WO2010084986A1 - デマンド制御装置、デマンド制御システム、およびデマンド制御プログラム - Google Patents

デマンド制御装置、デマンド制御システム、およびデマンド制御プログラム Download PDF

Info

Publication number
WO2010084986A1
WO2010084986A1 PCT/JP2010/050951 JP2010050951W WO2010084986A1 WO 2010084986 A1 WO2010084986 A1 WO 2010084986A1 JP 2010050951 W JP2010050951 W JP 2010050951W WO 2010084986 A1 WO2010084986 A1 WO 2010084986A1
Authority
WO
WIPO (PCT)
Prior art keywords
demand
demand control
unit
power
devices
Prior art date
Application number
PCT/JP2010/050951
Other languages
English (en)
French (fr)
Inventor
宗一 古市
井上 良二
友和 岸本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to BRPI1006980-1A priority Critical patent/BRPI1006980B1/pt
Priority to EP10733592.9A priority patent/EP2383863A4/en
Priority to CN201080004880XA priority patent/CN102282743B/zh
Priority to US13/143,108 priority patent/US8738193B2/en
Publication of WO2010084986A1 publication Critical patent/WO2010084986A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/52The controlling of the operation of the load not being the total disconnection of the load, i.e. entering a degraded mode or in current limitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a demand control technique for controlling the total power consumption of a plurality of electric devices so as not to exceed an upper limit value of supplied power.
  • the breaker When the power demand exceeds the power supply capacity, in the case of a limited power system such as a home or a building, the breaker is cut off and the power system fails. The occurrence of a power failure is fatal when a device such as a medical device that is indispensable for continuous operation is connected to the power system. Further, in the case of the entire local power transmission system, if the power demand exceeds the power supply capacity, for example, during the summer heat wave, there is a risk that the power supply will not be in time, resulting in a power outage and serious damage.
  • one or more electric devices are selected from the plurality of electric devices so that the total power consumption of the plurality of electric devices connected to the network does not exceed the upper limit value of the supplied power.
  • a technique of demand control for selecting and controlling to a power saving operation state is known.
  • an air conditioner that consumes a large amount of electric power is a target of demand control
  • a control device that controls power saving operation states in order of decreasing priority for example, an air conditioner with a small number of people in an air-conditioned room is known.
  • Patent Document 1 There is also known a demand control system in which the target of demand control is extended to household electrical appliances other than air conditioners.
  • the present invention has been made in view of such problems of conventional demand control, and provides a demand control device, a demand control system, and a demand control program that do not inconvenience a user for a long time during demand control.
  • the purpose is to do.
  • a demand control device includes a communication unit (110) that transmits and receives a predetermined signal to and from a plurality of electrical devices (A 1 to A n ), A total power consumption measuring unit (120) for measuring a total power consumption of the plurality of electric devices (A 1 to A n ); A target power saving amount calculation unit (101) that calculates a target power saving amount that is an excess amount of the total power consumption from a predetermined target power; A device calculation unit (102) that extracts one or a plurality of electrical devices from all the electrical devices (A 1 to A n ) according to the target power saving amount and creates a combination of the electrical devices; For each electrical device belonging to the combination, a demand control information creating unit (103) creates demand control information including at least a predetermined power corresponding to the target power saving amount and a predetermined time for operating with this power.
  • a demand request creation unit (104) that creates a demand request that is a signal for requesting to operate with the demand control information for each one or a plurality of devices extracted by the device calculation unit
  • the device calculation unit (102) extracts at least one or a plurality of devices other than the device currently extracted according to a predetermined rule when the predetermined time has elapsed, Create another new combination
  • the communication unit (110) transmits the demand request to the device extracted by the device calculation unit (102).
  • a demand control program includes a first step of measuring the total power consumption of a plurality of electrical devices, A second step of calculating a target power saving amount that is an excess amount of the total power consumption from a predetermined target power; A third step of creating a combination of electrical devices by extracting one or more electrical devices from all the electrical devices according to the target power saving amount; A fourth step of creating demand control information including at least a predetermined power corresponding to the target power saving amount and a predetermined time for operating with the power for each electric device belonging to the combination; A fifth step of creating a demand request which is a signal for requesting to operate with the demand control information for each of one or more devices extracted in the fourth step; A sixth step of transmitting the demand request to the device extracted in the third step; When the predetermined time elapses, at least one or a plurality of devices other than the devices currently extracted according to a predetermined rule are extracted to further create a new combination different from the current time
  • the seventh step is to cause the computer to execute.
  • FIG. 1 It is a schematic diagram which shows the outline of the demand control system which concerns on Embodiment 1 of this invention. It is a block diagram which shows the functional structure of the demand control apparatus which concerns on Embodiment 1, and the equipment control apparatus integrated in each electric equipment.
  • (A) is a table format diagram showing an example of the data structure of a demand request
  • (B) is a table format diagram showing an example of the data structure of a demand request response.
  • 3 is a flowchart illustrating an operation in demand control of the demand control device according to the first embodiment.
  • 5 is a flowchart illustrating an operation in demand control of the device control apparatus according to the first embodiment. It is a figure which shows an example of the time-dependent change of the power saving amount of each electric equipment demand-controlled by the demand control apparatus.
  • FIG. 10 is a functional block diagram which shows the functional structure of the demand control apparatus which concerns on Embodiment 2, and the apparatus control apparatus incorporated in each electric equipment.
  • A is a table format diagram illustrating an example of a data structure of a demand result notification
  • B is a table format diagram illustrating an example of a data structure of a demand result notification response.
  • 10 is a flowchart illustrating an operation in demand control of the demand control device according to the second embodiment.
  • 10 is a flowchart illustrating an operation in demand control of the device control apparatus according to the second embodiment.
  • FIG. 1 is a schematic diagram showing an outline of a demand control system 1 according to Embodiment 1 of the present invention.
  • Demand control system 1, n (n is an integer of 2 or more) stage of the electric apparatus A 1 ⁇ A n are connected to electric devices A 1 ⁇ A n in the demand control unit 10 and the signal line 8 for controlling demand Network.
  • demand control and selects the demand control device 10 is one or more electrical appliances, according to the excess amount of the total power consumption of the electric appliances A 1 ⁇ A n to the target power to a predetermined, the It means that the selected electrical device is operated for a predetermined time (demand control time) with a predetermined power (operation power target value).
  • Power is supplied to the demand control system 1 through a power line 9 from a power source 7 which is a commercial power source or a private power generator, for example. At least a portion of the electrical apparatus A 1 ⁇ A n is the device control apparatus 20 is incorporated, there is a possible demand control by demand control device 10.
  • FIG. 2 is a block diagram showing a functional configuration of the demand control device 10 and the device control device 20 incorporated in each electric device. In FIG. 2, only one electrical device is illustrated, and the illustration of the power line 9 is omitted.
  • the demand control device 10 includes a CPU (Central Processing Unit) 100, a storage unit 105, a communication unit 110, a total power consumption measuring unit 120, a time measuring unit 130, and an input setting unit 140.
  • the device control apparatus 20 includes a transmission / reception unit 201, a device control unit 202, a demand request response creation unit 203, and a timing unit 204.
  • the CPU 100 executes a demand control program stored in advance in the storage unit 105, so that the target power saving amount calculation unit 101, the device calculation unit 102, the demand control information generation unit 103, and the demand request generation unit 104 are implemented in software. It functions to have.
  • the target power saving amount calculation unit 101, the device calculation unit 102, the demand control information generation unit 103, and the demand request generation unit 104 can be provided as hardware in the CPU.
  • the total power consumption measuring unit 120 is, for example, a power meter, and measures the total power consumption of n electrical devices A 1 to An connected to the demand control system 1.
  • the input setting unit 140 includes an input interface for a user to input a target power, a device list, an operating power target value, a maximum power consumption of each electric device, and a demand control time, and the input value input by the user is input. , And set as a set value such as the target power.
  • Target power as a target value of the total power consumption of the electric appliances A 1 ⁇ A n is a power value set by the user. For example, the user sets a power value of about 90% of the upper limit value of the power supply capability of the power supply 7 as the target power.
  • the difference between the actual total power consumption of the electric appliances A 1 ⁇ A n and the target power, the overall demand control system 1, a power amount demand control device 10 is reduced by the demand control electrical equipment target It will save energy.
  • the user inputs a value smaller than the upper limit value of the power supply capability of the power source 7 as the target power to the input setting unit 140, and the input setting unit 140 sets the input value as the target power, so that the upper limit value and Since the difference from the target power is a buffer, the demand control device 10 can perform demand control on the electric device without the total power consumption exceeding the upper limit value even when the total power consumption rapidly increases. Can do.
  • the user can input the target power from the input setting unit 140, the user can set an arbitrary power value as the target power according to the power demand that fluctuates due to the season or the addition of electrical equipment.
  • Device list is an electric appliance, i.e. a database that registers the electrical apparatus apparatus control device 20 is incorporated as a target of demand control of the electric apparatus A 1 ⁇ A n.
  • the user updates the device list by inputting the added or removed device to the input setting unit 140. can do.
  • the user registers the device list, only the electric devices registered in the device list among the n electric devices are controlled by the demand control device 10, and thus the demand control device is selectively demand-controlled. can do.
  • the operating power target value is a target value of the operating power of each electrical device corresponding to the target power saving amount. As the target power saving amount increases, the upper limit of the power supply capability of the power source 7 is approached. Therefore, in order to reduce the total power consumption, it is necessary to decrease the operating power target value. That is, the user inputs the operating power target value as a value that is inversely proportional to the target power saving amount.
  • the difference between the maximum power consumption and the operation target power value is the power saving amount of each electrical device during demand control (hereinafter referred to as demand control power saving amount). Note that the CPU 100 may calculate the operating power target value from the maximum power consumption based on the target power saving amount.
  • Demand control time is the time during which each electrical device operates at the operating power target value, that is, the time during which power saving operation is performed for the amount of power required for demand control.
  • the user inputs, as the demand control time, a time that does not make the user feel uncomfortable even when each electric device is in demand control, for example, 60 seconds.
  • Target power-saving amount calculation unit 101 compares the total power consumption of the electric appliances A 1 ⁇ A n the total power consumption measuring section 120 to measure, and a target power input by the user to input setting unit 140, from the target power Is calculated as the target power saving amount.
  • the storage unit 105 stores the demand control program, and the target power, the device list, the operating power target value, the maximum power consumption of each electrical device, the demand control time, and the target power saving amount input by the user from the input setting unit 140 The target power saving amount calculated by the calculation unit 101 is stored.
  • the device calculation unit 102 extracts one or a plurality of electric devices from the electric devices registered in the device list according to the target power saving amount, and creates a combination of electric devices to be subject to demand control ( Equipment calculation). That is, the device calculation unit 102 calculates a demand control power saving amount for each electric device from the extracted maximum power consumption and operating power target value of each electric device, and the total value of the demand control power saving amount is equal to or greater than the target power saving amount. The combination is created so that For example, the device calculation unit 102 increases the number of extracted electrical devices one by one from the electrical devices registered in the device list until the total demand control power saving amount of the extracted electrical devices becomes equal to or greater than the target power saving amount. Device calculation is possible by going. Since the demand control power saving amount of each device does not exceed the maximum power consumption of the device, the number of electrical devices extracted by the device calculation unit 102 increases as the target power saving amount increases.
  • Equipment calculation Equipment calculation
  • the device calculation unit 102 extracts at least one or a plurality of devices other than the device currently extracted in order of increasing elapsed time from the transmission of the latest demand request. A new combination different from the current time is created.
  • the demand control information creation unit 103 creates demand control information including the operating power target value and the demand control time for each electrical device belonging to the combination.
  • the demand request creation unit 104 creates a demand request that is a signal for requesting to operate with the demand control information for each electric device belonging to the combination.
  • FIG. 3A is a table format showing an example of the data structure of the demand request.
  • the model name of the electrical device in addition to the target operating power value and the demand control time (60 seconds in this example), the model name of the electrical device, the serial number of the electrical device, and the IP address uniquely assigned to each electrical device It is included.
  • the reason why the serial number of the electrical device is included in the demand request is that the possibility of different power consumption during operation is taken into account because there are individual differences even in the same model.
  • the communication unit 110 transmits / receives a predetermined signal to / from the transmission / reception unit 201 of the device control apparatus 20. That is, for example, the communication unit 110 transmits a demand request to the transmission / reception unit 201 or receives a demand request response that is a response to the demand request.
  • the communication unit 110 transmits the demand request to the transmission / reception unit 201 of the device control apparatus 20 included in the device belonging to the combination.
  • the timer unit 130 includes a clock transmitter that generates a clock signal at a constant period, and outputs the clock signal to the device calculation unit 102. Based on the clock signal, the device calculation unit 102 determines whether the demand control time has elapsed.
  • the transmission / reception unit 201 transmits / receives a predetermined signal to / from the communication unit 110 of the demand control device 10. For example, a demand request transmitted from the communication unit 110 is received, or a demand request response that is a response to the demand request is transmitted.
  • Device control unit 202 when the transmitting and receiving unit 201 receives the demand request, the demand control time which the demand request indicates, the electrical apparatus A 1 in the operating power target value to the power-saving operation.
  • the demand request response creation unit 203 creates a demand request response that is a response to the demand request when the transmission / reception unit 201 receives a demand request from the communication unit 110.
  • FIG. 3B is a table format showing an example of the data structure of the demand request response.
  • the demand request response, model name of the electric apparatus A 1, electric apparatus A 1 of the serial number, are included uniquely assigned IP address, and the failure code to the electrical device A 1.
  • the abnormality code is a code for transmitting an abnormality of each electric device to the demand control apparatus 10, and when the value is 0, it is normal, and when the value is other than 0, a numerical value is determined according to the type of abnormality. It has been.
  • the timer unit 204 includes a clock generator that generates a clock signal at a constant period, and outputs the clock signal to the device control unit 202. Based on the clock signal, the device control unit 202 determines whether the demand control time has elapsed.
  • FIG. 4 is a flowchart showing the operation of the demand control device 10 in demand control.
  • the device calculation unit 102 starts a timer having the demand control time as a set time (step S1). The timer count is performed based on a clock signal generated by the timer 130.
  • the total power consumption measuring section 120 measures the total power consumption of the electric apparatus A 1 ⁇ A n of n base connected to the demand control system 1 (step S2).
  • the target power saving amount calculation unit 101 compares the total power consumption measured by the total power consumption measurement unit 120 with the target power. If the total power consumption exceeds the target power (YES in step S3). ), An excess amount of the total power consumption from the target power is calculated as a target power saving amount (step S4). If the total power consumption is less than or equal to the target power (NO in step S3), the process proceeds to step S10.
  • the device calculation unit 102 extracts one or a plurality of electric devices from the electric devices registered in the device list, and performs demand control power saving from the extracted maximum power consumption and operating power target value of each electric device. The amount is calculated for each electric device, and device calculation is performed to create a combination of electric devices so that the total value of the demand control power saving amount is equal to or greater than the target power saving amount (step S5). Subsequently, the demand control information creation unit 103 creates demand control information including the demand control power saving amount and the operating power target value for each electrical device belonging to the combination (step S6).
  • the demand request creation unit 104 creates a demand request that is a signal for requesting that one or a plurality of devices extracted by the device calculation unit 102 operate based on the demand control information (step S7).
  • the communication unit 110 transmits the demand request to the transmission / reception unit 201 of the device control apparatus 20 (step S8).
  • step S9 When the communication unit 110 receives the demand request response transmitted from the transmission / reception unit 201 (YES in step S9), the target power saving amount calculation unit 101 determines that demand control of the electrical device has started, and step S10 Proceed to When the communication unit 110 does not receive a demand request response (NO in step S9), the target power saving amount calculation unit 101 determines that demand control of the electrical device is not performed, and returns to step S2. Until the timer count ends (NO in step S10), the demand control device 10 is in a standby state. When the timer count ends (YES in step S10), the process returns to step S1 to newly start the timer.
  • FIG. 5 is a flowchart showing the operation of the device control apparatus 20 in demand control.
  • the transmission / reception unit 201 receives a demand request from the communication unit 110 of the demand control apparatus 10 (YES in step S101)
  • the demand request response creation unit 203 creates a demand request response that is a response to the demand request (step S102).
  • the transmission / reception unit 201 transmits a demand request response to the communication unit 110 (step S103).
  • the device control unit 202 starts a timer having the demand control time as a set time based on the clock signal generated by the time measuring unit 204 (step S104), and the demand control time and the operating power target value indicated by the demand request. in electrical equipment a 1 initiates a demand control for power saving operation (step S105). Until the timer count ends (NO in step S106), the device control unit 202 continues the demand control. When the timer count ends (YES in step S106), the process returns to step S1 and the device control apparatus 20 waits. It becomes a state.
  • FIG. 6 is a diagram illustrating an example of a time-dependent change in demand control power saving amount of each electrical device that is demand-controlled by the demand control device 10 in the demand control system 1 to which n electrical devices are connected.
  • the demand control time is 60 seconds and the target power saving amount is 1000 W.
  • the demand control power saving amount of each electric device is 1000 W for device 1, 500 W for device 2, 500 W for device 3, and 500 W for device 4. 250W, device 5 is 750W, and device 6 is 1000W. It is assumed that the order in which the device calculation unit 102 extracts electrical devices and creates a combination of electrical devices in the device calculation is from device 1 to device N.
  • the demand control power saving amount of the device 1 is 1000 W, only the device 1 is sufficient as the first electrical device to be extracted in order to secure the target power saving amount of 1000 W.
  • the demand control time of the device 1 ends, and what is extracted as the next combination is the device 2 and the device 3 having a total demand control power saving amount of 1000 W.
  • the demand control time of the combination of the device 2 and the device 3 ends, and what is extracted as the next combination is the device 4 and the device 5 having a total demand control power saving amount of 1000 W.
  • the demand control time of the combination of the device 4 and the device 5 ends, and only the device 6 whose demand control power saving amount is 1000 W is extracted next.
  • the device calculation unit 102 extracts the device 1 having the longest elapsed time since the most recent demand request transmission, and then continues from the device 2 to the device N. Extract up to the same way.
  • the device calculation unit 102 performs device calculation, and the electric devices 1 to N are sequentially operated in power saving, so that a specific combination of devices is less likely to be continuously operated in power saving. Become. Therefore, it is possible to avoid a user who uses devices belonging to a specific combination from suffering inconvenience for a long time. Furthermore, since the device calculation unit 102 extracts the electrical devices and creates the new combinations in the order from the longest elapsed time since the transmission of the latest demand request, the specific electrical devices are demand-controlled in a concentrated manner. It will not be.
  • the demand control system 2 is an embodiment in that the device control device 20 of the demand control system 1 is replaced with a device control device 21 including a power measuring unit 205 in addition to the configuration of the device control device 20. Different from 1.
  • the present embodiment will be described with reference to FIGS.
  • description is abbreviate
  • FIG. 7 is a functional block diagram showing a functional configuration of the demand control device 11 and the device control device 21 incorporated in each electric device.
  • the device control device 21 further includes a power measurement unit 205 in addition to the configuration of the device control device 20.
  • the components of the demand control device 11 are the same as those of the demand control device 10 according to the first embodiment, but the operation in the demand control is partially different from the demand control device 10.
  • the power measurement unit 205 is, for example, a power meter, and measures the power consumption of the electric device A 1 ′.
  • a demand result notification that is data including the power consumption value of the electric device A 1 ′ before and after the start of demand control measured by the power measurement unit 205 is sent to the communication unit 110 of the demand control device 11, and the device control unit 202 is sent to the transmission / reception unit 201. Send it.
  • FIG. 8A is a table format showing an example of the data structure of the demand result notification.
  • the demand result notice 'model name of the electric appliance A 1' electric apparatus A 1 serial number, electric apparatus A 1 uniquely assigned IP address', and demand control before and after the start of the power measurement unit 205 to measure
  • the power consumption value of the electric device A 1 ′ is included.
  • the target power saving amount calculation unit 101 corrects an error between the target power saving amount calculated before transmission of the demand request and the actual power saving amount, and newly Calculate target power savings. Furthermore, the demand control device 11 creates a demand result notification response that is a response to the demand result notification, and the communication unit 110 transmits the demand result notification response to the transmission / reception unit 201 of the device control device 21.
  • FIG. 8B is a table format showing an example of the data structure of the demand result notification response. Similar to the demand request response shown in FIG. 3B, the demand result notification response includes the model name of the electrical device, the serial number of the electrical device, the IP address uniquely assigned to each electrical device, and an error code. It is.
  • FIG. 9 is a flowchart showing the operation of the demand control device 11 in demand control.
  • the operation is the same as that of the demand control device 10 in the first embodiment.
  • the communication unit 110 receives a demand result notification of the electric device A 1 ′ from the transmission / reception unit 201 of the device control apparatus 20 during the timer count (NO in step S10) (YES in step S201)
  • the demand control device 11 A demand result notification response that is a response to the demand result notification is created, and the communication unit 110 transmits the demand result notification response to the transmission / reception unit 201 of the device control device 21 (step S202). And it returns to step S2 and repeats to step S9.
  • the target power saving amount calculation unit 101 corrects an error between the target power saving amount calculated before transmission of the demand request and the actual power saving amount, and newly calculates the target power saving amount.
  • the process returns to step S1 to newly start the timer.
  • FIG. 10 is a flowchart showing the operation of the device control apparatus 21 in demand control.
  • the power measuring unit 205 starts measuring the power consumption of the electric device A 1 ′ (step S301).
  • the operation from the reception of a demand request (step S101) to the start of demand control (step S105) is the same operation as that of the device control apparatus 20 in the first embodiment.
  • the device control unit 202 starts demand control of the electrical device (step S105)
  • the device control unit 202 causes the transmission / reception unit 201 to transmit a demand result notification to the communication unit 110 of the demand control device 11 (step S302).
  • step S106 the device control unit 202 continues the demand control indicated by the processing from S102 to S302, and when the timer count ends (YES in step S106), the step The process returns to S101 as in the first embodiment.
  • the target power saving amount calculation unit 101 corrects an error between the target power saving amount calculated before transmission of the demand request and the actual power saving amount, and newly sets the target power saving amount. Since the calculation is performed, the target power saving amount can be calculated with higher accuracy. Other effects are the same as those of the demand control system 1 according to the first embodiment.
  • the demand control time is the same for all electric devices, but the demand control time can be a different value depending on the type of the device.
  • the device calculation unit 102 extracts electrical devices in order of long elapsed time from the transmission of the latest demand request and creates a new combination. Instead of this, devices may be extracted at random or devices may be extracted in the order of the list.
  • the input setting unit 140 is provided so that the user inputs the target power value.
  • the target power value may be fixed to a default value.
  • the signal line 8 and the power line 9 are independent of each other.
  • a PLC Power Line Communication
  • a PLC Power Line Communication
  • the demand control device includes a communication unit that transmits / receives a predetermined signal to / from a plurality of electrical devices, a total power consumption measurement unit that measures the total power consumption of the plurality of electrical devices, A target power saving amount calculation unit that calculates a target power saving amount that is an excess amount of the total power consumption from a predetermined target power, and one or more of the electric devices according to the target power saving amount A device calculation unit that extracts the electrical devices and creates a combination of the electrical devices, and for each electrical device that belongs to the combination, at least a predetermined power corresponding to the target power saving amount, and a predetermined power that operates with this power
  • a demand control information creating unit that creates demand control information including a specified time and a request to operate with the demand control information for each of one or a plurality of devices extracted by the device calculating unit
  • a demand request creation unit that creates a demand request that is a signal to be transmitted, and the device calculation unit extracts a device at a current time according to
  • the demand control program calculates a target power saving amount that is an excess amount of the total power consumption from a predetermined target power in a first step of measuring the total power consumption of a plurality of electrical devices.
  • a fifth step of creating a demand request which is a signal requesting to operate with the demand control information for each one or a plurality of devices extracted in the step; and the third step
  • a seventh step of extracting one or a plurality and further creating a new combination different from the present time is executed by
  • the predetermined time when the predetermined time elapses, at least one or a plurality of devices other than the devices currently extracted according to a predetermined rule are extracted and differ from the current time.
  • a combination is further created, and electric devices belonging to the combination operate for a predetermined time with a predetermined power corresponding to the target power saving amount, so that a specific combination of devices is continuously operated in a power-saving manner. Less. Therefore, it is possible to avoid a user who uses devices belonging to a specific combination from suffering inconvenience for a long time.
  • demand control in this invention to operate the electric equipment which belongs to the said combination with the said predetermined power corresponding to the said target power saving amount for the said predetermined time.
  • the difference between the upper limit value and the target power becomes a buffer, so that the total power consumption is Even when it increases rapidly, it is possible to perform demand control on the electric device so that the total power consumption does not exceed the upper limit.
  • the device calculation unit extracts the electrical devices in order from the longest elapsed time since the most recent demand request transmission, and creates the new combination. is there.
  • the device calculation unit extracts the electrical devices and creates the new combination in the order of the longest elapsed time since the transmission of the most recent demand request. Will no longer be demand controlled.
  • the demand control device further includes an input setting unit that sets the power value input by the user as the target power.
  • the user can set an arbitrary power value as the target power according to the power demand that fluctuates due to the season or the addition of electrical equipment.
  • the demand control device further includes a storage unit that stores a device list that is a database in which electric devices that can execute the demand request among the plurality of electric devices are stored, and the device calculation unit Is to create the combination from the electric devices registered in the device list.
  • the demand control information is created only for the electric devices registered in the device list among the plurality of electric devices, the demand control is selectively performed on the devices on which demand control is to be performed. be able to.
  • the demand control system is a demand control system comprising any one of the demand control devices according to the present invention and a device control device incorporated in each of the plurality of electric devices, wherein the device control A device transmits and receives a predetermined signal to and from the demand control device, and operates the electric device with the predetermined power when the transmission and reception unit receives the demand request.
  • a device control unit transmits and receives a predetermined signal to and from the demand control device, and operates the electric device with the predetermined power when the transmission and reception unit receives the demand request.
  • the device control device further includes a power measurement unit that measures power consumption of an electric device in which the device control device is incorporated, and the power measurement unit The power consumption of the electrical device before and after the start of driving based on demand control information is measured, and the transmission / reception unit transmits the power value before and after the start of driving measured by the power measurement unit to the communication unit, and the target power saving amount
  • the calculation unit newly calculates a target power saving amount based on the power values before and after the start of driving transmitted from the transmission / reception unit, instead of the target power saving amount calculated before the transmission of the demand request.
  • the target power saving amount calculation unit replaces the target power saving amount calculated before the demand request is transmitted with the actual power consumption of each electrical device that has started demand control after the demand request is transmitted. Since the target power saving amount is newly calculated based on the value, the target power saving amount can be calculated with higher accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Selective Calling Equipment (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 デマンド制御時にユーザが長時間不便を被らないようにする。 目標節電量算出部101が算出した目標節電量に応じて、機器算出部102が1つ又は複数の電気機器を抽出して作成した電気機器の組合せに属する各電気機器について、デマンド制御情報作成部103は、前記目標節電量に対応する予め定められた電力と、この電力で動作する予め定められた時間とを含むデマンド制御情報を作成する。デマンド要求作成部104は、前記組合せの機器に前記デマンド制御情報で動作することを要求する信号であるデマンド要求を作成し、前記の予め定められた時間が経過した場合に、機器算出部102は、予め定められた規則に従って現時点で抽出している機器以外の機器を少なくとも1つ又は複数抽出して現時点とは異なる新たな前記組合せを作成し、通信部110は、機器算出部102よって抽出された前記機器に前記デマンド制御情報を送信する。

Description

デマンド制御装置、デマンド制御システム、およびデマンド制御プログラム
 本発明は、複数の電気機器の総消費電力を、供給電力の上限値を超えないように制御するデマンド制御の技術に関する。
 電力需要が電力供給能力を超えると、家庭やビル等の限定的な電力系統の場合は、ブレーカが遮断されて当該電力系統が停電する。前記電力系統に医療用機器等の連続運転が必須の機器が接続されていた場合、停電の発生は致命的である。また、地域の送電系統全体の場合は、例えば夏期の酷暑時等に電力需要が電力供給能力を超えると、電力の供給が間に合わず停電となって大きな損害が発生する恐れがある。
 このような問題を回避するため、ネットワークに接続された複数の電気機器の総消費電力が、供給電力の上限値を超えないように、当該複数の電気機器の中から1つ以上の電気機器を選択して、省電力運転状態に制御するデマンド制御の技術が知られている。例えば、電力を大量に消費する空気調和機をデマンド制御の対象とし、優先順位の低い順、例えば空調室内の人数が少ない空気調和機から順に省電力運転状態に制御する制御装置が知られている(特許文献1参照)。デマンド制御の対象を、空気調和機以外の家電機器にまで拡大したデマンド制御システムも知られている(特許文献2参照)。
 特許文献1または2に記載のデマンド制御においては、優先順位の低い機器は、省電力運転状態が継続され、当該省電力運転状態にある機器のユーザは、長時間不便を被ることになる。
特開平10-30834号公報 特開2004-363661号公報
 本発明は、このような従来のデマンド制御の問題点に鑑みてなされたものであり、デマンド制御時にユーザが長時間不便を被ることのないデマンド制御装置、デマンド制御システム、およびデマンド制御プログラムを提供することを目的とする。
 本発明の一局面に係るデマンド制御装置は、複数の電気機器(A~A)との間で予め定められた信号を送受信する通信部(110)と、
 前記複数の電気機器(A~A)の総消費電力を測定する総消費電力測定部(120)と、
 予め定められた目標電力からの前記総消費電力の超過量である目標節電量を算出する目標節電量算出部(101)と、
 前記目標節電量に応じて、前記全ての電気機器(A~A)の中から1つ又は複数の電気機器を抽出して電気機器の組合せを作成する機器算出部(102)と、
 前記組合せに属する各電気機器について、少なくとも前記目標節電量に対応する予め定められた電力と、この電力で動作する予め定められた時間とを含むデマンド制御情報を作成するデマンド制御情報作成部(103)と、
 前記機器算出部により抽出された1つ又は複数の機器毎に前記デマンド制御情報で動作することを要求する信号であるデマンド要求を作成するデマンド要求作成部(104)と、を備え、
 前記機器算出部(102)は、前記の予め定められた時間が経過した場合に、予め定められた規則に従って現時点で抽出している機器以外の機器を少なくとも1つ又は複数抽出して現時点とは異なる新たな前記組合せを更に作成し、
 前記通信部(110)は、前記機器算出部(102)によって抽出された前記機器に前記デマンド要求を送信するものである。
 本発明の他の局面に係るデマンド制御プログラムは、複数の電気機器の総消費電力を測定する第1のステップと、
 予め定められた目標電力からの前記総消費電力の超過量である目標節電量を算出する第2のステップと、
 前記目標節電量に応じて、前記全ての電気機器の中から1つ又は複数の電気機器を抽出して電気機器の組合せを作成する第3のステップと、
 前記組合せに属する各電気機器について、少なくとも前記目標節電量に対応する予め定められた電力と、この電力で動作する予め定められた時間とを含むデマンド制御情報を作成する第4のステップと、
 前記第4のステップで抽出された1つ又は複数の機器毎に前記デマンド制御情報で動作することを要求する信号であるデマンド要求を作成する第5のステップと、
 前記第3のステップで抽出された前記機器に前記デマンド要求を送信する第6のステップと、
 前記の予め定められた時間が経過した場合に、予め定められた規則に従って現時点で抽出している機器以外の機器を少なくとも1つ又は複数抽出して現時点とは異なる新たな前記組合せを更に作成する第7のステップとを、コンピュータに実行させるものである。
本発明の実施形態1に係るデマンド制御システムの概略を示す模式図である。 実施形態1に係るデマンド制御装置および各電気機器に組込まれた機器制御装置の機能的な構成を示すブロック図である。 (A)はデマンド要求のデータ構造の一例を示す表形式の図であり、(B)はデマンド要求応答のデータ構造の一例を示す表形式の図である。 実施形態1に係るデマンド制御装置のデマンド制御における動作を示すフローチャートである。 実施形態1に係る機器制御装置のデマンド制御における動作を示すフローチャートである。 デマンド制御装置によってデマンド制御される各電気機器の節電量の経時変化の一例を示す図である。 実施形態2に係るデマンド制御装置および各電気機器に組込まれた機器制御装置の機能的な構成を示す機能ブロック図である。 (A)はデマンド結果通知のデータ構造の一例を示す表形式の図であり、(B)はデマンド結果通知応答のデータ構造の一例を示す表形式の図である。 実施形態2に係るデマンド制御装置のデマンド制御における動作を示すフローチャートである。 実施形態2に係る機器制御装置のデマンド制御における動作を示すフローチャートである。
 <実施形態1>
 図1は、本発明の実施形態1に係るデマンド制御システム1の概略を示す模式図である。デマンド制御システム1は、n(nは2以上の整数)台の電気機器A~Aが、電気機器A~Aをデマンド制御するためのデマンド制御装置10と信号線8で接続されてネットワークを構成している。ここでデマンド制御とは、デマンド制御装置10が1台または複数の電気機器を選択して、予め定められた目標電力に対する電気機器A~Aの総消費電力の超過量に応じて、当該選択された電気機器を予め定められた電力(動作電力目標値)で予め定められた時間(デマンド制御時間)動作させることをいう。
 デマンド制御システム1には、例えば商用電源や自家発電装置である電源7から電力線9を通じて電力が供給されている。電気機器A~Aの少なくとも一部には機器制御装置20が組込まれ、デマンド制御装置10によるデマンド制御が可能とされている。
 図2は、デマンド制御装置10および各電気機器に組込まれた機器制御装置20の機能的な構成を示すブロック図である。図2では、電気機器は1つのみ図示し、電力線9の図示は省略している。
 デマンド制御装置10は、CPU(Central Processing Unit)100、記憶部105、通信部110、総消費電力測定部120、計時部130、入力設定部140を備える。機器制御装置20は、送受信部201、機器制御部202、デマンド要求応答作成部203、計時部204を備える。
 CPU100は、記憶部105に予め格納されているデマンド制御プログラムを実行することで、ソフトウェア的に目標節電量算出部101、機器算出部102、デマンド制御情報作成部103、デマンド要求作成部104、を具備するように機能する。なお、目標節電量算出部101、機器算出部102、デマンド制御情報作成部103、デマンド要求作成部104を、ハードウェアとしてCPU内部にそれぞれ設けることも可能である。
 総消費電力測定部120は、例えば電力計であり、デマンド制御システム1に接続されたn台の電気機器A~Aの総消費電力を測定する。
 入力設定部140は、目標電力、機器リスト、動作電力目標値、各電気機器の最大消費電力、およびデマンド制御時間をユーザが入力するための入力インタフェイスを備え、ユーザが入力した当該入力値を、前記目標電力等の設定値として設定する。
 目標電力は、電気機器A~Aの総消費電力の目標値として、ユーザが設定する電力値である。例えば、電源7の電力供給能力の上限値の90%程度の電力値を、ユーザは目標電力として設定することになる。電気機器A~Aの実際の総消費電力と前記目標電力との差が、デマンド制御システム1全体において、デマンド制御装置10が電気機器をデマンド制御することで削減される電力量である目標節電量となる。
 電源7の電力供給能力の上限値よりも少ない値を前記目標電力としてユーザが入力設定部140に入力し、入力設定部140が当該入力値を前記目標電力に設定することで、当該上限値と当該目標電力との差がバッファとなるので、前記総消費電力が急激に増加する場合にも、デマンド制御装置10は、当該総消費電力が当該上限値を超えることなく電気機器をデマンド制御することができる。
 また、ユーザは入力設定部140から目標電力を入力できるので、季節や電気機器の追加等によって変動する電力需要に応じて、ユーザは、任意の電力値を前記目標電力に設定することができる。
 機器リストは、電気機器A~Aのうちデマンド制御の対象とする電気機器、すなわち機器制御装置20が組込まれた電気機器を登録したデータベースである。例えば、デマンド制御システム1に電気機器を追加した場合や、デマンド制御システム1から電気機器を外した場合に、追加あるいは外した機器を入力設定部140に入力することで、ユーザは機器リストを更新することができる。ユーザが機器リストを登録することで、n台の電気機器のうち機器リストに登録された電気機器のみがデマンド制御装置10の制御対象となるので、デマンド制御を行いたい機器を選択的にデマンド制御することができる。
 動作電力目標値は、目標節電量に対応する各電気機器の動作電力の目標値である。目標節電量が大きくなるほど、電源7の電力供給能力の上限に近づくので、総消費電力を削減するために、動作電力目標値を小さくする必要がある。すなわち、ユーザは、動作電力目標値を、目標節電量に対して逆比例的な値として入力することになる。最大消費電力と動作目標電力値との差が、デマンド制御時の各電気機器の節電量(以下、デマンド制御節電量という)となる。なお、目標節電量に基づいて最大消費電力から動作電力目標値をCPU100が算出するようにしてもよい。
 デマンド制御時間は、各電気機器が動作電力目標値で動作する時間、すなわちデマンド制御節電量分だけ省電力運転する時間である。ユーザは、各電気機器がデマンド制御された状態でも不快に感じない程度の時間、例えば60秒をデマンド制御時間として入力する。
 目標節電量算出部101は、総消費電力測定部120が測定した電気機器A~Aの総消費電力と、ユーザが入力設定部140に入力した目標電力とを比較し、当該目標電力からの当該総消費電力の超過量を目標節電量として算出する。
 記憶部105は、デマンド制御プログラムを格納するとともに、ユーザが入力設定部140から入力した目標電力、機器リスト、動作電力目標値、各電気機器の最大消費電力、およびデマンド制御時間、ならびに目標節電量算出部101によって算出された前記目標節電量を記憶する。
 機器算出部102は、目標節電量に応じて、前記機器リストに登録された電気機器の中から1つ又は複数の電気機器を抽出してデマンド制御の対象となる電気機器の組合せを作成する(機器算出)。すなわち、機器算出部102は、抽出した各電気機器の最大消費電力と動作電力目標値とから、デマンド制御節電量を各電気機器について算出し、デマンド制御節電量の合計値が、目標節電量以上になるように当該組合せの作成を行う。例えば、抽出した電気機器のデマンド制御節電量の合計値が目標節電量以上になるまで、機器リストに登録された電気機器の中から電気機器の抽出数を1つずつ機器算出部102が増やしていくことで機器算出が可能となる。各機器のデマンド制御節電量は、当該機器の最大消費電力を超えることはないので、目標節電量が大きくなるほど、機器算出部102が抽出する電気機器の台数は増加することになる。
 さらに、機器算出部102は、前記デマンド制御時間が経過した場合に、直近のデマンド要求の送信からの経過時間が長い順に、現時点で抽出している機器以外の機器を少なくとも1つ又は複数抽出して現時点とは異なる新たな前記組合せを作成する。
 デマンド制御情報作成部103は、前記組合せに属する各電気機器について前記動作電力目標値と前記デマンド制御時間とを含むデマンド制御情報を作成する。
 デマンド要求作成部104は、前記組合せに属する電気機器毎に前記デマンド制御情報で動作することを要求する信号であるデマンド要求を作成する。
 図3(A)は、デマンド要求のデータ構造の一例を示す表形式の図である。デマンド要求には、前記動作電力目標値と前記デマンド制御時間(この例では60秒)に加えて、電気機器の機種名、電気機器のシリアル番号、および各電気機器に一意に割当てられたIPアドレスが含まれている。なお、電気機器のシリアル番号をデマンド要求に含めているのは、同一機種であっても個体差があるために動作時の消費電力が異なる可能性を考慮しているからである。
 通信部110は、機器制御装置20の送受信部201との間で、予め定められた信号を送受信する。すなわち通信部110は、例えば、送受信部201にデマンド要求を送信したり、デマンド要求への応答であるデマンド要求応答を受信したりする。デマンド要求作成部104が前記デマンド要求を作成した場合は、通信部110は、前記組合せに属する機器が備える機器制御装置20の送受信部201に前記デマンド要求を送信する。
 計時部130は、一定周期でクロック信号を発生させるクロック発信器を備え、このクロック信号を、機器算出部102に出力する。当該クロック信号に基づいて、機器算出部102は、前記デマンド制御時間が経過したか否かを判定する。
 送受信部201は、デマンド制御装置10の通信部110との間で、予め定められた信号を送受信する。例えば、通信部110から送信されたデマンド要求を受信したり、デマンド要求への応答であるデマンド要求応答を送信したりする。
 機器制御部202は、送受信部201が前記デマンド要求を受信した場合に、当該デマンド要求が示す前記デマンド制御時間、前記動作電力目標値で電気機器Aを省電力運転させる。
 デマンド要求応答作成部203は、送受信部201が、通信部110からデマンド要求を受信した場合に、デマンド要求への応答であるデマンド要求応答を作成する。
 図3(B)は、デマンド要求応答のデータ構造の一例を示す表形式の図である。デマンド要求応答には、電気機器Aの機種名、電気機器Aのシリアル番号、電気機器Aに一意に割当てられたIPアドレス、および異常コードが含まれている。異常コードは、各電気機器の異常をデマンド制御装置10に送信するためのコードであり、値が0の場合は正常であり、0以外の値の場合は、異常の種類に応じて数値が定められている。
 計時部204は、一定周期でクロック信号を発生させるクロック発信器を備え、このクロック信号を、機器制御部202に出力する。当該クロック信号に基づいて、機器制御部202は、前記デマンド制御時間が経過したか否かを判定する。
 図4は、デマンド制御におけるデマンド制御装置10の動作を示すフローチャートである。機器算出部102は、デマンド制御時間を設定時間とするタイマをスタートする(ステップS1)。このタイマのカウントは計時部130が発生するクロック信号に基づいて行われる。タイマがスタートすると、総消費電力測定部120は、デマンド制御システム1に接続されたn台の電気機器A~Aの総消費電力を測定する(ステップS2)。続いて目標節電量算出部101は、総消費電力測定部120が測定した総消費電力と目標電力とを比較し、前記総消費電力が前記目標電力を超過している場合は(ステップS3でYES)、当該目標電力からの当該総消費電力の超過量を目標節電量として算出する(ステップS4)。前記総消費電力が前記目標電力以下の場合は(ステップS3でNO)、ステップS10に進む。
 機器算出部102は、前記機器リストに登録された電気機器の中から1つ又は複数の電気機器を抽出して、抽出した各電気機器の最大消費電力と動作電力目標値とから、デマンド制御節電量を各電気機器について算出し、デマンド制御節電量の合計値が、目標節電量以上になるように電気機器の組合せを作成する機器算出を行う(ステップS5)。続いてデマンド制御情報作成部103は、前記組合せに属する各電気機器について前記デマンド制御節電量と前記動作電力目標値とを含むデマンド制御情報を作成する(ステップS6)。続いてデマンド要求作成部104は、機器算出部102により抽出された1つ又は複数の機器毎に前記デマンド制御情報に基づいて動作することを要求する信号であるデマンド要求を作成する(ステップS7)。続いて通信部110は、機器制御装置20の送受信部201に前記デマンド要求を送信する(ステップS8)。
 送受信部201から送信されたデマンド要求応答を、通信部110が受信した場合は(ステップS9でYES)、目標節電量算出部101は、電気機器のデマンド制御が開始されたと判断して、ステップS10に進む。通信部110がデマンド要求応答を受信しない場合は(ステップS9でNO)、目標節電量算出部101は、電気機器のデマンド制御が行われていないと判断して、ステップS2に戻る。タイマのカウントが終了するまでは(ステップS10でNO)、デマンド制御装置10は待機状態となり、タイマのカウントが終了すると(ステップS10でYES)、ステップS1に戻ってタイマを新たにスタートする。
 図5は、デマンド制御における機器制御装置20の動作を示すフローチャートである。デマンド制御装置10の通信部110からデマンド要求を送受信部201が受信すると(ステップS101でYES)、デマンド要求応答作成部203は、デマンド要求への応答であるデマンド要求応答を作成する(ステップS102)。続いて送受信部201は、デマンド要求応答を通信部110に送信する(ステップS103)。
 続いて機器制御部202は、計時部204が発生するクロック信号に基づいて、デマンド制御時間を設定時間とするタイマをスタートし(ステップS104)、前記デマンド要求が示すデマンド制御時間、動作電力目標値で電気機器Aを省電力運転させるデマンド制御を開始する(ステップS105)。タイマのカウントが終了するまでは(ステップS106でNO)、機器制御部202はデマンド制御を継続し、タイマのカウントが終了すると(ステップS106でYES)、ステップS1に戻って機器制御装置20は待機状態となる。
 図6は、n台の電気機器が接続されたデマンド制御システム1において、デマンド制御装置10によってデマンド制御される各電気機器のデマンド制御節電量の経時変化の一例を示す図である。図6に示す例では、デマンド制御時間は60秒、目標節電量は1000Wとされ、各電気機器のデマンド制御節電量は、機器1が1000W、機器2が500W、機器3が500W、機器4が250W、機器5が750W、機器6が1000Wとされている。なお、機器算出部102が機器算出において電気機器を抽出して電気機器の組合せを作成した順番は、機器1から機器Nの順であるとする。
 機器1のデマンド制御節電量は1000Wであるから、目標節電量である1000Wを確保するために最初に抽出される電気機器は、機器1のみで足りる。機器1のデマンド制御時間が終了し、次の組合せとして抽出されるのは、合計のデマンド制御節電量が1000Wとなる機器2および機器3となる。機器2および機器3の組合せのデマンド制御時間が終了し、次の組合せとして抽出されるのは、合計のデマンド制御節電量が1000Wとなる機器4および機器5となる。機器4および機器5の組合せのデマンド制御時間が終了し、次に抽出されるのは、デマンド制御節電量が1000Wである機器6のみとなる。このようにして機器の抽出が繰り返され、機器Nまで一巡した場合、機器算出部102は、直近のデマンド要求の送信からの経過時間が最も長い機器1を抽出し、続いて機器2から機器Nまでを同様にして抽出する。
 図6に示す例のように機器算出部102が機器算出を行い、電気機器1~Nが順次省電力運転されることで、特定の組合せの機器が継続して省電力運転されることが少なくなる。したがって、特定の組合せに属する機器を使用するユーザが、長時間不便を被ることを回避できる。さらに、機器算出部102は、直近のデマンド要求の送信からの経過時間が長い順に、前記電気機器を抽出して前記の新たな組合せを作成するので、特定の電気機器が集中的にデマンド制御されることがなくなる。
 <実施形態2>
 実施形態2に係るデマンド制御システム2は、デマンド制御システム1の機器制御装置20が、機器制御装置20の構成に加えて電力測定部205を備える機器制御装置21に置換されている点で実施形態1とは異なる。以下、図7~図10に基づき本実施形態について説明する。なお、実施形態1と相違のない点については、必要がない限り説明を省略する。
 図7は、デマンド制御装置11および各電気機器に組込まれた機器制御装置21の機能的な構成を示す機能ブロック図である。図7では、図2と同様に、電気機器は1つのみ図示し、電力線9の図示は省略している。機器制御装置21は、機器制御装置20の構成に加えて電力測定部205をさらに備える。デマンド制御装置11の構成要素は、実施形態1に係るデマンド制御装置10と同じであるが、デマンド制御における動作はデマンド制御装置10とは一部異なる。
 電力測定部205は、例えば電力計であり、電気機器A’の消費電力を測定する。電力測定部205が測定したデマンド制御開始前後の電気機器A’の消費電力値を含むデータであるデマンド結果通知を、デマンド制御装置11の通信部110へ、機器制御部202は送受信部201に送信させる。
 図8(A)は、デマンド結果通知のデータ構造の一例を示す表形式の図である。デマンド結果通知には、電気機器A’の機種名、電気機器A’のシリアル番号、電気機器A’に一意に割当てられたIPアドレス、および電力測定部205が測定したデマンド制御開始前後の電気機器A’の消費電力値が含まれている。
 前記デマンド結果通知をデマンド制御装置11の通信部110が受信すると、目標節電量算出部101は、デマンド要求の送信前に算出した目標節電量と実際の節電量との誤差を修正し、新たに目標節電量を算出する。さらにデマンド制御装置11は、前記デマンド結果通知への応答であるデマンド結果通知応答を作成して、通信部110が、機器制御装置21の送受信部201へ、当該デマンド結果通知応答を送信する。
 図8(B)は、デマンド結果通知応答のデータ構造の一例を示す表形式の図である。デマンド結果通知応答には、図3(B)に示すデマンド要求応答と同様に、電気機器の機種名、電気機器のシリアル番号、各電気機器に一意に割当てられたIPアドレス、および異常コードが含まれている。
 図9は、デマンド制御におけるデマンド制御装置11の動作を示すフローチャートである。ステップS10までは、実施形態1におけるデマンド制御装置10と同様の動作である。タイマのカウント中に(ステップS10でNO)、機器制御装置20の送受信部201から通信部110が電気機器A’のデマンド結果通知を受信すると(ステップS201でYES)、デマンド制御装置11は、前記デマンド結果通知への応答であるデマンド結果通知応答を作成して、通信部110が、機器制御装置21の送受信部201へ、当該デマンド結果通知応答を送信する(ステップS202)。そして、ステップS2に戻り、ステップS9までが繰り返される。すなわち、目標節電量算出部101は、デマンド要求の送信前に算出した目標節電量と実際の節電量との誤差を修正し、新たに目標節電量を算出する。タイマのカウントが終了すると(ステップS10でYES)、ステップS1に戻ってタイマを新たにスタートする。
 図10は、デマンド制御における機器制御装置21の動作を示すフローチャートである。電気機器A’が起動されると、電力測定部205は、電気機器A’の消費電力の測定を開始する(ステップS301)。デマンド要求の受信(ステップS101)からデマンド制御の開始(ステップS105)までは実施形態1における機器制御装置20と同様の動作である。機器制御部202が電気機器のデマンド制御を開始すると(ステップS105)、機器制御部202は、デマンド制御装置11の通信部110へデマンド結果通知を、送受信部201に送信させる(ステップS302)。タイマのカウントが終了するまでは(ステップS106でNO)、機器制御部202は、S102からS302までの処理で示されるデマンド制御を継続し、タイマのカウントが終了すると(ステップS106でYES)、ステップS101に戻るのは実施形態1と同様である。
 実施形態2に係るデマンド制御システム2によれば、目標節電量算出部101は、デマンド要求の送信前に算出した目標節電量と実際の節電量との誤差を修正し、新たに目標節電量を算出するので、より精度良く目標節電量を算出することができる。その他の効果については、実施形態1に係るデマンド制御システム1と同じである。
 以上、本発明の実施形態1および2に係るデマンド制御システム1および2について説明したが、本発明はこれに限定されるものではなく、例えば次のような変形実施形態を取ることもできる。
 (1)上記実施形態1および2では、デマンド制御時間を全ての電気機器で同一としているが、デマンド制御時間は、機器の種類に応じて異なる値とすることができる。
 (2)上記実施形態1および2では、機器算出部102は、直近のデマンド要求の送信からの経過時間が長い順に電気機器を抽出して新たな組合せを作成する。これに換えて、ランダムに機器を抽出してもよいし、リストの順番に機器を抽出してもよい。
 (3)上記実施形態1および2では、入力設定部140を設けて、目標電力値をユーザが入力するようにしているが、目標電力値をデフォルトの値に固定しても良い。
 (4)上記実施形態1および2では、信号線8と電力線9とは独立しているが、PLC(Power Line Communication)を採用して信号線と電力線とを兼用するようにしても良い。
 要するに、本発明に係るデマンド制御装置は、複数の電気機器との間で予め定められた信号を送受信する通信部と、前記複数の電気機器の総消費電力を測定する総消費電力測定部と、予め定められた目標電力からの前記総消費電力の超過量である目標節電量を算出する目標節電量算出部と、前記目標節電量に応じて、前記全ての電気機器の中から1つ又は複数の電気機器を抽出して電気機器の組合せを作成する機器算出部と、前記組合せに属する各電気機器について、少なくとも前記目標節電量に対応する予め定められた電力と、この電力で動作する予め定められた時間とを含むデマンド制御情報を作成するデマンド制御情報作成部と、前記機器算出部により抽出された1つ又は複数の機器毎に前記デマンド制御情報で動作することを要求する信号であるデマンド要求を作成するデマンド要求作成部と、を備え、前記機器算出部は、前記の予め定められた時間が経過した場合に、予め定められた規則に従って現時点で抽出している機器以外の機器を少なくとも1つ又は複数抽出して現時点とは異なる新たな前記組合せを更に作成し、前記通信部は、前記機器算出部によって抽出された前記機器に前記デマンド要求を送信するものである。
 また、本発明に係るデマンド制御プログラムは、複数の電気機器の総消費電力を測定する第1のステップと、予め定められた目標電力からの前記総消費電力の超過量である目標節電量を算出する第2のステップと、前記目標節電量に応じて、前記全ての電気機器の中から1つ又は複数の電気機器を抽出して電気機器の組合せを作成する第3のステップと、前記組合せに属する各電気機器について、少なくとも前記目標節電量に対応する予め定められた電力と、この電力で動作する予め定められた時間とを含むデマンド制御情報を作成する第4のステップと、前記第4のステップで抽出された1つ又は複数の機器毎に前記デマンド制御情報で動作することを要求する信号であるデマンド要求を作成する第5のステップと、前記第3のステップで抽出された前記機器に前記デマンド要求を送信する第6のステップと、前記の予め定められた時間が経過した場合に、予め定められた規則に従って現時点で抽出している機器以外の機器を少なくとも1つ又は複数抽出して現時点とは異なる新たな前記組合せを更に作成する第7のステップとを、コンピュータに実行させるものである。
 これらの発明によれば、前記の予め定められた時間が経過した場合に、予め定められた規則に従って現時点で抽出している機器以外の機器が少なくとも1つ又は複数抽出されて現時点とは異なる前記組合せが更に作成され、当該組合せに属する電気機器が前記目標節電量に対応する予め定められた電力で予め定められた時間動作するので、特定の組合せの機器が継続して省電力運転されることが少なくなる。したがって、特定の組合せに属する機器を使用するユーザが、長時間不便を被ることを回避できる。なお、前記組合せに属する電気機器に前記目標節電量に対応する前記の予め定められた電力で前記の予め定められた時間動作させることを、本発明におけるデマンド制御と定義する。
 また、これらの発明によれば、電力供給能力の上限値よりも少ない値を目標電力として予め設定することで、当該上限値と当該目標電力との差がバッファとなるので、前記総消費電力が急激に増加する場合にも、当該総消費電力が当該上限値を超えないように電気機器をデマンド制御することができる。
 また、本発明に係るデマンド制御装置は、更に、前記機器算出部は、直近のデマンド要求の送信からの経過時間が長い順に、前記電気機器を抽出して前記の新たな組合せを作成するものである。
 この発明によれば、前記機器算出部は、直近のデマンド要求の送信からの経過時間が長い順に、前記電気機器を抽出して前記の新たな組合せを作成するので、特定の電気機器が集中的にデマンド制御されることがなくなる。
 また、本発明に係るデマンド制御装置は、更に、ユーザによって入力された電力値を前記目標電力に設定する入力設定部をさらに備えるものである。
 この発明によれば、季節や電気機器の追加等によって変動する電力需要に応じて、ユーザは、任意の電力値を前記目標電力に設定することができる。
 また、本発明に係るデマンド制御装置は、更に、前記複数の電気機器のうち前記デマンド要求を実行可能な電気機器を登録したデータベースである機器リストを記憶する記憶部をさらに備え、前記機器算出部は、前記機器リストに登録された電気機器の中から前記組合せを作成するものである。
 この発明によれば、前記複数の電気機器のうち前記機器リストに登録された電気機器のみを制御対象として前記デマンド制御情報が作成されるので、デマンド制御を行いたい機器を選択的にデマンド制御することができる。
 また、本発明に係るデマンド制御システムは、上記本発明に係るデマンド制御装置のいずれかと、前記複数の電気機器のそれぞれに組込まれる機器制御装置と、を備えるデマンド制御システムであって、前記機器制御装置は、前記デマンド制御装置との間で予め定められた信号を送受信する送受信部と、前記デマンド要求を前記送受信部が受信した場合に、当該電気機器を前記の予め定められた電力で動作させる機器制御部と、を備えるものである。
 また、本発明に係るデマンド制御システムは、更に、前記機器制御装置は、当該機器制御装置が組み込まれている電気機器の消費電力を測定する電力測定部をさらに備え、前記電力測定部は、前記デマンド制御情報に基づく駆動開始前後の当該電気機器の消費電力を測定し、前記送受信部は、前記電力測定部が測定した前記駆動開始前後の電力値を前記通信部へ送信し、前記目標節電量算出部は、前記デマンド要求の送信前に算出した前記目標節電量に替えて、前記送受信部から送信された前記駆動開始前後の電力値に基づいて新たに目標節電量を算出するものである。
 この発明によれば、前記目標節電量算出部は、前記デマンド要求の送信前に算出した前記目標節電量に替えて、前記デマンド要求の送信後にデマンド制御を開始した各電気機器の実際の消費電力値に基づいて新たに目標節電量を算出するので、より精度良く目標節電量を算出することができる。

Claims (7)

  1.  複数の電気機器(A~A)との間で予め定められた信号を送受信する通信部(110)と、
     前記複数の電気機器(A~A)の総消費電力を測定する総消費電力測定部(120)と、
     予め定められた目標電力からの前記総消費電力の超過量である目標節電量を算出する目標節電量算出部(101)と、
     前記目標節電量に応じて、前記全ての電気機器(A~A)の中から1つ又は複数の電気機器を抽出して電気機器の組合せを作成する機器算出部(102)と、
     前記組合せに属する各電気機器について、少なくとも前記目標節電量に対応する予め定められた電力と、この電力で動作する予め定められた時間とを含むデマンド制御情報を作成するデマンド制御情報作成部(103)と、
     前記機器算出部により抽出された1つ又は複数の機器毎に前記デマンド制御情報で動作することを要求する信号であるデマンド要求を作成するデマンド要求作成部(104)と、を備え、
     前記機器算出部(102)は、前記の予め定められた時間が経過した場合に、予め定められた規則に従って現時点で抽出している機器以外の機器を少なくとも1つ又は複数抽出して現時点とは異なる新たな前記組合せを更に作成し、
     前記通信部(110)は、前記機器算出部(102)によって抽出された前記機器に前記デマンド要求を送信するデマンド制御装置。
  2.  前記機器算出部(102)は、直近のデマンド要求の送信からの経過時間が長い順に、前記電気機器を抽出して前記の新たな組合せを作成する請求項1に記載のデマンド制御装置。
  3.  ユーザによって入力された電力値を前記目標電力に設定する入力設定部(140)をさらに備える請求項1または2に記載のデマンド制御装置。
  4.  前記複数の電気機器(A~A)のうち前記デマンド要求を実行可能な電気機器を登録したデータベースである機器リストを記憶する記憶部(105)をさらに備え、
     前記機器算出部(102)は、前記機器リストに登録された電気機器の中から前記組み合わせを作成する請求項1~3のいずれか1項に記載のデマンド制御装置。
  5.  請求項1~4のいずれか1項に記載のデマンド制御装置(10)と、前記複数の電気機器(A~A)のそれぞれに組込まれる機器制御装置(20)と、を備えるデマンド制御システムであって、
     前記機器制御装置(20)は、
     前記デマンド制御装置との間で予め定められた信号を送受信する送受信部(201)と、前記デマンド要求を前記送受信部が受信した場合に、当該電気機器を前記の予め定められた電力で動作させる機器制御部(202)と、を備えるデマンド制御システム。
  6.  前記機器制御装置(20)は、当該機器制御装置(20)が組み込まれている電気機器の消費電力を測定する電力測定部(205)をさらに備え、
     前記電力測定部(205)は、前記デマンド制御情報に基づく駆動開始前後の当該電気機器の消費電力を測定し、
     前記送受信部(201)は、前記電力測定部(205)が測定した前記駆動開始前後の電力値を前記通信部(110)へ送信し、
     前記目標節電量算出部(101)は、前記デマンド要求の送信前に算出した前記目標節電量に替えて、前記送受信部(201)から送信された前記駆動開始前後の電力値に基づいて新たに目標節電量を算出する請求項5に記載のデマンド制御システム。
  7.  複数の電気機器の総消費電力を測定する第1のステップと、
     予め定められた目標電力からの前記総消費電力の超過量である目標節電量を算出する第2のステップと、
     前記目標節電量に応じて、前記全ての電気機器の中から1つ又は複数の電気機器を抽出して電気機器の組合せを作成する第3のステップと、
     前記組合せに属する各電気機器について、少なくとも前記目標節電量に対応する予め定められた電力と、この電力で動作する予め定められた時間とを含むデマンド制御情報を作成する第4のステップと、
     前記第4のステップで抽出された1つ又は複数の機器毎に前記デマンド制御情報で動作することを要求する信号であるデマンド要求を作成する第5のステップと、
     前記第3のステップで抽出された前記機器に前記デマンド要求を送信する第6のステップと、
     前記の予め定められた時間が経過した場合に、予め定められた規則に従って現時点で抽出している機器以外の機器を少なくとも1つ又は複数抽出して現時点とは異なる新たな前記組合せを更に作成する第7のステップとを、コンピュータに実行させるデマンド制御プログラム。
PCT/JP2010/050951 2009-01-26 2010-01-26 デマンド制御装置、デマンド制御システム、およびデマンド制御プログラム WO2010084986A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI1006980-1A BRPI1006980B1 (pt) 2009-01-26 2010-01-26 Dispositivo de controle de demanda, sistema de controle de demanda e método de controle de demanda
EP10733592.9A EP2383863A4 (en) 2009-01-26 2010-01-26 DEVICE, SYSTEM AND PROGRAM FOR DEMAND REGULATION
CN201080004880XA CN102282743B (zh) 2009-01-26 2010-01-26 需求控制装置以及需求控制系统
US13/143,108 US8738193B2 (en) 2009-01-26 2010-01-26 Demand control device, demand control system, and demand control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-014239 2009-01-26
JP2009014239A JP4710982B2 (ja) 2009-01-26 2009-01-26 デマンド制御装置、デマンド制御システム、およびデマンド制御プログラム

Publications (1)

Publication Number Publication Date
WO2010084986A1 true WO2010084986A1 (ja) 2010-07-29

Family

ID=42356036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050951 WO2010084986A1 (ja) 2009-01-26 2010-01-26 デマンド制御装置、デマンド制御システム、およびデマンド制御プログラム

Country Status (6)

Country Link
US (1) US8738193B2 (ja)
EP (1) EP2383863A4 (ja)
JP (1) JP4710982B2 (ja)
CN (1) CN102282743B (ja)
BR (1) BRPI1006980B1 (ja)
WO (1) WO2010084986A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132187A (ja) * 2011-12-22 2013-07-04 Toshiba Corp 電気機器の運転制御システム及び方法
JP2015154595A (ja) * 2014-02-14 2015-08-24 アズビル株式会社 エネルギー管理装置およびエネルギー管理方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103329161B (zh) * 2011-07-13 2015-03-25 日东电工株式会社 按需型电力控制系统、按需型电力控制系统程序以及记录该程序的计算机可读记录介质
JP5494698B2 (ja) * 2011-07-15 2014-05-21 ダイキン工業株式会社 設備機器の制御装置
JP5533809B2 (ja) * 2011-07-20 2014-06-25 ダイキン工業株式会社 設備機器の制御装置
US9450408B2 (en) * 2011-10-07 2016-09-20 Siemens Corporation Adaptive demand response based on distributed load control
TWI456386B (zh) * 2011-10-31 2014-10-11 行政院原子能委員會 核能研究所 一種具相對權重節能控制方法及裝置
JP5851290B2 (ja) * 2012-03-09 2016-02-03 株式会社東芝 電力デマンド監視装置および電力デマンド監視方法
WO2014045675A1 (ja) * 2012-09-20 2014-03-27 三菱電機株式会社 電力制御システム、健康管理機器、家電機器及び電力指令装置
WO2014208299A1 (ja) * 2013-06-24 2014-12-31 日本電気株式会社 電力制御装置、方法、およびプログラム
CN103795785B (zh) * 2014-01-16 2019-01-08 加一联创电子科技有限公司 物联网控制方法和终端
JP2016192872A (ja) * 2015-03-31 2016-11-10 パナソニックIpマネジメント株式会社 ゲートウェイ装置、デマンドレスポンスシステム及びゲートウェイ装置のプログラム
US10615596B2 (en) * 2015-09-30 2020-04-07 Siemens Aktiengesellschaft Systems, methods and apparatus for an improved aggregation engine for a demand response management system
WO2018033983A1 (ja) * 2016-08-18 2018-02-22 三菱電機株式会社 電気機器、消費電力削減システム、通信アダプタ及び消費電力削減方法
JP7110963B2 (ja) * 2018-12-11 2022-08-02 トヨタ自動車株式会社 滞空する凧型構造体を用いた風力発電システム
CN112565362B (zh) * 2020-11-26 2021-11-16 珠海格力电器股份有限公司 物联网设备控制方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030834A (ja) 1995-11-24 1998-02-03 Matsushita Electric Ind Co Ltd 空気調和機の制御装置及び制御方法
JPH11287496A (ja) * 1998-03-31 1999-10-19 Caliber Denko:Kk 空調機の使用電力制御方法
JP2001119857A (ja) * 1999-10-21 2001-04-27 Seiji Miyamoto デマンド制御方法及びデマンド制御装置
JP2002010532A (ja) * 2000-06-19 2002-01-11 Daikin Ind Ltd 電気機器のデマンド制御システム、デマンド制御方法、デマンド制御管理装置及びデマンド制御管理方法
JP2004363661A (ja) 2003-06-02 2004-12-24 Hitachi Home & Life Solutions Inc 家電機器デマンド制御システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136393A (en) * 1977-07-18 1979-01-23 Westinghouse Electric Corp. Method of power demand control with time dependent target
US5414640A (en) * 1991-07-05 1995-05-09 Johnson Service Company Method and apparatus for adaptive demand limiting electric consumption through load shedding
US5481140A (en) * 1992-03-10 1996-01-02 Mitsubishi Denki Kabushiki Kaisha Demand control apparatus and power distribution control system
JPH10108364A (ja) * 1996-09-26 1998-04-24 Kawabata Shigeo 電力使用量制御装置
JPH11332098A (ja) * 1998-05-20 1999-11-30 Oki Electric Ind Co Ltd 環境維持型契約電力超過防止電力デマンド制御方法
US7216021B2 (en) * 2003-10-30 2007-05-08 Hitachi, Ltd. Method, system and computer program for managing energy consumption
JP2009284723A (ja) * 2008-05-26 2009-12-03 Toshiba Corp 電力需給制御装置および電力需給制御方法
WO2010031017A1 (en) * 2008-09-15 2010-03-18 General Electric Company Demand side management of household appliances beyond electrical
US8818566B2 (en) * 2009-12-22 2014-08-26 General Electric Company Appliance demand response randomization after demand response event

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030834A (ja) 1995-11-24 1998-02-03 Matsushita Electric Ind Co Ltd 空気調和機の制御装置及び制御方法
JPH11287496A (ja) * 1998-03-31 1999-10-19 Caliber Denko:Kk 空調機の使用電力制御方法
JP2001119857A (ja) * 1999-10-21 2001-04-27 Seiji Miyamoto デマンド制御方法及びデマンド制御装置
JP2002010532A (ja) * 2000-06-19 2002-01-11 Daikin Ind Ltd 電気機器のデマンド制御システム、デマンド制御方法、デマンド制御管理装置及びデマンド制御管理方法
JP2004363661A (ja) 2003-06-02 2004-12-24 Hitachi Home & Life Solutions Inc 家電機器デマンド制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2383863A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132187A (ja) * 2011-12-22 2013-07-04 Toshiba Corp 電気機器の運転制御システム及び方法
JP2015154595A (ja) * 2014-02-14 2015-08-24 アズビル株式会社 エネルギー管理装置およびエネルギー管理方法

Also Published As

Publication number Publication date
CN102282743A (zh) 2011-12-14
EP2383863A4 (en) 2015-07-29
CN102282743B (zh) 2013-11-06
US8738193B2 (en) 2014-05-27
BRPI1006980A2 (pt) 2016-04-12
BRPI1006980B1 (pt) 2018-04-17
US20110270460A1 (en) 2011-11-03
EP2383863A1 (en) 2011-11-02
JP2010172159A (ja) 2010-08-05
JP4710982B2 (ja) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4710982B2 (ja) デマンド制御装置、デマンド制御システム、およびデマンド制御プログラム
US11050261B2 (en) Fuel cell system, external management apparatus, fuel cell apparatus, and control method for fuel cell apparatus
JP4501923B2 (ja) ホームエネルギー管理システム
JP4966426B1 (ja) 省エネルギー装置、省エネルギーシステム及び省エネルギープログラム
JP2010075015A (ja) 家電機器デマンド制御システム
JP5544315B2 (ja) 消費電力量削減支援装置および方法、省エネ運転制御システム
WO2012144626A1 (ja) エネルギー管理装置、およびエネルギー管理システム
JP6414456B2 (ja) 需要家装置、電力消費管理装置、電力消費管理システム、電力消費管理方法および電力消費管理プログラム
JP2007028036A (ja) 制御装置及び制御装置を用いた機器の制御方法
CN109861889B (zh) 电器峰值功率调节方法、装置、服务器及存储介质
JP2006345662A (ja) 集合住宅用遠隔監視制御システム
JP6028044B2 (ja) 電力制御システム、制御装置、及び電力制御方法
JP2015010803A (ja) 省エネルギー運転制御方法および省エネルギー運転制御システム
JP2010206979A (ja) 省電力可能機器制御方法、省電力可能機器制御システム、省電力可能機器、省電力可能機器制御サーバ、及び、省電力制御プログラム
KR20120064519A (ko) 부하 제어 방법
JP5498517B2 (ja) サーバ装置、家電機器制御方法およびプログラム
JP2013017264A (ja) 電力供給装置、電力管理システム、電力管理方法および電力管理プログラム
JP2013092270A (ja) 省エネルギー装置、省エネルギーシステムおよびプログラム
JP2009273262A (ja) 電気機器の供給電流制御装置
JP2014222396A (ja) 管理装置、機器管理方法、管理システム
JP5699104B2 (ja) 使用電力制御システム
JP6614866B2 (ja) 空気調和システム、空気調和方法、及び制御装置
JP2003271236A (ja) エネルギ消費量制御装置及びエネルギ消費機器
JP2007020288A (ja) 機器制御方法
JP2013012107A (ja) ネットワーク家電機器及びファームウェア書換え方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004880.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2729/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13143108

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010733592

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006980

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1006980

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110726