JP2009170508A - 面発光半導体レーザ及びその製造方法 - Google Patents

面発光半導体レーザ及びその製造方法 Download PDF

Info

Publication number
JP2009170508A
JP2009170508A JP2008004410A JP2008004410A JP2009170508A JP 2009170508 A JP2009170508 A JP 2009170508A JP 2008004410 A JP2008004410 A JP 2008004410A JP 2008004410 A JP2008004410 A JP 2008004410A JP 2009170508 A JP2009170508 A JP 2009170508A
Authority
JP
Japan
Prior art keywords
layer
circular hole
surface emitting
semiconductor laser
emitting semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008004410A
Other languages
English (en)
Inventor
Tomofumi Kise
智文 喜瀬
Noriyuki Yokouchi
則之 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008004410A priority Critical patent/JP2009170508A/ja
Priority to US12/318,780 priority patent/US20090180509A1/en
Publication of JP2009170508A publication Critical patent/JP2009170508A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18327Structure being part of a DBR
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18319Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement comprising a periodical structure in lateral directions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】単一横モード発振が可能で、低いしきい値電流、低い素子抵抗を実現する面発光半導体レーザを歩留まり高く製造する。
【解決手段】面発光レーザは、下部多層膜反射鏡、n型コンタクト層、活性層、p型コンタクト層、及び、上部多層膜反射鏡を備える。上部多層膜反射鏡の多層膜中の最下層には、複数の空孔が2次元周期的に配列された2次元空孔配列が形成される。その上に上部多層膜反射鏡の多層膜が積層され、2次元空孔配列の形状が部分的に保持されて、周期的な屈折率の2次元分布が得られる。この屈折率の2次元分布は、中央の空孔が形成されない点欠陥に対しクラッドとして働き、光を点欠陥に閉じ込める。
【選択図】図1

Description

本発明は、面発光半導体レーザ及びその製造方法に関し、更に詳しくは、基本横モード発振が可能な面発光半導体レーザ及びその製造方法に関する。
垂直共振器型面発光半導体レーザ素子(VCSEL:Vertical Cavity Surface Emitting Laser、以下、単に面発光レーザと称する)は、その名の通り、光の共振する方向が基板面に対して垂直であり、光インターコネクションをはじめ、通信用光源として、また、センサー用途などの様々なアプリケーション用デバイスとして注目されている。その理由として、面発光レーザは、従来の端面発光型半導体レーザと比較して、レーザ素子の2次元配列を容易に形成できること、ミラー形成のための劈開が必要でないためウエハレベルでテストできること、活性層体積が格段に小さいので極低しきい値で発振できること、及び、消費電力が小さいことなどの種々の利点を有していることが挙げられる。
特に、面発光レーザでは、共振器長が極めて短いことから、発振スペクトルの縦モードに関して容易に基本モード発振が得られる利点がある。その一方で、横モードに関しては、モード制御機構を有していないため、複数の高次モードで発振してしまう問題がある。複数の高次横モードによって発振したレーザ光は、光伝送に際して、特に高速変調時には、伝送距離に比例して著しい信号劣化を引き起こす原因となる。そこで、面発光レーザでは、基本横モードでのレーザ発振を実現するためのさまざまな構造が提案されている。
基本横モードを得るための最も単純な方法は、発光領域の面積を、基本モードのみが発振できる程度に小さくした構造を採用することである。例えば、発振波長が850nm帯のAlAs層選択酸化光閉込め型の面発光レーザの場合には、AlAs層と酸化層(Al)との屈折率差が大きいため、基本横モードを得るためには、発光領域のサイズを約10μm以下に小さく抑える必要がある。酸化狭窄型構造の面発光レーザでは、発光領域の面積の大きさを制御する電流狭窄幅は、一般にAlAs層の外縁部を選択的に酸化して形成した酸化層によって決定される。ところが、この酸化層の内径を、上記した約10μm以下となるサイズに形成するには、精密な酸化プロセス制御が要求されることになり、結果的に製品歩留まりが低下する。さらには、そのような狭い発光面積では、レーザ出力が極端に低くなると同時に、素子抵抗が増大し、面発光レーザに印加する電圧の増大を招いてしまう。
そこで、面発光レーザにおいて、発光面積を広くし、かつ基本横モード発振を得るための手段として、例えば、非特許文献1に示されるような構造が提案されている。図11は、該文献に記載された面発光レーザの断面模式図である。面発光レーザは、n型GaAs基板1と、その基板上に順次に堆積された、下部多層膜反射鏡2,n型クラッド層3、量子井戸活性層4、p型クラッド層6、周囲が酸化されて電流阻止領域5bとなり、中央部に電流開口5aが形成された酸化狭窄層5、円孔7が2次元周期的に配列された上部多層膜反射鏡9、p型コンタクト層8、リング状のp側電極10、及び、p側引出電極11から成る積層構造と、GaAs基板1の裏面に形成されたn側電極12とを有する。
上記面発光レーザでは、積層面内(基板面と平行な面内)で、円孔が2次元周期的に配列された2次元円孔(空孔)配列により、光が感じる屈折率が僅かに低下し、積層面内で周期的な屈折率の2次元分布が得られる。この構造により、円孔がない中央部の点欠陥領域がコアとなり、その周囲の2次元円孔配列を有する領域がクラッドとして働く。このような弱い屈折率閉じ込めによる横モード制御により、基本横モードのみを発振させる発光領域の面積を大きくすることができる。この構造の面発光レーザは、フォトニック結晶面発光レーザとも呼ばれており、面発光レーザの高出力化、及び、低抵抗化の可能性により、特に注目されている。
ところが、図11に示した従来のフォトニック結晶面発光レーザでは、2次元円孔配列形成の際に、横モード制御に必要な屈折率閉込めを得るためには、通常で30ペア程度の多層膜を有する上部多層膜反射鏡の厚みの大部分に相当する3μm以上を深くエッチングする必要があった。このため、円孔の深さ制御が困難となり、結果として単一横モード歩留りが低下するという問題があった。また、このような深い2次元円孔配列によって光が散乱されるため、光損失が増大し、しきい値電流の上昇や、光出力の低下を招き易く、更には、円孔が電流注入経路に配置されているため、素子抵抗が上昇するという問題もあった。
IEEE Journal of Selected Topics in Quantum Electronics, Vol.9, No.5, pp.1439-1445, September/October 2003
本発明は、上記フォトニック結晶面発光レーザの問題に鑑み、高い歩留りで作製が可能で、かつ光の散乱損失や素子抵抗の上昇を大幅に低減できる、基本横モード発振可能な面発光レーザを提供することを目的とする。
上記課題を解決するため、本発明は、第1の態様において、半導体基板上に積層される下部多層膜反射鏡、活性層、及び、上部多層膜反射鏡を少なくとも含む積層構造と、前記活性層に電源を供給する上部電極及び下部電極とを備える面発光半導体レーザにおいて、
前記上部多層膜反射鏡には、積層面内における所定の領域を除き、前記積層面内において周期的な屈折率の2次元分布が形成されており、
前記周期的な屈折率の2次元分布は、前記活性層上に形成される、前記所定の領域を囲む周囲領域に2次元周期的に円孔が配列された少なくとも1層の円孔形成層と、前記円孔の内部を含む円孔形成層上に一様に且つ順次に堆積され、前記上部多層膜反射鏡を構成する多層膜とによって形成されていることを特徴とする面発光半導体レーザを提供する。
本発明の面発光半導体レーザでは、前記円孔形成層が、前記上部多層膜反射鏡の下層部の1層、好ましくは最下層の1層から成る構成、又は、前記下層部の層、若しくは最下層を含む複数層から成る構成が採用可能である。この場合、円孔形成層を、発振レーザ光の定在波の光強度が最も強い光強度分布の腹(peak)に近い位置とすることができ、上部多層膜反射鏡内で周期的な屈折率の2次元分布が容易に得られる。
また、前記積層構造が、前記上部多層膜反射鏡と前記活性層との間に挟まれ前記上部電極に接触する第1のコンタクト層を更に含み、前記円孔形成層が該第1のコンタクト層を含む構成を採用できる。円孔形成層を、発振レーザ光の定在波の腹に近い位置とする共に、イントラキャビティ構造の採用により円孔形成層を電流注入経路とは異なる位置に形成できる。このため、素子抵抗の上昇を抑えることが出来る。
更に、前記上部多層膜反射鏡が、前記周囲領域の径方向外側の領域が除去されて柱状の第1のメサポストを形成する誘電体多層膜から構成され、前記上部電極が、前記第1のメサポストの径方向外側で前記第1のコンタクト層に接触している構成を採用できる。この場合、イントラキャビティ構造の採用が容易である。
上記の場合には、前記積層構造が、前記下部多層膜反射鏡と前記活性層との間に挟まれ前記下部電極に接触する第2のコンタクト層を更に含み、
前記第1のコンタクト層、活性層、及び、上部電極は、前記上部電極の径方向外側の領域が除去されて柱状の第2のメサポストを形成し、
前記下部電極が、前記第2のメサポストの径方向外側で前記第2のコンタクト層に接触している構成を採用できる。この場合、イントラキャビティ構造の採用が容易である。
更に、前記上部多層膜反射鏡が半導体多層膜である構成を採用できる。上部多層膜反射鏡の構成の自由度が高まる。
前記屈折率の2次元分布は、前記積層面内において基本横モードレーザ発振を発生させる構成が好ましい。
更に、前記円孔形成層が6層以下の層から成る構成や、前記上部多層膜反射鏡内の前記活性層に隣接する位置に、又は、前記上部多層膜反射鏡と前記活性層との間に、電流狭窄層が形成されている構成も採用可能である。電流狭窄層は、イオン注入法により形成することができ、或いは、酸化狭窄層として構成できる。
更に、前記円孔形成層内に、レーザ光の定在波の光強度分布のピークが形成される構成が好ましい。この場合、円孔形成による周期的な屈折率の2次元分布形成の効率が特に高くなる。
本発明は、第2の態様において、半導体基板の上部に、下部多層膜反射鏡、及び、活性層を順次に堆積するステップと、
前記活性層の上部に、積層面内で所定の領域を囲む周囲領域に2次元周期的に円孔を配列した少なくとも1層の円孔形成層を形成するステップと、
上部多層膜反射鏡を構成する多層膜を、前記円孔の内部を含む円孔形成層上に一様に且つ順次に堆積するステップとを有し、
前記上部多層膜反射鏡内に、前記所定の領域の上部を除き、前記積層面内において周期的な屈折率の2次元分布を形成することを特徴とする面発光半導体レーザの製造方法を提供する。
本発明の面発光レーザの製造方法では、前記円孔形成層が、前記上部多層膜反射鏡の最下層を含む構成、或いは、前記上部多層膜反射鏡が、誘電体多層膜であり、前記円孔形成層が、前記上部多層膜反射鏡と前記活性層との間に形成され上部電極に接触するコンタクト層を含む構成を採用できる。なお、本発明で使用する用語「多層膜」は、分布ブラッグ反射鏡(DBR:多層膜反射鏡)を構成する、屈折率が相互に異なるペア層を複数含む層構成を意味し、分布ブラッグ反射鏡が形成できる限りペア数の大小を問わない。
本発明の面発光半導体レーザ、及び、本発明方法で製造される面発光半導体レーザでは、2次元周期的な円孔配列を共振器内部の円孔形成層に形成し、上部多層膜反射鏡の積層面内で周期的な屈折率の2次元分布を、その円孔形成層を起点として形成する。この構成により、横モード制御に十分な屈折率の2次元分布を与える2次元周期配列の円孔を浅く形成することができるため、プロセスの制御が容易で、効率良くシングル横モードが実現でき、かつ、従来技術に比して光の散乱損失を低減することも可能である。
(第1の実施形態例)
以下、図面に基づいて本発明の第1の実施形態例について説明する。図1は、本発明の第1の実施形態例に係る面発光レーザの断面模式図であり、図2はそのメサポスト部分の上面図である。本実施形態の面発光レーザ100は、発振波長が1300nmとなるように設計されている。面発光レーザ100は、例えば半絶縁性のGaAs基板101と、そのGaAs基板101上に順次に形成された下部反射鏡102、n型コンタクト層103、量子井戸構造を有する活性層104、電流開口105a及び電流阻止領域105bを有する電流狭窄層105、p型コンタクト層106、及び、2次元周期配列の起点となる最下層107を含む上部多層膜反射鏡110から成る積層部と、p型コンタクト層106及びn型コンタクト層103の上にそれぞれ形成されたp側電極112、及び、n側電極114を備える。上部多層膜反射鏡110は、屈折率の2次元分布が形成された周囲領域の外側の領域がエッチングにより除去されて、柱状の第1のメサポスト111を形成する。また、n型コンタクト層103上に積層された活性層104、電流狭窄層105、及び、p型コンタクト層106は、積層構造の外周部分のエッチング処理等により、柱状の第2のメサポスト113を形成する。
本実施形態例では、上部多層膜反射鏡110の最下層107に、図2に示すような複数の円孔108が積層面内において正三角形の三角格子状となるように、2次元的周期的な円孔配列を形成する。円孔108は、最下層107を貫通して形成してもよく、或いは、最下層107の下部に底部を有するように形成してもよい。上部多層膜反射鏡110の各積層膜は、最下層107に形成された2次元円孔配列の形状を少なくとも部分的に保持しながら、最上層まで続いている。2次元円孔配列には、その中央部分に円孔がない点欠陥109を有している。このような円孔配列により、円孔108が形成された部分の平均屈折率は、円孔がない点欠陥109の平均屈折率よりも僅かに小さくなる。このため、円孔108が形成された周囲部分は、中央部分の点欠陥109を伝搬する光に対してクラッドとして働く。つまり、点欠陥109の部分は、コアとして作用し、基本横モード発振を得るための光の出射部となる。図2の例では、点欠陥109は、円孔の1つが形成されない領域として形成されているが、2つ以上の円孔が形成されない領域として形成することも出来る。
上記実施形態の面発光レーザ100は、例えば以下の製造プロセスにより製造される。まず半絶縁性GaAs基板101上に、MOCVD法又はMBE法で、それぞれの層の厚みがλ/4n(λは発振波長、nは屈折率)である、例えばGaAs/AlAsペア層からなる複合半導体層を複数ペア積層して、半導体多層膜反射鏡からなる下部DBRミラー102を形成する。次に、その下部DBRミラー102上に、例えばn−GaAsからなるn型コンタクト層103、例えばGaInNAs/GaAsからなる複合半導体層が3層積層された多重量子井戸(MQW:Multiple Quantum Well)構造を有する活性層104、及び、例えばp−GaAsからなるp型コンタクト層106を順次に積層する(図3)。
次に、図3の積層構造上に、フォトレジストを用いたリソグラフィー技術により、所定の大きさを有する円板状のフォトレジストパターンを形成する。その後、イオン注入装置により、円板状のフォトレジストパターンを注入マスクとして、外周部に水素イオンを注入し、p型コンタクト層106内に外周側の電流阻止領域105bと中央の電流開口105aとからなる電流狭窄層105を形成する(図4)。なお、イオン注入マスクには、フォトレジストに代えて、Au(金)などを用いても構わない。また注入するイオン種は水素に限らず、高抵抗な絶縁層を形成可能なものであれば、例えば酸素などでも構わない。この電流狭窄層105により、p側電極112から注入される電流を狭窄して、中央の電流開口105a内に集中させ、電流開口105a内の電流密度を高める。
次に、積層構造の表面に、プラズマCVD法を用いてSiN膜を成膜したのち、通常のフォトレジストを用いたリソグラフィー技術とフッ素系のガスを用いたRIE(反応性イオンエッチング)とにより、SiN膜をエッチングし、図2に示した2次元円孔配列を有する円孔形成層107を形成する(図5)。2次元円孔配列は、中央部に円孔が存在しない点欠陥109を有し、円孔の2次元周期が5μm、各円孔の直径が3μmの三角格子状の2次元円孔配列とする。またエッチングする深さは、最下層の膜厚よりも小さな深さ、例えば50nmとする。なお、円孔108の配列周期、孔径、深さなどは、円孔108が形成された部分の平均屈折率と円孔がない点欠陥109の平均屈折率との差により、積層面方向において基本横モード発振が得られるように、適宜調整される。
本実施形態例では、2次元円孔配列のエッチング深さが50nmと浅く、さらに誘電体多層膜の内の1層のエッチングであり、半導体多層膜反射鏡の大部分に円孔を深く形成する従来例と比べて深さ制御性に優れ、かつ光の散乱損失を生じにくい。
次いで、円孔を形成した上部多層膜反射鏡110の最下層107の上に、プラズマCVD法を用いて、例えばSiO/SiNペア層からなる誘電体層を12ペア積層して、誘電体多層膜からなる上部DBRミラー110を堆積形成する(図6)。この工程により、SiNx膜から成る最下層107に形成された2次元円孔配列は、その最下層107を起点として、円孔配列の形状を少なくとも部分的に保持しながら、上部積層に伝達される。このようにして、上部DBRミラー110は、積層内の全体に屈折率の2次元配列構造が形成される。
SiO/SiNペア層からなる誘電体多層膜の上部DBRミラー110は、全体として所定透過率の光透過性を有している。面発光レーザ100では、このように上部多層膜反射鏡として誘電体多層膜を用いることで、半導体多層膜を用いる場合に比べて、上部DBRミラー110における光の吸収損失を大幅に低減させている。
また、本実施形態例では、p型コンタクト層106の厚さや、円孔を形成する上部多層膜反射鏡110の最下層の厚さを適切に設計することで、キャリア濃度が高く、吸収損失の高いp型コンタクト層106内に、光強度の定在波の節が来るようにする。その場合、上部多層膜反射鏡110の最下層107内に、光強度の定在波の腹が来るため、2次元屈折率分布と光の結合効率を高くすることができ、2次元屈折率分布による横モード制御を効率よく行うことが可能である。なお、2次元屈折率分布の起点となる円孔形成層は、必ずしも上部多層膜反射鏡110の最下層107に限定されない。また、1層には限定されず、例えば6ペア程度の層を円孔形成層としてもよい。
次に、上記上部DBRミラー110の周縁部を、p型コンタクト層106に到達するまでエッチングし、その内側の積層部分をメサポスト111に加工する。次いで、フォトレジストを用いたリソグラフィーにより、エッチングされたメサポストの周縁部に、リング形状の開口を有するフォトレジストパターンを形成する。その後、例えばAuZnをそのフォトレジストパターンの開口内に蒸着して、リング形状をしたp側電極112を形成する(図7)。また、そのp側電極112を覆って、Ti/Auから成るp側引出電極115を形成する。図7に示すように、p側電極112及びp側引出電極115は、p型コンタクト層106上に、電流注入領域104aの直上部における上部多層膜反射鏡110の一部を、その積層面に沿って取り囲むようにリング状に形成される。
次いで、メサポスト111及びp側電極112の更に外周側で、上記積層構造の一部をn型コンタクト層103に到達するまでエッチングし、メサポスト113に加工する。その後、フォトレジストを用いたリソグラフィーにより、フォトレジストに所定の開口を形成し、その開口内に例えばAuGeNiを蒸着して、所定の形状をしたn側電極114を形成する(図8)。また、Ti/Auでn側引出電極116を形成する。このようにn側電極114及びn側引出電極116は、n型コンタクト層103上に、メサポスト113の底面部を積層面に沿って取り囲むようにして形成される。
その後、基板厚さが200μm程度になるように、半絶縁性GaAs基板101を裏面から研磨する。以上により本実施形態の面発光レーザが得られる。
上記のように、本実施形態例の面発光レーザ100では、p側電極112およびn側電極114は、それぞれ引出電極115、116を含んで、コンタクト層106、103上に形成されて、イントラキャビティ電極構造を有する。この構造により、p型コンタクト層106から電流狭窄層の電流開口105aに至る電流注入経路には2次元円孔配列が存在しないため、従来の面発光レーザに比べて、過剰な素子抵抗の上昇を防ぐことが可能である。
(第2の実施形態例)
以下、本発明の第2の実施形態例に係る面発光レーザについて、図9を参照して説明する。本実施形態例の面発光レーザ200は、発振波長が1100nmとなるように設計されている。面発光レーザ200は、半絶縁性GaAs基板201と、GaAs基板201上に順次に積層された、下部反射鏡202、n型コンタクト層203、活性層204、電流狭窄層205、及び、上部領域207に円孔が形成されて2次元屈折率分布の起点となるp型コンタクト層206、及び、上部多層膜反射鏡210を含む積層構造とを備える。n型コンタクト層203上にはn側電極214が、また、p型コンタクト層206上にはp側電極212が形成されている。上部多層膜反射鏡210は、その外周側が除去されて柱状の第1のメサポスト211を形成する。また、n型コンタクト層203上に積層された活性層204、電流狭窄層205、及び、p型コンタクト層206は、p側電極212の外周側で除去されて、柱状の第2のメサポスト213を形成している。
本実施形態例では、p型コンタクト層206の内周側に、周期的な円孔の2次元分布として形成された上部領域207を起点として、その上の上部多層膜反射鏡210に周期的な屈折率の2次元が形成されている。上部領域207に形成された円孔は、図2に示すような分布に形成される。つまり、複数の円孔108が積層面内において正三角形の三角格子状に2次元的に配列形成されている。上部多層膜反射鏡210は、p型コンタクト層206内に形成された2次元円孔配列形状を少なくとも部分的に保持しながら、p型コンタクト層上に積層されている。
図2に示すように、円孔配列は、その中央に円孔がない点欠陥109を有している。この円孔配列により、円孔108が形成されたp型コンタクト層206の上部領域207、及び、その上側の上部多層膜反射鏡の部分の平均屈折率は、円孔がない点欠陥109及びその上側の上部多層膜反射鏡の部分の平均屈折率よりも僅かに小さくなる。このため、円孔108が形成された部分及びその上部は、点欠陥109を伝搬する光に対してクラッドとして働く。つまり、点欠陥109は、基本横モード発振を得るための光の出射部を構成する。なお、この点欠陥109は、図2に示すように、1つの円孔が形成されない点欠陥に限らず、複数の円孔が形成されない点欠陥とすることも出来る。
本実施形態例の面発光レーザは、例えば以下の製造プロセスにより得られる。まず半絶縁性GaAs基板201上に、MOCVD法又はMBE法で、例えばGaAs/AlAsペア層からなる複合半導体層を交互に複数積層して、半導体多層膜反射鏡からなる下部多層膜反射鏡(下部DBRミラー)202を形成する。半導体多層膜反射鏡202の各層は、λ/4n(λは発振波長、nは屈折率)の厚みを有する。次に、その積層上に、例えばn−GaAsからなるn型コンタクト層203、例えばGaInAs/GaAsからなる複合半導体層が3層積層された多重量子井戸(MQW:Multiple Quantum Well)構造からなる活性層204、及び、例えばp−GaAsからなるp型コンタクト層206を順次積層する。
次に、フォトレジストを用いたリソグラフィーにより、フォトレジストを所定の大きさを有する円板状に加工する。その後、イオン注入装置により、このフォトレジストを注入マスクとして、水素イオンを注入する。これにより、p型コンタクト層206内に、電流阻止領域205bと所定の大きさを有する電流開口205aとからなる電流狭窄層205を形成する。なお、イオン注入マスクには、フォトレジストに代えて、Au(金)などを用いても構わない。また注入するイオンは水素に限らず、高抵抗な絶縁層を形成可能なものであれば、例えば酸素などでも構わない。この電流狭窄層により、p側電極212から注入される電流を狭窄して、電流開口205a内に集中させ、電流開口205a内の電流密度を高める。
次に、プラズマCVD法を用いてSiN膜を成膜する。次いで、通常のフォトレジストを用いたリソグラフィーとフッ素系のガスを用いたRIE(反応性イオンエッチング)とにより、SiNをエッチングし、2次元円孔配列を形成する。2次元円孔配列は、中央部に円孔が存在しない点欠陥を有し配列の周期が5μm、各円孔の直径が3μmの三角格子状配列の円孔から成る。2次元円孔配列のSiNをマスクとして、塩素ガスを用いたICP(誘導結合プラズマ型)−RIEにより、p型コンタクト層206の上部をエッチングする。エッチングする深さは、例えば50nmとする。なお、円孔108の配列周期、孔径、深さなどは、円孔108が形成された部分の平均屈折率と円孔がない点欠陥109の平均屈折率との差により、積層面方向において基本横モード発振が得られるように、適宜調整される。
本実施形態例では、2次元円孔配列のエッチング深さが50nmと浅く、さらにGaAsから成るp型コンタクト層206の上部のみのエッチングである。このため、半導体多層膜反射鏡の大部分に空円孔を深く形成する従来例と比べてプロセス制御性に優れ、かつ光の散乱損失を生じにくい。
次いで、プラズマCVD法を用いて、例えばSiO/SiNペア層からなる複合誘電体層を12ペア積層して、誘電体多層膜ミラーからなる上部DBRミラー210を形成する。この工程により、2次元円孔配列は、p型コンタクト層の上部領域207を起点として、その形状を少なくとも部分的に保持しながら、上部DBRミラー210内に周期的な屈折率の2次元分布を形成する。
SiO/SiNからなる誘電体多層膜反射鏡210は、全体として所定透過率の光透過性を有している。面発光レーザ200では、このように上部多層膜反射鏡210として誘電体多層膜ミラーを用いることで、半導体多層膜反射鏡を用いる場合に比べて光の吸収損失を大幅に低減させている。
屈折率の2次元分布の起点となるp型コンタクト層206の上部領域207は、光強度の定在波の腹の位置となる。この構成により、2次元円孔配列と光の結合を高くすることができ、2次元円孔配列による横モード制御を効率良く行うことが可能である。
次に、上記上部DBRミラー210の周縁部の積層を、p型コンタクト層206に到達するまでエッチングし、メサポスト(第1のメサポスト)211に加工する。次いで、フォトレジストを用いたリソグラフィーにより、フォトレジストにリング形状の開口を形成する。その後、例えばAuZnを蒸着して、リング形状をしたp側電極212をメサポスト211の外周側に形成する。また、Ti/Auによりp側引出電極215を形成する。このようにp側電極212は、p型コンタクト層206上に、電流注入領域204aの直上部における上部多層膜反射鏡210の一部をその積層面に沿って取り囲むようにリング状に形成される。
本実施形態例では、p型コンタクト層206から電流狭窄層の電流開口205aに至る電流注入経路において、2次元円孔配列は、p型コンタクト層206の上部にのみ浅く存在するため、従来のフォトニック結晶面発光レーザに比べて、過剰な素子抵抗の上昇を防ぐことが可能である。
さらに、メサポスト及びp側電極212の外周側の積層構を、n型コンタクト層203に到達するまでエッチングし、メサポスト(第2のメサポスト)213に加工する。次いで、フォトレジストを用いたリソグラフィーにより、フォトレジストに所定の開口を形成する。その後、例えばAuGeNiを蒸着して、所定の形状をしたn側電極214を開口内に形成する。また、Ti/Auにより引出電極216を形成する。このようにn側電極は、n型コンタクト層203上に、第2のメサポスト213の底面部を、積層面に沿って取り囲むようにして形成される。これらp側電極212およびn側電極214は、それぞれp側引出電極215およびn側引出電極216に接続される。その後、基板厚さが200μm程度になるように、半絶縁性GaAs基板201を裏面から研磨する。以上により本実施形態の面発光レーザが得られる。
(第3の実施形態例)
以下、本発明の第3の実施形態例の面発光レーザについて、図10を参照して説明する。面発光レーザ300は、発振波長850nmとなるように設計されている。面発光レーザ300は、例えばn型GaAs基板301と、このGaAs基板301上に順次に積層された、下部多層膜反射鏡302、n型クラッド層303、活性層304、電流狭窄層305、p型クラッド層306、及び、2次元周期配列の起点となる最下層307を含む上部多層膜反射鏡310から成る積層構造とを有する。GaAs基板301の裏面にはn側電極314が、上部多層膜反射鏡310の上には、p側電極312が形成されている。
本実施形態例では、上部多層膜反射鏡310の最下層307に、図2に示すような複数の円孔108が積層面内において正三角形の三角格子状に2次元的に配列形成されている。この2次元円孔配列は、その形状を少なくとも部分的に保持しながら、上部多層膜反射鏡310内に屈折率の2次元配列を形成している。最下層307内の円孔配列は、図2に示すように、その中央部に円孔がない点欠陥109を有している。このような円孔配列により、円孔108が形成された最下層307の部分及びその上に形成された上部DBRミラー310の部分の平均屈折率は、円孔がない点欠陥109及びその上の上部DBRミラー310の部分の平均屈折率よりも僅かに小さくなる。このため、円孔108が形成された部分を含む領域は、点欠陥109を伝搬する光に対してクラッドとして働く。点欠陥109は、基本横モード発振を得るための光の出射部を構成する。なお、点欠陥109の大きさは、円孔1つ分に限らず、複数の円孔を含むように、適宜選定可能である。
本実施形態の面発光レーザ300は、例えば以下の製造プロセスにより得られる。まずn型GaAs基板301上に、MOCVD法又はMBE法で、例えばGaAs/AlAsペア層からなる複合半導体層を複数積層して、半導体多層膜反射鏡からなる下部DBRミラー302を形成する。下部DBRミラー302の各層の厚みは、λ/4n(λは発振波長、nは屈折率)である。次に、その積層上に、例えばn−AlGaAsからなるn型クラッド層303、例えばGaAs/AlGaAsからなる複合半導体層が3層積層された多重量子井戸(MQW:Multiple Quantum Well)構造からなる活性層304、例えばp−AlGaAsからなるp型クラッド層306、及び、上部DBRミラーの最下層のペア層であるAlGaAs/GaAs層307を順次に積層する。
次に、例えばイオン注入法などを用いて、p型クラッド層306内に外周部の電流阻止領域305bと所定の大きさを有する中央の電流開口305aとからなる電流狭窄層305を形成する。なお、電流狭窄構造の形成には、イオン注入法に限らず、例えばAlAsの選択酸化法などを用いても構わない。この電流狭窄層により、p側電極312から注入される電流を狭窄して、電流開口305a内に集中させ、電流開口305a内の電流密度を高める。
次に、プラズマCVD法を用いてSiN膜を成膜したのち、通常のフォトレジストを用いたリソグラフィーとフッ素系のガスを用いたRIE(反応性イオンエッチング)とにより、SiNをエッチングし、2次元円孔配列を形成する。2次元円孔配列は、中央部に円孔が存在しない点欠陥を有し、配列の周期が4μm、各円孔の直径が2.5μmの三角格子状の2次元円孔配列とする。2次元円孔配列のSiNをマスクとして、塩素ガスを用いたICP(誘導結合プラズマ型)−RIEにより、上部DBRミラーの最下層307のGaAs層の一部をエッチングする。エッチングする深さは、例えば40nmとする。なお、円孔108の配列周期、孔径、深さなどは、円孔108が形成された部分の平均屈折率と円孔がない点欠陥109の平均屈折率との差により、積層面方向において基本横モード発振が得られるように、適宜調整される。
本実施形態例では、2次元円孔配列のエッチング深さが40nmと浅く、さらにGaAs層のみのエッチングであり、半導体多層膜反射鏡の大部分に空円孔を深く形成する従来例と比べてプロセス制御性に優れ、かつ光の散乱損失を生じにくい。
次いで、上記積層構造の上に、MOCVD法又はMBE法を用いて、例えばGaAs/AlGaAsペア層からなる複合半導体層を25ペア積層して、半導体多層膜反射鏡からなる上部DBRミラー310を形成する。この工程により、上記2次元円孔配列は、上部DBRミラーの最下層307を起点として、その形状を少なくとも部分的に保持しながら、上部DBRミラー310内に周期的な屈折率の2次元分布を形成する。
本実施形態例では2次元円孔配列は上部DBRミラー310の最下層307に形成したが、最下層307に限定されない。但し、好ましくは発振レーザ光の光強度が十分高い層内に、例えば、下から3ペア以内に形成することが望ましい。
次に、フォトレジストを用いたリソグラフィーにより、フォトレジストにリング形状の開口を形成する。その後、例えばAuZnを蒸着して、リング形状をしたp側電極312を開口内に形成する。また、Ti/Auにより引出電極315を形成する。本実施形態例の面発光レーザでは、p側電極312から電流狭窄の電流開口305aに至る電流注入経路に円孔が存在しないため、従来例に比べて、過剰な素子抵抗の上昇を防ぐことが可能である。
その後、基板厚さが200μm程度になるように、n型GaAs基板301を裏面から研磨し、その研磨した裏面上にTi/Auを蒸着して、n側電極314を形成する。以上により本実施形態例の面発光レーザが得られる。
本実施形態例では、基板にn型GaAs基板を用い、また、上部多層膜反射鏡に半導体多層膜を用いたので、上部電極及び下部電極は、レーザキャビティの外部に形成できる。
以上、本発明をその好適な実施態様に基づいて説明したが、本発明の面発光レーザ及びその製造方法は、上記実施態様の構成にのみ限定されるものではなく、上記実施態様の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
本発明の第1の実施形態例に係る面発光レーザの断面模式図。 図1の面発光レーザのメサポストの上面図。 図1の面発光レーザの作製工程の断面模式図。 図1の面発光レーザの作製工程の断面模式図。 図1の面発光レーザの作製工程の断面模式図。 図1の面発光レーザの作製工程の断面模式図。 図1の面発光レーザの作製工程の断面模式図。 図1の面発光レーザの作製工程の断面模式図。 本発明の第2の実施形態例に係る面発光レーザの断面模式図。 本発明の第3の実施形態に係る面発光レーザの断面模式図。 従来の面発光レーザを示す断面模式図。
符号の説明
100:面発光レーザ
101:GaAs基板
102:下部反射鏡
103:n型コンタクト層
104:活性層
105:電流狭窄層
105a:電流開口
105b:電流阻止領域
106:p型コンタクト層
107:2次元周期配列の起点となる最下層
108:円孔
109:点欠陥
110:上部多層膜反射鏡
111:メサポスト
112:p側電極
113:メサポスト
114:n側電極
115:p側引出電極
116:n側引出電極
200:面発光レーザ
201:GaAs基板
202:下部反射鏡
203:n型コンタクト層
204:活性層
205:電流狭窄層
205a:電流開口
205b:電流阻止領域
206:p型コンタクト層
207:p型コンタクト層の上部領域
210:上部多層膜反射鏡
211:メサポスト
212:p側電極
213:メサポスト
214:n側電極
215:p側引出電極
216:n側引出電極
300:面発光レーザ
301:GaAs基板
302:下部反射鏡
303:n型クラッド層
304:活性層
305:電流狭窄層
305a:電流開口
305b:電流阻止領域
306:p型クラッド層
307:最下層
310:上部多層膜反射鏡
312:p側電極
315:p側引出電極
314:n側電極
1:GaAs基板
2:下部多層膜反射鏡
3:n型クラッド層
4:活性層
5:電流狭窄層(酸化狭窄層)
5a:電流開口
5b:電流阻止領域
6:p型クラッド層
7:2次元円孔配列
8:p型コンタクト層
9:上部多層膜反射鏡
10:p側電極
11:p側引出電極
12:n側電極

Claims (13)

  1. 半導体基板上に積層される下部多層膜反射鏡、活性層、及び、上部多層膜反射鏡を少なくとも含む積層構造と、前記活性層に電源を供給する上部電極及び下部電極とを備える面発光半導体レーザにおいて、
    前記上部多層膜反射鏡には、積層面内における所定の領域を除き、前記積層面内において周期的な屈折率の2次元分布が形成されており、
    前記周期的な屈折率の2次元分布は、前記活性層の上部に形成される、前記所定の領域を囲む周囲領域に2次元周期的に円孔が配列された少なくとも1層の円孔形成層と、前記円孔の内部を含む円孔形成層上に一様に且つ順次に堆積され、前記上部多層膜反射鏡を構成する多層膜とによって形成されていることを特徴とする面発光半導体レーザ。
  2. 前記円孔形成層が、前記上部多層膜反射鏡を構成する多層膜のうち最下層の1層を含むことを特徴とする、請求項1に記載の面発光半導体レーザ。
  3. 前記積層構造が、前記上部多層膜反射鏡と前記活性層との間に挟まれ前記上部電極に接触する第1のコンタクト層を更に含み、前記円孔形成層が該第1のコンタクト層を含む、請求項1に記載の面発光半導体レーザ。
  4. 前記上部多層膜反射鏡が、前記周囲領域の径方向外側の領域が除去されて柱状の第1のメサポストを形成する誘電体多層膜から構成され、
    前記上部電極が、前記第1のメサポストの径方向外側で前記第1のコンタクト層に接触している、請求項1乃至3の何れか一に記載の面発光半導体レーザ。
  5. 前記積層構造が、前記下部多層膜反射鏡と前記活性層との間に挟まれ前記下部電極に接触する第2のコンタクト層を更に含み、
    前記第1のコンタクト層、活性層、及び、上部電極は、前記上部電極の径方向外側の領域が除去されて柱状の第2のメサポストを形成し、
    前記下部電極が、前記第2のメサポストの径方向外側で前記第2のコンタクト層に接触している、請求項4に記載の面発光半導体レーザ。
  6. 前記上部多層膜反射鏡が半導体多層膜である、請求項1又は2に記載の面発光レーザ。
  7. 前記屈折率の2次元分布は、前記積層面内において基本横モードレーザ発振を発生させる、請求項1乃至6の何れか一に記載の面発光半導体レーザ。
  8. 前記円孔形成層が6層以下の積層から成る、請求項1乃至7の何れか一に記載の面発光半導体レーザ。
  9. 前記積層構造が、前記上部多層膜反射鏡内の前記活性層に隣接する位置に、又は、前記上部多層膜反射鏡と前記活性層との間に挟まれた位置に、更に電流狭窄層を含む、請求項1乃至8の何れか一に記載の面発光半導体レーザ。
  10. 前記円孔形成層内に、発振したレーザ光の定在波の光強度ピークが形成される、請求項1乃至9の何れか一に記載の面発光半導体レーザ。
  11. 半導体基板の上部に、下部多層膜反射鏡、及び、活性層を順次に堆積するステップと、
    前記活性層の上部に、積層面内で所定の領域を囲む周囲領域に2次元周期的に円孔を配列した少なくとも1層の円孔形成層を形成するステップと、
    上部多層膜反射鏡を構成する多層膜を、前記円孔の内部を含む円孔形成層上に一様に且つ順次に堆積するステップとを有し、
    前記上部多層膜反射鏡内に、前記所定の領域の上部を除き、前記積層面内において周期的な屈折率の2次元分布を形成することを特徴とする面発光半導体レーザの製造方法。
  12. 前記円孔形成層が、前記上部多層膜反射鏡の最下層を含む、請求項11に記載の面発光半導体レーザの製造方法。
  13. 前記上部多層膜反射鏡が、誘電体多層膜であり、前記円孔形成層が、前記上部多層膜反射鏡と前記活性層との間に形成され上部電極に接触するコンタクト層を含む、請求項11に記載の面発光半導体レーザの製造方法。
JP2008004410A 2008-01-11 2008-01-11 面発光半導体レーザ及びその製造方法 Pending JP2009170508A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008004410A JP2009170508A (ja) 2008-01-11 2008-01-11 面発光半導体レーザ及びその製造方法
US12/318,780 US20090180509A1 (en) 2008-01-11 2009-01-08 Surface emitting semiconductor laser and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008004410A JP2009170508A (ja) 2008-01-11 2008-01-11 面発光半導体レーザ及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009170508A true JP2009170508A (ja) 2009-07-30

Family

ID=40850581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004410A Pending JP2009170508A (ja) 2008-01-11 2008-01-11 面発光半導体レーザ及びその製造方法

Country Status (2)

Country Link
US (1) US20090180509A1 (ja)
JP (1) JP2009170508A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9407066B2 (en) * 2013-07-24 2016-08-02 GlobalFoundries, Inc. III-V lasers with integrated silicon photonic circuits
US9735545B1 (en) * 2016-07-08 2017-08-15 Northrop Grumman Systems Corporation Vertical cavity surface emitting laser with composite reflectors
KR20200111724A (ko) * 2018-01-18 2020-09-29 아이큐이, 피엘씨 레이저 응용을 위한 다공성 분산 브래그 반사기
JP7190865B2 (ja) * 2018-10-18 2022-12-16 スタンレー電気株式会社 垂直共振器型発光素子
JP7504368B2 (ja) * 2019-12-16 2024-06-24 国立大学法人京都大学 面発光レーザ素子及び面発光レーザ素子の製造方法
CN114079228B (zh) * 2020-08-14 2024-06-04 中国科学院苏州纳米技术与纳米仿生研究所 激光器及其制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007137588A2 (en) * 2006-05-29 2007-12-06 Alight Photonics Aps A method for fabricating a photonic crystal or photonic bandgap vertical-cavity surface-emitting laser

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711200B1 (en) * 1999-09-07 2004-03-23 California Institute Of Technology Tuneable photonic crystal lasers and a method of fabricating the same
FR2824228B1 (fr) * 2001-04-26 2003-08-01 Centre Nat Rech Scient Dispositif electroluminescent a extracteur de lumiere
US6674778B1 (en) * 2002-01-09 2004-01-06 Sandia Corporation Electrically pumped edge-emitting photonic bandgap semiconductor laser
DE10214120B4 (de) * 2002-03-28 2007-06-06 Osram Opto Semiconductors Gmbh Optisch pumpbare oberflächenemittierende Halbleiterlaservorrichtung
US7085301B2 (en) * 2002-07-12 2006-08-01 The Board Of Trustees Of The University Of Illinois Photonic crystal single transverse mode defect structure for vertical cavity surface emitting laser
US6778581B1 (en) * 2002-09-24 2004-08-17 Finisar Corporation Tunable vertical cavity surface emitting laser
US6810056B1 (en) * 2002-09-26 2004-10-26 Finisar Corporation Single mode vertical cavity surface emitting laser using photonic crystals with a central defect
JP4437913B2 (ja) * 2003-11-25 2010-03-24 富士ゼロックス株式会社 表面発光型半導体レーザ素子およびその製造方法
JP2005197426A (ja) * 2004-01-07 2005-07-21 Yokogawa Electric Corp 面発光レーザ
EP1722265A4 (en) * 2004-02-17 2008-07-02 Furukawa Electric Co Ltd PHOTONIC CRYSTAL SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREFOR
US7483469B2 (en) * 2004-11-01 2009-01-27 Seiko Epson Corporation Surface-emitting type semiconductor laser and its manufacturing method, optical module, and light transmission device
JP4027393B2 (ja) * 2005-04-28 2007-12-26 キヤノン株式会社 面発光レーザ
US20070091953A1 (en) * 2005-10-21 2007-04-26 P.B.C Lasers Ltd. Light-emitting diode with a narrow beam divergence based on the effect of photonic band crystal-mediated filtration of high-order optical modes
US7679098B2 (en) * 2006-01-30 2010-03-16 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Highly directional light emitting diode using photonic bandgap waveguides
JP4743867B2 (ja) * 2006-02-28 2011-08-10 キヤノン株式会社 面発光レーザ
JP5224310B2 (ja) * 2006-08-31 2013-07-03 古河電気工業株式会社 垂直共振器型面発光レーザ
JP2009059943A (ja) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd 面発光半導体レーザ
JP4656183B2 (ja) * 2008-05-14 2011-03-23 ソニー株式会社 半導体発光素子
DE112010000821T5 (de) * 2009-01-20 2012-05-31 Furukawa Electric Co., Ltd., Zweidimensionales, oberflächenemittierendes Laser-Anordnungselement, oberflächenemittierende Lasereinrichtung und Lichtquelle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007137588A2 (en) * 2006-05-29 2007-12-06 Alight Photonics Aps A method for fabricating a photonic crystal or photonic bandgap vertical-cavity surface-emitting laser

Also Published As

Publication number Publication date
US20090180509A1 (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US7697586B2 (en) Surface-emitting laser
JP4347369B2 (ja) 面発光レーザの製造方法
JP3783411B2 (ja) 表面発光型半導体レーザ
US20050013334A1 (en) Surface light emitting semiconductor laser element
JP4602701B2 (ja) 面発光レーザ及び光伝送システム
JP4868004B2 (ja) 面発光型半導体レーザおよびその製造方法
JP2006140446A (ja) 面発光レーザ素子および面発光レーザアレイおよび面発光レーザ素子の製造方法および面発光レーザモジュールおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム
JP2007173304A (ja) 面発光型半導体レーザ
US8228964B2 (en) Surface emitting laser, surface emitting laser array, and image formation apparatus
JP2007258600A (ja) 面発光レーザ素子および面発光レーザ素子の製造方法
JP2009170508A (ja) 面発光半導体レーザ及びその製造方法
JP5190038B2 (ja) 面発光レーザ
JP2009266919A (ja) 面発光型半導体レーザおよびその製造方法
JP5006242B2 (ja) 面発光半導体レーザ素子
JP3876918B2 (ja) 面発光型半導体レーザ素子
JP4602692B2 (ja) 面発光レーザ及び光伝送システム
JPWO2005074080A1 (ja) 面発光レーザ及びその製造方法
JP2007103544A (ja) 面発光レーザ及び面発光レーザアレイ及び光伝送システム及びレーザプリンタ書き込みシステム
JP2007242945A (ja) 面発光半導体レーザ素子
JPH11354881A (ja) 垂直共振器面発光レーザ装置およびその製造方法
JP2009206448A (ja) 面発光半導体レーザ素子
JP2005277309A (ja) 面発光型半導体レーザおよびその製造方法
JP2003133639A (ja) 面発光型半導体レーザ素子
JP4999070B2 (ja) 面発光レーザ
JP2011003725A (ja) 垂直共振器型面発光レーザ

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529