JP2007173304A - 面発光型半導体レーザ - Google Patents

面発光型半導体レーザ Download PDF

Info

Publication number
JP2007173304A
JP2007173304A JP2005364912A JP2005364912A JP2007173304A JP 2007173304 A JP2007173304 A JP 2007173304A JP 2005364912 A JP2005364912 A JP 2005364912A JP 2005364912 A JP2005364912 A JP 2005364912A JP 2007173304 A JP2007173304 A JP 2007173304A
Authority
JP
Japan
Prior art keywords
layer
current confinement
current
confinement layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005364912A
Other languages
English (en)
Inventor
Osamu Maeda
修 前田
Masataka Shiosaki
政貴 汐先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005364912A priority Critical patent/JP2007173304A/ja
Priority to US11/612,076 priority patent/US7912105B2/en
Priority to KR1020060129368A priority patent/KR20070065231A/ko
Publication of JP2007173304A publication Critical patent/JP2007173304A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/1833Position of the structure with more than one structure
    • H01S5/18333Position of the structure with more than one structure only above the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18338Non-circular shape of the structure

Abstract

【課題】簡易に製造可能であり、高次横モード発振だけを選択的に抑制することが可能な面発光型半導体レーザを提供する。
【解決手段】共振器、第1電流狭窄層15および第2電流狭窄層17を備える。共振器は、基板10上に、n型DBR層11、n型ガイド層12、発光領域13Aを有する活性層13、p型ガイド層14、第1電流狭窄層15、スペーサ層16、第2電流狭窄層17、p型DBR層18およびp型コンタクト層19をこの順に含んで構成され、所定の波長で共振するようになっている。第1電流狭窄層15は発光領域13Aと対応する領域に電流注入領域15bを有し、定在波の腹を含む部位に形成されている。第2電流狭窄層17は電流注入領域15bの径よりも小さな径の電流注入領域17bを中央領域に有すると共に第1電流狭窄層15の厚さよりも薄くなっている。第2電流狭窄層17は定在波の節を含む部位に形成されている。
【選択図】図1

Description

本発明は、上面にレーザ光の出射領域を有する面発光型半導体レーザに係り、特に、低次横モードの光出力が要求される用途に好適に適用可能な面発光型半導体レーザに関する。
面発光型半導体レーザは、従来の端面出射型のものとは異なり、基板に対して直交する方向に光を出射するものであり、同じ基板上に2次元アレイ状に多数の素子を配列することが可能であることから、近年、デジタルコピー機やプリンタ機用の光源として注目されている。
従来、この種の面発光型半導体レーザは、半導体基板上に一対の多層膜反射鏡が形成されており、その対の多層膜反射鏡の間に発光領域となる活性層を有している。そして、一方の多層膜反射鏡と活性層との間には、活性層への電流注入効率を高め、しきい値電流を下げるために、電流注入領域を狭めた構造を有する電流狭窄層が設けられている。また、下面側にはn側電極、上面側にはp側電極がそれぞれ設けられ、p側電極にはレーザ光を出射するために光出射口が設けられている。この面発光型半導体レーザでは、電流は電流狭窄層により狭窄されたのち活性層に注入され、ここで発光し、これが一対の多層膜反射鏡で反射を繰り返しながらレーザ光としてp側電極の光出射口から出射される。
ところで、上記した面発光型半導体レーザでは、レーザ光の出射領域のうち中央部分において主に基本横モード発振が生じる一方、外縁部分において主に高次横モード発振が生じることが知られている。そのため、面発光型半導体レーザ1を高出力にしようとして、光出射口をあまり大きくすると高次横モードのレーザ光までもが高出力で出力されてしまうという問題がある。
そこで、このような問題に対して、横モード発振の制御に関する技術が多数報告されている。例えば、特許文献1では、活性層に向かうにつれて電流注入領域の径が大きくなる構造を有する電流狭窄層を設ける技術が開示されている。
特開2003−273459号公報
しかしながら、上記特許文献1記載の技術は、電流注入領域の活性層側の径が大きくなっており、活性層の広い範囲で電流密度が均一となるので、確かに、素子の低抵抗化や低消費電力化を実現することはできる。しかし、電流注入領域をこのような形状とするには、電流狭窄層を厚くすることが必要となるので、厚い電流狭窄層により光の損失が発生し、基本横モードの光出力が低下してしまう。
このように、従来の技術では、高次横モード発振だけを選択的に抑制することが可能な面発光型半導体レーザ素子を、簡易に製造するのが困難であった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、高次横モード発振だけを選択的に抑制することが可能な面発光型半導体レーザを提供することにある。
本発明の面発光型半導体レーザは、共振器と、第1電流狭窄層と、第2電流狭窄層とを備えたものである。共振器は、第1多層膜反射鏡と、発光領域を有する活性層と、第2多層膜反射鏡とをこの順に含んで構成されており、所定の波長で共振するようになっている。第1電流狭窄層は、発光領域と対応する領域に第1電流注入領域を有する。この第1電流狭窄層は、活性層と第1多層膜反射鏡との間であって、共振器内に形成される所定の波長の定在波の腹を含む部位に形成されている。第2電流狭窄層は、第1電流注入領域の径よりも小さな径の第2電流注入領域を中央領域に有すると共に第1電流狭窄層の厚さよりも薄くなっている。この第2電流狭窄層は、第1電流狭窄層と第1多層膜反射鏡との間、または第1多層膜反射鏡内であって、共振器内に形成される所定の波長の定在波の節を含む部位に形成されている。
本発明の面発光型半導体レーザでは、厚さが第1電流狭窄層より薄く、第2電流注入領域の径が第1電流注入領域の径より小さい第2電流狭窄層を定在波の節に設けるようにしたので、第2電流狭窄層において、光に損失をほとんど与えることなく、電流が狭窄される。これにより、第2電流注入領域の全体に渡って電流密度がほぼ均一となる程度にまで第2電流注入領域の径を絞ることが可能となる。ここで、第2電流狭窄層は第1電流狭窄層よりも活性層から遠い位置に設けられているので、第2電流狭窄層の径を、第2電流注入領域の全体に渡って電流密度がほぼ均一となるような大きさにした場合には、第2電流狭窄層で狭窄された電流が第1電流狭窄層の第1電流注入領域の外縁部分に集中することがなくなり、第1電流注入領域の中央部分に集中するようになる。その結果、活性層のうち第1電流注入領域に対応する領域の中央部分(発光領域の中央部分)に電流が集中して注入されるようになる。他方、厚さが第2電流狭窄層より厚く、第1電流注入領域の径が第2電流注入領域の径より大きい第1電流狭窄層を定在波の腹に設けるようにしたので、第1電流狭窄層において、第1電流注入領域の外縁部分に対応する部分(発光領域の外縁部分)に大きなゲインを有する次数の横モードの光が損失を受け、第1電流注入領域の中央部分に対応する部分(発光領域の中央部分)に大きなゲインを有する次数の横モードの光は損失をほとんど受けない。
本発明の面発光型半導体レーザによれば、径の大きな第1電流注入領域を有する第1電流狭窄層、および径の小さな第2電流注入領域を有する第2電流狭窄層を活性層側からこの順に設けるようにしたので、電流を活性層の発光領域の中央部分に集中して注入することが可能となる。これにより、電流密度が発光領域の外縁部分に集中するような場合と比べて、発光領域の外縁部分に大きなゲインを有する高次横モードの発振だけを選択的に抑制することができる。このとき、厚さの薄い第2電流狭窄層を定在波の節に設けるようにしたので、第2電流注入領域の径の大きさに拘わらず光に損失を与えることがほとんどなく、発光領域の中央部分に大きなゲインを有する基本横モードの発振をほとんど阻害することはない。
また、上記したように、第2電流狭窄層は電流を狭窄する機能を有するので、定在波の腹に設けられた第1電流狭窄層の第1電流注入領域の径の大きさを比較的自由に設定することが可能である。第1電流注入領域の径の大きさを適切に調整した場合には、発光領域の中央部分に大きなゲインを有する基本横モードの光に対して損失をほとんど与えないようにすると共に、発光領域の外縁部分に大きなゲインを有する高次横モードの光にだけ選択的に損失を与えるようにすることができる。
このように、本発明の面発光型半導体レーザによれば、高次横モード発振だけを選択的に抑制することができる。
ここで、第1電流狭窄層が、当該第1電流狭窄層に対応する定在波の腹の両側にある2つの節で囲まれる定在波強度の積分値(面積)を1.0としたときに、当該第1電流狭窄層に対応する領域の定在波強度の積分値(面積)が0.5以上、1より小さくなるような光学厚さを有する場合には、第1電流注入領域の径を一定としたときに、第1電流狭窄層が基本横モードの光に与える損失を極めて小さくすることができる。また、第2電流狭窄層が、当該第2電流狭窄層に対応する定在波の節の両側にある2つの節で囲まれる定在波強度の積分値(面積)を1.0としたときに、酸化可能な厚さ以上、当該第2電流狭窄層に対応する領域の定在波強度の積分値(面積)が0.1より小さくなるような光学厚さを有する場合には、第2電流狭窄層における光の損失を極めて小さくすることができる。これにより、高次横モードでの発振を抑制しつつ、基本横モードの光出力をより一層大きくすることが可能となる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[第1の実施の形態]
図1は本発明の一実施の形態に係る面発光型半導体レーザの断面構成を表し、図2(A)は図1の面発光型半導体レーザの第1電流狭窄層15および第2電流狭窄層17およびその近傍の定在波強度を表し、図2(B)は図1の面発光型半導体レーザの第1電流狭窄層15および第2電流狭窄層17およびその近傍の断面構造を拡大して表すものである。なお、図1,図2(A),(B)は模式的に表すものであり、実際の寸法、形状とは異なっている。
面発光型半導体レーザは、基板10の一面側に、n型DBR層11(第2多層膜反射鏡)、n型ガイド層12、活性層13、p型ガイド層14、第1電流狭窄層15、スペーサ層16、第2電流狭窄層17、p型DBR層18(第1多層膜反射鏡)およびp型コンタクト層19をこの順に積層した共振器を備える。ここで、n型DBR層11の上部、n型ガイド層12、活性層13、p型ガイド層14、第1電流狭窄層15、スペーサ層16、第2電流狭窄層17、p型DBR層18およびp型コンタクト層19は、p型コンタクト層19まで形成されたのち、上面から選択的にエッチングされることにより円柱状のメサ部30となっている。また、p型コンタクト層19上にはp側電極20が、基板10の裏面にはn側電極21がそれぞれ形成されている。
基板10、n型DBR層11、n型ガイド層12、活性層13、p型ガイド層14、スペーサ層16、p型DBR層18およびp型コンタクト層19は、例えばGaAs(ガリウム・ヒ素)系の化合物半導体によりそれぞれ構成される。なお、GaAs系化合物半導体とは、短周期型周期表における3B族元素のうち少なくともガリウム(Ga)と、短周期型周期表における5B族元素のうち少なくともヒ素(As)とを含む化合物半導体のことをいう。
基板10は、例えばn型GaAsにより構成される。n型DBR層11は、例えば、低屈折率層(図示せず)および高屈折率層(図示せず)を1組として、それを複数組分積層して構成されたものである。低屈折率層は、例えば厚さがλ/4na (λは発振波長、na は屈折率)のn型Alx1Ga1-x1As(0<x1<1)、高屈折率層は、例えば厚さがλ/4nb (nb は屈折率)のn型Alx2Ga1-x2As(0<x2<x1)によりそれぞれ形成されている。n型不純物としては、例えばケイ素(Si)またはセレン(Se)などが挙げられる。
n型ガイド層12は、例えばAlx3Ga1-x3As(0<x3<1)により構成されている。活性層13は、例えばGaAs系材料により構成される。この活性層13では、電流注入領域11C−1と対向する領域が発光領域であり、その発光領域の中心領域(発光中心領域13A)が主に基本横モード発振が生じる領域であり、発光領域のうち発光中心領域13Aを囲む領域が主に高次横モード発振が生じる領域となっている。p型ガイド層14は、例えばAlx4Ga1-x4As(0<x4<1)により構成される。このn型ガイド層12、活性層13およびp型ガイド層14は、不純物が含まれていないことが望ましいが、p型またはn型不純物が含まれていてもよい。
スペーサ層16は、例えばp型Alx5Ga1-x5As(0<x5<1)により構成される。p型DBR層18は、例えば、低屈折率層(図示せず)および高屈折率層(図示せず)を1組として、それを複数組分積層して構成されたものである。低屈折率層は、例えば厚さがλ/4nc (λは発振波長、nc は屈折率)のp型Alx6Ga1-x6As(0<x6<1)、高屈折率層は、例えば厚さがλ/4nd (nd は屈折率)のp型Alx7Ga1-x7As(0<x7<x6)によりそれぞれ形成されている。p型不純物としては、亜鉛(Zn)、マグネシウム(Mg)、ベリリウム(Be)などが挙げられる。
第1電流狭窄層15は、その外縁領域にドーナツ形状の電流狭窄領域15aを有し、その中央領域に直径がW1(例えば4〜6μm)の円形状の電流注入領域15b(第1電流注入領域)を有する。電流注入領域15bは、例えば、Alx8Ga1-x8As(x6<x8<1)により構成され、電流狭窄領域15aは、メサ部30の側面側から第1電流狭窄層15に含まれる高濃度のAlを酸化することにより得られたAl2 3 (酸化アルミニウム)を含んで構成される。つまり、第1電流狭窄層15は電流を狭窄する機能を有する。
この第1電流狭窄層15は、活性層13内の腹からmλ/2(mは1以上の整数、λは発光波長)の光学距離だけ離れた位置にある腹を含む部位に形成されている。例えば、図2(A),(B)に例示したように、活性層13とp型DBR層18との間であって、共振器内に形成される発光波長λと同一波長の定在波の腹(P1,P2,P3,P4,P5,……)のうち活性層13側から3番目の腹P3を含む部位に形成されている。第1電流狭窄層15の光学厚さL1は、第1電流狭窄層15に対応する腹P3の両側にある節Z2と節Z3との間の光学距離より厚くてもよいが、節Z2と節Z3とで囲まれる定在波の1つの山の強度の積分値(面積)を1.0としたときに、第1電流狭窄層15に対応する領域の定在波強度の積分値(面積A)が0.5以上、1より小さいことが好ましい。
ところで、酸化物を含む層を定在波の腹に配置すると、共振器内を往復する光は酸化物を含む層によって散乱(scattering)されるので、電流狭窄領域15aは基本的に、共振器内を往復する光に損失を与え、発振を抑制する性質を有する。しかし、電流狭窄領域15aは、上記したように、第1電流狭窄層15の外縁領域にだけ形成されているので、共振器内を往復する光のうち第1電流狭窄層15の外縁領域に対応する領域(発光領域13Aの外縁部分)に大きなゲインを有する次数の横モードの発振を主として抑制するようになっている。つまり、共振器内を往復する光のうち電流注入領域15bに対応する領域(発光領域13Aの中央部分)に大きなゲインを有する次数の横モードの発振は電流狭窄領域15aによって抑制されることはほとんどなく、当該次数の横モードの光にとって第1電流狭窄層15はほとんど透明である。
ここで、第2電流狭窄層17は後述するように第1電流狭窄層15よりも強力に電流を狭窄する機能を有するので、電流注入領域15bの径の大きさを比較的自由に設定することが可能である。電流注入領域15bの径を適切な値に調整した場合には、発光領域13Aの中央部分に大きなゲインを有する基本横モードの光に対して損失をほとんど与えないようにすると共に、発光領域13Aの外縁部分に大きなゲインを有する高次横モードの光にだけ選択的に損失を与えるようにすることが可能となる。このように、第1電流狭窄層15は、電流を狭窄するだけでなく、高次横モードの光にだけ選択的に損失を与える機能も兼ね備えている。
また、電流注入領域15bの径を過度に狭めなくても、後述するように第2電流狭窄層17によっても高次横モードでの発振を抑制することができるので、電流注入領域15bの径を広げることも可能である。電流注入領域15bの径を広げた場合には、発光領域13Aの面積が広がるので、活性層13の抵抗(ジャンクション抵抗)が小さくなり、面発光型半導体レーザの直列抵抗や消費電力を低減することができる。
第2電流狭窄層17は、その外縁領域にドーナツ形状の電流狭窄領域17aを有し、その中央領域に直径がW2(例えば3〜4μm)の円形状の電流注入領域17b(第2電流注入領域)を有する。ここで、W2はW1より小さくなっている。この電流注入領域17bは、例えば、Alx9Ga1-x9As(x8<x9≦1)により構成され、電流狭窄領域17aは、メサ部30の側面側から第2電流狭窄層17に含まれる高濃度のAlを酸化することにより得られたAl2 3 (酸化アルミニウム)を含んで構成される。つまり、第2電流狭窄層17は、第1電流狭窄層15よりも強力に電流を狭窄する機能を有する。
この第2電流狭窄層17は、活性層13内の腹から(2n+1)λ/4(nはmより大きい整数)の光学距離だけ離れた位置にある節を含む部位に形成されている。例えば、図2(A),(B)に例示したように、第1電流狭窄層15とp型DBR層18との間であって、共振器内に形成される発光波長λと同一波長の定在波の節(Z1,Z2,Z3,Z4,Z5,……)のうち活性層13側から4番目の節Z4を含む部位に形成されている。
ここで、nはmより大きい整数である、としたのは、第1電流狭窄層15と第2電流狭窄層17とが互いに接しない位置関係に配置されることを意図したものである。仮に第1電流狭窄層15と第2電流狭窄層17とが互いに接するようにした場合には、第1電流狭窄層15と第2電流狭窄層17とからなる分厚い酸化層が共振器内に形成されることとなり、共振器の増幅機能を阻害する虞がある。もし共振器の増幅機能が損なわれた場合には、高次横モードでの発振だけでなく、基本横モードでの発振までもが抑制されてしまい、高次横モード発振だけを選択的に抑制することが困難となってしまう。そのため、そのようなことが生じないようにするには、第1電流狭窄層15と第2電流狭窄層17とを互いに接しない位置関係に配置することが極めて重要であると言える。
また、第2電流狭窄層17の光学厚さL2は、第2電流狭窄層17に対応する節Z4の両側にある節Z3と節Z5とで囲まれる定在波の2つの山の強度の積分値(面積)を1.0としたときに、酸化可能な厚さ以上、第2電流狭窄層17に対応する領域の定在波強度の積分値(面積B)が0.1より小さいことが好ましい。
ところで、酸化物を含む層を定在波の節に配置しても、共振器内を往復する光は酸化物を含む層によって散乱されることはなく、酸化物を含む層は共振器内を往復する光にとって透明となる。そのため、電流狭窄領域17aは理想的には、共振器内を往復する光に損失を与えることはなく、発振を抑制する性質を有しない。しかし、電流狭窄領域17aは、実際には一定の厚さを有しており、定在波の節以外の部分も占めている。そのため、光の損失が多少発生するが、第2電流狭窄層17の厚さL2を、酸化可能な厚さ以上、第2電流狭窄層17に対応する領域の定在波強度の積分値(面積B)が0.1より小さくなるような範囲内の値にした場合には、電流狭窄領域17aによる光の損失を無視できる程度に小さくすることが可能である。このように、第2電流狭窄層17は、共振器内を往復する光に損失を実質的に与えない性質を有する。
また、第2電流狭窄層17の中央部分には電流注入領域17bが設けられているので、第2電流狭窄層17は電流を狭窄する機能を有する。これにより、第2電流狭窄層17は、光に損失を実質的に与えることなく、電流注入領域17bの全体に渡って電流密度がほぼ均一となる程度にまで電流注入領域17bの径を絞ることもできる。このように第2電流狭窄層17は、電流注入領域17bの径の大きさを比較的自由に設定することができるようになっている。ここで、第2電流狭窄層17は第1電流狭窄層15よりも活性層から遠い位置に設けられているので、電流注入領域17bの径を、電流注入領域17bの全体に渡って電流密度がほぼ均一となるような大きさにした場合には、第2電流狭窄層17で狭窄された電流が第1電流狭窄層15の電流注入領域15bの外縁部分に集中することがなくなり、電流が電流注入領域15bの中央部分に集中するようになる。その結果、活性層13のうち電流注入領域15bに対応する領域の中央部分(発光領域13Aの中央部分)に電流を集中して注入することができる。このように、第2電流狭窄層17は、電流を狭窄するだけでなく、発光領域13Aの中央部分に電流を集中して注入することができるようになっている。
なお、第2電流狭窄層17は、その機能および性質上、活性層13側から見て第1電流狭窄層15よりも遠い部位に設けられていればよく、例えば、p型DBR層18の低屈折率層の部位に設けられていてもよい。
p型コンタクト層19は、例えばp型GaAsにより構成される。なお、上記の電流注入領域17bと対向する領域に例えば円形状の開口部が設けられていてもよい。
p側電極20は、例えばチタン(Ti)層,白金(Pt)層および金(Au)層をこの順に積層して構成されたものであり、p型コンタクト層19と電気的に接続されている。また、p側電極20には、上記の電流注入領域17bに対応する領域に開口部W1が設けられている。n側電極21は、例えば、金(Au)とゲルマニウム(Ge)との合金層,ニッケル(Ni)層および金(Au)層とを基板10の側から順に積層した構造を有しており、基板10と電気的に接続されている。なお、n側電極21は、n型DBR層11のうちメサ部30周辺に露出している表面上に形成されていてもよい。
本実施の形態に係る面発光型半導体レーザは、例えば次のようにして製造することができる。
図3(A),(B)および図4は、その製造方法を工程順に表すものである。ここでは、GaAsからなる基板10上の化合物半導体層を、例えば、MOCVD(Metal Organic Chemical Vapor Deposition ;有機金属化学気相成長)法により形成する。この際、GaAs系の化合物半導体の原料としては、例えば、トリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、アルシン (AsH3)を用い、ドナー不純物の原料としては、例えば、H2 Seを用い、アクセプタ不純物の原料としては、例えば、ジメチルジンク(DMZ)を用いる。
まず、基板10上に、n型DBR層11,n型ガイド層12,活性層13,p型ガイド層14,第1電流狭窄層15D、スペーサ層16、第2電流狭窄層17D、p型DBR層18およびp型コンタクト層19をこの順に積層したのち、p型コンタクト層19の上にレジスト層R1を形成する(図3(A))。なお、第1電流狭窄層15Dおよび第2電流狭窄層17Dの末尾にある「D」は、酸化処理前の状態であって、電流狭窄領域15aや電流狭窄領域17aのような酸化物を含む領域がまだ形成されていないことを意味するものである。
次に、例えば反応性イオンエッチング(Reactive Ion Etching;RIE)法により、p型コンタクト層19からn型DBR層11の一部までを選択的に除去してメサ部30を形成する(図3(B))。
次に、水蒸気雰囲気中において、高温で酸化処理を行い、メサ部30の外側から第1電流狭窄層15Dおよび第2電流狭窄層17D中に高濃度に含まれるAlを同時に酸化する。このとき、第1電流狭窄層15Dおよび第2電流狭窄層17D中に含まれるAl濃度(またはAl組成比)は、例えば、酸化条件を同一にして所定の時間だけ酸化したときに、第1電流狭窄層15Dおよび第2電流狭窄層17Dにおける未酸化領域の径の大きさがそれぞれ所定の値となるように設定されている。そのため、酸化処理の際は、酸化時間を厳密に制御するだけでよいので、第1電流狭窄層15および第2電流狭窄層17を容易かつ精確に形成することができる。このようにして酸化処理を行うことにより、第1電流狭窄層15Dおよび第2電流狭窄層17Dの外縁部分が絶縁層(酸化アルミニウム)となり、外縁部分に電流狭窄領域15a,17aが形成され、その中央部分が電流注入領域15b,17bとなる。このようにして、第1電流狭窄層15および第2電流狭窄層17が形成される(図4)。
次に、例えば真空蒸着法により、メサ部30上およびメサ部30の周辺基板上に前述の金属材料を積層させたのち、例えば選択エッチングにより、p側電極20が形成されると共に、メサ部30の上部に開口部W1が形成される。続いて、基板10の裏面を適宜研磨してその厚さを調整した後、この基板10の裏面にn側電極21を形成する。このようにして本実施の形態の面発光型半導体レーザが製造される。
このような構成の面発光型半導体レーザでは、n側電極21とp側電極20との間に所定の電圧が印加されると、電流狭窄層15a,17aにおける電流注入領域15b,17bを通して活性層13に電流が注入され、これにより電子と正孔の再結合による発光が生じる。この光は、一対のn型DBR層11およびp型DBR層18により反射され、素子内を一往復したときの位相の変化が2πの整数倍となる波長でレーザ発振を生じ、レーザビームとして外部に出射される。
以下に、本実施の形態の面発光型半導体レーザの作用・効果について、比較例と対比しつつ詳細に説明する。図5(A)は、第2電流狭窄層が設けられておらず、電流狭窄領域115aおよび電流注入領域115bからなる第1電流狭窄層115だけが設けられている場合の、電流注入領域115bにおける電流密度の分布を表すものである。図5(B)は、第1電流狭窄層が設けられておらず、電流狭窄領域117aおよび電流注入領域117bからなる第2電流狭窄層117だけが設けられている場合の、電流注入領域117bにおける電流密度の分布を表すものである。図6(A)は、第1電流狭窄層115だけが設けられている場合の、電流注入領域115bにおける定在波の積分強度の分布を表すものである。図6(B)は、第2電流狭窄層117だけが設けられている場合の、電流注入領域117bにおける定在波の積分強度の分布を表すものである。図7は、本実施の形態の電流注入領域15b,117bにおける電流密度の分布を表すものである。図8は、本実施の形態の電流注入領域15b,117bにおける定在波の積分強度の分布を表すものである。なお、第1電流狭窄層115は、本実施の形態の第1電流狭窄層15と同様、定在波の腹に設けられており、厚いものとする。また、第2電流狭窄層117は、本実施の形態の第2電流狭窄層17と同様、定在波の節に設けられており、薄いものとする。
一般に、第1電流狭窄層115だけを設けた場合には、第1電流狭窄層115だけで高次横モードでの発振を抑制することが必要となるので、電流注入領域115bの径W11は本実施の形態における電流注入領域15bの径W1よりも自由度が低く、W11を比較的狭くする傾向がある(図5(A))。そのため、電流注入領域115bの外縁部分に電流が集中してしまい、高次横モードでの発振が促進されてしまう(図6(A))。
他方、第2電流狭窄層117だけを設けた場合にも、第2電流狭窄層117だけで高次横モードでの発振を抑制することが必要となる。ところが、第2電流狭窄層117は定在波の節に設けられており、その性質上、光の散乱を利用して高次横モードでの発振を抑制することが困難である。そのため、電流注入領域117bの径W21を径W11よりも更に狭くして、電流注入領域117bでの電流密度の分布を均一にすることにより(図5(B))、高次横モードでの発振を低減することが可能である(図6(B))。ただし、あまり狭くすると、第2電流狭窄層117の抵抗値が大きくなるだけでなく、発光領域13Aの面積の狭小化により活性層の抵抗も大きくなってしまい、これにより、面発光型半導体レーザの直列抵抗や消費電力が増大し、光出力を大きくすることが困難となってしまう。
一方、本実施の形態では、電流注入領域17bの全体に渡って電流密度がほぼ均一となる程度にまで電流注入領域17bの径を絞った場合には、第2電流狭窄層17で狭窄された電流が、図5(A)に示したような電流注入領域115bの外縁部分への集中が起こることはなくなり、電流が電流注入領域15bの中央部分に集中する(図7)。その結果、活性層13のうち電流注入領域15bに対応する領域の中央部分(発光領域13Aの中央部分)に電流を集中して注入することができるので、発光領域13Aの外縁部分に大きなゲインを有する高次横モードの発振だけを選択的に抑制することができる。
このとき、厚さの薄い第2電流狭窄層17を定在波の節に設けるようにしたので、電流注入領域117bの径の大きさに拘わらず光に損失を与えることがほとんどなく、発光領域13Aの中央部分に大きなゲインを有する基本横モードの発振をほとんど阻害することはない(図8)。また、上記したように、第2電流狭窄層17は電流を狭窄する機能を有するので、定在波の腹に設けられた第1電流狭窄層15の電流注入領域115bの径の大きさを比較的自由に設定することが可能である。電流注入領域115bの径の大きさを適切に調整した場合には、発光領域13Aの中央部分に大きなゲインを有する基本横モードの光に対して損失をほとんど与えないようにすると共に、発光領域13Aの外縁部分に大きなゲインを有する高次横モードの光にだけ選択的に損失を与えるようにすることができる(図8)。
また、電流注入領域15bの径を過度に狭めなくても、第2電流狭窄層17によっても高次横モードでの発振を抑制することができるので、第1電流狭窄層115だけを設けた場合よりも、電流注入領域15bの径を広げることができる。電流注入領域15bの径を広げた場合には、発光領域13Aの面積が広がるので、活性層13の抵抗(ジャンクション抵抗)が小さくなり、面発光型半導体レーザの直列抵抗や消費電力を低減することができる。その結果、高次横モードでの発振を抑制しつつ、基本横モードの光出力を大きくすることが可能となる。
また、第1および第2電流注入領域の径の大きさは、上記したように、第1電流狭窄層および第2電流狭窄層に含まれるAl濃度(Al組成比)を適宜調節することにより容易に調整可能である。
このように、本実施の形態の面発光型半導体レーザでは、第1電流狭窄層および第2電流狭窄層を備えるようにしたので、簡易に製造可能であり、高次横モード発振だけを選択的に抑制することができる。
ここで、第1電流狭窄層15が、第1電流狭窄層15に対応する定在波の腹の両側にある2つの節Z2,Z3で囲まれる定在波強度の積分値(面積)を1.0としたときに、第1電流狭窄層15に対応する領域の定在波強度の積分値(面積)が0.5以上、1より小さくなるような光学厚さを有する場合には、電流注入領域15bの径を一定としたときに、第1電流狭窄層15が基本横モードの光に与える損失を極めて小さくすることができる。また、第2電流狭窄層17が、第2電流狭窄層17に対応する定在波の節の両側にある2つの節Z3,Z5で囲まれる定在波強度の積分値(面積)を1.0としたときに、酸化可能な厚さ以上、第2電流狭窄層17に対応する領域の定在波強度の積分値(面積)が0.1より小さくなるような光学厚さを有する場合には、第2電流狭窄層17における光の損失を極めて小さくすることができる。従って、第1電流狭窄層15および第2電流狭窄層17の光学厚さをこのように設定した場合には、高次横モードでの発振を抑制しつつ、基本横モードの光出力をより一層大きくすることが可能となる。
以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。
例えば、上記実施の形態では、活性層13は、共振器内に形成される定在波の腹を含む部位に形成されていたが、定在波の節を含む部位に形成されていてもよい。ただし、この場合には、第1電流狭窄層15は、活性層13内の節から(2m−1)λ/4(mは1以上の整数、λは発光波長)の光学距離だけ離れた位置にある腹を含む部位に形成され、第2電流狭窄層17は、活性層13内の腹からnλ/2(nはmより大きい整数)の光学距離だけ離れた位置にある節を含む部位に形成されることとなる。これは、活性層13が共振器内に形成される定在波の腹を含む部位に形成されていた場合と同様の理由から導き出されるものである。
また、上記実施の形態では、GaAs系の化合物半導体レーザを例にして本発明を説明したが、他の化合物半導体レーザ、例えばGaInP系、AlGaInP系、InGaAs系、GaInP系、InP系、GaN系、GaInN系、GaInNAs系などの化合物半導体レーザにも適用可能である。
本発明の一実施の形態に係る面発光型半導体レーザの断面構成図である。 レーザの要部を拡大して表す断面構成図である。 レーザの製造過程を説明するための断面図である。 図3に続く過程を説明するための断面図である。 従来のレーザにおける電流密度を説明するための分布図である。 従来のレーザにおける定在波の積分強度を説明するための分布図である。 図1のレーザにおける電流密度を説明するための分布図である。 図1のレーザにおける定在波の積分強度を説明するための分布図である。
符号の説明
10…基板、11…n型DBR層、12…n型ガイド層、13…活性層、13A…発光領域、14…p型ガイド層、15,15D,115…第1電流狭窄層、15a,17a,115a,117a…電流狭窄領域、15b,17b,115b,117b…電流注入領域、16…スペーサ層、17,17D…第2電流狭窄層、18…p型DBR層、19…p型コンタクト層、20…p側電極、21…n側電極、30…メサ部、A,B…面積、L1,L2…厚さ、P1〜P5…腹、Z1〜Z5…節、W…開口部、W1,W2,W11,W21…径。

Claims (4)

  1. 発光領域を有する活性層、ならびに前記活性層を間にして設けられた一対の第1多層膜反射鏡および第2多層膜反射鏡を含み、所定の波長で共振するように構成された共振器と、
    前記発光領域と対応する領域に第1電流注入領域を有し、前記活性層と前記第1多層膜反射鏡との間であって、前記共振器内に形成される前記定在波の腹を含む部位に形成された第1電流狭窄層と、
    前記第1電流注入領域の径よりも小さな径の第2電流注入領域を中央領域に有すると共に前記第1電流狭窄層の厚さよりも薄く、かつ、前記第1電流狭窄層と前記第1多層膜反射鏡との間、または前記第1多層膜反射鏡内であって、前記共振器内に形成される前記定在波の節を含む部位に形成された第2電流狭窄層と
    を備えたことを特徴とする面発光型半導体レーザ。
  2. 前記第1電流狭窄層は、当該第1電流狭窄層に対応する定在波の腹の両側にある2つの節で囲まれる定在波強度の積分値(面積)を1.0としたときに、当該第1電流狭窄層に対応する領域の定在波強度の積分値(面積)が0.5以上、1より小さくなるような光学厚さを有し、
    前記第2電流狭窄層は、当該第2電流狭窄層に対応する定在波の節の両側にある2つの節で囲まれる定在波強度の積分値(面積)を1.0としたときに、酸化可能な厚さ以上、当該第2電流狭窄層に対応する領域の定在波強度の積分値(面積)が0.1より小さくなるような光学厚さを有する
    ことを特徴とする請求項1に記載の面発光型半導体レーザ。
  3. 前記活性層は、前記共振器内に形成される前記定在波の腹を含む部位に形成され、
    前記第1電流狭窄層は、前記活性層内の腹からmλ/2(mは1以上の整数、λは発光波長)の光学距離だけ離れた位置にある腹を含む部位に形成され、
    前記第2電流狭窄層は、前記活性層内の腹から(2n+1)λ/4(nはmより大きい整数)の光学距離だけ離れた位置にある節を含む部位に形成されている
    ことを特徴とする請求項1に記載の面発光型半導体レーザ。
  4. 前記活性層は、前記共振器内に形成される前記定在波の節を含む部位に形成され、
    前記第1電流狭窄層は、前記活性層内の節から(2m−1)λ/4(mは1以上の整数、λは発光波長)の光学距離だけ離れた位置にある腹を含む部位に形成され、
    前記第2電流狭窄層は、前記活性層内の腹からnλ/2(nはmより大きい整数)の光学距離だけ離れた位置にある節を含む部位に形成されている
    ことを特徴とする請求項1に記載の面発光型半導体レーザ。
JP2005364912A 2005-12-19 2005-12-19 面発光型半導体レーザ Pending JP2007173304A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005364912A JP2007173304A (ja) 2005-12-19 2005-12-19 面発光型半導体レーザ
US11/612,076 US7912105B2 (en) 2005-12-19 2006-12-18 Vertical cavity surface emitting laser
KR1020060129368A KR20070065231A (ko) 2005-12-19 2006-12-18 면 발광 레이저

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364912A JP2007173304A (ja) 2005-12-19 2005-12-19 面発光型半導体レーザ

Publications (1)

Publication Number Publication Date
JP2007173304A true JP2007173304A (ja) 2007-07-05

Family

ID=38224369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364912A Pending JP2007173304A (ja) 2005-12-19 2005-12-19 面発光型半導体レーザ

Country Status (3)

Country Link
US (1) US7912105B2 (ja)
JP (1) JP2007173304A (ja)
KR (1) KR20070065231A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094485A (ja) * 2007-09-21 2009-04-30 Canon Inc 垂直共振器型面発光レーザ素子、及び該垂直共振器型面発光レーザ素子を用いた画像形成装置
JP2011029496A (ja) * 2009-07-28 2011-02-10 Canon Inc 面発光レーザ、面発光レーザの製造方法、画像形成装置
JP2011029495A (ja) * 2009-07-28 2011-02-10 Canon Inc 面発光レーザ、面発光レーザの製造方法、画像形成装置
JP2011211227A (ja) * 2011-06-20 2011-10-20 Canon Inc 面発光レーザ、面発光レーザの製造方法、画像形成装置
US9048613B2 (en) 2013-03-18 2015-06-02 Samsung Electronics Co., Ltd. Hybrid vertical cavity laser and method of manufacturing the same
JP2021073679A (ja) * 2015-06-09 2021-05-13 トランプ フォトニック コンポーネンツ ゲーエムベーハー 垂直共振器型面発光レーザ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973940B2 (ja) * 2007-10-15 2012-07-11 ソニー株式会社 半導体発光素子の製造方法
US8077752B2 (en) * 2008-01-10 2011-12-13 Sony Corporation Vertical cavity surface emitting laser
JP4582237B2 (ja) * 2008-01-10 2010-11-17 ソニー株式会社 面発光型半導体レーザ
KR100950263B1 (ko) * 2008-01-10 2010-04-01 광주과학기술원 마이크로렌즈를 포함한 단일모드 수직 공진식표면발광레이저 및 그 제조방법
TWI487141B (zh) * 2009-07-15 2015-06-01 Advanced Optoelectronic Tech 提高光萃取效率之半導體光電結構及其製造方法
WO2013014563A1 (en) * 2011-07-22 2013-01-31 Koninklijke Philips Electronics N.V. Vcsel with gain tailoring by apertures with different diameters in the bottom p-dbr
US10008826B1 (en) 2015-05-01 2018-06-26 Sae Magnetics (H.K.) Ltd. Surface-emitting semiconductor laser
CN108879328A (zh) * 2018-09-18 2018-11-23 厦门乾照半导体科技有限公司 一种提升激光增益的vcsel芯片及其制备方法
CN109309344B (zh) * 2018-09-18 2023-11-28 厦门乾照半导体科技有限公司 一种集中电流注入的vcsel芯片及其制备方法
CN109524878B (zh) * 2018-12-05 2019-08-09 深亮智能技术(中山)有限公司 一种垂直腔面发射激光器
US11552450B2 (en) * 2019-08-14 2023-01-10 Ii-Vi Delaware, Inc. VCSEL with double oxide apertures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505465A (ja) * 1995-06-26 1998-05-26 オプティカル コンセプツ,インコーポレイティド 電流アパーチャを備えた垂直キャビティレーザー
JP2002353562A (ja) * 2001-05-23 2002-12-06 Canon Inc 面発光レーザ装置およびその製造方法
JP2004253408A (ja) * 2002-02-22 2004-09-09 Ricoh Co Ltd 面発光レーザ素子、該面発光レーザ素子を用いた面発光レーザアレイ、電子写真システム、面発光レーザモジュール、光通信システム、光インターコネクションシステム、および面発光レーザ素子の製造方法
WO2005071808A1 (ja) * 2004-01-23 2005-08-04 Nec Corporation 面発光レーザ
JP2005259951A (ja) * 2004-03-11 2005-09-22 Nec Corp 面発光レーザとその製造方法、および、光通信システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493577A (en) * 1994-12-21 1996-02-20 Sandia Corporation Efficient semiconductor light-emitting device and method
JP3860494B2 (ja) 2002-03-13 2006-12-20 富士通株式会社 面発光レーザおよびその製造方法
GB2399941A (en) * 2003-03-24 2004-09-29 Univ Strathclyde Vertical cavity semiconductor optical devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505465A (ja) * 1995-06-26 1998-05-26 オプティカル コンセプツ,インコーポレイティド 電流アパーチャを備えた垂直キャビティレーザー
JP2002353562A (ja) * 2001-05-23 2002-12-06 Canon Inc 面発光レーザ装置およびその製造方法
JP2004253408A (ja) * 2002-02-22 2004-09-09 Ricoh Co Ltd 面発光レーザ素子、該面発光レーザ素子を用いた面発光レーザアレイ、電子写真システム、面発光レーザモジュール、光通信システム、光インターコネクションシステム、および面発光レーザ素子の製造方法
WO2005071808A1 (ja) * 2004-01-23 2005-08-04 Nec Corporation 面発光レーザ
JP2005259951A (ja) * 2004-03-11 2005-09-22 Nec Corp 面発光レーザとその製造方法、および、光通信システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094485A (ja) * 2007-09-21 2009-04-30 Canon Inc 垂直共振器型面発光レーザ素子、及び該垂直共振器型面発光レーザ素子を用いた画像形成装置
JP2011029496A (ja) * 2009-07-28 2011-02-10 Canon Inc 面発光レーザ、面発光レーザの製造方法、画像形成装置
JP2011029495A (ja) * 2009-07-28 2011-02-10 Canon Inc 面発光レーザ、面発光レーザの製造方法、画像形成装置
JP2011211227A (ja) * 2011-06-20 2011-10-20 Canon Inc 面発光レーザ、面発光レーザの製造方法、画像形成装置
US9048613B2 (en) 2013-03-18 2015-06-02 Samsung Electronics Co., Ltd. Hybrid vertical cavity laser and method of manufacturing the same
JP2021073679A (ja) * 2015-06-09 2021-05-13 トランプ フォトニック コンポーネンツ ゲーエムベーハー 垂直共振器型面発光レーザ

Also Published As

Publication number Publication date
US7912105B2 (en) 2011-03-22
KR20070065231A (ko) 2007-06-22
US20070153865A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP2007173304A (ja) 面発光型半導体レーザ
JP4872987B2 (ja) 面発光型半導体レーザ
JP4868004B2 (ja) 面発光型半導体レーザおよびその製造方法
JP2006210429A (ja) 面発光型半導体レーザ
JP5304694B2 (ja) 面発光型半導体レーザ
US7965750B2 (en) Semiconductor light emitting device
JP4626686B2 (ja) 面発光型半導体レーザ
JP2006140446A (ja) 面発光レーザ素子および面発光レーザアレイおよび面発光レーザ素子の製造方法および面発光レーザモジュールおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム
JP4728656B2 (ja) 面発光レーザ素子
US20110007769A1 (en) Laser diode
JP2009164466A (ja) 面発光型半導体レーザおよびその製造方法
JP2009266919A (ja) 面発光型半導体レーザおよびその製造方法
CN110720163B (zh) 表面发射半导体激光器及感测模块
JP2007227860A (ja) 半導体発光素子
JP2010045249A (ja) 半導体発光素子およびその製造方法
JP2009246194A (ja) 面発光半導体レーザ素子
JP7312113B2 (ja) 面発光半導体レーザ
JP2011061083A (ja) 半導体レーザ
JP2005251860A (ja) 面発光レーザ装置
JP2006302955A (ja) 面発光半導体レーザ
JP2007242945A (ja) 面発光半導体レーザ素子
CN113725726B (zh) 外腔式vcsel激光器、vcsel阵列和激光器的制备方法
JP2006228959A (ja) 面発光半導体レーザ
WO2021157431A1 (ja) 発光デバイス
JP2006210430A (ja) 半導体レーザ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101006