WO2010084890A1 - 2次元面発光レーザアレイ素子、面発光レーザ装置および光源 - Google Patents

2次元面発光レーザアレイ素子、面発光レーザ装置および光源 Download PDF

Info

Publication number
WO2010084890A1
WO2010084890A1 PCT/JP2010/050649 JP2010050649W WO2010084890A1 WO 2010084890 A1 WO2010084890 A1 WO 2010084890A1 JP 2010050649 W JP2010050649 W JP 2010050649W WO 2010084890 A1 WO2010084890 A1 WO 2010084890A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting laser
surface emitting
dimensional surface
array
light
Prior art date
Application number
PCT/JP2010/050649
Other languages
English (en)
French (fr)
Inventor
啓史 高木
宏辰 石井
均 清水
則広 岩井
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to DE112010000821T priority Critical patent/DE112010000821T5/de
Priority to US13/142,996 priority patent/US20110274131A1/en
Priority to JP2010547502A priority patent/JPWO2010084890A1/ja
Publication of WO2010084890A1 publication Critical patent/WO2010084890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides

Definitions

  • the present invention relates to a two-dimensional surface emitting laser array device, and a surface emitting laser device and a light source using the same.
  • a two-dimensional surface emitting laser array element having a plurality of surface emitting laser elements formed on a substrate has been used as a signal light source for optical interconnection.
  • the two-dimensional surface emitting laser array element is configured such that individual surface emitting laser elements output independent laser light signals.
  • the two-dimensional surface emitting laser array element is configured such that laser light outputs from a plurality of surface emitting laser elements are integrated and functions as one light source unlike the case of the above-described signal light source.
  • such a two-dimensional surface-emitting laser array device is expected as a highly reliable high-power laser light source because there is no optical damage (Catastrophic Optical Damage: COD) of the end face like an edge-emitting laser element. It is done.
  • the power conversion efficiency defined by the ratio of the laser light output to the power injected into the device is also reported as 51% at maximum in the two-dimensional surface emitting laser array device described in Non-Patent Document 1, and an edge emitting type It is said to be high enough to compete with the laser element.
  • Non-Patent Document 1 Although the two-dimensional surface-emitting laser array element described in Non-Patent Document 1 has a high power conversion efficiency in the element, there is a problem that the energy conversion efficiency can not be increased when considering a power supply device for driving this. is there.
  • the two-dimensional surface-emitting laser array device described in Non-Patent Document 1 since the two-dimensional surface-emitting laser array device described in Non-Patent Document 1 is electrically connected in parallel to the surface-emitting laser devices constituting the two-dimensional surface-emitting laser array device, the two-dimensional surface-emitting laser array device can A voltage of about 3 V is applied to drive a current of 320 A.
  • the power supply device for supplying such a low voltage and a large current generally has a low energy conversion efficiency. Therefore, the two-dimensional surface-emitting laser array element described in Non-Patent Document 1 has a problem that the energy conversion efficiency can not be increased when considered including the power supply device.
  • Non-Patent Document 1 has a problem that high integration can not be achieved because a wiring pattern for connecting the elements in parallel is provided.
  • the present invention has been made in view of the above, and is capable of realizing high energy conversion efficiency with a simple configuration and capable of high integration, a two-dimensional surface-emitting laser array element, and a surface-emitting laser device using the same It aims to provide a light source.
  • a two-dimensional surface emitting laser array device is formed on a substrate and a periodic structure of a high refractive index layer and a low refractive index layer formed on the substrate.
  • the surface-emitting laser device in the above-mentioned invention, includes an upper contact layer located between the active layer and the upper multilayer reflector, and the upper surface. And the upper electrode provided on the contact layer.
  • At least a part of the upper multilayer reflector is made of a dielectric in the above invention.
  • the two-dimensional surface emitting laser array device is characterized in that, in the above invention, a plurality of the surface emitting laser devices are arrayed one-dimensionally to form an element array connected in series. Do.
  • the upper electrode of the surface emitting laser device and the lower electrode of the surface emitting laser device adjacent to each other are connected by an extraction electrode. It is characterized by
  • a two-dimensional surface emitting laser array device is characterized in that, in the above invention, the plurality of series connected device arrays are provided, and the plurality of series connected device arrays are electrically connected in parallel. Do.
  • a plurality of the series-connected device arrays may be connected in series to the respective surface-emitting laser devices constituting the adjacent series-connected device array. It is characterized in that they are disposed out of position with respect to each other in the longitudinal direction of the element array.
  • the two-dimensional surface emitting laser array element according to any one of the above inventions and each surface emitting laser element forming the two-dimensional surface emitting laser array element output And a microlens array for collimating each of the laser beams.
  • the light source according to the present invention is characterized by comprising the two-dimensional surface-emitting laser array element according to any one of the above-mentioned inventions in which the emission wavelengths of the plurality of surface-emitting laser elements are equal.
  • the two-dimensional surface emission according to any one of the above inventions wherein the emission wavelength of at least a part of the plurality of surface emitting laser elements is different from the emission wavelength of the other surface emitting laser elements. It is characterized by comprising a laser array element.
  • FIG. 1 is a schematic plan view of a two-dimensional surface emitting laser array device according to the first embodiment.
  • FIG. 2 is an enlarged view of one surface emitting laser element in the cross section taken along line AA of the two-dimensional surface emitting laser array element shown in FIG.
  • FIG. 3 is an explanatory view for explaining an example of a method of manufacturing the two-dimensional surface emitting laser array element shown in FIGS.
  • FIG. 4 is an explanatory view for explaining an example of a method of manufacturing the two-dimensional surface emitting laser array element shown in FIGS.
  • FIG. 5 is an explanatory view for explaining an example of a method of manufacturing the two-dimensional surface emitting laser array element shown in FIGS.
  • FIG. 6 is a diagram showing the relationship between the drive current and the light output of the 50 ⁇ 10 surface emitting laser array element.
  • FIG. 7 is a schematic view showing a schematic configuration of the surface emitting laser device according to the second embodiment and a part of the configuration.
  • the respective elements constituting the two-dimensional surface emitting laser array element are connected in series to form a serially connected element array, and each surface constituting the two-dimensional surface emitting laser array
  • the light emitting laser device is characterized in that it is a so-called intra-cavity type surface emitting laser device.
  • each surface emitting laser device since each surface emitting laser device has a small device resistance, it becomes possible to connect them in series.
  • the energy efficiency can be greatly improved by using the surface emitting laser elements in which the surface emitting laser elements are connected in series (for example, one-dimensional connection of 50 surface emitting laser elements according to the present invention in series) In an array (series connection element array), it can be driven by connecting a power supply device with high power supply efficiency that supplies 100 V and 10 mA to both ends).
  • the element spacing can be made smaller compared to the conventional surface emitting laser array element.
  • the surface emitting laser device constituting the two-dimensional surface emitting laser array device of the present invention is an intra-cavity type (at least one contact layer for current injection is included inside the optical resonator mirror) surface emitting laser device It is. Therefore, in order to connect the conventional surface emitting laser devices having electrodes on the back of the substrate in series, it was necessary to provide a through hole communicating with the back of the substrate, but by adopting the configuration of the present invention, Electrodes for injecting a current can be provided on only one surface, and the surface emitting laser devices can be integrated at a higher density than conventional surface emitting laser array devices.
  • a single intra-cavity surface-emitting laser device is realized by adopting a double intra-cavity surface-emitting laser device (two contact layers for current injection are included inside the optical resonator mirror).
  • the degree of integration can be further increased as compared to the case of integration.
  • the reason is as follows. That is, in a double intra-cavity surface emitting laser device, generally two contact layers are provided inside the resonator mirror, while in a single intra-cavity surface emitting laser device, one contact layer is a resonator mirror Provided on top. Therefore, the height difference between the upper electrode and the lower electrode provided on the contact layer becomes significantly smaller in the double intra cavity type surface emitting laser device as compared with the single intra cavity type.
  • the height difference between the surface emitting laser elements is 4 to 5 ⁇ m in the single intra-cavity type (the structure in which the p-side electrode as the upper electrode is formed on the semiconductor mirror), but 1 in the double intra-cavity type. It can be suppressed to about 10 (about 0.5 ⁇ m).
  • each surface emitting laser element can be lowered to 100 ⁇ or less by adopting the double intra cavity type, when using a low element resistance element of 10 to 100 ⁇ , particularly 50 ⁇ or less, 100 to 1000, etc. It is also possible to construct a two-dimensional surface emitting laser array element by connecting a large number of surface emitting laser elements in series. Furthermore, since the series connection element arrays in which the surface emitting laser elements are connected in series in a linear manner can be arranged in close proximity without interposing a wiring pattern between them, the degree of integration per unit area can be further increased. be able to.
  • FIG. 1 is a schematic plan view of a two-dimensional surface emitting laser array device 1000 according to the first embodiment.
  • the two-dimensional surface emitting laser array element 1000 includes n connected in series as array elements 1001 1 to 1001 n , a common n-side electrode 1002, and a common p-side electrode 1003, where n is an integer of 2 or more.
  • Each of the serially connected array elements 1001 1 to 1001 n includes m surface emitting laser elements 100, where m is an integer of 2 or more. That is, the two-dimensional surface emitting laser array element 1000 is configured of m ⁇ n surface emitting laser elements 100.
  • m and n are not particularly limited, for example, m is 10 to 100 and n is 10 to 1000.
  • FIG. 2 is an enlarged view of one surface emitting laser device 100 in the cross section taken along line AA of the two-dimensional surface emitting laser array device 1000 shown in FIG.
  • the surface emitting laser device 100 includes a substrate 101, a lower DBR mirror 102 which is a lower multilayer reflector formed on the substrate 101, a buffer layer 103, and an n-type contact layer 104.
  • the upper graded composition layer 108, the p-type spacer layer 109, the p + -type current path layer 110, the p-type spacer layer 111, and the p + -type contact layer 112 are sequentially stacked.
  • the active layer 105 to the p + -type contact layer 112 form a cylindrical mesa post M1.
  • the substrate 101 is made of, for example, undoped GaAs.
  • the lower DBR mirror 102 is, for example, composed of 34 pairs of GaAs / Al 0.9 Ga 0.1 As layers.
  • the buffer layer 103 is made of, for example, undoped GaAs.
  • the n-type contact layer 104 is made of, for example, n-type GaAs.
  • the active layer 105 has a structure in which an InGaAs layer with three layers and a GaAs barrier layer with four layers are alternately stacked for laser light of, for example, the 1100 nm band, and the lowermost GaAs barrier layer Also functions as an n-type cladding layer.
  • the current confinement portion 107a is made of Al 2 O 3
  • the current injection portion 107b is 6 to 7 ⁇ m in diameter, and is made of AlAs.
  • the lower graded composition layer 106 and the upper graded composition layer 108 are made of, for example, AlGaAs, and are configured such that the Al composition gradually increases as they approach the current confinement layer 107 in the thickness direction.
  • the p-type spacer layers 109 and 111, the p + -type current path layer 110, and the p + -type contact layer 112 are made of, for example, p-type and p + -type GaAs doped with carbon.
  • each p-type or n-type layer is, for example, about 1 ⁇ 10 18 cm ⁇ 3
  • the acceptor concentration of the p + -type layer is, for example, 1 ⁇ 10 19 cm ⁇ 3 or more.
  • a p-side annular electrode 113 made of Pt / Ti and having an opening 113a at the center and an outer periphery coinciding with the outer periphery of the mesa post M1.
  • the outer diameter of the p-side annular electrode 113 is, for example, 30 ⁇ m, and the inner diameter of the opening 113a is, for example, 11 to 14 ⁇ m.
  • a disc-shaped phase adjustment layer 114 made of, for example, silicon nitride (SiN x ), which is a dielectric, is formed.
  • the phase adjustment layer 114 has a function of properly adjusting the positions of nodes and antinodes of a standing wave of light formed between the lower DBR mirror 102 and the upper DBR mirror 115.
  • an upper DBR mirror 115 which is an upper multilayer reflector made of a dielectric is formed over the phase adjustment layer 114 and the outer periphery of the mesa post M1.
  • the upper DBR mirror 115 comprises, for example, 10 to 12 pairs of SiN x / SiO 2 , but, for example, an ⁇ -Si / SiO 2 or ⁇ -Si / Al 2 O 3 pair according to the refractive index of the material 99 The number of pairs may be such that an appropriate reflectance of about% can be obtained.
  • the n-type contact layer 104 extends from the lower part of the mesa post M1 to the outer peripheral side of the upper DBR mirror 115, and a semicircular n-side electrode 116 made of, for example, AuGeNi / Au is formed on the surface thereof. .
  • the n-side electrode 116 has, for example, an outer diameter of 80 ⁇ m and an inner diameter of 40 ⁇ m. Further, in a region where the upper DBR mirror 115 is not formed, a passivation film 117 made of a dielectric such as SiN x is formed for surface protection.
  • a lead-out electrode 118 made of Au is formed so as to be in contact with the n-side electrode 116 through an opening formed in the passivation film 117.
  • a lead-out electrode 118 made of Au is formed to be in contact with the p-side annular ring electrode 113 through the opening formed in the passivation film 117.
  • series connected array elements 1001 1 a plurality of surface-emission laser device 100 has a structure in which electrically connected in series.
  • the other series connected array elements 1001 2 to 1001 n also have a configuration in which a plurality of surface emitting laser elements 100 are connected in series.
  • series connection array elements 1001 2 to 1001 n are electrically connected in parallel by the common n-side electrode 1002 and the common p-side electrode 1003.
  • the common n-side electrode 1002 and the common p-side electrode 1003 are electrically connected to a current supply circuit (not shown) provided outside.
  • the two-dimensional surface emitting laser array element 1000 is supplied with a voltage from the current supply circuit to the surface emitting laser element 100 of each series connected array element 1001 2 to 1001 n through the common n-side electrode 1002 and the common p-side electrode 1003.
  • the current flows mainly through the low resistance p + -type contact layer 112 and the p + -type current path layer 110, and the current path is narrowed by the current narrowing layer 107 in the current injection portion 107 b.
  • the spontaneous emission light light in the 1100 nm band, which is a laser oscillation wavelength, forms a standing wave between the lower DBR mirror 102 and the upper DBR mirror 115, and is amplified by the active layer 105. Then, when the injection current becomes equal to or higher than the threshold value, the light forming the standing wave is oscillated and the laser light of, for example, the 1100 nm band is output from the opening 113 a of the p-side annular electrode 113.
  • each of the surface emitting laser elements 100 constituting the two-dimensional surface emitting laser array element 1000 the n-type contact layer 104 located between the lower DBR mirror 102 and the active layer 105 is the upper DBR mirror 115.
  • the n-side electrode 116 is formed on the surface of the extended portion.
  • the p + -type contact layer 112 is located between the upper DBR mirror 115 and the active layer 103. That is, each surface emitting laser device 100 has a so-called double intra cavity structure. Therefore, in the two-dimensional surface emitting laser array element 1000, the series connection between the adjacent surface emitting laser elements 100 is realized with a simple configuration, whereby high energy conversion efficiency is considered when including the power supply device. Can be realized.
  • the conventional two-dimensional surface emitting laser array device can not have high energy conversion efficiency when considered including the power supply device because the surface emitting laser devices constituting the same are connected in parallel. There is a problem of
  • both the p side annular electrode 113 and the n side electrode 116 are positioned on the surface side of the substrate 101. Since the p-side annular electrode 113 and the n-side electrode 116 of the surface emitting laser element 100 adjacent to each other are connected by the extraction electrode 118, the series connection can be easily realized. According to this configuration, it is possible to increase the occupancy rate of the surface emitting laser element 100 on the substrate 101 without requiring a new wiring pattern for electrical connection between the surface emitting laser elements 100, and high density integration. Can be Further, as shown in FIG.
  • the surface emitting laser elements 100 constituting the series connected array elements are mutually positioned in the longitudinal direction of the array.
  • the distance between the series connected array elements can be reduced, so that higher density can be achieved.
  • the two-dimensional surface-emitting laser array device 1000 can be driven with high voltage and low current by connecting the surface-emitting laser devices 100 in series in this way, a power supply device with high energy conversion efficiency should be used. Can. Furthermore, since the two-dimensional surface-emitting laser array device 1000 has a small current flow, thin wires can be used, so that miniaturization and weight reduction can be realized including the device, the power supply circuit, and the like.
  • this two-dimensional surface emitting laser array device 1000 can realize high energy conversion efficiency and high integration with a simple configuration.
  • series connected array elements 1001 1 to 1001 n are electrically connected in parallel. Therefore, even if, for example, one of the surface emitting laser elements 100 constituting the series connection array element 1001 1 is deteriorated or damaged and the series connection array element 1001 1 is broken, the other series connection array elements 1001 2 to 1001 n operate. Keep doing. Further, the deterioration of a surface emitting laser element and the influence of heat generation associated therewith remain within the range of the series connection array element to which the deteriorated element belongs. As a result, a sharp drop in the light output of the entire two-dimensional surface emitting laser array element 1000 is prevented.
  • the upper DBR mirror 115 is composed of a dielectric, and the active layer 105 is not passed from the p-side annular electrode 113 through the upper DBR mirror.
  • Current is being injected into the As a result, the electric resistance and the thermal resistance become smaller as compared with, for example, a conventional two-dimensional surface emitting laser array element in which current is injected through the upper DBR mirror made of a p-type semiconductor, and the surface emitting laser element 100 itself
  • the power conversion efficiency is high and the temperature characteristic is good.
  • the upper DBR mirror 115 may be formed of a dielectric film, and the other part may be formed of a semiconductor film.
  • the configuration of the surface emitting laser element is not limited to the double intra cavity type, but the upper DBR mirror is made of a semiconductor and the p-side annular electrode is formed on the upper side of the upper DBR mirror. You may use the surface emitting laser element of the structure made into the single intra cavity type.
  • an n-type semiconductor layer is formed below the active layer 105, and a p-type semiconductor layer is formed above the active layer 105. It may be a p-type semiconductor layer, and the upper side may be an n-type semiconductor layer.
  • the two-dimensional surface emitting laser array device 1000 is made of a GaAs-based semiconductor material, the semiconductor material is not particularly limited.
  • 3 to 5 are explanatory views for explaining an example of a method of manufacturing the two-dimensional surface emitting laser array device 1000 shown in FIGS.
  • the lower DBR mirror 102, the buffer layer 103, the n-type contact layer 104, the active layer 105, the lower graded composition layer 106, and the oxidized layer 122 made of AlAs are formed by the epitaxial growth method.
  • Top graded composition layer 108, p-type spacer layer 109, p + -type current path layer 110, p-type spacer layer 111, and p + -type contact layer 112 are sequentially stacked, and each surface emitting laser device is formed by CVD method.
  • a disc-shaped phase adjustment layer 114 made of SiN x is formed in a partial region of the p + -type contact layer 112, a disc-shaped phase adjustment layer 114 made of SiN x is formed.
  • each layer is such that the active layer 105 is located at a substantially antinode portion of the standing wave of light, and the p + -type current path layer 110, the oxidized layer 122, and the p + -type contact layer 112 are standing portions of light. It is preferable to adjust so as to be located at approximately a node of the wave.
  • the lift-off method is used to form the p-side annular electrode 113 on the p + -type contact layer 112 so that the phase adjustment layer 114 is disposed in the opening 113 a.
  • the semiconductor layer is etched to a depth reaching the n-type contact layer 104 using an acid etching solution or the like to form a cylindrical mesa post M1, and another mask is formed. And etch the n-type contact layer 104 to a depth reaching the buffer layer 103.
  • a structure in which the mesa post M1 shown in FIG. 4 is formed is obtained.
  • the p-side annular electrode 113 is used as a metal mask, the outer periphery of the p-side annular electrode 113 and the outer periphery of the mesa post M1 coincide with each other with high accuracy.
  • heat treatment is performed in a water vapor atmosphere to selectively oxidize the layer to be oxidized 122 from the outer peripheral side of the mesa post M1.
  • a chemical reaction of AlAs + H 2 O ⁇ Al 2 O 3 + AsH 3 occurs in the layer to be oxidized 122, AlAs becomes Al 2 O 3 from the outer peripheral side of the layer to be oxidized 122, and a current narrowing portion 107 a is formed. Since the chemical reaction proceeds uniformly from the outer peripheral side of the layer to be oxidized 122, a current injection portion 107b made of AlAs is formed at the center.
  • the heat treatment time or the like is adjusted so that the diameter of the current injection portion 107b becomes 6 to 7 ⁇ m.
  • the center of the mesa post M1 the center of the current injection portion 107b, and the center of the opening 113a of the p-side annular electrode 113 can be aligned with high accuracy.
  • a semi-annular n-side electrode 116 is formed on the surface of the n-type contact layer 104 on the outer peripheral side of the mesa post M1.
  • a passivation film 117 is formed on the entire surface, and then an opening is formed in the passivation film 117 on the n-side electrode 116 and the p-side annular electrode 113.
  • a lead-out electrode 118 is formed so as to connect the adjacent n-side electrode 116 and the p-side annular electrode 113 through these openings, and a common n-side electrode 1002 and a common p-side electrode 1003 are formed.
  • the back surface of the substrate 101 is polished to adjust the thickness of the substrate 101 to, for example, 150 ⁇ m. Thereafter, element separation is performed to complete the two-dimensional surface emitting laser array element 1000 shown in FIG.
  • FIG. 6 is a diagram showing the relationship between the drive current and the light output of the 50 ⁇ 10 surface emitting laser array element.
  • the driving voltage is 100 V at 100 V.
  • an optical output of about 3.3 W at a drive current of 100 mA and about 6.2 W at a drive current of 200 mA is obtained.
  • FIG. 7 is a schematic view showing a schematic configuration of the surface emitting laser device 10 according to the second embodiment and a part of the configuration.
  • the surface emitting laser device 10 includes a base 11, a heat sink 12 sequentially mounted on the base 11, a substrate 13, and the substrate 13 shown in FIG.
  • the micro lens array 14 is provided upright on the base 11, the two-dimensional surface-emitting laser array element 1000, the microlens array 14 sequentially disposed above the two-dimensional surface-emitting laser array element 1000, the condenser lens 15, and And supports 18 respectively supporting the condenser lens 15 and an electrode 18 disposed on the back surface of the base 13. Further, an optical fiber F is disposed in the vicinity of the condenser lens 15.
  • the base 11, the heat sink 12, the substrate 13, and the supports 16 and 17 are made of, for example, materials such as metal and aluminum nitride.
  • Each two-dimensional surface emitting laser array element 1000 is appropriately wired on the substrate 13 and electrically connected to the electrode 18.
  • the micro lens array 14 has a micro-machined surface such that collimating lenses are arranged in a two-dimensional array, as disclosed in Non-Patent Document 1.
  • the microlens array 14 is configured to collimate each laser beam output from each surface emitting laser element 100 constituting each two-dimensional surface emitting laser array element 1000.
  • the condenser lens 15 is, for example, a spherical or aspheric convex lens, and is configured to condense each laser beam which is a collimated beam by the micro lens array 14.
  • the micro lens array 14 collimates the laser light output from each of the two-dimensional surface light emitting laser array elements 1000, and the condensing lens 15 condenses and outputs the laser light output from the two-dimensional surface light emitting laser array device 1000.
  • the output watt-class high-intensity laser light is coupled to the optical fiber F, propagates through the optical fiber F and is carried to the desired location, and then the excitation light of the optical amplifier, the laser light for laser processing, and the laser for thermal processing It is used for various applications such as light.
  • the number of two-dimensional surface emitting laser array elements 1000 provided in the surface emitting laser device 10 can be appropriately selected according to the required laser beam intensity. Further, in the surface emitting laser device 10, the condenser lens 15 may be eliminated and the collimated light from the microlens array 14 may be used as it is for various applications.
  • the substrate 13 on which a plurality of two-dimensional surface emitting laser array elements 1000 are formed can be used as various light sources without using the microlens array 14.
  • each surface emitting laser element constituting each two-dimensional surface emitting laser array element 1000 can be used as a light source of a single wavelength, or at least one of each surface emitting laser element It is also possible to make the light emission wavelength of the part different and use it as a multicolor light source. In this case, the emission wavelengths of the adjacent surface emitting laser elements can be made different to prevent interference between the laser beams emitted from the adjacent surface emitting laser elements.
  • the two-dimensional surface-emitting laser array device is suitable as a high-power light source.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 基板と、前記基板上に形成され、高屈折率層と低屈折率層の周期構造から形成される下部多層膜反射鏡および上部多層膜反射鏡と、前記下部多層膜反射鏡と前記上部多層膜反射鏡との間に設けられた活性層と、前記活性層と前記下部多層膜反射鏡との間に位置し、前記上部多層膜反射鏡の外周側に延設した下側コンタクト層と、前記下側コンタクト層の延設した部分の表面に形成された下側電極と、前記活性層に電流を注入するための上側電極と、を有する複数の面発光レーザ素子を備え、前記複数の面発光レーザ素子は電気的に直列接続され、直列接続素子アレイを形成していること。これによって、簡易な構成で高いエネルギー変換効率を実現でき、かつ高集積化可能な2次元面発光レーザアレイ素子ならびにこれを用いた面発光レーザ装置および光源を提供する。

Description

2次元面発光レーザアレイ素子、面発光レーザ装置および光源
 この発明は、2次元面発光レーザアレイ素子、ならびにこれを用いた面発光レーザ装置および光源に関する。
 従来、光インターコネクション用の信号光源として、基板上に形成された複数の面発光レーザ素子を有する2次元面発光レーザアレイ素子が用いられている。この2次元面発光レーザアレイ素子は、個々の面発光レーザ素子が独立したレーザ光信号を出力するように構成されている。
 一方、この2次元面発光レーザアレイ素子をワットクラスの高出力レーザ光源として用いる技術が開示されている(非特許文献1参照)。この2次元面発光レーザアレイ素子は、上記の信号光源の場合とは異なり、複数の面発光レーザ素子からのレーザ光出力が集約され、1つの光源として機能するように構成されている。また、このような2次元面発光レーザアレイ素子は、端面発光型レーザ素子のような端面の光学的破壊(Catastrophic Optical Damage:COD)がないため、信頼性が非常に高い高出力レーザ光源として期待されている。また、素子に注入する電力に対するレーザ光出力の割合で規定されるパワー変換効率についても、非特許文献1に記載の2次元面発光レーザアレイ素子においては最大で51%と報告され、端面発光型レーザ素子と競合できるほどに十分に高いとされている。
Jean-Francois Seurin, et al., "High-power high-efficiency 2D VCSEL arrays", Proc. SPIE, Vol. 6908, 690808 (2008)
 しかしながら、非特許文献1に記載の2次元面発光レーザアレイ素子は、素子におけるパワー変換効率は高いものの、これを駆動する電源装置を含めて考えた場合に、エネルギー変換効率を高くできないという問題がある。
 すなわち、非特許文献1に記載の2次元面発光レーザアレイ素子は、これを構成する面発光レーザ素子が電気的に並列接続されているため、たとえば231Wのレーザ出力を実現するために、素子に3V程度の電圧を印加して320Aの電流を流して駆動している。ところが、このような低電圧、大電流を流すための電源装置は、一般的にエネルギー変換効率が低くなる。したがって、非特許文献1に記載の2次元面発光レーザアレイ素子は、電源装置を含めて考えた場合に、エネルギー変換効率を高くできないという問題がある。   
 また、非特許文献1に記載の2次元面発光レーザアレイ素子は、各素子を並列に接続するための配線パターンを設けるために、高集積化ができないという問題があった。
 本発明は、上記に鑑みてなされたものであって、簡易な構成で高いエネルギー変換効率を実現でき、かつ高集積化可能な2次元面発光レーザアレイ素子ならびにこれを用いた面発光レーザ装置および光源を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る2次元面発光レーザアレイ素子は、基板と、前記基板上に形成され、高屈折率層と低屈折率層の周期構造から形成される下部多層膜反射鏡および上部多層膜反射鏡と、前記下部多層膜反射鏡と前記上部多層膜反射鏡との間に設けられた活性層と、前記活性層と前記下部多層膜反射鏡との間に位置し、前記上部多層膜反射鏡の外周側に延設した下側コンタクト層と、前記下側コンタクト層の延設した部分の表面に形成された下側電極と、前記活性層に電流を注入するための上側電極と、を有する複数の面発光レーザ素子を備え、前記複数の面発光レーザ素子は電気的に直列接続され、直列接続素子アレイを形成していることを特徴とする。
 また、本発明に係る2次元面発光レーザアレイ素子は、上記の発明において、前記面発光レーザ素子は、前記活性層と前記上部多層膜反射鏡との間に位置する上側コンタクト層と、前記上側コンタクト層上に設けられた前記上側電極とを備えることを特徴とする。
 また、本発明に係る2次元面発光レーザアレイ素子は、上記の発明において、前記上部多層膜反射鏡の少なくとも一部は誘電体からなることを特徴とする。
 また、本発明に係る2次元面発光レーザアレイ素子は、上記の発明において、複数の前記面発光レーザ素子が1次元的に配列されて直列接続された素子アレイを形成していることを特徴とする。
 また、本発明に係る2次元面発光レーザアレイ素子は、上記の発明において、前記面発光レーザ素子の前記上側電極と、隣接する前記面発光レーザ素子の前記下側電極とが引き出し電極で接続されていることを特徴とする。
 また、本発明に係る2次元面発光レーザアレイ素子は、上記の発明において、複数の前記直列接続素子アレイを備え、前記複数の直列接続素子アレイは電気的に並列接続していることを特徴とする。
 また、本発明に係る2次元面発光レーザアレイ素子は、上記の発明において、複数の前記直列接続素子アレイは、隣接する当該直列接続素子アレイを構成する個々の面発光レーザ素子が、当該直列接続素子アレイの長手方向において互いに位置がずれて配置していることを特徴とする。
 また、本発明に係る面発光レーザ装置は、上記の発明のいずれか一つに記載の2次元面発光レーザアレイ素子と、前記2次元面発光レーザアレイ素子を構成する各面発光レーザ素子が出力する各レーザ光をコリメート光とするマイクロレンズアレイと、を備えたことを特徴とする。
 また、本発明に係る光源は、複数の前記面発光レーザ素子の発光波長が等しい上記の発明のいずれか一つに記載の2次元面発光レーザアレイ素子からなることを特徴とする。
 また、本発明に係る光源は、複数の前記面発光レーザ素子の少なくとも一部の発光波長が他の面発光レーザ素子の発光波長と異なる上記の発明のいずれか一つに記載の2次元面発光レーザアレイ素子からなることを特徴とする。
 本発明によれば、簡易な構成で面発光レーザ素子が直列接続しているため、簡易な構成で高いエネルギー変換効率を実現でき、かつ高集積化可能な2次元面発光レーザアレイ素子ならびに面発光レーザ装置および光源を実現できるという効果を奏する。
図1は、本実施の形態1に係る2次元面発光レーザアレイ素子の模式的な平面図である。 図2は、図1に示す2次元面発光レーザアレイ素子のA-A線断面において、1つの面発光レーザ素子を拡大して示した図である。 図3は、図1、2に示す2次元面発光レーザアレイ素子の製造方法の一例を説明する説明図である。 図4は、図1、2に示す2次元面発光レーザアレイ素子の製造方法の一例を説明する説明図である。 図5は、図1、2に示す2次元面発光レーザアレイ素子の製造方法の一例を説明する説明図である。 図6は、50×10面発光レーザアレイ素子の駆動電流と光出力との関係を示す図である。 図7は、実施の形態2に係る面発光レーザ装置の概略構成と、構成の一部を拡大して示した模式図である。
 本発明に係る2次元面発光レーザアレイは、2次元面発光レーザアレイ素子を構成する各素子を直列接続し、直列接続素子アレイを形成し、かつ、2次元面発光レーザアレイを構成する各面発光レーザ素子が、いわゆるイントラキャビティ型面発光レーザ素子であることを特徴としている。
 本発明によると、各面発光レーザ素子は素子抵抗が小さいので、それらを直列に接続することが可能となる。また、それらの面発光レーザ素子を直列に接続した面発光レーザアレイ素子とすることによって、エネルギー効率が大幅に改善される(たとえば、本発明による、面発光レーザ素子を50個直列接続した1次元アレイ(直列接続素子アレイ)では、両端に100V、10mAを供給する電源効率の高い電源装置を接続することで駆動することができる)。
 さらに直列接続素子アレイ内の素子間で新たな配線を設ける必要がないので、従来の面発光レーザアレイ素子に比べて素子間隔を小さくできる。
 すなわち、本発明の2次元面発光レーザアレイ素子を構成する面発光レーザ素子は、イントラキャビティ型(電流注入のための少なくとも一方のコンタクト層が光共振器ミラーの内側に含まれる)面発光レーザ素子である。したがって、基板裏面に電極をもつ従来の面発光レーザ素子を直列に接続するためには、基板裏面に通じる貫通孔を設ける必要があったが、本発明の構成を採用することによって、活性層に電流を注入するための電極を一方の表面のみに設けることができ、各面発光レーザ素子を従来の面発光レーザアレイ素子に比べて高密度に集積することができる。
 さらに、本発明では、ダブルイントラキャビティ型(電流注入のための二つのコンタクト層が光共振器ミラーの内側に含まれる)面発光レーザ素子を採用することによって、シングルイントラキャビティ型面発光レーザ素子を集積する場合に比べてさらに集積度を上げることができる。その理由は以下の通りである。すなわち、ダブルイントラキャビティ型面発光レーザ素子では、一般的には二つのコンタクト層が共振器ミラーの内側に設けられ、一方で、シングルイントラキャビティ型面発光レーザ素子では一方のコンタクト層は共振器ミラー上に設けられる。そのために、コンタクト層上に設けられる上側電極と下側電極の高低差が、シングルイントラキャビティ型の場合と比較して、ダブルイントラキャビティ型面発光レーザ素子では著しく小さくなる。その結果として、ダブルイントラキャビティ型面発光レーザ素子で直列接続素子アレイを形成すると、その表面上の段差を被覆し電気接続の保障された電極を形成するために必要とされる表面積が小さくなり、高集積化が可能となるのである。例えば、面発光レーザ素子間の高低差は、シングルイントラキャビティ型(上側電極であるp側電極が半導体ミラー上に形成された構造)では、4~5μmなのに対し、ダブルイントラキャビティ型では、その1/10程度(~0.5μm)に抑えられる。
 また、ダブルイントラキャビティ型とすることによって、各面発光レーザ素子の素子抵抗を、100Ω以下に下げることもできるので、10~100Ω、特に50Ω以下の低素子抵抗素子を用いると、100~1000といった多数の面発光レーザ素子の直列接続により2次元面発光レーザアレイ素子を構成することも可能になる。
 さらに、面発光レーザ素子を直鎖状に直列接続した直列接続素子アレイ同士を、間に配線パターンを介在させることなく近接して配置することができるので、一層、単位面積当たりの集積度を上げることができる。
 以下に、図面を参照して本発明に係る2次元面発光レーザアレイ素子、面発光レーザ装置および光源の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。なお、図面の記載において、同一部分には同一の符号を付している。
(実施の形態1)
 図1は、本実施の形態1に係る2次元面発光レーザアレイ素子1000の模式的な平面図である。図1に示すように、この2次元面発光レーザアレイ素子1000は、nを2以上の整数として、直列接続アレイ素子1001~1001と、共通n側電極1002と、共通p側電極1003とを有する。各直列接続アレイ素子1001~1001は、それぞれmを2以上の整数としてm個の面発光レーザ素子100から構成されている。すなわち、この2次元面発光レーザアレイ素子1000は、m×n個の面発光レーザ素子100から構成されている。m、nは特に限定されないが、たとえば、mは10~100であり、nは10~1000である。
 図2は、図1に示す2次元面発光レーザアレイ素子1000のA-A線断面において、1つの面発光レーザ素子100を拡大して示した図である。図2に示すように、この面発光レーザ素子100は、基板101と、基板101上に形成された下部多層膜反射鏡である下部DBRミラー102と、バッファ層103と、n型コンタクト層104と、多重量子井戸構造を有する活性層105と、下部傾斜組成層106と、外周に位置する電流狭窄部107aと電流狭窄部107aの中心に位置する円形の電流注入部107bとを有する電流狭窄層107と、上部傾斜組成層108と、p型スペーサ層109と、p型電流経路層110と、p型スペーサ層111と、p型コンタクト層112とが順次積層した構造を有する。そして、活性層105からp型コンタクト層112までが円柱状のメサポストM1を構成している。
 基板101は、たとえばアンドープのGaAsからなる。また、下部DBRミラー102は、たとえばGaAs/Al0.9Ga0.1As層の34ペアからなる。また、バッファ層103は、たとえばアンドープのGaAsからなる。また、n型コンタクト層104は、たとえばn型GaAsからなる。また、活性層105は、たとえば1100nm帯のレーザ光用として、層数が3のInGaAs層と層数が4のGaAs障壁層が交互に積層した構造を有しており、最下層のGaAs障壁層はn型クラッド層としても機能する。また、電流狭窄層107については、たとえば電流狭窄部107aはAlからなり、電流注入部107bは、直径が6~7μmであり、AlAsからなる。下部傾斜組成層106および上部傾斜組成層108は、たとえばAlGaAsからなり、厚さ方向において電流狭窄層107に近づくにつれてそのAl組成が段階的に増加するように構成されている。また、p型スペーサ層109、111とp型電流経路層110、p型コンタクト層112とは、たとえばそれぞれ炭素をドープしたp型、p型のGaAsからなる。なお、各p型またはn型層のアクセプタまたはドナー濃度はたとえば1×1018cm-3程度であり、p型層のアクセプタ濃度はたとえば1×1019cm-3以上である。
 また、p型コンタクト層112上に、Pt/Tiからなり、中心に開口部113aを有するとともに、メサポストM1の外周と一致する外周を有するp側円環電極113が形成されている。p側円環電極113の外径は、たとえば30μmであり、開口部113aの内径は、たとえば11~14μmである。
 また、p側円環電極113の開口部113a内には、たとえば誘電体である窒化珪素(SiN)からなる円板状の位相調整層114が形成されている。この位相調整層114は、下部DBRミラー102と上部DBRミラー115との間に形成される光の定在波の節や腹の位置を適正に調整する機能を有する。
 さらに、位相調整層114上からメサポストM1の外周にわたって誘電体からなる上部多層膜反射鏡である上部DBRミラー115が形成されている。上部DBRミラー115は、たとえばSiN/SiOの10~12ペアからなるが、たとえばα-Si/SiOまたはα-Si/Alのペアを、その材料の屈折率に応じて99%程度の適切な反射率がえられるようなペア数にしたものでもよい。また、n型コンタクト層104は、メサポストM1の下部から上部DBRミラー115の外周側に延設しており、その表面にたとえばAuGeNi/Auからなる半円環状のn側電極116が形成されている。n側電極116は、たとえば外径が80μm、内径が40μmである。また、上部DBRミラー115が形成されていない領域には、表面保護のためにSiNなどの誘電体からなるパッシベーション膜117が形成されている。
 また、n側電極116に対して、パッシベーション膜117に形成された開口部を介して接触するように、Auからなる引き出し電極118が形成されている。一方、p側円環電極113に対しても、パッシベーション膜117に形成された開口部を介して接触するように、Auからなる引き出し電極118が形成されている。
 ここで、図1に示すように、直列接続アレイ素子1001において、面発光レーザ素子100のn側電極116に接続した引き出し電極118は、共通n側電極1002に接続しており、p側円環電極113に接続した引き出し電極118は、隣接する面発光レーザ素子100のn側電極116に接続している。このように、直列接続アレイ素子1001は、複数の面発光レーザ素子100が電気的に直列接続した構成を有している。また、他の直列接続アレイ素子1001~1001も、同様に複数の面発光レーザ素子100が直列接続した構成を有している。
 さらに、これらの直列接続アレイ素子1001~1001は、共通n側電極1002と共通p側電極1003とによって電気的に並列接続している。また、共通n側電極1002と共通p側電極1003とは、外部に設けた不図示の電流供給回路に電気的に接続している。
 そして、この2次元面発光レーザアレイ素子1000は、電流供給回路から共通n側電極1002と共通p側電極1003とを介して各直列接続アレイ素子1001~1001の面発光レーザ素子100に電圧を印加し、電流を注入すると、電流は主に低抵抗のp型コンタクト層112とp型電流経路層110とを流れ、さらに電流経路が電流狭窄層107によって電流注入部107b内に狭窄されて、高い電流密度で活性層105に供給される。その結果、活性層105はキャリア注入されて自然放出光を発光する。自然放出光のうち、レーザ発振波長である1100nm帯の光は、下部DBRミラー102と上部DBRミラー115との間で定在波を形成し、活性層105によって増幅される。そして、注入電流がしきい値以上になると、定在波を形成する光がレーザ発振し、p側円環電極113の開口部113aからたとえば1100nm帯のレーザ光が出力する。
 ここで、この2次元面発光レーザアレイ素子1000を構成する各面発光レーザ素子100においては、下部DBRミラー102と活性層105との間に位置するn型コンタクト層104が、上部DBRミラー115の外周側に延設しており、n側電極116はこの延設した部分の表面に形成されている。また、各面発光レーザ素子100においては、p型コンタクト層112が、上部DBRミラー115と活性層103との間に位置している。すなわち、各面発光レーザ素子100は、いわゆるダブルイントラキャビティ型の構造を有している。このため、この2次元面発光レーザアレイ素子1000は、隣接する面発光レーザ素子100間の直列接続が簡易な構成で実現されており、これによって電源装置を含めて考えた場合に高いエネルギー変換効率を実現できるものとなっている。
 すなわち、上述したように、従来の2次元面発光レーザアレイ素子は、これを構成する面発光レーザ素子が並列接続されているため、電源装置を含めて考えた場合に、エネルギー変換効率を高くできないという問題がある。
 ところが、従来の2次元面発光レーザアレイ素子において隣接する面発光レーザ素子間を直列接続しようとすると、基板裏面のn側電極と基板表面のp側電極とを接続するために、基板にスルーホールを形成して配線したり、基板を面発光レーザ素子ごとにへき開して縦に並べたりする等、複雑な構成および煩雑な製造工程が必要となる。またこれらの複雑さおよび煩雑さは高いレーザ出力を実現するために面発光レーザ素子の数を増加させるにつれて益々増大する。
 これに対して、この2次元面発光レーザアレイ素子1000を構成する各面発光レーザ素子100においては、p側円環電極113とn側電極116のいずれもが基板101の表面側に位置しているので、隣接する面発光レーザ素子100のp側円環電極113とn側電極116とを引き出し電極118で接続するだけで、容易に直列接続が実現できる。 この構成によれば、面発光レーザ素子100間の電気的接続のために新たな配線パターンを必要とせず、基板101上の面発光レーザ素子100の占有率を高くすることができ高密度の集積化ができる。また、図1に示すように、直列接続アレイ素子1001~1001のうち隣接する直列接続アレイ素子に関して、直列接続アレイ素子を構成する面発光レーザ素子100を、アレイの長手方向において互いに位置をずらして配置することによって、直列接続アレイ素子間の間隔を小さくすることができるので、さらに高密度化が図れる。
 また、このように面発光レーザ素子100を直列接続すれば、高電圧、小低電流での2次元面発光レーザアレイ素子1000の駆動が可能となるため、エネルギー変換効率が高い電源装置を用いることができる。さらには、この2次元面発光レーザアレイ素子1000は、流す電流が小さいため、細い配線を利用することができるので、素子および電源回路等を含めて小型化、軽量化を実現できる。
 以上説明したように、この2次元面発光レーザアレイ素子1000は、簡易な構成で高いエネルギー変換効率かつ高集積化を実現できるものとなる。
 なお、この2次元面発光レーザアレイ素子1000においては、直列接続アレイ素子1001~1001が電気的に並列接続している。したがって、たとえば直列接続アレイ素子1001を構成する面発光レーザ素子100の一つが劣化あるいは破損し、直列接続アレイ素子1001が断線したとしても、他の直列接続アレイ素子1001~1001は動作し続ける。また、ある面発光レーザ素子の劣化、およびそれに伴う発熱の影響は、劣化した素子が属する直列接続アレイ素子内の範囲にとどまる。その結果、2次元面発光レーザアレイ素子1000全体の光出力の急激な低下は防止される。
 また、この2次元面発光レーザアレイ素子1000を構成する面発光レーザ素子100においては、上部DBRミラー115を誘電体で構成し、p側円環電極113から上部DBRミラーを通さないで活性層105に電流を注入している。その結果、たとえば従来の2次元面発光レーザアレイ素子のように、p型半導体からなる上部DBRミラーを通して電流を注入するものと比較して電気抵抗および熱抵抗が小さくなり、面発光レーザ素子100自体のパワー変換効率が高いとともに、良好な温度特性を有するものとなる。
 また、上部DBRミラー115の一部のみを誘電体膜で構成し、他の部分を半導体膜で構成してもよい。
 ただし、本発明において、面発光レーザ素子の構成としては、ダブルイントラキャビティ型のものに限られず、上部DBRミラーを半導体で構成し、p側円環電極を上部DBRミラーの上側に形成して、シングルイントラキャビティ型とした構成の面発光レーザ素子を用いてもよい。
 また、この2次元面発光レーザアレイ素子1000を構成する面発光レーザ素子100においては、活性層105より下側にn型半導体層、上側にp型半導体層を形成しているが、下側をp型半導体層とし、上側をn型半導体層としてもよい。
 また、この2次元面発光レーザアレイ素子1000は、GaAs系の半導体材料からなるものであるが、半導体材料は特に限定されない。
 つぎに、本実施の形態1に係る2次元面発光レーザアレイ素子1000の製造方法について説明する。図3~5は、図1、2に示す2次元面発光レーザアレイ素子1000の製造方法の一例を説明する説明図である。
 はじめに、エピタキシャル成長法によって、図3に示すように、基板101上に下部DBRミラー102、バッファ層103、n型コンタクト層104、活性層105、下部傾斜組成層106、AlAsからなる被酸化層122、上部傾斜組成層108、p型スペーサ層109、p型電流経路層110、p型スペーサ層111、p型コンタクト層112を順次積層し、さらにCVD法によって、各面発光レーザ素子を形成すべきp型コンタクト層112の一部領域に、SiNからなる円板状の位相調整層114を形成する。なお、各層の厚さは、活性層105が光の定在波のほぼ腹の部分に位置し、p型電流経路層110、被酸化層122、p型コンタクト層112が光の定在波のほぼ節の部分に位置するように調整することが好ましい。つぎに、リフトオフ法を用いて、p型コンタクト層112上に、p側円環電極113を、開口部113a内に位相調整層114が配置されるように形成する。
 つぎに、p側円環電極113を金属マスクとして、酸エッチング液等を用いてn型コンタクト層104に到る深さまで半導体層をエッチングして円柱状のメサポストM1を形成し、さらに別のマスクを形成し、バッファ層103に到る深さまでn型コンタクト層104をエッチングする。その結果、図4に示すメサポストM1が形成された構造が得られる。なお、p側円環電極113を金属マスクとしているので、p側円環電極113の外周とメサポストM1の外周とが高精度に一致する。
 つぎに、水蒸気雰囲気中において熱処理を行って、被酸化層122をメサポストM1の外周側から選択酸化する。このとき、被酸化層122においてAlAs+HO→Al+AsHなる化学反応が起こり、被酸化層122の外周側からAlAsがAlとなり、電流狭窄部107aが形成される。上記化学反応は被酸化層122の外周側から均一に進行するので、中心にはAlAsからなる電流注入部107bが形成される。ここでは、熱処理時間等を調整して、電流注入部107bの直径が6~7μmになるようにする。このように電流注入部107bを形成するので、メサポストM1の中心と、電流注入部107bの中心と、さらにp側円環電極113の開口部113aの中心とを高精度に一致させることができる。
 つぎに、メサポストM1の外周側のn型コンタクト層104の表面に、半円環状のn側電極116を形成する。つぎに、全面にパッシベーション膜117を形成した後、n側電極116およびp側円環電極113上においてパッシベーション膜117に開口部を形成する。これらの開口部を介して、隣接するn側電極116とp側円環電極113とを接続するように引き出し電極118を形成し、さらに共通n側電極1002、共通p側電極1003を形成する。
 つぎに、CVD法を用いて上部DBRミラー115を形成した後に、基板101の裏面を研磨し、基板101の厚さをたとえば150μmに調整する。その後、素子分離を行い、図1に示す2次元面発光レーザアレイ素子1000が完成する。
 つぎに、この2次元面発光レーザアレイ素子1000において、mを50、nを10とした場合、すなわち面発光レーザ素子100を50個直列に接続した直列接続アレイ素子1001~100110を並列接続にしたもの(以下、50×10面発光レーザアレイ素子と称する)の駆動電流に対する光出力をシミュレーション計算した。図6は、50×10面発光レーザアレイ素子の駆動電流と光出力との関係を示す図である。なお、駆動電圧は100mAで100Vとしている。図6に示すように、駆動電流100mAにおいて約3.3W、駆動電流200mAにおいて約6.2Wの光出力がそれぞれ得られている。
(実施の形態2)
 つぎに、本実施の形態2に係る面発光レーザ装置について説明する。図7は、本実施の形態2に係る面発光レーザ装置10の概略構成と、構成の一部を拡大して示した模式図である。図7に示すように、この面発光レーザ装置10は、基台11と、基台11上に順次載置したヒートシンク12、基板13と、基板13上に載置した、図1に示した9個の2次元面発光レーザアレイ素子1000と、2次元面発光レーザアレイ素子1000の上方に順次配置したマイクロレンズアレイ14、集光レンズ15と、基台11上に立設し、マイクロレンズアレイ14、集光レンズ15をそれぞれ支持する支持具16、17と、基台13の裏面に配置した電極18とを備える。また、集光レンズ15の近傍には、光ファイバFが配置されている。
 基台11、ヒートシンク12、基板13、支持具16、17は、たとえばそれぞれ金属や窒化アルミ等の材質からなる。また、各2次元面発光レーザアレイ素子1000は、基板13上で適宜配線されるとともに、電極18に電気的に接続している。また、マイクロレンズアレイ14は、非特許文献1に開示されたものと同様に、コリメートレンズが2次元アレイ状に配列するように表面が微細加工されている。これによって、このマイクロレンズアレイ14は、各2次元面発光レーザアレイ素子1000を構成する各面発光レーザ素子100が出力する各レーザ光をコリメート光とするように構成されている。また、集光レンズ15は、たとえば球面、非球面の凸レンズであり、マイクロレンズアレイ14がコリメート光とした各レーザ光を集光するように構成されている。
 この面発光レーザ装置10は、上記構成によって、各2次元面発光レーザアレイ素子1000が出力するレーザ光を、マイクロレンズアレイ14がコリメート光とし、さらに集光レンズ15が集光して出力する。出力したワットクラスの高強度のレーザ光は、光ファイバFに結合して光ファイバFを伝搬して所望の場所まで運ばれ、その後光増幅器の励起光、レーザ加工用レーザ光、熱プロセス用レーザ光等、各種の用途に使用される。
 なお、この面発光レーザ装置10が備える2次元面発光レーザアレイ素子1000の数は要求されるレーザ光強度に応じて適宜選択できる。また、この面発光レーザ装置10において、集光レンズ15を削除し、マイクロレンズアレイ14からのコリメート光をそのまま各種用途に使用してもよい。
 また、この面発光レーザ装置10のようにマイクロレンズアレイ14を用いずに、複数の2次元面発光レーザアレイ素子1000が形成された基板13を各種の光源として用いることもできる。
 この光源において、それぞれの2次元面発光レーザアレイ素子1000を構成する各面発光レーザ素子の発光波長を等しくすれば、単一波長の光源として用いることができ、あるいは各面発光レーザ素子の少なくとも一部の発光波長を異ならせ、多色の光源として用いることもできる。この場合、隣接する面発光レーザ素子の発光波長を異ならせ、隣接する面発光レーザ素子から出射するレーザ光同士の干渉を防止することもできる。
 以上のように、本発明に係る2次元面発光レーザアレイ素子は、高出力の光源として好適なものである。
 10 面発光レーザ装置
 11 基台
 12 ヒートシンク
 13 基板
 14 マイクロレンズアレイ
 15 集光レンズ
 16、17 支持具
 18 電極
 100 面発光レーザ素子
 101 基板
 102 下部DBRミラー
 103 バッファ層
 104 n型コンタクト層
 105 活性層
 106 下部傾斜組成層
 107 電流狭窄層
 107a 電流狭窄部
 107b 電流注入部
 108 上部傾斜組成層
 109、111 p型スペーサ層
 110 p型電流経路層
 112 p型コンタクト層
 113 p側円環電極
 113a 開口部
 114 位相調整層
 115 上部DBRミラー
 116 n側電極
 117 パッシベーション膜
 118 引き出し電極
 122 被酸化層
 1000 2次元面発光レーザアレイ素子
 1001~1001 直列接続アレイ素子
 1002 共通n側電極
 1003 共通p側電極
 F 光ファイバ
 M1 メサポスト

Claims (10)

  1.  基板と、
     前記基板上に形成され、高屈折率層と低屈折率層の周期構造から形成される下部多層膜反射鏡および上部多層膜反射鏡と、
     前記下部多層膜反射鏡と前記上部多層膜反射鏡との間に設けられた活性層と、
     前記活性層と前記下部多層膜反射鏡との間に位置し、前記上部多層膜反射鏡の外周側に延設した下側コンタクト層と、
     前記下側コンタクト層の延設した部分の表面に形成された下側電極と、
     前記活性層に電流を注入するための上側電極と、
     を有する複数の面発光レーザ素子を備え、
     前記複数の面発光レーザ素子は電気的に直列接続され、直列接続素子アレイを形成していることを特徴とする2次元面発光レーザアレイ素子。
  2.  前記面発光レーザ素子は、前記活性層と前記上部多層膜反射鏡との間に位置する上側コンタクト層と、前記上側コンタクト層上に設けられた前記上側電極とを備えることを特徴とする請求項1に記載の2次元面発光レーザアレイ素子。
  3.  前記上部多層膜反射鏡の少なくとも一部は誘電体からなることを特徴とする請求項2に記載の2次元面発光レーザアレイ素子。
  4.  複数の前記面発光レーザ素子が1次元的に配列されて直列接続された素子アレイを形成していることを特徴とする請求項1~3のいずれか一つに記載の2次元面発光レーザアレイ素子。
  5.  前記面発光レーザ素子の前記上側電極と、隣接する前記面発光レーザ素子の前記下側電極とが引き出し電極で接続されていることを特徴とする請求項1~4のいずれか一つに記載の2次元面発光レーザアレイ素子。
  6.  複数の前記直列接続素子アレイを備え、前記複数の直列接続素子アレイは電気的に並列接続していることを特徴とする請求項1~5のいずれか一つに記載の2次元面発光レーザアレイ素子。
  7.  複数の前記直列接続素子アレイは、隣接する当該直列接続素子アレイを構成する個々の面発光レーザ素子が、当該直列接続素子アレイの長手方向において互いに位置がずれて配置していることを特徴とする請求項1~6のいずれか一つに記載の2次元面発光レーザアレイ素子。
  8.  請求項1~7のいずれか一つに記載の2次元面発光レーザアレイ素子と、
     前記2次元面発光レーザアレイ素子を構成する各面発光レーザ素子が出力する各レーザ光をコリメート光とするマイクロレンズアレイと、
     を備えたことを特徴とする面発光レーザ装置。
  9.  複数の前記面発光レーザ素子の発光波長が等しい請求項1~7のいずれか一つに記載の2次元面発光レーザアレイ素子からなることを特徴とする光源。
  10.  複数の前記面発光レーザ素子の少なくとも一部の発光波長が他の面発光レーザ素子の発光波長と異なる請求項1~7のいずれか一つに記載の2次元面発光レーザアレイ素子からなることを特徴とする光源。
PCT/JP2010/050649 2009-01-20 2010-01-20 2次元面発光レーザアレイ素子、面発光レーザ装置および光源 WO2010084890A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010000821T DE112010000821T5 (de) 2009-01-20 2010-01-20 Zweidimensionales, oberflächenemittierendes Laser-Anordnungselement, oberflächenemittierende Lasereinrichtung und Lichtquelle
US13/142,996 US20110274131A1 (en) 2009-01-20 2010-01-20 Two-dimensional surface-emitting laser array element, surface-emitting laser device and light source
JP2010547502A JPWO2010084890A1 (ja) 2009-01-20 2010-01-20 2次元面発光レーザアレイ素子、面発光レーザ装置および光源

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009009983 2009-01-20
JP2009-009983 2009-01-20

Publications (1)

Publication Number Publication Date
WO2010084890A1 true WO2010084890A1 (ja) 2010-07-29

Family

ID=42355942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050649 WO2010084890A1 (ja) 2009-01-20 2010-01-20 2次元面発光レーザアレイ素子、面発光レーザ装置および光源

Country Status (4)

Country Link
US (1) US20110274131A1 (ja)
JP (1) JPWO2010084890A1 (ja)
DE (1) DE112010000821T5 (ja)
WO (1) WO2010084890A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093463A (ja) * 2012-11-06 2014-05-19 Fuji Xerox Co Ltd 面発光型半導体レーザアレイ装置、光源および光源モジュール
JP2014138096A (ja) * 2013-01-17 2014-07-28 Ricoh Co Ltd 面発光レーザアレイ及びその製造方法
WO2015011984A1 (ja) * 2013-07-22 2015-01-29 株式会社村田製作所 垂直共振面発光レーザアレイおよびその製造方法
WO2015011983A1 (ja) * 2013-07-22 2015-01-29 株式会社村田製作所 垂直共振面発光レーザアレイ
JP2015522217A (ja) * 2012-07-11 2015-08-03 コーニンクレッカ フィリップス エヌ ヴェ キャビティ内コンタクトを有するvcsel
JP2017050463A (ja) * 2015-09-03 2017-03-09 富士ゼロックス株式会社 面発光型半導体レーザアレイ及び面発光型半導体レーザアレイの製造方法
JP2017147461A (ja) * 2017-04-20 2017-08-24 富士ゼロックス株式会社 面発光型半導体レーザアレイ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170508A (ja) * 2008-01-11 2009-07-30 Furukawa Electric Co Ltd:The 面発光半導体レーザ及びその製造方法
RU2014141161A (ru) 2012-03-14 2016-05-10 Конинклейке Филипс Н.В. Модуль vcsel и его изготовление
DE102013216527A1 (de) * 2013-08-21 2015-02-26 Osram Opto Semiconductors Gmbh Laserbauelement und Verfahren zum Herstellen eines Laserbauelements
US9153944B2 (en) * 2014-02-05 2015-10-06 Epistar Corporation Light-emitting array
US10727649B2 (en) 2018-09-21 2020-07-28 Argo AI, LLC Monolithic series-connected edge-emitting-laser array and method of fabrication
WO2020122815A1 (en) * 2018-12-10 2020-06-18 Ams Sensors Asia Pte. Ltd. Light emitting module including enhanced eye-safety feature
US11581705B2 (en) * 2019-04-08 2023-02-14 Lumentum Operations Llc Vertical-cavity surface-emitting laser with dense epi-side contacts
JP2021064651A (ja) * 2019-10-10 2021-04-22 住友電気工業株式会社 発光モジュールおよびその製造方法、面発光レーザ
CN111224319A (zh) * 2020-01-20 2020-06-02 常州纵慧芯光半导体科技有限公司 有中空发光区的垂直腔面发射激光器及其制造方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306687A (ja) * 1987-06-08 1988-12-14 Fujitsu Ltd 半導体発光装置の製造方法
JPH09199756A (ja) * 1996-01-22 1997-07-31 Toshiba Corp 反射型光結合装置
JP2006121010A (ja) * 2004-10-25 2006-05-11 Sumitomo Electric Ind Ltd 面発光レーザ素子および面発光レーザアレイ
JP2008508730A (ja) * 2004-07-30 2008-03-21 ノバラックス,インコーポレイティド 面発光レーザのアレイを接合部分離するための装置、システム、および方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060029120A1 (en) * 2000-03-06 2006-02-09 Novalux Inc. Coupled cavity high power semiconductor laser
US7088321B1 (en) * 2001-03-30 2006-08-08 Infocus Corporation Method and apparatus for driving LED light sources for a projection display
WO2002084829A1 (en) * 2001-04-11 2002-10-24 Cielo Communications, Inc. Long wavelength vertical cavity surface emitting laser
JP3795007B2 (ja) * 2002-11-27 2006-07-12 松下電器産業株式会社 半導体発光素子及びその製造方法
JP2004356271A (ja) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd 面発光型半導体素子およびその製造方法
WO2006015133A2 (en) * 2004-07-30 2006-02-09 Novalux, Inc. Projection display apparatus, system, and method
WO2007105328A1 (ja) * 2006-03-14 2007-09-20 The Furukawa Electric Co., Ltd. 面発光レーザ素子アレイ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306687A (ja) * 1987-06-08 1988-12-14 Fujitsu Ltd 半導体発光装置の製造方法
JPH09199756A (ja) * 1996-01-22 1997-07-31 Toshiba Corp 反射型光結合装置
JP2008508730A (ja) * 2004-07-30 2008-03-21 ノバラックス,インコーポレイティド 面発光レーザのアレイを接合部分離するための装置、システム、および方法
JP2006121010A (ja) * 2004-10-25 2006-05-11 Sumitomo Electric Ind Ltd 面発光レーザ素子および面発光レーザアレイ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015522217A (ja) * 2012-07-11 2015-08-03 コーニンクレッカ フィリップス エヌ ヴェ キャビティ内コンタクトを有するvcsel
JP2014093463A (ja) * 2012-11-06 2014-05-19 Fuji Xerox Co Ltd 面発光型半導体レーザアレイ装置、光源および光源モジュール
JP2014138096A (ja) * 2013-01-17 2014-07-28 Ricoh Co Ltd 面発光レーザアレイ及びその製造方法
WO2015011984A1 (ja) * 2013-07-22 2015-01-29 株式会社村田製作所 垂直共振面発光レーザアレイおよびその製造方法
WO2015011983A1 (ja) * 2013-07-22 2015-01-29 株式会社村田製作所 垂直共振面発光レーザアレイ
TWI569026B (zh) * 2013-07-22 2017-02-01 Murata Manufacturing Co Vertical resonant surface emitting laser array
JPWO2015011983A1 (ja) * 2013-07-22 2017-03-02 株式会社村田製作所 垂直共振面発光レーザアレイ
US9692211B2 (en) 2013-07-22 2017-06-27 Murata Manufacturing Co., Ltd. Vertical cavity surface emitting laser array
US9865994B2 (en) 2013-07-22 2018-01-09 Murata Manufacturing Co., Ltd. Vertical cavity surface emitting laser array and method for manufacturing the same
JP2017050463A (ja) * 2015-09-03 2017-03-09 富士ゼロックス株式会社 面発光型半導体レーザアレイ及び面発光型半導体レーザアレイの製造方法
US9787062B2 (en) 2015-09-03 2017-10-10 Fuji Xerox Co., Ltd. Vertical cavity surface emitting laser array and method for manufacturing vertical cavity surface emitting laser array
JP2017147461A (ja) * 2017-04-20 2017-08-24 富士ゼロックス株式会社 面発光型半導体レーザアレイ

Also Published As

Publication number Publication date
US20110274131A1 (en) 2011-11-10
JPWO2010084890A1 (ja) 2012-07-19
DE112010000821T5 (de) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2010084890A1 (ja) 2次元面発光レーザアレイ素子、面発光レーザ装置および光源
JP5593700B2 (ja) 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
US7813402B2 (en) Surface emitting laser and method of manufacturing the same
JP5082344B2 (ja) 面発光型半導体レーザおよびその製造方法
JP2013065692A (ja) 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2009277815A (ja) 半導体発光素子
JP2015522217A (ja) キャビティ内コンタクトを有するvcsel
JP2014022672A (ja) 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
US6546038B1 (en) Semiconductor surface-emitting element
JP4985954B2 (ja) 面発光型半導体レーザ
JP5460412B2 (ja) 半導体レーザ素子およびその製造方法
JP5954469B1 (ja) 面発光型半導体レーザ、面発光型半導体レーザアレイ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2012028412A (ja) 2次元面発光レーザアレイ素子、面発光レーザ装置および光源
JP5190038B2 (ja) 面発光レーザ
JP6252222B2 (ja) 面発光レーザアレイ及びレーザ装置
JP2009200137A (ja) 面発光半導体レーザ及び面発光半導体レーザアレイ
JP2007299897A (ja) 面発光レーザ素子、それを備えた面発光レーザアレイ、面発光レーザ素子または面発光レーザアレイを備えた画像形成装置、面発光レーザ素子または面発光レーザアレイを備えた光インターコネクションシステムおよび面発光レーザ素子または面発光レーザアレイを備えた光通信システム
JP4164679B2 (ja) 面発光型半導体レーザ
JP3785683B2 (ja) 面発光素子
JP2012124304A (ja) 高出力面発光レーザアレイの駆動方法、高出力面発光レーザアレイ群の制御方法、および光出力制御システム
JP5460477B2 (ja) 面発光レーザアレイ素子
JP2011155143A (ja) 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2007227860A (ja) 半導体発光素子
JP2005251860A (ja) 面発光レーザ装置
JP6835152B2 (ja) 発光素子アレイ、および光伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547502

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010000821

Country of ref document: DE

Ref document number: 1120100008213

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733497

Country of ref document: EP

Kind code of ref document: A1