과 유사하게 되어 에너지 효율을 높게 만든다. 하지만 공정의 설계 및 운전이 용이하지 않고 특히 탑 내의 압력 균형을 맞추기 어렵다는 문제점이 존재한다.
본 발명은 고순도의 2-에틸헥실-아크릴레이트 제조용 분리벽형 증류탑 및 이를 이용한 제조방법을 제공한다.
본 발명은, 응축기; 재비기; 및 분리벽을 포함하는 주탑을 포함하며, 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고, 1 개 이상의 유입 흐름과 3 개 이상의 유출 흐름을 가지고, 유입 흐름은 크루드 2-에틸헥실-아크릴레이트가 함유된 원료가 주탑의 상부 공급구역 및 하부 공급구역이 접하는 공급 중간단으로 유입되는 것이고, 유출 흐름 중 하나 이상은 2-에틸헥실-아크릴레이트 흐름인 분리벽형 증류탑 및 이를 이용한 고순도의 2-에틸헥실-아크릴레이트의 제조방법을 제공한다.
본 발명에 따른 분리벽형 증류탑은 1기의 증류탑으로 2기의 증류탑의 효과를 발휘할 수 있으며, 고순도 2-에틸헥실-아크릴레이트를 생산하기 위한 종래의 공정 장치에 비해 에너지 절감이 가능하고 장치의 설비비를 줄일 수 있다.
도 1은 고순도의 2-에틸헥실-아크릴레이트를 생산하기 위한 종래의 증류공정을 나타낸 개략도이다;
도 2는 2기 컬럼 방식의 증류공정에서 첫번째 컬럼 내의 조성 프로파일을 나타낸 것이다;
도 3은 2기 컬럼 방식의 증류공정에서 첫번째 컬럼 내의 2-에틸헥실-아크릴레이트의 조성 프로파일을 나타낸 것이다;
도 4는 페트류크(Petlyuk) 증류탑의 내부 구조를 나타낸 모식도이다;
도 5는 본 발명의 일실시예에 따른 분리벽형 증류탑의 구조를 나타낸 모식도이다;
도 6은 본 발명의 일실시예에 따른 분리벽형 증류탑의 컬럼내 조성 프로파일을 나타낸 것이다;
도 7은 본 발명의 일실시예에 따른 분리벽형 증류탑을 이용하여 2-에틸헥실-아크릴레이트를 증류하는 과정을 나타낸 모식도이다;
도 8은 2기 컬럼 방식의 증류탑을 이용하여 2-에틸헥실-아크릴레이트를 증류하는 과정을 나타낸 모식도이다.
본 발명에 따른 분리벽형 증류탑은,
응축기, 재비기 및 분리벽을 포함하는 주탑을 포함하는 분리벽형 증류탑에 있어서,
주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되며, 1 개 이상의 유입 흐름과 3개 이상의 유출 흐름을 가지고,
유입 흐름은 크루드 2-에틸헥실-아크릴레이트가 함유된 원료(F)가 주탑의 상부 공급구역 및 하부 공급구역이 접하는 공급 중간단(NR1)으로 유입되는 것이고,
유출 흐름 중 하나 이상은 2-에틸헥실-아크릴레이트 흐름인 것을 특징으로 한다.
상기 분리벽형 증류탑(DWC: Dividing Wall Column)은 페트류크(Petlyuk) 증류탑과 열역학적 관점에서는 유사하나 구조적인 관점에서 탑 내에 분리벽을 설치함으로써 예비분리기를 주분리기 내부에 통합시킨 형태이다. 이러한 구조의 증류탑은 예비분리기와 주분리기 간의 압력 균형의 어려움과 이로 인한 운전 상의 어려움을 자연스럽게 해소해 줌으로써 운전이 용이하게 되고, 또한 2기의 증류탑이 하나로 통합되어 투자 비용도 대폭 절감될 수 있다는 큰 장점을 가지게 된다.
또한, 본 발명은 응축기, 재비기, 및 분리벽을 포함하는 주탑을 포함하는 분리벽형 증류탑에 있어서,
상기 주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고,
크루드 2-에틸헥실-아크릴레이트가 함유된 원료(F)가 주탑의 상부 공급구역 및 하부 공급구역이 접하는 공급중간단(NR1)으로 유입되고, 저비점 성분(D)은 탑정구역에서 유출되고, 고비점 성분(B)은 탑저구역에서 유출되고, 중비점 성분(S)은 상부 유출구역 및 상기 하부 유출구역이 접하는 유출중간단(NR2)으로 유출되며,
상기 중비점 성분은 실질적으로 2-에틸헥실-아크릴레이트인 것임을 특징으로 하는 분리벽형 증류탑을 제공한다.
상기 원료(F)는 2-에틸헥실-아크릴레이트2-에틸헥실-아크릴레이트 함량이 80 중량% 이상일 수 있다.
도 5에는 본 발명의 일실시예에 따른 분리벽형 증류탑이 도시되어 있다. 도 5를 참조하면, 상기 분리벽형 증류탑은 주탑(1)과 주탑(1)의 상단 및 하단에 각각 연결된 응축기(31)과 재비기(41)를 포함한다.
상기 응축기(31)는 가스 상태의 혼합물의 기화열을 빼앗아 응축시키는 장치로서, 종래 화학공학 장치에 사용되는 응축기를 비제한적으로 사용할 수 있다. 또한, 상기 재비기(41)는 액체 상태의 혼합물에 기화열을 제공하여 기화시키는 장치로서, 종래 화학공학 장치에 사용되는 재비기를 비제한적으로 사용할 수 있다.
상기 주탑(1)은 크게 6 부분의 구역으로 구획될 수 있다. 탑정구역(100)은 분리벽이 없는 주탑의 상부의 영역을 말한다. 상부 공급구역(200)은 분리벽에 의해 일면이 구획되는 영역이고 유입물(원료) 흐름보다 상부에 위치하는 서브영역이다. 상부 유출구역(300)은 분리벽에 의해 일면이 구획되는 영역이고, 유출물 흐름보다 상부에 위치하는 서브영역이다. 하부 공급구역(400)은 분리벽에 의해 일면이 구획되는 영역이고, 유입물 흐름보다 하부에 위치하는 서브영역이다. 하부 유출구역(500)은 분리벽에 의해 일면이 구획되는 영역이고, 유출물 흐름보다 하부에 위치하는 서브영역이다. 또한, 탑저구역(600)은 분리벽이 없는 주탑의 하부 영역을 의미한다.
또한, 주탑(1)은 적어도 1개의 유입 흐름 및 적어도 3개의 유출 흐름을 갖는다. 유입 흐름은 크루드 2-에틸헥실-아크릴레이트(crude 2-EHA)인 원료(F)가 주탑(1)의 상부 공급구역(200) 및 하부 공급구역(400)이 접하는 공급중간단(NR1)으로 유입되는 것을 포함한다. 유출 흐름으로는, 탑정구역(100)에서 유출되는 저비점 성분(D), 탑저구역(600)에서 유출되는 고비점 성분(B), 상부 유출구역(300) 및 하부 유출구역(500)이 접하는 유출중간단(NR2)으로 유출되는 중비점 성분(S)을 포함할 수 있다. 이 때 유출중간단(NR2)으로 유출되는 중비점 성분(S)은 실질적으로 2-에틸헥실-아크릴레이트일 수 있다.
본 발명에서, ‘크루드 2-에틸헥실-아크릴레이트 원료’라 함은 주성분이 2-에틸헥실-아크릴레이트인 혼합물로서, 당해 증류공정의 목적물(증류 대상물)인 것을 말하고, 상기 ‘주성분’은 혼합물 각각의 개별성분 중 가장 많이 포함된 일성분을 칭하는 것이다. 고순도의 2-에틸헥실-아크릴레이트를 얻기 위해서는, 크루드 2-에틸헥실-아크릴레이트 원료의 2-에틸헥실-아크릴레이트 함량이 높을수록 바람직하고, 99 중량% 이상의 고순도 2-에틸헥실-아크릴레이트를 얻기 위해서는 80 중량% 이상인 것이 바람직하다.
또한, ‘실질적으로 2-에틸헥실-아크릴레이트인 것’의 의미는 그 혼합물 자체를 실질적으로(substantially) 2-에틸헥실-아크릴레이트로서 간주할 수 있다는 의미로서, 구체적으로는, 2-에틸헥실-아크릴레이트를 주성분으로 하고, 공급원료에 비해 2-에틸헥실-아크릴레이트 함량이 더 높으며, 2-에틸헥실-아크릴레이트 성분이, 전체 혼합물에 있어서, 적어도 90 중량% 초과하는 것을 말하는 것이다.
분리벽형 증류공정이 종래의 연속 2기 증류공정보다 에너지가 적게 소요되는 이유는 구조적 차이로 해석할 수 있다. 분리벽형 증류탑에서는 분리벽에 의해 나누어진 공간이 예비분리기의 역할을 하므로 고비점 물질과 저비점 물질의 분리로 인해 액체 조성이 평형증류곡선과 거의 일치하게 되고 재혼합(remixing) 효과가 억제되어 분리를 위한 열역학적 효율이 향상된다.
상부 공급구역 및 하부 공급구역은 종래 공정의 예비분리기와 유사한 역할을 한다. 즉, 상부 공급구역 및 하부 공급구역을 통칭하여 예비분리영역이라고 할 수 있다. 예비분리영역으로 유입되는 원료 성분은 저비점 물질과 고비점 물질로 분리된다. 예비분리영역에서 분리된 저비점 성분과 고비점 성분의 일부는 탑정구역으로 유입되고, 일부는 다시 상부 유출구역 및 하부 유출구역으로 유입되어 재증류된다.
상부 유출구역 및 하부 유출구역은 종래 공정의 주분리기 역할을 한다. 즉, 상부 유출구역 및 하부 유출구역을 통칭하여 주분리영역이라고 할 수 있다. 주분리영역의 분리벽 상부 부분에서는 주로 저비점 물질과 중비점 물질로 분리되고, 하부 부분에서는 주로 중비점 물질과 고비점 물질이 분리된다.
구체적으로는, 본 발명의 일실시예에 따른 분리벽형 증류탑 내의 조성 프로파일(profile)은 도 6과 같다.
저비점 성분은 주탑의 탑정구역과 응축기를 거친 후 일부는 저비점 제품(D)으로 생산되고, 그 나머지는 액상 유량(LD)으로 다시 주탑의 탑정구역으로 환류된다. 또한, 고비점 성분은 주탑의 탑저구역과 재비기를 거친 후 일부는 고비점 제품(B)으로 생산되고, 그 나머지는 기상 유량(VB)으로 다시 주탑의 탑저구역으로 환류된다.
분리벽이 있는 열복합 증류탑 시스템의 설계는 기존의 열복합형 증류탑의 설계를 기초로 하며 최소단 탑 설계에 기초를 두고 있다. 증류탑의 효율은 탑내 증류단의 액체조성 분포가 평형증류곡선과 유사할 때 최대가 되므로 우선 전환류 조작으로 증류탑이 운전된다고 가정하여 최소단 증류시스템을 설계하였다. 즉, 원료공급단에서의 액체조성과 원료의 조성이 같다고 가정하고 상부 공급구역 및 하부 공급구역을 설계하며, 상부 유출구역 및 하부 유출구역은 중비점 제품의 농도를 시작으로 계단식 평형조성 설계법에 의해 탑중간에서 상부로 탑내의 액체조성을 계산하고 다시 주분리기의 역할을 하는 하부 유출구역을 중간비점 제품의 농도를 시작으로 탑중간에서 탑저로 평형조성 계산법에 의해 계단식으로 탑내의 액체조성을 차례차례 계산하였다.
이렇게 얻어진 액체조성의 분포로부터 원료공급단과 제품의 조성을 가지는 단의 수를 헤아리면 예비분리기의 역할을 하는 상부 공급구역 및 하부 공급구역, 및 주분리기 역할을 하는 상부 유출구역 및 하부 유출구역 단수를 각각 알아낼 수 있다. 여기서 얻어진 탑의 단수는 이론단수로서, 이상적인 단수이기 때문에 실제 탑에서 단수는 통상의 설계기준에 따라 달라질 수 있다.
본 발명에 따른 분리벽형 증류탑에서는 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역에 각각 구비되는 단수는, 증류곡선에 의해 산출되는 이론단수의 90 내지 140 % 범위 이내일 수 있다. 산출된 이론단수의 90% 미만일 경우에는 예비분리영역에서 저비점과 고비점 물질의 분리가 잘 되지 않을 수 있고, 140% 초과일 경우에는 최소환류비 영역이므로 에너지 절감 효과가 더 이상 증가되지 않으며, 투자비만 증가되므로 바람직하지 않다.
또한, 주탑의 내부에 설치되는 분리벽의 길이는 상부 공급구역 및 하부 공급구역; 또는 상부 유출구역 및 하부 유출구역의 증류곡선에 따라 산출된 단수에 따라 그 길이가 결정된다. 분리벽형 증류탑에서 최적의 분리벽 구간을 설계할 때 예비분리영역과 주분리영역과의 액체 조성에 대한 평형증류 곡선방법 등으로 분리벽 구간을 정하여 이론단수 및 환류량 등을 구하는 방법은 다양하지만, 본 발명에서는 펜스케-언더우드(Fenske-Underwood) 식을 이용하여 이론단수를 구하였다. 상기 펜스케-언더우드(Fenske-Underwood) 식은 당해 기술분야의 통상의 지식을 가진 자에게 알려진 식이다.
상기 분리벽의 길이는 증류곡선에 의해 산출되는 탑정구역, 상부 공급구역, 하부 유출구역 및 탑저구역 전체 이론단수의 40 내지 85% 범위일 수 있다. 40% 미만일 경우에는 예비분리영역에서 저비점 물질 일부가 하부로 쳐저 주분리기의 제품으로 포함될 우려가 있고, 85% 초과일 경우에는 컬럼 내부에서 저비점/중비점 물질의 액상/기상 및 중비점/고비점 물질의 액상/기상의 원할한 평형흐름을 유지하기 어려워 컬럼 제작상 문제가 있을 수 있다.
고순도의 2-에틸헥실-아크릴레이트를 제조하기 위한 분리벽형 증류탑의 운전 조건은 다음과 같다.
예를 들어, 탑정구역의 온도는 15 내지 25 torr의 탑정구역의 압력에서 88 내지 98℃ 범위인 것이 바람직하다. 88℃ 미만인 경우에는 저비점 물질이 예비분리영역 하부로 처질 수 있어 제품 순도에 영향을 끼치고, 98℃를 초과하는 경우에는 상부로 고비점 물질(HEAVIES)이 예비 분리영역 상부로 올라가 제품 순도에 영향을 미칠 우려가 있다.
탑저구역의 온도는 15 내지 25 torr의 탑정구역의 압력에서 138 내지 148℃ 범위인 것이 바람직하다. 138℃ 미만인 경우에는 제품인 중비점 물질이 하부로 떨어져 제품 생산량이 감소하고, 148℃를 초과하는 경우에는 고비점 물질(HEAVIES)이 제품인 중비점 물질과 함께 측류유출될 염려가 있다.
또한, 상부 유출구역 및 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 15 내지 25 torr의 탑정구역의 압력에서 124 내지 134℃ 범위인 것이 바람직하다. 124℃ 미만인 경우에는 저비점 물질제거가 용이하지 않고, 134℃를 초과할 경우에는 고비점 물질 제거가 용이하지 않아 제품 순도에 큰 영향을 끼칠 수 있다.
증류탑을 감압 또는 가압 운전할 경우 상기 온도범위는 변할 수 있다. 일반적으로 압력이 상승할 수록 상한온도 및 하한온도는 상승되는 경향이 있다.
예를 들어, 탑정구역의 압력이 약 15 torr인 경우, 탑정구역은 약 83 내지 약 93℃, 탑저구역은 약 135 내지 약 145℃, 유출중간단(NR2)는 약 120 내지 약 130℃가 적당하다.
또한, 탑정구역의 압력이 약 30 torr인 경우, 탑정구역은 약 95 내지 약 105℃, 탑저구역은 약 140 내지 약 150℃, 유출중간단(NR2)는 약 128 내지 약 138℃가 적당하다.
압력에 따른 온도의 상한과 하한은 하기 표 1에 정리한 바를 참고할 수 있다.
표 1
P ≒ 20 torr
하한 온도(℃) 상한 온도(℃)
탑정구역 88 98
탑저구역 138 148
유출중간단(NR2) 124 134
P ≒ 15 torr
하한 온도(℃) 상한 온도(℃)
탑정구역 83 93
탑저구역 135 145
유출중간단(NR2) 120 130
P ≒ 30 torr
하한 온도(℃) 상한 온도(℃)
탑정구역 95 105
탑저구역 140 150
유출중간단(NR2) 128 138
본 발명에 따른 증류탑에서 온도와 압력의 관계는 하기 수학식 1 내지 3에 의해 나타낼 수 있다.
상기 탑정구역의 온도는 하기 수학식 1을 따르는 하한온도(T1a) 내지 상한온도(T2a) 범위일 수 있다.
[수학식 1]
하한: T1a = -0.02P2 + 1.7P + 62
상한: T2a = -0.02P2 + 1.7P + 72
(여기서, T1a 및 T2a는 온도로서, 단위는 ℃; P는 탑정구역의 압력으로, 단위는 torr ; 1 ≤ P ≤ 70)
상기 탑저구역의 온도는 하기 수학식 2을 따르는 하한온도(T1b) 내지 상한온도(T2b) 범위일 수 있다.
[수학식 2]
하한: T1b = -0.0267P2 + 1.5333P + 118
상한: T2b = -0.0267P2 + 1.5333P + 128
(여기서, T1b 및 T2b는 온도로서, 단위는 ℃; P는 탑정구역의 압력으로, 단위는 torr ; 1 ≤ P ≤ 70)
또한, 상부 유출구역 및 하부 유출구역이 접하는 위치에 구비되고 중비점(S) 성분이 유출되는 유출중간단(NR2)의 온도는 하기 수학식 3을 따르는 하한온도(T1c) 내지 상한온도(T2c) 범위일 수 있다.
[수학식 3]
하한: T1c = -0.0267P2 + 1.7333P + 100
상한: T2c = -0.0267P2 + 1.7333P + 110
(여기서, T1c 및 T2c는 온도로서, 단위는 ℃; P는 탑정구역의 압력으로, 단위는 torr ; 0.1 ≤ P ≤ 70)
본 발명에 따른 분할벽이 있는 열복합 증류탑 시스템은 3성분 혼합물에 대한 증류시스템의 탑 효율 개선에 목적을 두었으며, 이 시스템은 주탑 내에 분리벽을 설치하여 고효율인 평형증류의 증류시스템과 유사한액 조성 분포를 가지는 예비분리기 및 주분리기의 기능을 하는 공간이 형성토록 하여 2기의 증류탑으로 구성되어 있는 것과 같은 효과를 갖는다.
또한, 본 발명은 상기 분리벽형 증류탑을 이용하여 2-에틸헥실-아크릴레이트를 제조하는 방법을 제공한다. 분리벽형 증류탑에 크루드 2-에틸헥실-아크릴레이트 원료를 제공하여 2-에틸헥실-아크릴레이트를 분별증류함으로써, 고순도의 2-에틸헥실-아크릴레이트를 제조할 수 있다.
상기 분리벽형 증류탑은, 응축기, 재비기 및 분리벽을 포함하는 주탑을 포함하며,
주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되며, 1 개 이상의 유입 흐름과 3개 이상의 유출 흐름을 가지고,
유입 흐름은 크루드 2-에틸헥실-아크릴레이트가 함유된 원료(F)가 주탑의 상부 공급구역 및 하부 공급구역이 접하는 공급 중간단(NR1)으로 유입되는 것이고,
유출 흐름은, 탑정구역에서 유출되는 저비점 성분(D), 탑저구역에서 유출되는 고비점 성분(B), 및 상부 유출구역 및 하부 유출구역이 접하는 유출중간단(NR2)으로 유출되는 중비점 성분(S)을 포함하며, 유출중간단(NR2)으로 유출되는 흐름은 실질적으로 2-에틸헥실-아크릴레이트일 수 있다.
이하 실시예를 들어 본 발명을 더 상세히 설명한다. 본 발명의 실시예는 발명의 상세한 설명을 위한 것일뿐, 이에 의해 권리범위를 제한하려는 것은 아니다.
실시예 및 비교예
본 발명에서 제안한 시스템의 성능을 검증하기 위하여 분리벽형 증류탑(DWC)을 설계 제작하여 운전을 실시하였다. 실제 운전을 통하여 요구하는 제품의 조성이 얻어지는 것을 확인하였다. 비교예는 종래의 분리벽 없는 2기의 증류탑을 사용하고, 실시예는 분리벽이 있는 1기의 증류탑을 사용하였다.
도 7 및 도 8에서는 본 발명의 실시예 및 비교예를 각각 도시하였다. 도 7은 본 발명의 일실시예에 따른 분리벽형 증류탑을 이용한 경우이고, 도 8은 종래의 2 기의 컬럼을 포함하는 증류탑을 이용한 경우이다. 도 7 및 도 8의 번호 1 내지 8 은 실시예 및 비교예 각각의 도면에 도시된 개별 흐름(stream)을 나타내는 식별번호이다.
실시예 및 비교예는 표 2과 같은 이론단수를 가졌으며, 실험결과는 하기 표 3 내지 4와 같다. 표 3은 실시예에 따른 흐름별 조건 및 조성을 나타낸 것이고, 표 4는 비교예에 따른 흐름별 조건 및 조성을 나타낸 것이다.
표 2
항목 이론단수
실시예 탑정 구역(100) 8
상부 공급구역(200) 9
상부 유출구역(300) 10
하부 공급구역(400) 18
하부 유출구역(500) 5
탑저 구역(600) 15
비교예 첫번째 컬럼 18
두번째 컬럼 20
표 3
실시예 흐름 번호 1 2 3 4 5
조건 온도(℃) 50.0 55.2 55.2 77.2 93.9
압력(torr) 1471.1 35.0 35.0 69.8 90.0
유량(kg/hr) 5129.6 8063.5 610.0 3920.0 599.6
조성 저비점(중량%) 15.00 75.00 75.00 0.00 0.00
중비점(중량%) 81.10 25.00 25.00 100.00 76.90
고비점(중량%) 3.90 0.00 0.00 0.00 23.10
합계(중량%) 100 100 100 100 100
표 4
비교예 흐름 번호 1 2 3 4 5 6 7
조건 온도(℃) 60.0 55.2 55.2 84.7 62.5 62.6 96.5
압력(torr) 1471.1 35.0 35.0 2966.7 35.0 35.0 100.0
유량(kg/hr) 6129.6 6464.9 610.0 4519.6 3959.2 3920.0 699.6
조성 저비점(중량%) 15.00 75.00 75.00 0.00 0.00 0.00 0.00
중비점(중량%) 81.10 25.00 25.00 95.10 100.00 100.00 77.00
고비점(중량%) 3.90 0.00 0.00 4.90 0.00 0.00 23.00
합계(중량%) 100 100 100 100 100 100 100
상기 표 3 및 4를 비교하면, 실시예에 따른 분리벽형 증튜탑을 이용하면 재혼합 현상 제거 및 분리 효율 증가로 인해 99.9 wt%의 고순도 2-에틸헥실-아크릴레이트를 보다 효율적으로 얻을 수 있었다. 제품 순도증가로 인한 2-에틸헥실-아크릴레이트의 추가적인 정류 리싸이클(recycle)단계를 줄일 수 있고, 생산성 향상이 가능하다.
또한, 표 5는 실시예(DWC)와 비교예(기존)에 따른 에너지 소비량을 측정하고, 절감율을 산출한 결과이다.
표 5
비교예 실시예 절감량(MMKcal/hr) 절감율(%)
에너지 소비량(MMKcal/hr) 첫번째 컬럼 두번째 컬럼 합계 0.43 0.15 25.9
0.39 0.19 0.58
기존 증류탑을 이용한 비교예는 컬럼 2 기와 열교환기 4 기가 요구되지만, 본원 발명에 따른 분리벽형 증류탑은 컬럼 1 기와 열교환기 2 기로 구성될 수 있다. 따라서, 본원 발명의 일실시예에 따른 분리벽형 증류탑은 투자비 측면에서 기존 투자비 대비 약 30% 정도 절감 가능하다. 특히, 에너지 절감율은 기존 대비 약 25.9%로 크게 절감되었다.
[부호의 설명]
1: 주탑 11: 제1탑
21: 제2탑 12: 예비분리기
22: 주분리기 31: 응축기
41: 재비기 51: 분리벽
100: 탑정구역 200: 상부 공급구역
300: 상부 유출구역 400: 하부 공급구역
500: 하부 유출구역 600: 탑저구역
NR1: 공급중간단 NR2: 유출중간단
F: 원료(피드) B: 고비점 물질
D: 저비점 물질 S: 중비점 물질
본 발명에 따른 분리벽형 증류탑은 2-에틸헥실-아크릴레이트를 이용하는 분야에서 다양하게 활용 가능하다.

Claims (10)

  1. 응축기; 재비기; 및 분리벽을 포함하는 주탑을 포함하며,
    주탑은 탑정구역, 상부 공급구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역으로 구분되고,
    1 개 이상의 유입 흐름과 3 개 이상의 유출 흐름을 가지고,
    유입 흐름은 크루드 2-에틸헥실-아크릴레이트가 함유된 원료가 주탑의 상부 공급구역 및 하부 공급구역이 접하는 공급 중간단으로 유입되는 것이고,
    유출 흐름 중 하나 이상은 2-에틸헥실-아크릴레이트 흐름인 분리벽형 증류탑.
  2. 제 1 항에 있어서,
    저비점 성분은 탑정구역에서 유출되고, 고비점 성분(B)은 탑저구역에서 유출되고, 중비점 성분은 상부 유출구역 및 하부 유출구역이 접하는 유출중간단으로 유출되고,
    유출중간단으로 유출되는 흐름은 2-에틸헥실-아크릴레이트인 분리벽형 증류탑.
  3. 제 1 항에 있어서,
    상기 원료는 2-에틸헥실-아크릴레이트의 함량이 80 중량% 이상인 분리벽형 증류탑.
  4. 제 1 항에 있어서,
    주탑의 탑정구역, 상부 유출구역, 하부 공급구역, 하부 유출구역 및 탑저구역에 구비되는 각각의 단수는 증류곡선에 의해 산출되는 이론단수의 90 내지 140% 범위인 분리벽형 증류탑.
  5. 제 1 항에 있어서,
    분리벽의 길이는 상부 공급구역 및 하부 공급구역, 또는 상부 유출구역과 하부 유출구역이 포함하는 단수에 따라 그 길이가 결정되는 분리벽형 증류탑.
  6. 제 1 항에 있어서,
    분리벽의 길이는 증류곡선에 의해 산출되는 탑정구역, 상부 공급구역, 하부 유출구역 및 탑저구역 전체 이론단수의 40 내지 85% 범위인 분리벽형 증류탑.
  7. 제 1 항에 있어서,
    탑정구역의 온도는 하기 수학식 1을 따르는 하한온도(T1a) 내지 상한온도(T2a) 범위 이내인 분리벽형 증류탑:
    [수학식 1]
    T1a= -0.02P2 + 1.7P + 62
    T2a= -0.02P2 + 1.7P + 72
    (상기 식에서, T1a 및 T2a는 온도로서, 단위는 ℃; P는 탑정구역의 압력으로 단위는 torr; 1≤P≤70).
  8. 제 1 항에 있어서,
    탑저구역의 온도는 하기 수학식 2를 따르는 하한온도(T1b) 내지 상한온도(T2b) 범위 이내인 분리벽형 증류탑:
    [수학식 2]
    T1b= -0.0267P2 + 1.5333P + 118
    T2b= -0.0267P2 + 1.5333P + 128
    (상기 식에서, T1b 및 T2b는 온도로서, 단위는 ℃; P는 탑정구역의 압력으로 단위는 torr; 1≤P≤70).
  9. 제 1 항에 있어서,
    상부 유출구역 및 하부 유출구역이 접하는 위치에 구비되고 중비점 성분이 유출되는 중간단의 온도는 하기 수학식 3을 따르는 하한온도(T1c) 내지 상한온도(T2c) 범위 이내인 분리벽형 증류탑:
    [수학식 3]
    T1c= -0.0267P2 + 1.7333P + 100
    T2c= -0.0267P2 + 1.7333P + 110
    (상기 식에서, T1c 및 T2c는 온도로서, 단위는 ℃; P는 탑정구역의 압력으로 단위는 torr; 1≤P≤70).
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 따른 분리벽형 증류탑을 이용하여 2-에틸헥실-아크릴레이트를 제조하는 방법.
PCT/KR2011/010132 2010-12-29 2011-12-27 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법 WO2012091397A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013547327A JP5696954B2 (ja) 2010-12-29 2011-12-27 高純度の2−エチルヘキシル−アクリレート生産のための分離壁型蒸留塔及びこれを利用した製造方法
CN201180063715.6A CN103298531B (zh) 2010-12-29 2011-12-27 用于制备高纯度丙烯酸-2-乙基己酯的隔壁塔及使用其的制备方法
EP11852295.2A EP2659943B1 (en) 2010-12-29 2011-12-27 Method for preparing high-purity 2-ethylhexyl-acrylate using a dividing wall-type distillation tower
US13/929,520 US8894821B2 (en) 2010-12-29 2013-06-27 Dividing wall column for preparing high-purity 2 ethylhexyl-acrylate and preparation method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0138235 2010-12-29
KR20100138235A KR101496488B1 (ko) 2010-12-29 2010-12-29 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/929,520 Continuation US8894821B2 (en) 2010-12-29 2013-06-27 Dividing wall column for preparing high-purity 2 ethylhexyl-acrylate and preparation method using same

Publications (2)

Publication Number Publication Date
WO2012091397A2 true WO2012091397A2 (ko) 2012-07-05
WO2012091397A3 WO2012091397A3 (ko) 2012-11-08

Family

ID=46383675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010132 WO2012091397A2 (ko) 2010-12-29 2011-12-27 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법

Country Status (6)

Country Link
US (1) US8894821B2 (ko)
EP (1) EP2659943B1 (ko)
JP (1) JP5696954B2 (ko)
KR (1) KR101496488B1 (ko)
CN (1) CN103298531B (ko)
WO (1) WO2012091397A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009117A1 (ko) * 2013-07-18 2015-01-22 주식회사 엘지화학 분리벽형 증류탑
CN105555379A (zh) * 2013-07-18 2016-05-04 Lg化学株式会社 分隔壁蒸馏塔

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355928B (zh) * 2009-03-19 2014-03-12 Lg化学株式会社 用于制备高纯度2-乙基己醇的分隔壁蒸馏塔和采用该分隔壁蒸馏塔的分馏方法
KR101582001B1 (ko) * 2012-06-28 2015-12-31 주식회사 엘지화학 이소프로필 알코올의 제조 방법
WO2015009116A1 (ko) * 2013-07-18 2015-01-22 주식회사 엘지화학 증류 장치
WO2015009118A1 (ko) * 2013-07-18 2015-01-22 주식회사 엘지화학 증류 장치
KR101728905B1 (ko) * 2014-09-26 2017-05-02 한화케미칼 주식회사 분리벽형 증류탑 및 이를 이용한 네오펜틸글리콜의 정제 방법
KR102006422B1 (ko) * 2015-06-08 2019-08-01 주식회사 엘지화학 증류 장치
FR3047004B1 (fr) * 2016-01-21 2019-08-09 Arkema France Procede de purification d'esters (meth)acryliques
WO2018114422A1 (de) 2016-12-21 2018-06-28 Basf Se Verfahren zur destillativen gewinnung von rein-butylacrylat aus roh-butylacrylat, wobei butyl für n-butyl oder iso-butyl steht
EP3558923B1 (de) * 2016-12-21 2020-12-02 Basf Se Verfahren zur destillativen gewinnung von rein-2-ethylhexylacrylat oder rein-2-propylheptylacrylat aus dem entsprechenden roh-alkylacrylat
WO2018114425A1 (de) 2016-12-21 2018-06-28 Basf Se Verfahren zur destillativen gewinnung von rein-tert-butyl(meth)acrylat aus roh-tert-butyl(meth)acrylat
FR3064630B1 (fr) * 2017-04-04 2019-09-13 Arkema France Procede de purification d'acide (meth)acrylique incluant une colonne de distillation a paroi separatrice
FR3069538B1 (fr) * 2017-07-25 2020-05-15 Arkema France Procede de purification d'esters (meth)acryliques.
FR3091871B1 (fr) 2019-01-22 2020-12-18 Arkema France Procede de purification d’esters (meth)acryliques a l’aide d’une colonne a partition
FR3096368B1 (fr) 2019-05-23 2021-04-23 Arkema France Procede perfectionne de fabrication d’acrylates d’alkyle de purete elevee
CN112774236B (zh) * 2020-12-10 2022-02-18 大连理工大学 一种管壳式主动型气相分配器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471134A (en) * 1946-07-17 1949-05-24 Standard Oil Dev Co Fractionation apparatus
DE3302525A1 (de) * 1983-01-26 1984-07-26 Basf Ag, 6700 Ludwigshafen Destillationskolonne zur destillativen zerlegung eines aus mehreren fraktionen bestehenden zulaufproduktes
MX170187B (es) * 1988-11-29 1993-08-10 Hoechst Celanese Corp Metodo y composicion para inhibir la polimerizacion durante la destilacion de monomeros
DE19617210A1 (de) * 1996-04-30 1997-11-06 Basf Ag Trennwandkolonne zur kontinuierlichen destillativen Zerlegung von Mehrstoffgemischen
JP4558870B2 (ja) * 1999-11-08 2010-10-06 株式会社日本触媒 塔式処理方法および装置
JP2002058902A (ja) * 2000-08-22 2002-02-26 Sumitomo Heavy Ind Ltd 蒸留装置
DE10046609A1 (de) * 2000-09-20 2002-04-04 Basf Ag Verfahren und Vorrichtung zur destillativen Trennung von C5+-Schnitten
US7267746B1 (en) * 2001-02-26 2007-09-11 Uop Llc Dividing wall distillation column control apparatus
FR2822825B1 (fr) * 2001-04-02 2003-05-16 Atofina Procede de fabrication d'acrylate de 2-ethylhexyle comportant le lavage a l'eau du brut
CN100589861C (zh) * 2001-08-22 2010-02-17 三菱化学株式会社 容易聚合化合物用蒸馏装置
JP3971974B2 (ja) * 2002-09-03 2007-09-05 三菱化学株式会社 (メタ)アクリル酸類の製造方法
US20040192957A1 (en) * 2003-03-31 2004-09-30 Wickens Danita Inez Method of recovering 2-ethylhexyl alcohol from a mixture comprising 2-ethylhexyl acrylate
JP3992643B2 (ja) * 2003-05-09 2007-10-17 株式会社日本触媒 (メタ)アクリル酸および/またはそのエステルの蒸留方法
JP2005239564A (ja) * 2004-02-24 2005-09-08 Mitsubishi Rayon Co Ltd (メタ)アクリル酸エステルの製造方法
KR101114400B1 (ko) * 2006-09-01 2012-02-14 주식회사 엘지화학 회분공정에 의한 2-에틸헥실 아크릴레이트의 제조방법
EP2502895B1 (en) * 2006-09-15 2016-08-31 Arkema Inc. Process for producing acrylic acid
US8674140B2 (en) * 2008-09-17 2014-03-18 Basf Se Devices and method for continuous distillative separation of a mixture containing one or more alkanolamine(s)
KR101662093B1 (ko) * 2008-10-01 2016-10-04 알케마 인코포레이티드 온라인 근적외선 분석을 이용한 (메트)아크릴산 정제 방법의 제어
KR101146221B1 (ko) * 2009-02-12 2012-05-15 주식회사 엘지화학 분리벽형 증류탑
CN102355928B (zh) * 2009-03-19 2014-03-12 Lg化学株式会社 用于制备高纯度2-乙基己醇的分隔壁蒸馏塔和采用该分隔壁蒸馏塔的分馏方法
JP5811410B2 (ja) * 2009-03-19 2015-11-11 エルジー・ケム・リミテッド 高純度のアクリル酸生産のための分離壁型蒸留塔及びこれを利用した分別蒸留方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2659943A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015009117A1 (ko) * 2013-07-18 2015-01-22 주식회사 엘지화학 분리벽형 증류탑
CN105555379A (zh) * 2013-07-18 2016-05-04 Lg化学株式会社 分隔壁蒸馏塔
JP2016529096A (ja) * 2013-07-18 2016-09-23 エルジー・ケム・リミテッド 蒸留装置
JP2016530086A (ja) * 2013-07-18 2016-09-29 エルジー・ケム・リミテッド 分離壁型蒸留塔
US9919238B2 (en) 2013-07-18 2018-03-20 Lg Chem, Ltd. Distillation apparatus
US10384146B2 (en) 2013-07-18 2019-08-20 Lg Chem, Ltd. Divided wall distillation column

Also Published As

Publication number Publication date
WO2012091397A3 (ko) 2012-11-08
JP5696954B2 (ja) 2015-04-08
EP2659943B1 (en) 2017-09-06
US8894821B2 (en) 2014-11-25
US20130284586A1 (en) 2013-10-31
KR101496488B1 (ko) 2015-02-26
CN103298531A (zh) 2013-09-11
KR20120076193A (ko) 2012-07-09
CN103298531B (zh) 2016-04-20
JP2014508736A (ja) 2014-04-10
EP2659943A4 (en) 2015-06-17
EP2659943A2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2012091397A2 (ko) 고순도 2-에틸헥실-아크릴레이트 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법
WO2012091396A2 (ko) 고순도 네오펜틸글리콜 생산을 위한 분리벽형 증류탑 및 이를 이용한 제조방법
WO2010093203A2 (ko) 분리벽형 증류탑
WO2010107283A2 (ko) 고순도 2-에틸헥산올 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
KR101191122B1 (ko) 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법
KR101165371B1 (ko) 고순도 아크릴산 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
WO2011010846A2 (ko) 에너지 절감형 증류탑 어셈블리
WO2013042941A1 (ko) 듀얼 모드 분리벽형 증류탑
WO2014112808A1 (ko) 알칸올의 제조 장치
WO2016200111A1 (ko) 증류 장치
WO2011081385A2 (ko) 트리클로로실란의 정제 방법 및 정제 장치
WO2013070043A1 (ko) 트리할로실란의 정제 장치
WO2013070044A1 (ko) 트리할로실란의 정제 장치
WO2019039798A1 (ko) 비점 차이가 작은 혼합물의 분리 정제 방법
KR101251176B1 (ko) 노르말 부탄올 회수용 분리벽형 증류탑
WO2020040421A1 (ko) 열분해 생성물의 냉각 방법
WO2023043003A1 (ko) 다성분 혼합물 분리 시스템
WO2015009118A1 (ko) 증류 장치
KR102414715B1 (ko) 분리벽형 증류탑을 이용한 석유수지 제조 공정의 중합용매 정제방법
WO2016068677A1 (ko) 증류 장치
WO2022255575A1 (ko) 이소프로필 알코올 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180063715.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852295

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011852295

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011852295

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013547327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE