WO2015178718A1 - 큐멘의 정제 장치 및 정제 방법 - Google Patents

큐멘의 정제 장치 및 정제 방법 Download PDF

Info

Publication number
WO2015178718A1
WO2015178718A1 PCT/KR2015/005146 KR2015005146W WO2015178718A1 WO 2015178718 A1 WO2015178718 A1 WO 2015178718A1 KR 2015005146 W KR2015005146 W KR 2015005146W WO 2015178718 A1 WO2015178718 A1 WO 2015178718A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzene
cumene
discharge line
distillation column
stream
Prior art date
Application number
PCT/KR2015/005146
Other languages
English (en)
French (fr)
Inventor
김성균
이성규
신준호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016562554A priority Critical patent/JP6452208B2/ja
Priority to CN201580026470.8A priority patent/CN106458791B/zh
Priority to US15/304,017 priority patent/US10464866B2/en
Publication of WO2015178718A1 publication Critical patent/WO2015178718A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/085Isopropylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by exchange of hydrocarbon groups, which may be substituted, from the same of other compounds, e.g. transalkylation

Definitions

  • the present application relates to a purification apparatus and a purification method of cumene.
  • the present application relates to a purification apparatus and a purification method of cumene that can increase energy efficiency in the purification process.
  • Cumene is isopropylbenzene (C 6 H 5 CH (CH 3 ) 2 ), which is used as an important intermediate material in various chemical and polymer industries. At present, most of the cumene (isopropylbenzene) produced is used for the production of phenol and acetone.
  • cumene is prepared by reacting benzene with propylene in liquid or gaseous conditions in the presence of a catalyst.
  • Korean Unexamined Patent Publication No. 10-2011-0082160 and Korean Unexamined Patent Publication No. 10-2013-0008595 disclose technology related to the production of cumene.
  • the cumene manufacturing apparatus includes an alkylation reaction unit and a transalkylation reaction unit.
  • benzene and propylene react to produce cumene (isopropylbenzene), and cumene and propylene react as by-products such as diisopropylbenzene (DIPB; diisopropylbenzene) and triisopropylbenzene (TIPB; triisopropylbenzene).
  • DIPB diisopropylbenzene
  • TIPB triisopropylbenzene
  • Polyisopropylbenzene (PIPB; polyisopropylbenzene) is produced.
  • a competitive reaction in the preparation of cumene is a polyalkylation reaction. That is, it is a side reaction which produces
  • the transalkylation reaction section is used to react polyalkylated benzene, ie, polyisopropylbenzene (PIPB) produced by the side reaction with benzene, to produce additional cumene.
  • polyalkylated benzene ie, polyisopropylbenzene (PIPB) produced by the side reaction with benzene, to produce additional cumene.
  • PIPB polyisopropylbenzene
  • cumene also produces other light products such as C3 (propylene, propane, etc.) and heavies that are heavier than polyisopropylbenzene (PIPB).
  • PIPB polyisopropylbenzene
  • unreacted benzene and water exist together. Therefore, in the alkylation reaction unit and the transalkylation reaction unit, in addition to the desired cumene (isopropylbenzene), hard materials such as C3 (propylene, propane, etc.), polyisopropylbenzene (PIPB), unreacted benzene, Water and other heavy substances are released. They are removed or recycled through the purification process for high purity cumene.
  • FIG. 1 is a block diagram showing a cumene purification apparatus according to the prior art. Referring to FIG. 1, the purification process of cumene according to the prior art will be described as follows.
  • the cumene purification apparatus is installed in association with the alkylation reaction unit and the transalkylation reaction unit, and includes three distillation columns as a first distillation column, a second distillation column, and a third distillation column.
  • the first distillation column is a benzene column (1) for recovering benzene from the stream of the alkylation reaction section and the transalkylation reaction section.
  • an inlet line (1b, In-put Line) for introducing the stream discharged from the alkylation reaction unit, and an inlet line for introducing the stream discharged from the transalkylation reaction unit at the front end of the benzene column (1) 1c) is connected.
  • a benzene inlet line 1a through which fresh benzene flows is connected to the front end of the benzene column 1.
  • the upper part of the benzene column 1 emits light and water such as C3 through a light out-put line 1d, and the cumene stream discharge line 1e, Cumene streams are discharged through the Cumene Stream Out-put Line.
  • benzene is discharged through the Benzene Recycle Line (1f), and the discharged benzene is recycled.
  • the second distillation column is a cumene column (2) for recovering cumene from the cumene stream withdrawn from the bottom of the benzene column (1).
  • PIPB polyisopropylbenzene
  • the third distillation column is a polyisopropylbenzene (PIPB) column (3) in which the polyisopropylbenzene (PIPB) stream withdrawn from the bottom of the cumene column (2) is introduced and recycled.
  • PIPB polyisopropylbenzene
  • the polyisopropyl benzene (PIPB) such as diisopropyl benzene (DIPB) is discharged from the upper portion of the polyisopropyl benzene (PIPB) column 3 through the polyisopropyl benzene (PIPB) discharge line (3a) Recycled.
  • PIPB polyisopropyl benzene
  • DIPB diisopropyl benzene
  • PIPB polyisopropyl benzene
  • each column (1) (2) (3) is supplied with a heat source for the separation of the components through the difference in boiling point, which is consumed most of the energy.
  • reference numeral C denotes a condenser
  • reference numeral B denotes a heat exchanger (or reboiler) for supplying heat.
  • each column (1) (2) (3) is supplied with a heat source for the separation of the components, in particular, there is a problem that a lot of thermal energy is consumed in this separation process.
  • the purification apparatus and purification method of cumene according to the present application can reduce energy consumption by ancillary equipment such as a condenser or a heat exchanger.
  • a dividing wall type first distillation column comprising a first benzene discharge line for introducing a stream of the alkylation reaction unit to discharge benzene and a bottom discharge line for discharging a benzene / cumene / polyisopropylbenzene stream;
  • a dividing wall type distillation column comprising a polyisopropylbenzene stream discharge line for discharging the stream to the bottom;
  • the polyisopropylbenzene stream is discharged from the polyisopropylbenzene stream discharge line of the second distillation wall, and the polyisopropylbenzene discharge line and heavy material are discharged to discharge the polyisopropylbenzene (PIPB) to the top.
  • a purifying apparatus for cumene comprising a third distillation column comprising a heavy material discharge line for discharging to a furnace.
  • the purifying apparatus of cumene may further include a lamination portion in which a first benzene discharge line and a second benzene discharge line are laminated; And a benzene recycling line for supplying benzene laminated in the lamination part to at least one reaction part selected from an alkylation reaction part and a trans alkylation reaction part.
  • the first benzene discharge line and the second benzene discharge line may be operated to satisfy the following formula (1).
  • BZ 1 is the flow rate of benzene discharged through the first benzene line
  • BZ 2 is the flow rate of benzene discharged through the second benzene discharge line
  • the present application also provides a first distillation column of the alkylation reaction stream into a dividing wall type distillation column to discharge benzene to a first benzene discharge line and to discharge a benzene / cumene / polyisopropylbenzene stream to a lower discharge line. Separation step;
  • the stream of the transalkylation reaction unit and the benzene / cumene / polyisopropylbenzene stream separated in the first separation stage are introduced into a dividing wall-type second distillation column, and the benzene is discharged to the second benzene discharge line, and polyisopropylbenzene A second separation step of discharging the polyisopropylbenzene stream to the stream discharge line;
  • It relates to a cumene purification method comprising a third separation step of separating the polyisopropyl benzene and the heavy material by flowing the poly isopropyl benzene stream separated in the second separation step into a third distillation column.
  • the method for purifying cumene according to the present application is to stack the benzene discharged from the first benzene discharge line and the second benzene discharge line, and then select the laminated benzene from the alkylation reaction section and the transalkylation reaction section.
  • the method may further include supplying any one or more reaction units.
  • the first separation step and the second separation step may satisfy the following Equation 1.
  • BZ 1 is the flow rate of benzene discharged through the first benzene line
  • BZ 2 is the flow rate of benzene discharged through the second benzene discharge line
  • FIG. 1 is a block diagram of a purification apparatus of cumene according to the prior art.
  • FIG. 2 is a block diagram of a cumene purification apparatus according to an embodiment of the present application.
  • FIG. 3 is a block diagram of a purification apparatus of cumene applied in the comparative example.
  • Figure 4 is a block diagram of a purification device of cumene applied in the embodiment.
  • 'connection', 'installation', 'combination' and the like mean that the two members are detachable (combined and separated) as well as include an integral structure.
  • the terms 'connection', 'installation', 'combination', etc., as used herein include, for example, a forced fit method; Fitting method using grooves and protrusions; And by means of fastening methods using fastening members such as screws, bolts, pieces, rivets, brackets, etc., to promote the separation of the two members from the joint, and the joining of the two members through welding, adhesive, or integral molding. After that, it includes any one that cannot be separated.
  • a stream means a flow comprising at least the 'A' component, which may include the 'A' component as a main component.
  • a "polyisopropylbenzene stream” is a stream comprising at least 'polyisopropylbenzene', which may comprise 'polyisopropylbenzene' as a main component.
  • 'comprising polyisopropylbenzene as a main component' may be understood to mean that polyisopropylbenzene is most contained among various components of the stream.
  • a / B stream means a flow comprising at least the 'A' component and the 'B' component, which means that the "A / B / C stream” means at least the 'A' component, 'B' A flow comprising a component and a 'C' component.
  • benzene / cumene / polyisopropylbenzene stream may mean a stream comprising at least 'benzene', 'cumen' and 'polyisopropylbenzene'.
  • the present application relates to a purification apparatus of cumene.
  • the purifying apparatus of cumene according to the present application may be installed in connection with, for example, the manufacturing apparatus of cumene.
  • the purification apparatus of cumene according to the present application may be installed in association with the alkylation reaction unit and the transalkylation reaction unit constituting the cumene manufacturing apparatus.
  • benzene and propylene react to generate cumene (isopropylbenzene), and as the by-product, cumene and propylene react to diisopropylbenzene (DIPB; diisopropylbenzene) and triisopropylbenzene.
  • DIPB diisopropylbenzene
  • PIPB polyisopropylbenzene
  • TIPB triisopropylbenzene
  • the produced cumene is separated and recovered through a recovery line, and a stream including the byproduct is discharged through a separate line.
  • polyalkylated benzene that is, polyisopropylbenzene (PIPB) generated by the side reaction and benzene react to generate additional cumene.
  • PIPB polyisopropylbenzene
  • heavies that are heavier than polyisopropylbenzene (PIPB) are present in the stream discharged from the transalkylation reaction unit.
  • the purification apparatus of cumene according to the present application may introduce and purify the stream of the alkylation reaction unit and the stream of the transalkylation reaction unit as described above.
  • the purification apparatus of cumene may separately purify the stream of the alkylation reaction unit and the stream of the transalkylation reaction unit by separately flowing through different distillation columns.
  • the purification apparatus of cumene comprises a first distillation column 10, a second distillation column 20 and a third distillation column 30.
  • the first distillation column 10 and the second distillation column 20 may be a dividing wall column (DWC).
  • the third distillation column 30 may also be a partition wall column (DWC).
  • the first distillation column 10 may include a first benzene discharge line for introducing a stream of the alkylation reaction section to discharge benzene and a bottom discharge line for exhausting a benzene / cumene / polyisopropylbenzene stream.
  • the first benzene discharge line may be located, for example, in the central region of the first distillation column 10.
  • the second distillation column 20 injects a stream of the transalkylation reaction unit and a benzene / cumene / polyisopropylbenzene stream discharged from the bottom discharge line of the first distillation column to discharge benzene. And a polyisopropylbenzene stream discharge line for discharging the benzene discharge line and the polyisopropylbenzene stream downwards.
  • the second benzene discharge line may be located, for example, on top of the second distillation column 20.
  • the third distillation column 30 enters the polyisopropylbenzene stream discharged from the polyisopropylbenzene stream discharge line of the dividing wall type second distillation column to discharge polyisopropylbenzene (PIPB) to the top. It may include a polyisopropyl benzene discharge line and a heavy material discharge line for discharging the heavy material downward.
  • PIPB polyisopropylbenzene
  • FIG. 2 is an exemplary view of a purification apparatus of cumene according to the present application.
  • the purification apparatus of cumene may include a first distillation column 10, a second distillation column 20 installed behind the first distillation column 10, and the second distillation column ( A third distillation column 30 installed at the rear of 20).
  • each of the columns 10, 20, 30 is selected from a distillation column used in the distillation process of the general industrial field, at least the first distillation column 10 and the second distillation column ( 20 may be a partition wall type.
  • the reflux ratio of is not particularly limited, and may be freely changed in design to the extent that the person of ordinary skill in the art can achieve the object of the present application.
  • each column 10, 20, 30 of the present application may be provided with a condenser and / or a heat exchanger (or reboiler).
  • reference numeral C denotes a condenser
  • reference numeral B denotes a heat exchanger (or reboiler).
  • the condenser C and / or the heat exchanger B may be selectively installed or not installed according to each column 10, 20, 30.
  • condenser (C) and the heat exchanger (B) is a component that can be omitted even if shown in the drawings, unless otherwise noted, on the contrary, components that may be included (installed) even if not shown in the drawings to be.
  • the first distillation column 10 may include at least one inlet line 11, 12 installed at the front end thereof.
  • the inlet line 11, 12 includes a stream inlet line 12 of the alkylation reaction unit for introducing a stream discharged from the alkylation reaction unit.
  • the inlet lines 11 and 12 may further include a benzene inlet line 11 for introducing fresh benzene. That is, the purification apparatus of cumene according to the present application may further include a benzene inlet line located at the front end and introducing fresh benzene.
  • FIG. 2 shows two inlet lines 11 and 12 installed at the front end of the first distillation column 10.
  • the benzene inlet line 11 is installed at approximately the top of the first distillation column 10, and a stream inlet line 12 of the alkylation reaction unit is installed below the benzene inlet line 11.
  • the stream inlet line 12 of the alkylation reaction unit may be installed in an approximately central region of the first distillation column 10, but is not limited thereto.
  • the first distillation column 10 includes a first benzene discharge line 18 and a lower discharge line 16 installed below. Benzene can be discharged to the first benzene discharge line 18, and a benzene / cumene / polyisopropylbenzene stream can be discharged to the lower discharge line 16.
  • the first distillation column 10 may further comprise an upper discharge line 14, as shown in FIG. 2.
  • a light stream including water and water such as C3 may be discharged and removed to the upper discharge line 14.
  • the first distillation column 10 may include a light stream including light materials and water; Benzene stream comprising benzene; And a three-phase stream of benzene / cumene / polyisopropylbenzene stream comprising benzene, cumene and polyisopropylbenzene (PIPB).
  • a light stream including light materials and water Benzene stream comprising benzene
  • a three-phase stream of benzene / cumene / polyisopropylbenzene stream comprising benzene, cumene and polyisopropylbenzene (PIPB).
  • benzene exited through the first outlet line 18 of the three-phase stream is fed to an alkylation reaction unit and / or a transalkylation reaction unit and recycled, or the benzene inlet line 11 is Can be recycled to the first distillation column (10).
  • the benzene / cumene / polyisopropylbenzene stream in the three phase stream can be withdrawn, for example, through the bottom outlet line 16 and introduced into the second distillation column 20.
  • the first distillation column 10 is a dividing wall type as described above.
  • a dividing wall 15 is provided in the vertical direction.
  • the interior of the first distillation column 10 is partitioned by a dividing wall 15, the inlet portion (a) through which the stream of the alkylation reaction portion flows in, and the top section (b) through which hard material and water flow out. ), An outlet (c) through which benzene flows out, and a bottom zone (d) through which the benzene / cumene / polyisopropylbenzene stream flows out.
  • the dividing wall type distillation column has a form in which two distillation columns are integrated into one, thereby reducing equipment investment costs and lower energy consumption than using two distillation columns compared to the same throughput. Can be.
  • the second distillation column 20 may be installed behind the first distillation column 10 to separate the benzene and polyisopropylbenzene streams from the incoming stream.
  • the second distillation column 20 may further separate cumene from the incoming stream, separating it in three phases with the benzene and polyisopropylbenzene streams described above.
  • the second distillation column 20 enters the stream of the transalkylation reaction section and the benzene / cumene / polyisopropylbenzene stream exiting the bottom outlet line of the dividing wall first distillation column to top the benzene.
  • It can be a dividing wall distillation column comprising a second benzene discharge line for releasing the furnace and a polyisopropylbenzene stream discharge line for discharging the polyisopropylbenzene stream to the bottom.
  • the second distillation column 20 may be connected to a stream inlet line 22 of the transalkylation reaction unit and a lower outlet line 16 of the first distillation column 10 at a front end thereof.
  • the second distillation column 20 may comprise a second benzene outlet line 28 and a polyisopropylbenzene stream outlet line 26.
  • the second distillation column 20 may further include a cumene discharge line 24 installed in an approximately central region. Cumene may be discharged through the cumene discharge line 24.
  • Benzene discharged through the second benzene discharge line 28 in the stream may be recycled.
  • benzene discharged through the second benzene discharge line 28 is recycled by being fed to the alkylation reaction section and / or the transalkylation reaction section, or the first distillation column 10 via the benzene inlet line 11. ) Can be recycled.
  • Cumene discharged through the cumene discharge line 24 in the flow may be recovered as a product. Specifically, the discharged cumene may be recovered after being cooled and then sent to a reservoir.
  • the polyisopropylbenzene stream discharged through the polyisopropylbenzene stream discharge line 26 in the stream may enter the third distillation column 30.
  • the second distillation column 20 is a dividing wall like the first distillation column 10.
  • the dividing wall 15 is provided in the vertical direction in the second distillation column 20.
  • the interior of the second distillation column 20 is partitioned by a dividing wall 15 to provide an inlet (a) through which the stream of the alkylation reaction unit flows in, and a top section (b) through which hard material and water flow out. ), An outlet (c) through which benzene flows out, and a bottom zone (d) through which the benzene / cumene / polyisopropylbenzene stream flows out.
  • the first distillation column and / or the second distillation column are partitioned by a partition wall provided therein, and an inlet part through which the stream of the alkylation reaction part flows in, a top section through which hard material and water flow out, and an outflow through which benzene flows out. And bottoms zone from which the benzene and cumene / polyisopropylbenzene streams are discharged.
  • the third distillation column 30 is installed at the rear of the second distillation column 20, and introduces a polyisopropylbenzene stream discharged to the lower portion of the second distillation column 20, so that the polyisopropylbenzene (PIPB) and It can be separated into heavies.
  • PIPB polyisopropylbenzene
  • the third distillation column 30 may include a polyisopropylbenzene (PIPB) discharge line 34 installed at the top and a heavy material discharge line 36 installed at the bottom.
  • PIPB polyisopropylbenzene
  • Polyisopropylbenzene (PIPB) separated in the third distillation column (30) is discharged to the top through the discharge line 34, the discharged polyisopropylbenzene (PIPB) is supplied to the trans alkylation reaction unit, for example Can be recycled.
  • the polyisopropylbenzene stream introduced from the second distillation column 2 may comprise, for example, polyisopropylbenzene (PIPB) such as diisopropylbenzene (DIPB) and triisopropylbenzene (TIPB). .
  • PIPB polyisopropylbenzene
  • DIPB diisopropylbenzene
  • TIPB triisopropylbenzene
  • DIPB diisopropyl benzene
  • TIPB triisopropyl benzene
  • DIPB diisopropyl benzene
  • TIPB triisopropyl benzene
  • the third distillation column 30 may include a plurality of polyisopropylbenzene (PIPB) discharge lines 34 capable of discharging the polyisopropylbenzene (PIBP) by type. Can be.
  • PIPB polyisopropylbenzene
  • the third distillation column 30 includes a triisopropylbenzene (TIPB) discharge line installed at approximately the middle point of the stage and a diisopropylbenzene (DIPB) discharge line 34 installed at the top thereof.
  • TIPB triisopropylbenzene
  • DIPB diisopropylbenzene
  • Polyalkylation benzene can be separated by stages by type.
  • the heavy material discharged through the heavy material discharge line 36 of the third distillation column 30 is the heaviest material in the process, specifically, heavier than polyisopropylbenzene (PIPB) material (high boiling point material) May mean.
  • PIPB polyisopropylbenzene
  • the cumene purification apparatus includes three distillation columns (10) (20) (30) as described above, wherein at least the first distillation column (10) and the second distillation column (20) are separated. It is a wall.
  • the streams of the alkylation reaction unit and the trans alkylation reaction unit are introduced into different distillation columns, and the outgoing benzene is not recovered and separated and discharged in a single column, for example.
  • the purification apparatus of cumene according to the present application, the streams of the alkylation reaction unit and the trans alkylation reaction unit are introduced into different distillation columns, and the outgoing benzene is not recovered and separated and discharged in a single column, for example.
  • the purification apparatus of cumene the streams of the alkylation reaction unit and the trans alkylation reaction unit are introduced into different distillation columns, and the outgoing benzene is not recovered and separated and discharged in a single column, for example.
  • the amount of power used such as heat exchangers and coolers that may be used incidentally in the purification process.
  • benzene is separated in two phases in two dividing wall distillation columns (10) (20), and the benzene separation is more than in the case of the conventional separation in one benzene column (1, see FIG. 1).
  • the load can be reduced so that energy consumption can be reduced.
  • the first benzene discharge line 18 and the second benzene discharge line 28 installed in the first distillation column 10 and the second distillation column 20 satisfy the following equation. It is good to drive.
  • BZ 1 is the flow rate of benzene discharged through the first benzene discharge line 18
  • BZ 2 is the flow rate of benzene discharged through the second benzene discharge line 28.
  • the actual value of the flow rate of benzene passing through each of the discharge lines 18 and 28 is not limited, and they may have a flow rate ratio BZ 1 / BZ 2 satisfying the above equation.
  • the flow rate ratio BZ 1 / BZ 2 is preferably 1.0 to 3.0.
  • the flow rate ratio (BZ 1 / BZ 2 ) is not particularly limited, but for example, one or more operating conditions selected from the first distillation column 10 and the second distillation column 20, and each column 10 and 20.
  • the inflow and / or outflow of the can be controlled by adjusting.
  • the flow rate ratio BZ 1 / BZ 2 is one or more operating conditions selected from the pressure, temperature and level of the first distillation column 10 and / or the second distillation column 20, etc. It can be adjusted by controlling.
  • the first benzene discharge line 18 and the second benzene discharge line 28, the lamination portion 40 and the benzene recycling line connected to the lamination portion 40 ( 42) may be further included.
  • the benzene discharged through the first benzene discharge line 18 and the second benzene discharge line 28 is laminated in the lamination section 40, and then the alkylation reaction section through the benzene recycling line 42. It may be fed to one or more reaction units selected from transalkylation reaction units.
  • the cumene purification apparatus includes a lamination portion in which the first benzene discharge line and the second benzene discharge line are laminated; And a benzene recycling line for supplying benzene laminated in the lamination part to at least one reaction part selected from an alkylation reaction part and a transalkylation reaction part.
  • the efficiency of the energy can be improved by the improved purification process as described above.
  • benzene is separated into two divisions in the two dividing wall distillation column (10) 20, energy consumption can be reduced.
  • the stream inlet line 12 of the alkylation reaction unit is connected to the first distillation column 10
  • the stream inlet line 22 of the transalkylation reaction unit is connected to the second distillation column 20. This can also lead to an improved purification process.
  • the lines through which the respective components and streams are introduced and discharged are not limited as long as the fluid can pass therethrough, and they can be selected from metal tubes, plastic tubes, and the like.
  • each of the lines includes a flexible one.
  • a pump or the like for smooth flow of each component and stream may be installed on the lines, or a valve or the like may be installed to control (block and / or adjust the flow rate) the flow.
  • the present application also relates to a method for purifying cumene using such a device.
  • the purification method of cumene according to the present application includes a first separation step, a second separation step, and a third separation step performed in the first distillation column, the second distillation column, and the third distillation column, respectively.
  • the stream of the alkylation reaction unit flows into the first dividing wall type distillation column, and the benzene is discharged to the first benzene discharge line, and the benzene / cumene / polyisopropyl is discharged to the lower discharge line.
  • a first separation step of withdrawing a benzene stream The stream of the transalkylation reaction unit and the benzene / cumene / polyisopropylbenzene stream separated in the first separation stage are introduced into a dividing wall-type second distillation column, and the benzene is discharged to the second benzene discharge line, and polyisopropylbenzene
  • a third separation step of separating the polyisopropylbenzene and the heavy material by introducing the polyisopropylbenzene stream separated in the second separation step into a third distillation column.
  • the first separation step may be performed in the first distillation column 10, and the stream of the alkylation reaction unit is introduced into the first distillation column, for example, benzene is discharged to the first benzene discharge line located in the central region. And exhausting the benzene / cumene / floisopropylbenzene stream to the underlying bottom line.
  • the first separation step may further include discharging the hard material and water in the upper discharge line.
  • the inlet stream of the first separation stage may further include a stream through which benzene flows into the benzene inlet line mentioned in the aforementioned first distillation column, as well as the stream of the alkylation reaction unit. That is, the first separation step may further include introducing benzene into the benzene inlet line installed at the front end portion.
  • the second separation step may be performed in a second distillation column, and the stream of the transalkylation reaction unit is introduced into the second distillation column, for example, to discharge benzene into a second benzene discharge line located at the top, and And discharging the polyisopropyl benzene to the polyisopropylbenzene stream discharge line located at.
  • the second separation step may further include discharging cumene from the cumene discharge line.
  • the method for purifying cumene according to the present application is that two streams, for example, a stream of an alkylation reaction unit and a stream of a transalkylation reaction unit, are separately separated into two columns 10 and 20 instead of one single column. By dividing and introducing, the load of each column 10 and 20 is reduced, and an efficient purification process can be performed continuously.
  • Purification method of cumene according to the present application is also any one selected from the alkylation reaction unit and the transalkylation reaction unit after the benzene discharged from the first benzene discharge line and the second benzene discharge line is laminated. It may further comprise the step of supplying to the reaction unit.
  • the first separation step and the second separation step may satisfy the following Equation 1.
  • Equation 1 BZ 1 is the flow rate of benzene discharged through the first benzene line
  • BZ 2 is the flow rate of benzene discharged through the second benzene discharge line.
  • Example and comparative example of this application are illustrated.
  • the following examples are provided by way of example only to assist in understanding the present application, whereby the technical scope of the present application is not limited.
  • the cumene was purified using an apparatus as shown in FIG. 4.
  • the device shown in FIG. 4 is the same as the device shown in FIG. 2, but in FIG. 4, Q is used to describe the heat energy consumed in each column 10, 20.
  • a fresh benzene 11 and a stream 12 discharged from the alkylation reaction unit were introduced into the first distillation column 10 through two inlet lines 11 and 12.
  • the stream 22 discharged from the transalkylation reaction unit is introduced through the inlet line 22.
  • the benzene was discharged to the second benzene discharge line 28 in the upper portion, and the cumene was discharged through the cumene discharge line 24 in the central region.
  • the polyisopropylbenzene (PIPB) stream discharged through the bottom discharge line 26 was introduced into the third distillation column 30.
  • polyisopropylbenzene (PIPB) is discharged through the upper discharge line 34 of the third distillation column 30 to be recycled to the transalkylation reaction unit, and heavy materials (Heavies) are discharged through the lower discharge line 36. Drained and cooled.
  • the first distillation column 10 and the second distillation column 20 is a dividing wall type distillation column (DWC), the benzene flow rate (BZ 1 ) and the second passing through the first benzene discharge line 18
  • the flow rate ratio (BZ 1 / BZ 2 ) of the benzene flow rate (BZ 2 ) passing through the benzene discharge line 28 was set to two.
  • the benzene flow rate BZ 1 and the second benzene passing through the first benzene discharge line 18 by varying the internal pressure, temperature, and level of the first distillation column 10 and the second distillation column 20 are different.
  • the purification process of cumene was carried out in the same manner as in Example 1 except that the flow rate ratio (BZ 1 / BZ 2 ) of the benzene flow rate (BZ 2 ) passing through the discharge line 28 was set to 1.
  • Thermal energy Q 1 supplied to the first distillation column 10 and thermal energy Q 2 supplied to the second distillation column 20 were measured, and the results are shown in Table 1 below.
  • the internal pressure, temperature and level of the first distillation column 10 and the second distillation column 20 are different so that the benzene flow rate BZ1 and the second benzene discharge passing through the first benzene discharge line 18 are different.
  • the purification process of cumene was carried out in the same manner as in Example 1 except that the flow rate ratio (BZ 1 / BZ 2 ) of the benzene flow rate (BZ 2 ) passing through the line 28 was set to 3.
  • Thermal energy Q 1 supplied to the first distillation column 10 and thermal energy Q 2 supplied to the second distillation column 20 were measured, and the results are shown in Table 1 below.
  • the benzene flow rate BZ 1 and the second benzene passing through the first benzene discharge line 18 by varying the internal pressure, temperature, and level of the first distillation column 10 and the second distillation column 20 are different.
  • the purification process of cumene was carried out in the same manner as in Example 1 except that the flow rate ratio BZ 1 / BZ 2 of the benzene flow rate BZ 2 passing through the discharge line 28 was 0.5.
  • Thermal energy (Q 1 ) supplied to the first distillation column (10) and thermal energy (Q 2 ) supplied to the second distillation column (20) were measured, and the results are shown in Table 1 below.
  • the benzene flow rate BZ 1 and the second benzene passing through the first benzene discharge line 18 by varying the internal pressure, temperature, and level of the first distillation column 10 and the second distillation column 20 are different.
  • the purification process of cumene was carried out in the same manner as in Example 1 except that the flow rate ratio (BZ 1 / BZ 2 ) of the benzene flow rate (BZ 2 ) passing through the discharge line 28 was 3.5.
  • Thermal energy (Q 1 ) supplied to the first distillation column (10) and thermal energy (Q 2 ) supplied to the second distillation column (20) were measured, and the results are shown in Table 1 below.
  • FIG. 3 The apparatus shown in FIG. 3 is the same as the apparatus shown in FIG. 1 except that in FIG.
  • This comparative example is a conventional general process, and description of a well-known specific process is abbreviate
  • the cumene is discharged through the upper discharge line 2a of the second distillation column 2 to be recovered, and the polyisopropylbenzene (PIPB) stream discharged through the lower discharge line 2b is converted into a third distillation column ( 3) was allowed to enter. Then, polyisopropylbenzene (PIPB) is discharged through the upper discharge line 3a of the third distillation column 3 and recycled to the transalkylation reaction unit, and heavy materials (Heavies) are discharged through the lower discharge line 3d. And cooled.
  • PIPB polyisopropylbenzene
  • the above purification process is performed in a stabilized state, and the thermal energy Q 1 supplied to the first distillation column 1 and the thermal energy Q 2 supplied to the second distillation column 2 are measured, and the results are shown in [Table 1]. ].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

본 출원은 큐멘의 정제장치 및 정제방법에 관한 것이다. 본 출원에 따른 큐멘의 정제장치 및 정제방법은 정제 공정상에 유발될 수 있는 에너지 소비량을 절감시킬 수 있으며, 효율적으로 큐멘을 정제할 수 있는 장치 및 방법을 제공할 수 있다.

Description

큐멘의 정제 장치 및 정제 방법
본 출원은 큐멘의 정제 장치 및 정제 방법에 관한 것이다.
구체적으로, 본 출원은 정제 공정에서 에너지 효율을 높일 수 있는 큐멘의 정제 장치 및 정제 방법에 관한 것이다.
큐멘(Cumene)은 이소프로필벤젠(C6H5CH(CH3)2)으로서, 이는 각종 화학 산업 및 중합체 산업 등에서 중요한 중간체 물질로 사용된다. 현재, 생산되고 있는 대부분의 큐멘(이소프로필벤젠)은 페놀 및 아세톤 등의 제조에 사용된다.
일반적으로, 큐멘은 촉매 존재 하에서 액상 또는 기상 조건에서 벤젠과 프로필렌을 반응시켜 제조된다. 대한민국 공개특허공보 제10-2011-0082160호 및 대한민국 공개특허공보 제10-2013-0008595호 등에는 큐멘의 제조와 관련한 기술이 제시되어 있다.
대부분의 큐멘은 상업적으로 알킬레이션(Alkylation) 반응과 트랜스 알킬레이션(Trans Alkylation) 반응을 통하여 제조된다. 이에 따라, 큐멘 제조장치는 알킬레이션 반응부와 트랜스 알킬레이션 반응부를 포함한다.
상기 알킬레이션 반응부에서는 벤젠과 프로필렌이 반응하여 큐멘(이소프로필벤젠)이 생성되며, 부산물로서 큐멘과 프로필렌이 반응하여 디이소프로필벤젠(DIPB ; diisopropylbenzene) 및 트리이소프로필벤젠(TIPB ; triisopropylbenzene) 등의 폴리이소프로필벤젠(PIPB ; polyisopropylbenzene)이 생성된다. 큐멘의 제조에서 경쟁적인 반응은 폴리알킬레이션 반응이다. 즉, 상기 디이소프로필벤젠(DIPB) 및 트리이소프로필벤젠(TIPB) 등의 폴리이소프로필벤젠(PIPB)을 생성시키는 부반응이다.
상기 트랜스 알킬레이션 반응부는 폴리알킬레이션된 벤젠, 즉 상기 부반응에 의해 생성된 폴리이소프로필벤젠(PIPB) 등을 벤젠과 반응시켜, 추가적인 큐멘을 생성하는데 사용된다.
또한, 큐멘의 제조과정에서는 상기 성분들 이외에, 다른 부가적인 생성물로서 C3(프로필렌, 프로판 등) 등의 경질 물질(Lights)과, 폴리이소프로필벤젠(PIPB)보다 무거운 중질 물질(Heavies)이 생성되며, 이와 함께 미반응 벤젠 및 물(water) 등이 존재한다. 따라서 상기 알킬레이션 반응부 및 트랜스알킬레이션 반응부에서는 목적하는 큐멘(이소프로필벤젠) 이외에, C3(프로필렌, 프로판 등) 등의 경질 물질(Lights), 폴리이소프로필벤젠(PIPB), 미반응 벤젠, 물(water) 및 기타 중질 물질 등이 배출된다. 이들은 고순도의 큐멘을 위해 정제공정을 통해 제거되거나 재순환된다.
큐멘의 정제공정에서는, 일반적으로 3개의 증류 컬럼(distillation column)이 사용된다. 도 1은 종래 기술에 따른 큐멘 정제장치를 보인 구성도이다. 도 1을 참조하여, 종래 기술에 따른 큐멘의 정제공정을 개략적으로 설명하면 다음과 같다.
일반적으로, 큐멘 정제장치는 상기 알킬레이션 반응부 및 트랜스 알킬레이션 반응부와 연계하여 설치되며, 제1 증류 컬럼, 제2 증류 컬럼 및 제3 증류 컬럼으로서, 3개의 증류 컬럼을 포함한다.
상기 제1 증류 컬럼은 알킬레이션 반응부 및 트랜스 알킬레이션 반응부의 스트림(stream)으로부터 벤젠을 회수하는 벤젠 컬럼(1)이다.
이때, 상기 벤젠 컬럼(1)의 전단부에는 알킬레이션 반응부에서 배출된 스트림을 유입하는 유입라인(1b, In-put Line)과, 트랜스 알킬레이션 반응부에서 배출된 스트림을 유입하는 유입라인(1c)이 연결되어 있다. 또한, 벤젠 컬럼(1)의 전단부에는 프레쉬(fresh) 벤젠이 유입되는 벤젠 유입라인(1a)이 연결되어 있다. 그리고 벤젠 컬럼(1)의 상부에서는 경질 물질 배출라인(1d, Lights Out-put Line)을 통해 C3 등의 경질 물질(Lights)과 물(water)이 배출되며, 하부에서는 큐멘 스트림 배출라인(1e, Cumene Stream Out-put Line)을 통해 큐멘 스트림이 배출된다. 아울러, 벤젠 컬럼(1)의 대략 중앙에서는 벤젠 리사이클 라인(1f, Benzene Recycle Line)을 통해 벤젠이 배출되며, 상기 배출된 벤젠은 재순환된다.
상기 제2 증류 컬럼은 벤젠 컬럼(1)의 하부에서 배출된 큐멘 스트림으로부터 큐멘을 회수하는 큐멘 컬럼(2)이다.
이때, 상기 큐멘 컬럼(2)의 상부에서는 큐멘 배출라인(2a)을 통해 큐멘이 배출, 회수된다. 그리고 큐멘 컬럼(2)의 하부에서는 폴리이소프로필벤젠(PIPB) 유출라인(2b)을 통해 폴리이소프로필벤젠(PIPB) 스트림이 배출된다.
상기 제3 증류 컬럼은 큐멘 컬럼(2)의 하부에서 배출된 폴리이소프로필벤젠(PIPB) 스트림을 유입하여 재순환시키는 폴리이소프로필벤젠(PIPB) 컬럼(3)이다.
이때, 상기 폴리이소프로필벤젠(PIPB) 컬럼(3)의 상부에서는 폴리이소프로필벤젠(PIPB) 배출라인(3a)을 통해 디이소프로필벤젠(DIPB) 등의 폴리이소프로필벤젠(PIPB)이 배출되어 재순환된다. 그리고 폴리이소프로필벤젠(PIPB) 컬럼(3)의 하부에서는 중질 물질 배출라인(3b, Heavies Out-put Line)을 통해 무거운 중질 물질(Heavies)이 배출된다.
위와 같은 정제공정을 통해 목적하는 큐멘(이소프로필벤젠)을 고순도로 정제, 회수할 수 있다. 또한, 상기 정제공정에서는 에너지가 소비된다. 상기 각 칼럼(1)(2)(3)에는 비점 차이를 통한 성분들의 분리를 위해 열원이 공급되는데, 이러한 분리 과정에서 대부분의 에너지가 소비된다. 도 1에서, 도면 부호 C는 응축기를 나타내며, 도면 부호 B는 열을 공급하기 위한 열교환기(또는 재비기)를 나타낸다.
그러나 종래 기술에 따른 큐멘 정제공정은 에너지의 소비량이 많다. 상기한 바와 같이, 각 칼럼(1)(2)(3)에는 성분들의 분리를 위한 열원이 공급되는데, 특히 이러한 분리 과정에서 열에너지가 많이 소비되는 문제점이 있다.
본 출원은 개선된 큐멘의 정제 장치 및 정제 방법을 제공한다.
본 출원에 따른 큐멘의 정제 장치 및 정제 방법은 응축기 또는 열 교환기 등의 부수적인 장치에 의한 에너지 소비를 절감할 수 있다.
본 출원은 상기 과제를 해결하기 위하여 안출된 것으로써,
알킬레이션 반응부의 스트림을 유입하여, 벤젠을 배출하는 제 1 벤젠 배출 라인 및 벤젠/큐멘/폴리이소프로필벤젠 스트림을 배출하는 하부 배출 라인을 포함하는 분리벽형 제 1 증류 컬럼;
트랜스 알킬레이션 반응부의 스트림 및 상기 분리벽형 제 1 증류 컬럼의 하부 배출 라인에서 배출된 벤젠/큐멘/폴리이소프로필벤젠 스트림을 유입하여, 벤젠을 상부로 배출시키는 제 2 벤젠 배출 라인 및 폴리이소프로필벤젠 스트림을 하부로 배출하는 폴리이소프로필벤젠 스트림 배출 라인을 포함하는 분리벽형 제 2 증류 컬럼; 및
상기 분리벽형 제 2 증류 컬럼의 폴리이소프로필벤젠 스트림 배출 라인에서 배출된 폴리이소프로필벤젠 스트림을 유입하여, 폴리이소프로필벤젠(PIPB)을 상부로 배출하는 폴리이소프로필벤젠 배출 라인 및 중질 물질을 하부로 배출하는 중질 물질 배출 라인을 포함하는 제 3 증류 컬럼을 포함하는 큐멘의 정제 장치에 관한 것이다.
본 출원에 따른 큐멘의 정제 장치는 또한, 제 1 벤젠 배출 라인과 제 2 벤젠 배출 라인이 합지되는 합지부; 및 상기 합지부에서 합지된 벤젠을 알킬레이션 반응부 및 트랜스 알킬레이션 반응부로부터 선택되는 어느 하나 이상의 반응부에 공급하는 벤젠 리사이클링 라인을 더 포함할 수 있다.
하나의 예시에서, 제 1 벤젠 배출 라인 및 제 2 벤젠 배출 라인은 하기 수식 1을 만족하도록 운전될 수 있다.
[수식 1]
BZ1/BZ2 = 1.0 내지 3.0
(상기 수식 1에서, BZ1은 제 1 벤젠 라인을 통해 배출되는 벤젠의 유량이고, BZ2는 제 2 벤젠 배출라인을 통해 배출되는 벤젠의 유량이다).
본 출원은 또한, 알킬레이션 반응부의 스트림을 분리벽형 제 1 증류 컬럼으로 유입하여, 제 1 벤젠 배출라인으로 벤젠을 배출하고, 하부 배출라인으로 벤젠/큐멘/폴리이소프로필벤젠 스트림을 배출하는 제 1 분리단계;
트랜스 알킬레이션 반응부의 스트림과 제 1 분리단계에서 분리된 상기 벤젠/큐멘/폴리이소프로필벤젠 스트림을 분리벽형 제 2 증류 컬럼으로 유입하여, 제 2 벤젠 배출라인으로 벤젠을 배출하고, 폴리이소프로필벤젠 스트림 배출라인으로 폴리이소프로필벤젠 스트림을 배출하는 제 2 분리단계; 및
상기 제 2 분리단계에서 분리된 폴리이소프로필벤젠 스트림을 제 3 증류 컬럼으로 유입하여, 폴리이소프로필벤젠과 중질 물질을 분리하는 제 3 분리단계를 포함하는 큐멘 정제 방법에 관한 것이다.
하나의 예시에서, 본 출원에 따른 큐멘의 정제 방법은 제 1 벤젠 배출 라인 및 제 2 벤젠 배출 라인에서 배출된 벤젠을 합지 한 후, 합지된 벤젠을 알킬레이션 반응부 및 트랜스 알킬레이션 반응부로부터 선택되는 어느 하나 이상의 반응부에 공급하는 단계를 더 포함할 수 있다.
하나의 예시에서, 본 출원에 따른 큐멘의 정제 방법에 있어서, 제 1 분리 단계 및 제 2 분리 단계는 하기 수식 1을 만족할 수 있다.
[수식 1]
BZ1/BZ2 = 1.0 내지 3.0
(상기 수식 1에서, BZ1은 제 1 벤젠 라인을 통해 배출되는 벤젠의 유량이고, BZ2는 제 2 벤젠 배출라인을 통해 배출되는 벤젠의 유량이다).
본 출원에 따른 큐멘의 정제 장치 및 정제 방법에 의하면, 응축기 또는 열 교환기 등의 부수적인 장치에 의한 에너지 소비를 절감할 수 있다.
도 1은 종래 기술에 따른 큐멘의 정제장치의 구성도이다.
도 2는 본 출원의 실시 형태에 따른 큐멘의 정제장치의 구성도이다.
도 3은 비교예에서 적용된 큐멘의 정제장치의 구성도이다.
도 4는 실시예에서 적용된 큐멘의 정제장치의 구성도이다.
(부호의 설명)
10 : 제1 증류 컬럼
14 : 상부 배출라인
15, 25 : 분리벽
16 : 하부 배출라인
18 : 제1 벤젠 배출라인
20 : 제2 증류 컬럼
24 : 큐멘 배출라인
26 : 폴리이소프로필벤젠 스트림 배출라인
28 : 제2 벤젠 배출라인
30 : 제3 증류 컬럼
34 : 폴리이소프로필벤젠 배출라인
36 : 중질 물질 배출라인
40 : 합지부
42 : 벤젠 리사이클링 라인
이하, 첨부된 도면 및 실시예를 바탕으로 본 출원에 따른 큐멘의 정제 장치 및 방법에 대하여 보다 구체적으로 설명한다.
본 출원에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나 이상을 포함하는 의미로 사용된다.
본 출원에서 '연결', '설치', 및 '결합' 등은, 두 개의 부재가 착탈(결합과 분리)이 가능한 것은 물론 일체 구조를 포함하는 것을 의미한다. 구체적으로, 본 명세서에서 사용되는 용어 '연결', '설치', 및 '결합' 등은, 예를 들어 강제 끼움 방식; 홈과 돌기를 이용한 끼움 방식; 및 나사, 볼트, 피스, 리벳, 브라켓 등의 체결 부재를 이용한 체결 방식 등을 통하여, 두 개의 부재를 결합과 분리되도록 도모한 것, 그리고 용접이나 접착제 또는 일체적 성형 등을 통하여 두 개의 부재가 결합된 후, 분리가 불가능한 일체적인 것을 포함한다.
본 출원에서 "제1", "제2", "제3", "일측" 및 "타측" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로서, 각 구성요소가 상기 용어들에 의해 제한되는 것은 아니다. 이하, 본 출원을 설명함에 있어서, 관련된 공지의 범용적인 기능 또는 구성에 대한 상세한 설명은 생략한다.
본 출원에서, "A 스트림"은 적어도 'A' 성분을 포함하는 흐름을 의미하며, 이는 'A' 성분을 주성분으로 포함할 수 있다. 예를 들어, "폴리이소프로필벤젠 스트림"은 적어도 '폴리이소프로필벤젠'을 포함하는 흐름이며, 이는 '폴리이소프로필벤젠'을 주성분으로 포함할 수 있다.
한편, 상기 '폴리이소프로필벤젠을 주성분으로 포함한다'는 것은, 해당 스트림의 다양한 성분 중 폴리이소프로필벤젠을 가장 많이 포함하고 있음을 의미하는 것으로 이해될 수 있다.
또한, 본 출원에서, "A/B 스트림"은 적어도 'A' 성분과 'B' 성분을 포함하는 흐름을 의미하며, 이는 "A/B/C 스트림"은 적어도 'A' 성분, 'B' 성분 및 'C' 성분을 포함하는 흐름을 의미한다. 예를 들어, "벤젠/큐멘/폴리이소프로필벤젠 스트림"은 적어도 '벤젠', '큐멘' 및 '폴리이소프로필벤젠'을 포함하는 흐름을 의미할 수 있다.
본 출원은 큐멘의 정제 장치에 관한 것이다. 본 출원에 따른 큐멘의 정제 장치는, 예를 들면 큐멘의 제조 장치와 연계되어 설치될 수 있다.
하나의 예시에서, 본 출원에 따른 큐멘의 정제 장치는 큐멘의 제조 장치를 구성하는 알킬레이션 반응부 및 트랜스 알킬레이션 반응부와 연계되어 설치될 수 있다.
앞서 언급한 바와 같이, 상기 알킬레이션 반응부에서는 벤젠과 프로필렌이 반응하여 큐멘(이소프로필벤젠)이 생성되며, 부산물로서 큐멘과 프로필렌이 반응하여 디이소프로필벤젠(DIPB ; diisopropylbenzene) 및 트리이소프로필벤젠(TIPB ; triisopropylbenzene) 등의 폴리이소프로필벤젠(PIPB ; polyisopropylbenzene)이 생성된다.
이때, 생성된 큐멘은 회수라인을 통해 분리 및 회수되며, 상기 부산물을 포함하는 스트림(stream)은 별도의 라인을 통해 배출된다.
상기 알킬레이션 반응부에서 배출되는 스트림에는 상기 부산물로서의 폴리이소프로필벤젠(PIPB) 이외에, C3(프로필렌, 프로판 등) 등의 경질 물질(Lights), 회수되지 않은 소량의 큐멘, 미반응 벤젠, 물(water) 및 기타 무거운 중질 물질 등이 존재한다.
또한, 상기 트랜스 알킬레이션 반응부에서는 폴리알킬레이션된 벤젠, 즉 상기 부반응에 의해 생성된 폴리이소프로필벤젠(PIPB)과 벤젠이 반응하여 추가적인 큐멘을 생성한다. 상기 트랜스 알킬레이션 반응부에서 배출되는 스트림에는 폴리이소프로필벤젠(PIPB) 이외에, 폴리이소프로필벤젠(PIPB)보다 무거운 중질 물질(Heavies)이 존재한다.
본 출원에 따른 큐멘의 정제 장치는, 상기와 같이 알킬레이션 반응부의 스트림과 트랜스 알킬레이션 반응부의 스트림을 유입하여 정제할 수 있다.
구체적으로, 본 출원에 따른 큐멘의 정제 장치는 알킬레이션 반응부의 스트림과 트랜스 알킬레이션 반응부의 스트림을 서로 다른 증류 컬럼을 통해 개별적으로 유입하여 정제할 수 있다.
하나의 예시에서, 본 출원에 따른 큐멘의 정제 장치는 제 1 증류 컬럼(10), 제 2 증류 컬럼(20) 및 제 3 증류 컬럼(30)을 포함한다. 이 때, 3개의 컬럼(10)(20)(30) 중 적어도 두개, 예를 들면 제 1 증류 컬럼(10)과 제 2 증류 컬럼(20)은 분리벽 컬럼(DWC; Dividing Wall Column) 일 수 있다. 또한, 다른 예시에서 상기 제 3 증류 컬럼(30)도 분리벽 컬럼(DWC) 일 수 있다.
구체적인 예시에서, 제 1 증류 컬럼(10)은 알킬레이션 반응부의 스트림을 유입하여, 벤젠을 배출하는 제 1 벤젠 배출 라인 및 벤젠/큐멘/폴리이소프로필벤젠 스트림을 배출하는 하부 배출 라인을 포함할 수 있다. 상기 제 1 벤젠 배출 라인은, 예를 들면 제 1 증류 컬럼(10)의 중앙 영역에 위치할 수 있다.
구체적인 예시에서, 제 2 증류 컬럼(20)은 트랜스 알킬레이션 반응부의 스트림과 상기 제 1 증류 컬럼의 하부 배출 라인으로부터 배출되는 벤젠/큐멘/폴리이소프로필벤젠 스트림을 유입하여, 벤젠을 배출 하는 제 2 벤젠 배출 라인 및 폴리이소프로필벤젠 스트림을 하부로 배출하는 폴리이소프로필벤젠 스트림 배출 라인을 포함할 수 있다. 상기 제 2 벤젠 배출 라인은, 예를 들면 제 2 증류 컬럼(20)의 상부에 위치할 수 있다.
구체적인 예시에서, 제 3 증류 컬럼(30)은 상기 분리벽형 제 2 증류 컬럼의 폴리이소프로필벤젠 스트림 배출 라인에서 배출된 폴리이소프로필벤젠 스트림을 유입하여, 폴리이소프로필벤젠(PIPB)을 상부로 배출하는 폴리이소프로필벤젠 배출 라인 및 중질 물질을 하부로 배출하는 중질 물질 배출 라인을 포함할 수 있다.
이하 첨부된 도면을 참조하여, 본 출원에 따른 큐멘의 정제 장치에 대해 보다 구체적으로 설명한다.
도 2는 본 출원에 따른 큐멘의 정제 장치의 일 예시도이다.
도 2를 참조하면, 본 출원에 따른 큐멘의 정제 장치는 제 1 증류 컬럼(10), 상기 제1 증류 컬럼(10)의 후방에 설치된 제2 증류 컬럼(20), 및 상기 제2 증류 컬럼(20)의 후방에 설치된 제3 증류 컬럼(30)을 포함한다.
본 출원에서, 상기 각 컬럼(10)(20)(30)은 일반 산업분야의 증류 공정에서 사용되는 증류 컬럼(distillation column)으로부터 선택되되, 적어도 제 1 증류 컬럼(10)과 제 2 증류 컬럼(20)은 분리벽형 일 수 있다. 또한, 본 출원에서, 상기 각 칼럼(10)(20)(30)의 운전 조건, 예를 들어 각 칼럼(10)(20)(30)의 단수와 내경, 압력과 온도, 그리고 상부와 하부 배출물의 환류 비율 등은 특별히 제한되지 않으며, 이 기술분야의 통상의 지식을 가진 사람에 본 출원의 목적하는 바를 달성할 수 있을 정도의 범위 내에서 자유롭게 설계 변경 가능할 수 있다.
도 2에서 나타난 바와 같이, 본 출원의 각 칼럼(10)(20)(30)에는 응축기 및/또는 열교환기(또는 재비기)가 설치될 수 있다. 도 2에서 도면 부호 C는 응축기를 나타내며, 도면부호 B는 열교환기(또는 재비기)를 나타낸다.
이때, 각 칼럼(10)(20)(30)에 따라 응축기(C) 및/또는 열교환기(B)가 선택적으로 설치되거나, 설치되지 않을 수 있다.
또한, 상기 응축기(C)와 열교환기(B)는 특별히 언급하지 않는 한, 도면에 도시되어 있더라도 생략될 수 있는 구성요소이며, 이와는 반대로 도면에 도시되어 있지 않더라도 포함(설치)될 수 있는 구성요소이다.
상기 제 1 증류 컬럼(10)은, 그의 전단부에 설치된 적어도 하나 이상의 유입라인(11)(12)을 포함할 수 있다.
하나의 예시에서, 상기 유입라인(11)(12)은 알킬레이션 반응부에서 배출되는 스트림을 유입하는 알킬레이션 반응부의 스트림 유입라인(12)을 포함한다.
또한, 다른 예시적인 구현예에서, 상기 유입라인(11)(12)은 프레쉬(Fresh)벤젠을 유입하는 벤젠 유입라인(11)을 더 포함할 수 있다. 즉, 본 출원에 따른 큐멘의 정제 장치는 전단부에 위치하고, 프레쉬 벤젠을 유입하는 벤젠 유입라인을 더 포함할 수 있다.
이때, 상기 벤젠 유입라인(11)을 통해 프레쉬(fresh) 벤젠을 더 유입하는 경우, 제1 증류 컬럼(10) 및/또는 제2 증류 컬럼(20) 내에서 큐멘 생성반응이 도모되어 큐멘의 수율을 향상시킬 수 있다.
도 2는 제1 증류 컬럼(10)의 전단부에 2개의 유입라인(11)(12)이 설치된 모습을 보여주고 있다.
도 2에 도시된 바와 같이, 벤젠 유입라인(11)은 제1 증류 컬럼(10)의 대략 상단에 설치되고, 벤젠 유입라인(11)의 아래에 알킬레이션 반응부의 스트림 유입라인(12)이 설치되되, 상기 알킬레이션 반응부의 스트림 유입라인(12)은 제1 증류 컬럼(10)의 대략 중앙 영역에 설치될 수 있으나 이에 제한되는 것은 아니다.
또한, 제 1 증류 컬럼(10)은 제 1 벤젠 배출라인(18) 및 하부에 설치된 하부 배출 라인(16)을 포함한다. 상기 제 1 벤젠 배출 라인(18)으로는 벤젠이 배출될 수 있고, 하부 배출 라인(16)으로는 벤젠/큐멘/폴리이소프로필벤젠 스트림이 배출될 수 있다.
더욱이, 제 1 증류 컬럼(10)은 도 2에 도시된 바와 같이, 상부 배출 라인(14)을 더 포함할 수 있다. 이 때, 상부 배출 라인(14)으로는 C3 등의 경질 물질(Lights)과 물(water)을 포함하는 라이트 스트림이 배출되어 제거될 수 있다.
예를 들면, 상기 제1 증류 컬럼(10)에서는 경질 물질(Lights)과 물을 포함하는 라이트 스트림; 벤젠을 포함하는 벤젠 스트림; 및 벤젠, 큐멘 및 폴리이소프로필벤젠(PIPB)을 포함하는 벤젠/큐멘/폴리이소프로필벤젠 스트림의 3상 흐름으로 분리될 수 있다.
상기 3상 흐름 중 경질 물질(Lights)과 물은, 예를 들면 상부 배출 라인(14)을 통해서 배출 및 제거 되며, 벤젠은 제 1 벤젠 배출 라인(18)을 통해 배출되어 재순환될 수 있다.
하나의 예시에서, 상기 3상 흐름 중 상기 제 1 배출 라인(18)을 통해 배출된 벤젠은, 알킬레이션 반응부 및/또는 트랜스 알킬레이션 반응부로 공급되어 재순환되거나, 또는 벤젠 유입 라인(11)을 통해 제 1 증류 컬럼(10)으로 재순환될 수 있다.
상기 3 상 흐름 중 상기 벤젠/큐멘/폴리이소프로필벤젠 스트림은, 예를 들면 하부 배출 라인(16)을 통해 배출되어 제 2 증류 컬럼(20)으로 유입될 수 있다.
상기 제1 증류 컬럼(10)은 전술한 바와 같이 분리벽형이다.
제1 증류 컬럼(10)의 내부에는 수직 방향으로 분리벽(15)이 설치되어 있다.
하나의 예시에서, 제1 증류 컬럼(10)의 내부는 분리벽(15)에 의해 구획되어, 알킬레이션 반응부의 스트림이 유입되는 유입부(a), 경질 물질과 물이 유출되는 탑정 구역(b), 벤젠이 유출되는 유출부(c) 및 벤젠/큐멘/폴리이소프로필벤젠 스트림이 유출되는 탑저 구역(d)을 포함할 수 있다.
이와 같은 분리벽형 증류 컬럼(DWC)은, 2기의 증류 컬럼이 하나로 통합된 형태를 가져 설비 투자비용이 절감됨은 물론, 동일 처리량 대비 2기의 증류 컬럼을 사용하는 경우보다 낮은 에너지 소비량을 도모할 수 있다.
제 2 증류 컬럼(20)은 제 1 증류 컬럼(10)의 후방에 설치되어, 유입된 스트림으로부터 벤젠 및 폴리이소프로필벤젠 스트림으로 분리할 수 있다. 또한, 제 2 증류 컬럼(20)은 유입된 스트림으로부터 큐멘을 더 분리하여, 전술한 벤젠 및 폴리이소프로필벤젠 스트림과 함께 3상으로 분리할 수도 있다.
하나의 예시에서, 제 2 증류 컬럼(20)은 트랜스 알킬레이션 반응부의 스트림 및 상기 분리벽형 제 1 증류 컬럼의 하부 배출 라인에서 배출된 벤젠/큐멘/폴리이소프로필벤젠 스트림을 유입하여, 벤젠을 상부로 배출하는 제 2 벤젠 배출 라인 및 폴리이소프로필벤젠 스트림을 하부로 배출하는 폴리이소프로필벤젠 스트림 배출 라인을 포함하는 분리벽형 증류 컬럼 일 수 있다.
제 2 증류 컬럼(20)은 그 전단부에 트랜스 알킬레이션 반응부의 스트림 유입 라인(22)과 제 1 증류 컬럼(10)의 하부 배출 라인(16)이 연결되어 있을 수 있다.
제 2 증류 컬럼(20)은 제 2 벤젠 배출 라인(28) 및 폴리이소프로필벤젠 스트림 배출 라인(26)을 포함할 수 있다.
상기 제 2 벤젠 배출 라인(28)은 제 2 증류 컬럼(20)의 대략 상부에 위치하며, 벤젠이 배출될 수 있다. 또한, 상기 폴리이소프로필벤젠 스트림 배출 라인(26)은 제 2 증류 컬럼(20)의 하부에 위치하며, 폴리이소프로필벤젠 스트림이 배출될 수 있다.
또한, 제 2 증류 컬럼(20)은 대략 중앙 영역에 설치되어 있는 큐멘 배출 라인(24)을 더 포함할 수 있다. 상기 큐멘 배출 라인(24)을 통해서는 큐멘이 배출될 수 있다.
상기 흐름 중 제 2 벤젠 배출 라인(28)을 통해 배출된 벤젠은 재순환될 수 있다. 예를 들면, 제 2 벤젠 배출 라인(28)을 통해 배출된 벤젠은 알킬레이션 반응부 및/또는 트랜스 알킬레이션 반응부로 공급되어 재순환되거나, 또는 벤젠 유입라인(11)을 통해 제 1 증류 컬럼(10)으로 재순환될 수 있다.
상기 흐름 중 큐멘 배출 라인(24)을 통해 배출된 큐멘은, 제품으로 회수될 수 있다. 구체적으로, 상기 배출된 큐멘은 냉각된 다음 저장조로 보낸 후 회수될 수 있다.
상기 흐름 중 폴리이소프로필벤젠 스트림 배출 라인(26)을 통해 배출된 폴리이소프로필벤젠 스트림은, 제 3 증류 컬럼(30)으로 유입될 수 있다.
제 2 증류 컬럼(20)은 제 1 증류 컬럼(10)과 마찬가지로 분리벽형이다.
제 2 증류 컬럼(20)의 내부에는 수직 방향으로 분리벽(15)이 설치되어 있다.
하나의 예시에서, 제 2 증류 컬럼(20)의 내부는 분리벽(15)에 의해 구획되어, 알킬레이션 반응부의 스트림이 유입되는 유입부(a), 경질 물질과 물이 유출되는 탑정 구역(b), 벤젠이 유출되는 유출부(c) 및 벤젠/큐멘/폴리이소프로필벤젠 스트림이 유출되는 탑저 구역(d)을 포함할 수 있다.
즉, 제 1 증류 컬럼 및/또는 제 2 증류 컬럼은 내부에 설치된 분리벽에 의해 구획되어, 알킬레이션 반응부의 스트림이 유입되는 유입부, 경질 물질 및 물이 유출되는 탑정 구역, 벤젠이 유출되는 유출부 및 벤젠/큐멘/폴리이소프로필벤젠 스트림이 유출되는 탑저 구역을 포함할 수 있다.
제 3 증류 컬럼(30)은 제 2 증류 컬럼(20)의 후방에 설치되어, 제 2 증류 컬럼(20)의 하부로 배출되는 폴리이소프로필벤젠 스트림을 유입하여, 폴리이소프로필벤젠(PIPB)과 중질 물질(Heavies)로 분리할 수 있다.
하나의 예시에서, 제 3 증류 컬럼(30)은 상부에 설치된 폴리이소프로필벤젠(PIPB) 배출 라인(34)과 하부에 설치된 중질 물질 배출 라인(36)을 포함할 수 있다.
제 3 증류 컬럼(30)에서 분리된 폴리이소프로필벤젠(PIPB)은 배출 라인(34)을 통해 상부로 배출되며, 배출된 폴리이소프로필벤젠(PIPB)은 예를 들면 트랜스 알킬레이션 반응부로 공급되어 재순환될 수 있다.
상기 제 2 증류 컬럼(2)으로부터 유입된 폴리이소프로필벤젠 스트림은, 예를 들면 디이소프로필벤젠(DIPB) 및 트리이소프로필벤젠(TIPB) 등의 폴리이소프로필벤젠(PIPB)을 포함할 수 있다.
이 때, 상기 디이소프로필벤젠(DIPB) 및 트리이소프로필벤젠(TIPB) 중 적어도 하나, 예를 들면 디이소프로필벤젠(DIPB)은 제 3 증류 컬럼(30)을 통해 분리되어, 상기 배출 라인(34)을 통해 배출되어 트랜스 알킬레이션 반응부로 공급되어 재순환될 수 있다.
또한, 다른 구현예에서, 상기 제 3 증류 컬럼(30)은 폴리이소프로필벤젠(PIBP)을 종류별로 각각 분리하여 배출할 수 있는 복수의 폴리이소프로필벤젠(PIPB) 배출 라인(34)을 포함할 수 있다.
예를 들면, 제 3 증류 컬럼(30)은 단수의 대략 중간 지점에 설치된 트리이소프로필벤젠(TIPB) 배출라인과, 이의 상단에 설치된 디이소프로필벤젠(DIPB) 배출라인(34)을 포함하여, 폴리알킬레이션 벤젠을 종류별로 다단 분리할 수 있다.
한편, 제 3 증류 컬럼(30)의 상기 중질 물질 배출라인(36)을 통해 배출되는 중질 물질은 공정에서 가장 무거운 물질이며, 이는 구체적으로 폴리이소프로필벤젠(PIPB)보다 무거운 물질(비점이 높은 물질)을 의미할 수 있다. 이러한 중질 물질은 배출라인(36)을 통해 배출된 후, 냉각된 다음, 저장조로 보내질 수 있다.
본 출원에 따른 큐멘 정제장치는, 상기한 바와 같은 3개의 증류 컬럼(10)(20)(30)을 포함하되, 이중에서 적어도 제1 증류 컬럼(10)과 제2 증류 컬럼(20)은 분리벽형이다.
또한, 본 출원에 따른 큐멘의 정제 장치는, 알킬레이션 반응부와 트랜스 알킬레이션 반응부의 스트림을 각각 상이한 증류 컬럼에 유입시키고, 유출되는 벤젠 또한, 단일 컬럼에서 회수하여 분리 및 배출시키는 것이 아니라, 예를 들면 제 1 증류 컬럼 및 제 2 증류 컬럼에서 분리 및 배출시킴으로써, 정제 공정에서 부수적으로 이용될 수 있는 열 교환기 및 냉각기 등의 사용 전력량을 감소시킬 수 있다.
보다 구체적으로, 벤젠이 2기의 분리벽형 증류 컬럼(10)(20)에서 2차에 걸쳐 나누어 분리되어, 종래와 같이 1개의 벤젠 컬럼(1, 도 1 참조)에서 분리하는 경우보다 벤젠 분리의 로드(load)가 감소되어 에너지 소비량이 절감될 수 있다. 즉, 종래와 같이 1개의 벤젠 컬럼(1)에서 벤젠을 분리하는 경우, 벤젠의 분리 효율을 높이기 위해서라면 많은 양의 열에너지가 벤젠 컬럼(1)에 공급되어야 했으나, 본 출원에 따른 정제 장치에 의하면, 벤젠을 제1 증류 컬럼(10)에서 1차 분리하고, 제2 증류 컬럼(20)에서 큐멘을 분리하는 과정에서 2차 분리하여, 제1 증류 컬럼(10)에 공급되는 열에너지(열원의 온도)가 현저히 적게 소비되어, 전체적인 공정에서 에너지 소비량이 절감될 수 있다. 더욱이, 벤젠이 분리되는 제1 증류 컬럼(10)과 제2 증류 컬럼(20)은 모두 분리벽형이 적용되어, 에너지 절감 효과는 상승될 수 있다.
또한, 예시적인 실시 형태에 따라서, 상기 제1 증류 컬럼(10)과 제2 증류 컬럼(20)에 설치된 제1 벤젠 배출라인(18)과 제2 벤젠 배출라인(28)은 하기 수학식을 만족하도록 운전하는 것이 좋다.
[수학식]
BZ1/BZ2 = 1.0 내지 3.0
상기 수학식에서, BZ1은 제1 벤젠 배출라인(18)을 통해 배출되는 벤젠의 유량이고, BZ2는 제2 벤젠 배출라인(28)을 통해 배출되는 벤젠의 유량이다.
이 때, 각 배출라인(18)(28)을 통과하는 벤젠의 유량 실제값은 제한되지 않으며, 이들은 상기 수학식을 만족하는 유량비(BZ1/BZ2)를 가지면 좋다.
상기 제1 벤젠 배출라인(18)과 제2 벤젠 배출라인(28)을 통과하는 벤젠의 유량비(BZ1/BZ2)가 상기 수학식을 만족하는 경우, 에너지 효율성에서는 물론, 전체적인 분리 공정에서 매우 유리할 수 있다.
즉, 상기 유량비(BZ1/BZ2)가 1.0 미만인 경우, 제1 증류 컬럼(10)에 공급되는 에너지 소비량의 절감에는 유리하나, 제2 증류 컬럼(20)에 로드(load)가 발생되고, 제2 증류 컬럼(20)에서 분리되는 큐멘의 순도가 떨어질 수 있다. 또한, 상기 유량비(BZ1/BZ2)가 3.0을 초과하는 경우, 제1 증류 컬럼(10)에 로드(load)가 발생되어 에너지 소비량 절감 효과가 미미할 수 있다. 이러한 점을 고려하여, 상기 유량비(BZ1/BZ2)는 1.0 내지 3.0이 바람직하다.
상기 유량비(BZ1/BZ2)는 특별히 한정하는 것은 아니지만, 예를 들어 상기 제1 증류 컬럼(10)과 제2 증류 컬럼(20) 중에서 선택된 하나 이상의 운전 조건, 각 컬럼(10)(20)의 유입량 및/또는 유출량 등을 제어하여 조절할 수 있다.
예시적인 구현예에 따라서, 상기 유량비(BZ1/BZ2)는 제1 증류 컬럼(10) 및/또는 제2 증류 컬럼(20)의 압력, 온도 및 수위(level) 등으로부터 선택된 하나 이상의 운전 조건을 제어하여 조절될 수 있다.
또한, 본 출원에 따른 큐멘 정제장치는, 상기 제1 벤젠 배출라인(18)과 제2 벤젠 배출라인(28)이 합지되는 합지부(40) 및 상기 합지부(40)와 연결된 벤젠 리사이클 라인(42)을 더 포함할 수 있다. 이 때, 상기 제1 벤젠 배출라인(18)과 제2 벤젠 배출라인(28)을 통해 배출된 벤젠은 합지부(40)에서 합지된 다음, 벤젠 리사이클 라인(42)을 통해 알킬레이션 반응부 및 트랜스 알킬레이션 반응부로부터 선택된 하나 이상의 반응부에 공급될 수 있다.
즉, 본 출원에 따른 큐멘의 정제 장치는 제 1 벤젠 배출라인과 제 2 벤젠 배출라인이 합지되는 합지부; 및 상기 합지부에서 합지된 벤젠을 알킬레이션 반응부 및 트랜스 알킬레이션 반응부로부터 선택되는 어느 하나 이상의 반응부에 공급하는 벤젠 리사이클 라인을 더 포함할 수 있다.
이상에서 설명한 본 출원에 따르면, 전술한 바와 같이 개선된 정제공정에 의해 에너지의 효율을 높일 수 있다. 특히, 벤젠이 2기의 분리벽형 증류 컬럼(10)(20)에서 2차에 걸쳐 나누어 분리되어, 에너지 소비량이 절감될 수 있다.
또한, 본 출원에 따르면, 알킬레이션 반응부의 스트림 유입라인(12)은 제1 증류 컬럼(10)에 연결되고, 트랜스 알킬레이션 반응부의 스트림 유입라인(22)은 제2 증류 컬럼(20)에 연결되는데, 이 또한 개선된 정제공정을 도모할 수 있다.
구체적으로, 도 1에 보인 종래와 같이, 상기 2개의 스트림 유입라인(1b)(1c) 모두를 벤젠 컬럼(1)에 연결하는 경우, 벤젠 컬럼(1)에 로드(load)가 가해져, 벤젠 컬럼(1) 자체에서의 분리 공정은 물론, 전체적인 정제공정을 연속적으로 진행하는데 효율성이 떨어질 수 있다.
그러나 본 출원에 따른 큐멘의 정제 장치의 경우, 2개의 스트림이 2개의 컬럼(10)(20)으로 각각 별도로 분할 유입되며, 각 컬럼(10)(20)의 로드(load)가 감소되고, 효율적인 정제공정을 연속적으로 진행할 수 있다.
한편, 본 출원에서, 상기 각 성분 및 스트림이 유입 및 배출되는 라인들은 유체가 통과될 수 있는 것이면 제한되지 않으며, 이들은 금속관이나 플라스틱관 등으로부터 선택될 수 있다. 아울러, 상기 각 라인들은 플렉시블(flexible)한 것을 포함한다. 또한, 상기 라인들 상에는 각 성분 및 스트림의 원활한 흐름을 위한 펌프(pump) 등이 설치되거나, 흐름을 제어(차단 및/또는 유량 조절)하는 밸브(valve) 등이 설치될 수 있다.
본 출원은 또한, 상기와 같은 장치를 이용한 큐멘의 정제방법에 관한 것이다. 본 출원에 따른 큐멘의 정제 방법은 상기 제 1 증류 컬럼, 제 2 증류 컬럼 및 제 3 증류 컬럼에서 각각 수행되는 제 1 분리 단계, 제 2 분리 단계 및 제 3 분리 단계를 포함한다.
즉, 본 출원에 따른 큐멘의 정제방법은, 알킬레이션 반응부의 스트림을 분리벽형 제 1 증류 컬럼으로 유입하여, 제 1 벤젠 배출라인으로 벤젠을 배출하고, 하부 배출라인으로 벤젠/큐멘/폴리이소프로필벤젠 스트림을 배출하는 제 1 분리단계; 트랜스 알킬레이션 반응부의 스트림과 제 1 분리단계에서 분리된 상기 벤젠/큐멘/폴리이소프로필벤젠 스트림을 분리벽형 제 2 증류 컬럼으로 유입하여, 제 2 벤젠 배출라인으로 벤젠을 배출하고, 폴리이소프로필벤젠 스트림 배출 라인으로 폴리이소프로필벤젠 스트림을 배출하는 제 2 분리단계; 및 상기 제 2 분리단계에서 분리된 폴리이소프로필벤젠 스트림을 제 3 증류 컬럼으로 유입하여, 폴리이소프로필벤젠과 중질 물질을 분리하는 제 3 분리단계를 포함한다.
상기 제 1 분리단계는 제 1 증류 컬럼(10)에서 수행될 수 있으며, 알킬레이션 반응부의 스트림을 제 1 증류 컬럼으로 유입하여, 예를 들면 대략 중앙 영역에 위치하는 제 1 벤젠 배출라인으로 벤젠을 배출하고, 하부에 위치하는 하부라인으로 벤젠/큐멘/플로이소프로필벤젠 스트림을 배출하는 것을 포함할 수 있다. 또한, 상기 제 1 분리단계는 상부 배출라인에서 경질 물질과 물을 배출하는 것을 더 포함할 수 있다.
제 1 분리 단계의 유입 스트림은, 알킬레이션 반응부의 스트림 뿐만 아니라, 전술한 제 1 증류 컬럼에서 언급한 벤젠 유입라인으로 벤젠이 유입되는 스트림을 더 포함할 수 있다. 즉, 제 1 분리단계는 전단부에 설치된 벤젠 유입라인으로 벤젠을 유입하는 것을 더 포함할 수 있다.
상기 제 2 분리 단계는 제 2 증류 컬럼에서 수행될 수 있으며, 트랜스 알킬레이션 반응부의 스트림을 제 2 증류 컬럼으로 유입하여, 예를 들면 상부에 위치하는 제 2 벤젠 배출라인으로 벤젠을 배출하고, 하부에 위치하는 폴리이소프로필벤젠 스트림 배출 라인으로 폴리이소프로필 벤젠을 배출하는 것을 포함할 수 있다. 또한, 제 2 분리 단계는 큐멘 배출 라인에서 큐멘을 배출하는 것을 더 포함할 수 있다.
본 출원에 따른 큐멘의 정제방법은, 제 1 분리 단계 및 제 2 분리 단계에서, 벤젠을 나누어 분리하여, 에너지 소비를 절감할 수 있다.
또한, 본 출원에 따른 큐멘의 정제방법은 2개의 스트림, 예를 들면 알킬레이션 반응부의 스트림 및 트랜스 알킬레이션 반응부의 스트림이 하나의 단일 칼럼이 아닌, 2개의 컬럼(10)(20)으로 각각 별도로 분할 유입되어, 각 컬럼(10)(20)의 로드(load)가 감소되고, 효율적인 정제공정을 연속적으로 진행할 수 있다.
본 출원에 따른 큐멘의 정제방법은 또한, 제 1 벤젠 배출라인 및 제 2 벤젠 배출라인에서 배출된 벤젠을 합지한 후, 합지된 벤젠을 알킬레이션 반응부 및 트랜스 알킬레이션 반응부로부터 선택되는 어느 하나 이상의 반응부에 공급하는 단계를 더 포함할 수 있다.
여기에서, 제 1 분리 단계 및 제 2 분리 단계는 하기 수식 1을 만족하는 것일 수 있다.
[수식 1]
BZ1/BZ2 = 1.0 내지 3.0
상기 수식 1에서, BZ1은 제 1 벤젠 라인을 통해 배출되는 벤젠의 유량이고, BZ2는 제 2 벤젠 배출라인을 통해 배출되는 벤젠의 유량이다.
상기 제1 벤젠 배출라인(18)과 제2 벤젠 배출라인(28)을 통과하는 벤젠의 유량비(BZ1/BZ2)가 상기 수학식을 만족하는 경우, 에너지 효율성에서는 물론, 전체적인 분리 공정에서 매우 유리할 수 있다.
이하, 본 출원의 실시예 및 비교예를 예시한다. 하기의 실시예는 본 출원의 이해를 돕도록 하기 위해 예시적으로 제공되는 것일 뿐, 이에 의해 본 출원의 기술적인 범위가 한정되는 것은 아니다.
[실시예 1]
도 4에 도시된 바와 같은 장치를 이용하여 큐멘을 정제하였다.
도 4에 도시된 장치는 도 2에 도시된 장치와 같으며, 다만 도 4에서는 각 컬럼(10)(20)에서 소비되는 열 에너지를 설명하기 위하여 Q를 나타내었다.
도 4를 참조하면, 제 1 증류 칼럼(10)에 2개의 유입라인(11)(12)을 통해 프레쉬(fresh) 벤젠(11)과 알킬레이션 반응부에서 배출된 스트림(12)을 유입시켰다.
제 1 증류 칼럼(10)에서는 상부 배출 라인(14)을 통해 경질 물질(Lights)과 물(water)을 제거하고, 중앙의 제 1 벤젠 배출 라인(18)을 통해 벤젠을 배출하게 하였다. 또한, 하부 스트림은 하부 배출 라인(16)을 통해 제 2 증류 컬럼(20)으로 유입되게 하였다.
제2 증류 컬럼(20)으로는 상기 제1 증류 컬럼(10)의 하부 스트림(16)과 함께, 유입라인(22)을 통해 트랜스 알킬레이션 반응부에서 배출된 스트림(22)이 유입되게 하였다. 그리고 상부의 제2 벤젠 배출라인(28)으로 벤젠이 배출되게 하고, 중앙 영역의 큐멘 배출라인(24)을 통해 큐멘이 배출되게 하였다. 아울러, 하부 배출라인(26)을 통해 배출된 폴리이소프로필벤젠(PIPB) 스트림은 제3 증류 컬럼(30)으로 유입되게 하였다.
또한, 제3 증류 컬럼(30)의 상부 배출라인(34)을 통해 폴리이소프로필벤젠(PIPB)을 배출시켜 트랜스 알킬레이션 반응부로 재순환시키고, 하부 배출라인(36)을 통해 중질 물질(Heavies)을 배출시켜 냉각 처리하였다. 이때, 상기 제1 증류 컬럼(10)과 제2 증류 컬럼(20)은 분리벽형 증류 컬럼(DWC)을 적용하였으며, 제 1 벤젠 배출 라인(18)을 통과하는 벤젠 유량(BZ1)과 제 2 벤젠 배출 라인(28)을 통과하는 벤젠 유량(BZ2)의 유량비(BZ1/BZ2)를 2로 하였다.
위와 같은 정제공정을 안정화된 상태로 진행하고, 제 1 증류 칼럼(10)에 공급되는 열 에너지(Q1)와 제 2 증류 칼럼(20)에 공급되는 열 에너지(Q2)를 측정하였고, 그 결과는 하기 표 1에 나타내었다.
[실시예 2]
제1 증류 컬럼(10)과 제2 증류 컬럼(20)의 내부 압력, 온도 및 수위(level)를 다르게 하여, 제 1 벤젠 배출 라인(18)을 통과하는 벤젠 유량(BZ1)과 제 2 벤젠 배출 라인(28)을 통과하는 벤젠 유량(BZ2)의 유량비(BZ1/BZ2)를 1로 한 것을 제외하고는 실시예 1과 같은 방식으로 큐멘의 정제 공정을 수행하였다. 제 1 증류 칼럼(10)에 공급되는 열 에너지(Q1)와 제 2 증류 칼럼(20)에 공급되는 열 에너지(Q2)를 측정하였고, 그 결과는 하기 표 1에 나타내었다.
[실시예 3]
제1 증류 컬럼(10)과 제2 증류 컬럼(20)의 내부 압력, 온도 및 수위(level)를 다르게 하여, 제 1 벤젠 배출 라인(18)을 통과하는 벤젠 유량(BZ1)과 제 2 벤젠 배출 라인(28)을 통과하는 벤젠 유량(BZ2)의 유량비(BZ1/BZ2)를 3으로 한 것을 제외하고는 실시예 1과 같은 방식으로 큐멘의 정제 공정을 수행하였다. 제 1 증류 칼럼(10)에 공급되는 열 에너지(Q1)와 제 2 증류 칼럼(20)에 공급되는 열 에너지(Q2)를 측정하였고, 그 결과는 하기 표 1에 나타내었다.
[실시예 4]
제1 증류 컬럼(10)과 제2 증류 컬럼(20)의 내부 압력, 온도 및 수위(level)를 다르게 하여, 제 1 벤젠 배출 라인(18)을 통과하는 벤젠 유량(BZ1)과 제 2 벤젠 배출 라인(28)을 통과하는 벤젠 유량(BZ2)의 유량비(BZ1/BZ2)를 0.5로 한 것을 제외하고는 실시예 1과 같은 방식으로 큐멘의 정제 공정을 수행하였다. 제 1 증류 칼럼(10)에 공급되는 열 에너지(Q1)과 제 2 증류 칼럼(20)에 공급되는 열 에너지(Q2)를 측정하였고, 그 결과는 하기 표 1에 나타내었다.
[실시예 5]
제1 증류 컬럼(10)과 제2 증류 컬럼(20)의 내부 압력, 온도 및 수위(level)를 다르게 하여, 제 1 벤젠 배출 라인(18)을 통과하는 벤젠 유량(BZ1)과 제 2 벤젠 배출 라인(28)을 통과하는 벤젠 유량(BZ2)의 유량비(BZ1/BZ2)를 3.5로 한 것을 제외하고는 실시예 1과 같은 방식으로 큐멘의 정제 공정을 수행하였다. 제 1 증류 칼럼(10)에 공급되는 열 에너지(Q1)과 제 2 증류 칼럼(20)에 공급되는 열 에너지(Q2)를 측정하였고, 그 결과는 하기 표 1에 나타내었다.
[비교예]
도 3에 도시된 바와 같은 장치를 이용하여 큐멘을 정제하였다.
도 3에 도시된 장치는 도 1에 도시된 장치와 같으며, 다만 도 3에서는 각 컬럼(1)(2)에서 소비되는 열에너지를 설명하기 위해 Q를 나타내었다.
본 비교예는 종래의 일반적인 공정으로서, 공지의 구체적인 공정에 대한 설명은 생략한다.
도 3을 참조하면, 각 유입라인(1a)(1b)(1c)에 통해 프레쉬 벤젠(1a), 알킬레이션 반응부에서 배출된 스트림(1b) 및 트랜스 알킬레이션 반응부에서 배출된 스트림(1c)을 제1 증류 컬럼(1)에 유입시켰다. 그리고 경질 물질(Lights)과 물(water)은 상부 배출라인(1d)을 통해, 벤젠은 중간 배출라인(1f)을 통해, 큐멘 스트림은 하부 배출라인(1e)을 통해 배출되게 하였다.
또한, 제2 증류 컬럼(2)의 상부 배출라인(2a)을 통해 큐멘을 배출시켜 회수되게 하고, 하부 배출라인(2b)을 통해 배출된 폴리이소프로필벤젠(PIPB) 스트림은 제3 증류 컬럼(3)으로 유입되게 하였다. 그리고 제3 증류 컬럼(3)의 상부 배출라인(3a)을 통해 폴리이소프로필벤젠(PIPB)을 배출시켜 트랜스 알킬레이션 반응부로 재순환시키고, 하부 배출라인(3d)을 통해 중질 물질(Heavies)을 배출시켜 냉각 처리하였다.
위와 같은 정제공정을 안정화된 상태에서 진행하고, 제1 증류 컬럼(1)에 공급된 열에너지 Q1과, 제2 증류 컬럼(2)에 공급된 열에너지 Q2를 측정하고, 그 결과를 [표 1]에 나타내었다.
표 1
비 고 유량비(BZ1/BZ2) Q1 Q2 QT 절감량(△Q)
비교예 - 8.4 5.2 13.6 -
실시예 1 2 3.5 8.4 11.9 1.7
실시예 2 1 2.6 9.7 12.3 1.3
실시예 3 3 4.7 7.8 12.5 1.1
실시예 4 0.5 2.5 10.5 13.0 0.6
실시예 5 3.5 5.5 7.7 13.2 0.4
- Q1 : 제1 증류 컬럼에 공급된 열에너지(Gcal/hr)- Q2 : 제2 증류 컬럼에 공급된 열에너지(Gcal/hr)- QT : Q1과 Q2의 합량(Gcal/hr)
상기 [표 1]에 보인 바와 같이, 본 출원의 실시예 1 내지 5에 따라, 2기의 DWC를 적용하되, 알킬레이션 반응부 스트림 및 트랜스 알킬레이션 반응부 스트림을 2기에 개별적으로 유입시키고, 2기의 DWC를 통해 벤젠을 2차로 나누어 분리하는 경우, 열에너지가 효율적으로 절감됨을 알 수 있었다. 예를 들어, 실시예 1의 경우에는, 기존 공정(비교예) 대비 1.7 Gcal/hr의 절감량(약 12.5% 절감)을 가짐을 알 수 있었다.
또한, 상기 [표 1]에 보인 바와 같이, 벤젠의 유량비(BZ1/BZ2)에 따라 에너지 절감량의 차이를 보임을 알 수 있었다. 특히, 벤젠의 유량비(BZ1/BZ2)가 1.0 ~ 3.0 범위 내에 있는 경우(실시예 1 ~ 3), 그렇지 않은 경우(실시예 4 ~ 5)보다 우수한 절감량을 보임을 알 수 있었다.

Claims (13)

  1. 알킬레이션 반응부의 스트림을 유입하여, 벤젠을 배출하는 제 1 벤젠 배출 라인 및 벤젠/큐멘/폴리이소프로필벤젠 스트림을 배출하는 하부 배출 라인을 포함하는 분리벽형 제 1 증류 컬럼;
    트랜스 알킬레이션 반응부의 스트림 및 상기 분리벽형 제 1 증류 컬럼의 하부 배출 라인에서 배출된 벤젠/큐멘/폴리이소프로필벤젠 스트림을 유입하여, 벤젠을 상부로 배출시키는 제 2 벤젠 배출 라인 및 폴리이소프로필벤젠 스트림을 하부로 배출하는 폴리이소프로필벤젠 스트림 배출 라인을 포함하는 분리벽형 제 2 증류 컬럼; 및
    상기 분리벽형 제 2 증류 컬럼의 폴리이소프로필벤젠 스트림 배출 라인에서 배출된 폴리이소프로필벤젠 스트림을 유입하여, 폴리이소프로필벤젠(PIPB)을 상부로 배출하는 폴리이소프로필벤젠 배출 라인 및 중질 물질을 하부로 배출하는 중질 물질 배출 라인을 포함하는 제 3 증류 컬럼을 포함하는 큐멘의 정제장치.
  2. 1항에 있어서,
    제 1 증류 컬럼은 경질 물질과 물을 상부로 배출하는 상부 배출 라인을 더 포함하는 큐멘의 정제장치.
  3. 제 1항에 있어서,
    제 1 증류 컬럼은, 전단부에 위치하고, 프레쉬 벤젠을 유입하는 벤젠 유입라인을 포함하는 큐멘의 정제장치.
  4. 제 1항에 있어서,
    제 2 증류 컬럼은, 큐멘을 배출하는 큐멘 배출라인을 더 포함하는 큐멘의 정제장치.
  5. 제 1항에 있어서,
    제 1 벤젠 배출라인과 제 2 벤젠 배출라인이 합지되는 합지부; 및 상기 합지부에서 합지된 벤젠을 알킬레이션 반응부 및 트랜스 알킬레이션 반응부로부터 선택되는 어느 하나 이상의 반응부에 공급하는 벤젠 리사이클 라인을 더 포함하는 큐멘의 정제장치.
  6. 제 1항에 있어서,
    제 1 벤젠 배출라인 및 제 2 벤젠 배출라인은 하기 수식 1을 만족하도록 운전하는 큐멘의 정제장치:
    [수식 1]
    BZ1/BZ2 = 1.0 내지 3.0
    (상기 수식 1에서, BZ1은 제 1 벤젠 라인을 통해 배출되는 벤젠의 유량이고, BZ2는 제 2 벤젠 배출라인을 통해 배출되는 벤젠의 유량이다).
  7. 제 1항에 있어서,
    제 1 증류 컬럼 및/또는 제 2 증류 컬럼은 내부에 설치된 분리벽에 의해 구획되어, 알킬레이션 반응부의 스트림이 유입되는 유입부, 경질 물질 및 물이 유출되는 탑정 구역, 벤젠이 유출되는 유출부 및 벤젠/큐멘/폴리이소프로필벤젠 스트림이 유출되는 탑저 구역을 포함하는 큐멘의 정제장치.
  8. 알킬레이션 반응부의 스트림을 분리벽형 제 1 증류 컬럼으로 유입하여, 제 1 벤젠 배출라인으로 벤젠을 배출하고, 하부 배출라인으로 벤젠/큐멘/폴리이소프로필벤젠 스트림을 배출하는 제 1 분리단계;
    트랜스 알킬레이션 반응부의 스트림과 제 1 분리단계에서 분리된 상기 벤젠/큐멘/폴리이소프로필벤젠 스트림을 분리벽형 제 2 증류 컬럼으로 유입하여, 제 2 벤젠 배출라인으로 벤젠을 배출하고, 폴리이소프로필벤젠 스트림 배출라인으로 폴리이소프로필벤젠 스트림을 배출하는 제 2 분리단계; 및
    상기 제 2 분리단계에서 분리된 폴리이소프로필벤젠 스트림을 제 3 증류 컬럼으로 유입하여, 폴리이소프로필벤젠과 중질 물질을 분리하는 제 3 분리단계를 포함하는 큐멘의 정제방법.
  9. 제 8항에 있어서,
    제 1 분리단계는 상부 배출라인에서 경질 물질과 물을 배출하는 것을 더 포함하는 큐멘의 정제방법.
  10. 제 8항에 있어서,
    제 1 분리단계는 전단부에 설치된 벤젠 유입라인으로 벤젠을 유입하는 것을 더 포함하는 큐멘의 정제방법.
  11. 제 8항에 있어서,
    제 2 분리 단계는 큐멘 배출라인에서 큐멘을 배출하는 것을 더 포함하는 큐멘의 정제방법.
  12. 제 8항에 있어서,
    제 1 벤젠 배출라인 및 제 2 벤젠 배출라인에서 배출된 벤젠을 합지한 후, 합지된 벤젠을 알킬레이션 반응부 및 트랜스 알킬레이션 반응부로부터 선택되는 어느 하나 이상의 반응부에 공급하는 단계를 더 포함하는 큐멘의 정제방법.
  13. 제 8항에 있어서,
    제 1 분리단계 및 2 분리단계는 하기 수식 1을 만족하는 큐멘의 정제방법:
    [수식 1]
    BZ1/BZ2 = 1.0 내지 3.0
    (상기 수식 1에서, BZ1은 제 1 벤젠 라인을 통해 배출되는 벤젠의 유량이고, BZ2는 제 2 벤젠 배출라인을 통해 배출되는 벤젠의 유량이다).
PCT/KR2015/005146 2014-05-22 2015-05-22 큐멘의 정제 장치 및 정제 방법 WO2015178718A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016562554A JP6452208B2 (ja) 2014-05-22 2015-05-22 クメンの精製装置および精製方法
CN201580026470.8A CN106458791B (zh) 2014-05-22 2015-05-22 用于纯化枯烯的装置和方法
US15/304,017 US10464866B2 (en) 2014-05-22 2015-05-22 Apparatus and method for purifying cumene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140061553A KR101790391B1 (ko) 2014-05-22 2014-05-22 큐멘 정제장치 및 정제방법
KR10-2014-0061553 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015178718A1 true WO2015178718A1 (ko) 2015-11-26

Family

ID=54554306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005146 WO2015178718A1 (ko) 2014-05-22 2015-05-22 큐멘의 정제 장치 및 정제 방법

Country Status (5)

Country Link
US (1) US10464866B2 (ko)
JP (1) JP6452208B2 (ko)
KR (1) KR101790391B1 (ko)
CN (1) CN106458791B (ko)
WO (1) WO2015178718A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201506454TA (en) * 2013-02-21 2015-09-29 Gtc Technology Us Llc Separation processes using divided columns
US9802877B2 (en) * 2014-08-29 2017-10-31 Exxonmobil Chemical Patents Inc. Process of producing para-xylene by alkylation of benzene and/or toluene including treatment of an alkylating agent to remove metal salts
KR20220113529A (ko) * 2019-12-19 2022-08-12 켈로그 브라운 앤드 루트 엘엘씨 반응기 재순환 및 생성물 분리를 위한 알킬화 프로세스에서의 분리벽형 증류탑

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600049A (en) * 1995-06-01 1997-02-04 Chemical Research & Licensing Company Process for depropanizing benzene
KR20120102912A (ko) * 2011-03-09 2012-09-19 주식회사 엘지화학 에너지 저소비를 위한 큐멘 제조장치 및 제조방법
KR20130120200A (ko) * 2012-04-25 2013-11-04 주식회사 엘지화학 에너지 저소비를 위한 큐멘 제조장치 및 제조방법
WO2014003732A1 (en) * 2012-06-27 2014-01-03 Badger Licensing Llc Process for producing cumene

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894201B1 (en) 2003-12-19 2005-05-17 Uop Llc Process and apparatus for the removal of nitrogen compounds from a fluid stream
US7498471B2 (en) * 2007-05-23 2009-03-03 Uop Llc Process for producing cumene
US7525005B2 (en) * 2007-05-23 2009-04-28 Uop Llc Process for producing cumene
US7713386B2 (en) * 2007-05-23 2010-05-11 Uop Llc Apparatus for producing ethylbenzene or cumene
TWI458695B (zh) 2008-10-06 2014-11-01 Badger Licensing Llc 異丙苯的製造方法
US7956157B2 (en) * 2008-12-31 2011-06-07 Fina Technology, Inc. Processes using dividing wall distillation column
US8242320B2 (en) 2010-03-31 2012-08-14 Uop Llc Cumene production with high selectivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600049A (en) * 1995-06-01 1997-02-04 Chemical Research & Licensing Company Process for depropanizing benzene
KR20120102912A (ko) * 2011-03-09 2012-09-19 주식회사 엘지화학 에너지 저소비를 위한 큐멘 제조장치 및 제조방법
KR20130120200A (ko) * 2012-04-25 2013-11-04 주식회사 엘지화학 에너지 저소비를 위한 큐멘 제조장치 및 제조방법
WO2014003732A1 (en) * 2012-06-27 2014-01-03 Badger Licensing Llc Process for producing cumene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALEXANDRE C. DIMIAN ET AL.: "Alkylation of Benzene by Propylene to Cumene", CHEMICAL PROCESS DESIGN: COMPUTER-AIDED CASE STUDIES, 3 March 2008 (2008-03-03), pages 173 - 200, XP055237868, ISBN: 9783527621583 *

Also Published As

Publication number Publication date
US10464866B2 (en) 2019-11-05
JP6452208B2 (ja) 2019-01-16
KR20150134605A (ko) 2015-12-02
KR101790391B1 (ko) 2017-10-26
CN106458791A (zh) 2017-02-22
US20170044081A1 (en) 2017-02-16
JP2017522262A (ja) 2017-08-10
CN106458791B (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2010085072A2 (ko) 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법
WO2010107284A2 (ko) 고순도 아크릴산 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
WO2019050281A1 (ko) 에스터 조성물의 제조 시스템 및 이를 이용한 에스터 조성물의 제조 방법
WO2015178718A1 (ko) 큐멘의 정제 장치 및 정제 방법
WO2010107283A2 (ko) 고순도 2-에틸헥산올 생산을 위한 분리벽형 증류탑 및 이를 이용한 분별증류방법
WO2017003247A1 (ko) 증류 장치
WO2016159707A1 (ko) 증류 장치
WO2015178717A1 (ko) 큐멘의 정제 장치 및 정제 방법
WO2017217708A1 (ko) 용매 회수 장치 및 용매 회수 방법
WO2020122441A1 (ko) 에틸렌 올리고머화 반응 생성물의 분리방법
WO2013042941A1 (ko) 듀얼 모드 분리벽형 증류탑
WO2015026073A1 (en) Method for preparing glycol ester using reactive distillation
WO2022255586A1 (ko) 초고순도 불화수소의 정제방법 및 장치
WO2018124579A1 (ko) 부타디엔 제조방법
WO2020067797A1 (ko) 아미드계 화합물의 회수 방법 및 장치
WO2017003209A1 (ko) 증류 장치
WO2016068676A1 (ko) 증류 장치
WO2021015541A1 (en) Method of recovering unreacted ethylene in ethylene oligomerization process
WO2018128402A1 (ko) 메틸 3급-부틸 에테르 제조방법
WO2022255576A1 (ko) 이소프로필 알코올 제조방법
WO2015009117A1 (ko) 분리벽형 증류탑
WO2022255575A1 (ko) 이소프로필 알코올 제조방법
WO2020050484A1 (ko) 에틸렌 제조방법
WO2022146092A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2015009116A1 (ko) 증류 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562554

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15304017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795792

Country of ref document: EP

Kind code of ref document: A1