JP2011003725A - 垂直共振器型面発光レーザ - Google Patents

垂直共振器型面発光レーザ Download PDF

Info

Publication number
JP2011003725A
JP2011003725A JP2009145550A JP2009145550A JP2011003725A JP 2011003725 A JP2011003725 A JP 2011003725A JP 2009145550 A JP2009145550 A JP 2009145550A JP 2009145550 A JP2009145550 A JP 2009145550A JP 2011003725 A JP2011003725 A JP 2011003725A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
dbr
emitting laser
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009145550A
Other languages
English (en)
Other versions
JP2011003725A5 (ja
JP5322800B2 (ja
Inventor
Takeshi Uchida
武志 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009145550A priority Critical patent/JP5322800B2/ja
Priority to US12/817,514 priority patent/US8340149B2/en
Publication of JP2011003725A publication Critical patent/JP2011003725A/ja
Publication of JP2011003725A5 publication Critical patent/JP2011003725A5/ja
Application granted granted Critical
Publication of JP5322800B2 publication Critical patent/JP5322800B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】レーザ光出射領域を備えた上部DBR層の電流が存在する領域と半導体表面を分離し、半導体表面を始点とする転移の成長が、電流により加速されることを抑制し、信頼性の高い垂直共振器型面発光レーザを提供する。
【解決手段】基板上に、下部及び上部DBR層、これらの間の活性層、とを少なくとも有し、上部DBR層の表面層にレーザ光を外部に出射するレーザ光出射領域を備えた垂直共振器型面発光レーザであって、
部DBR層は、ドーングされた第1の多層膜半導体層と、ドーングされていない第2の多層膜半導体層と、を備え、
部DBR層に設けられる電極が、第1の多層膜半導体層の上部であって、第2の多層膜半導体層に囲まれた領域に形成され、
ーザ光出射領域が第2の多層膜半導体層の表面層に形成されており、
第1の多層膜半導体層の表面層がコンタクト層によって形成され、コンタクト層の上に第2の多層膜半導体層が積層されている。
【選択図】 図1

Description

本発明は、垂直共振器型面発光レーザに関する。
垂直共振器型面発光レーザ(VCSEL:Vertical Cavity SurfaceEmitting Laser)は、基板に対して垂直方向にレーザ光を出射させるレーザであり、高密度に2次元アレイ化が容易であるなどの利点を有している。
これらを高密度に集積したVCSELアレイを、電子写真に用いることにより高精細化や高速化が可能である。
ところで、VCSELにおける課題の一つとして横モード制御があり、特許文献1では、DBRの最表面に凹凸の形状を形成し、それにより反射率に面内分布を形成するという構成(サーフェイスレリーフ)が提案されている。
図6に特許文献1で開示されている構成の概略を示す。
図6では、基板1301の上に半導体DBR1302が積層され、その上に複数の量子井戸1313を含んだ共振器1304と半導体DBR1303が形成されている。この半導体DBR1303内にはAl組成の高い選択酸化層1316が形成されている。
選択酸化層1316を横方向から酸化することで、電流狭窄を行なうための酸化部分1317と非酸化部分1318が形成されている。
半導体DBR1303の最上層には上部電極1321と電気的コンタクトを取るためのコンタクト層1320が形成されている。
また、下部電極1322が、基板1301の裏面に設けられている。
コンタクト層1320の一部をエッチングすることにより領域1323が形成される。このエッチングにより、エッチングされた円形の領域1323では、エッチングされていない部分と比較して反射率が高くなる。
これにより、面発光レーザの中央部の反射率は周辺部の反射率に比べて高くなる。この結果、高次横モードの発振を抑制することができる。
また、非特許文献1では、半導体DBRの上に誘電体DBRを積層し、半導体DBRから電流注入を行なうイントラキャビティ型の面発光レーザが提案されている。
米国特許第6144682号明細書
Chirovsky et.al.,IEEE,PTL Vol.11,1999,pp500
上記特許文献1の構成では、上部電極1321からコンタクト層1320を通じて半導体DBR1303に電流が注入される。
一般に、コンタクト層1320は電極金属と良好な電気的コンタクトを取るため、高濃度にドープされており、また正孔移動度が大きな半導体が用いられることが多く、コンタクト層はその下の半導体DBR1303を構成する半導体層よりも電気伝導率が良い。
そのため、電極金属から流入した電流は高導電率のコンタクト層を横方向に流れ、その後半導体DBR1303側へ拡散するように流れる。
一方、一般に半導体レーザでは、半導体結晶表面からのいわゆる上昇運動(<100>DLD)による劣化モードが存在する。
これは半導体結晶表面を始点として転移が発生し、そこから半導体内側へと転移が伸びることで生じる。
そしてこの転移は、電流によってその成長速度が加速する。
そのため、VCSEL最表面のコンタクト層にダメージが入った場合には、これが始点となる転移の発生とそれによる劣化が起きる。
そして、上記したようにコンタクト層には高密度の電流が流れているため、電流により転移の成長が大幅に加速され、それにより素子に故障が生じることとなる。
さらに、図6のような構成の場合、電流はコンタクト層1320の端部と半導体DBR1303の接触部分にさらに集中する。
そして、領域1323を形成するためのエッチングによる半導体表面および側面へのダメージも存在する。
そのため、図6に示される構成の場合には、コンタクト層1320表面より転移が発生し、より高密度な電流によりさらに急速に成長することとなる。このため、素子の急速な劣化と信頼性の低下を引き起こす。
また、非特許文献1のように、半導体DBRの上に誘電体DBRを積層すると、半導体結晶は半導体と誘電体の界面で終端されており、かつ最表面層に電流が流れるため半導体と誘電体との界面で転移が生じる可能性がある。
また、半導体プロセスの後に誘電体を積層すると、光学的な誤差要因が多くなり、厳密な膜厚制御や素子特性安定化が難しい。
本発明は、上記課題に鑑み、レーザ光出射領域を備えた上部DBR層における電流が存在する領域と半導体表面を分離し、半導体表面を始点とする転移の成長が、電流により加速されることを抑制し、信頼性の高い垂直共振器型面発光レーザの提供を目的とする。
本発明は、つぎのように構成した垂直共振器型面発光レーザを提供するものである。
本発明の垂直共振器型面発光レーザは、
基板上に、下部DBR層、上部DBR層、これらの間に介在する活性層、とが少なくとも積層されて構成され、前記上部DBR層の表面層にレーザ光を外部に出射するレーザ光出射領域を備えた垂直共振器型面発光レーザであって、
前記上部DBR層は、ドーングされた第1の多層膜半導体層と、ドーングされていない第2の多層膜半導体層と、を備え、
前記上部DBR層に設けられる電極が、前記第1の多層膜半導体層の上部であって、前記第2の多層膜半導体層に囲まれた領域に形成され、
前記レーザ光出射領域が前記第2の多層膜半導体層の表面層に形成されており、
前記第1の多層膜半導体層の表面層がコンタクト層によって形成され、該コンタクト層の上に前記第2の多層膜半導体層が積層されていることを特徴とする。
本発明によれば、レーザ光出射領域を備えた上部DBR層における電流が存在する領域と半導体表面を分離し、半導体表面を始点とする転移の成長が、電流により加速されることを抑制し、信頼性の高い垂直共振器型面発光レーザを実現することができる。
本発明の実施形態および実施例1における赤色面発光レーザの構造を説明する断面模式図。 従来例の図6の構造での上部DBR表面付近の電流分布の計算モデル(図2(a))と計算結果(図2(b))とについて説明する図。 本発明の実施例1における構造での上部DBR表面付近の電流分布の計算モデル(図3(a))と計算結果(図3(b))とについて説明する図。 本発明の実施例2における赤色面発光レーザ構造を説明する断面模式図。 本発明の実施例3における赤色面発光レーザ構造を説明する断面模式図。 従来例である特許文献1における垂直共振器型面発光レーザの構造を説明する断面模式図。
本発明に係る垂直共振器型面発光レーザの構成例について説明する。
本発明の実施形態の面発光レーザは、基板上に、下部DBR層、上部DBR層、これらの間に介在する活性層、とが少なくとも積層されて構成され、前記上部DBR層の表面層にレーザ光を外部に出射するレーザ光出射領域が形成されている。
そして、上部DBR層は、ドーングされた第1の多層膜半導体層(第1の半導体DBR)と、ドーングされていない第2の多層膜半導体層(第2の半導体DBR)とにより構成された構造を備えている。
また、上部電極が、第1の半導体DBRの上部であって、第2の半導体DBRに囲まれた領域に形成されている。
第1の半導体DBRと第2の半導体DBRと電極が上記のように構成されているため、電流密度が強い領域と、転移の始点となる半導体表面との重複領域が少なくなっている。
その結果、半導体表面に転移の始点となるダメージが存在しても、その成長を加速する電流が存在しないため、素子の劣化を抑制することが可能となる。
また、前述した非特許文献1のように、半導体DBRの上に誘電体DBRを積層すると、半導体と誘電体との界面で転移が生じる可能性がある。
また、半導体プロセスの後に誘電体を積層すると、光学的な誤差要因が多くなり、厳密な膜厚制御や素子特性安定化が難しい。
そのため、本発明に係る面発光レーザでは、上部DBRを構成する第1の半導体DBRと第2の半導体DBRとが、連続した半導体単結晶で構成されている。
また、DBRにAlGaAsからなる3元混晶を用いる必要のある850nmより短波長で発振するVCSELでは、コンタクト層には、コンタクト層以外の他の半導体層と比較して、高濃度にドーングされているGaAsを用いる。
GaAs層の電気伝導率はその下のAlGaAs層と比較して特に大きいため、DBRを横方向に進む電流の大部分がコンタクト層内を流れることとなる。その結果、半導体表面層により高密度な電流が存在するため結晶の転位成長が促進され、素子の劣化を招くこととなる。
したがって、850nmより短波長で発振するVCSELにおいては、本実施形態に係る構成を好適に用いることができる。
図1は本実施形態の層構成を示す図である。
本実施形態では、図1に示すようにGaAs基板101の上に光学的厚さが1/4波長のAlAs層114、とAlGaAs層115で構成されたn−DBR102が積層されている。
その上に、複数のGaInPを用いた量子井戸113を含んだ光学的厚さが1波長のAlGaInPを用いた共振器104が形成されている。
共振器104の上には、光学的厚さが1/4波長のAl 0.9 GaAs層130とAl 0.5 GaAs層131で構成される上部DBR105(第1の半導体DBR)がある。
ここで、上部DBR105はp型にドーピングされたAl 0.9 GaAs層130とAl 0.5 GaAs層131、高ドープされたGaAsコンタクト層107を有する。
さらに、コンタクト層107の上には、電気伝導性が低い絶縁性の半導体で構成されるノンドープAlGaInP層119とノンドープGaAs層120が形成されている。
なお、このノンドープAlGaInP層119とノンドープGaAs層120はDBRとしての機能を果たし、上記した第2の半導体DBRに相当するものである。
また、ノンドープAlGaInP層119とノンドープGaAs層120の横に電気的コンタクトを取るための電極110が配置されここから出た電流はコンタクト層107を横方向へ進む。
コンタクト層107はノンドープAlGaInP層119とDBR105にはさまれているため、半導体表面には露出していない。
そのため、電流集中領域と半導体表面が分離され、半導体表面に転移が発生しても電流での加速が防止される。その結果、素子の劣化を防止することができる。
以下に、本発明の実施例について説明する。
[実施例1]
図1を用いて、本発明の実施例1の垂直共振器型面発光レーザにおける赤色面発光レーザの構造について説明する。
図1に示すように、GaAs基板101の上部にはn型AlAs層114/Al 0.5 Ga 0.5 A層115で構成されるDBR102が配置されている。
DBR102の上には4つのGa 0.45 In 0.55 P量子井戸とそれをはさむAlGaInP層113で構成される光学厚さが1波長の共振器104が位置している。
共振器104の上にはp型Al 0.9 Ga 0.1 As層130とAl 0.5 Ga 0.5 As層131が30ペアで構成されるDBR105が位置している。
DBR105の活性層から第1層目のAl 0.5 Ga 0.5 As層には厚さ30nmのAl 0.98 Ga 0.02 As酸化層106が挿入されている。
酸化層106は水蒸気により酸化された部分117と、直径6μmの酸化されていない非酸化部分118に分かれている。
DBR105の上には厚さ10nmの高ドープp型GaAsで構成されるコンタクト層107が位置している。
コンタクト層107の上部にはコンタクト層107と電気的接触が確保されている上部電極110がある。
そして、基板101の下には基板101と電気的接触が確保されている基板裏面の下部電極111がある。
さらに、コンタクト層107上には光学的厚さが発振波長の半波長のノンドープAlGaInP層119と光学的厚さが発振波長の1/4のノンドープGaAs層120がある。ノンドープGaAs層120は非酸化部分118と同じ中心軸を有し、直径4μmの領域のGaAs層120が除去された部分123で構成されている。
つぎに、図2と図3を用いて、実施例1の構造と、従来の最表面のコンタクト層を加工した場合(図6)とを比較して、上部DBR表面付近の電流分布の計算モデルと計算結果とについて説明する。
図2(a)には、特許文献1にあるような半導体DBR1303の最表面にGaAsコンタクト層1320を配置し、中央部分をエッチングした構造の場合、図3(a)には実施例1の構造の場合について示されている。
図2(b)に示されているように、従来例の構造では最表面のGaAsコンタクト層1320を横方向に高密度の電流が流れており、エッチングにより取り除かれた部分1323まで到達した電流は穴の側面を流れて行くのが分かる。
そのため、コンタクト層1320表面やエッチングした側面にダメージが入った場合には、コンタクト層1320を流れる高密度の電流により転移の成長が加速されてしまう。
図3(b)に示されている本実施例での電流分布の計算結果によると、本実施例では、コンタクト層107より上層の半導体がノンドープであるため電流が表面の半導体を流れず、内部のコンタクト層107を横方向に流れていることが分かる。
そのため、半導体表面、具体的にはGaAs層120やAlGaInP層119にダメージが入った場合でも、この部分に電流が存在しないため電流による加速が無く、転移の成長を大幅に遅くするこができ、VCSELの信頼性を改善することが出来る。
つぎに、本実施例における素子の作製手順について説明する。
まず、上記DBR102、共振器104、DBR105、高ドープp型GaAs層107、AlGaInP119、GaAs層120の半導体層構成を有機金属気相成長法や分子線エピタキシー法で成長する。
そのウエハにスパッタ法を用いて誘電体膜を形成する。その後、半導体リソグラフィー法を用いてフォトレジストでリング状のパターンを形成する。
フォトレジストがない部分の誘電体膜及び最表面のノンドープGaAs層120を除去する。
その後、スパッタ法を用いて再度、誘電体膜を形成する。ここで、スパッタ法を用いたのは、レジスト側面が誘電体膜で覆われないようにするためである。
その後、リングの中央部分を覆うように異なる種類のフォトレジストを用いてマスクを形成する。
その後、リング状レジストの外周部分をメサ部を決定するマスクとして、ドライエッチングにより選択酸化層106が露出するように活性層部分104まで掘る。
その後、450℃程度の水蒸気雰囲気中でAl 0.98 Ga 0.02 As選択酸化層106を横方向から酸化させるが、このとき酸化時間を制御することにより電流及び光閉じ込めする酸化部分117と酸化していない非酸化部分118を作成する。非酸化部分118の直径は6マイクロメートル程度となるように酸化時間を制御する。
その後、レジストを剥離し、ウエハ全体にわたってプラズマCVD法を用いてパッシベーションのための誘電体膜を形成する。
コンタクト層107を露出させるためのリング状に穴の開いたレジストパターンを形成し、それを用いて誘電体膜、ノンドープGaAs層120、ノンドープAlGaInP層118を除去しリング状にコンタクト層107が露出した部分を形成する。
真空蒸着法およびリソグラフィー法を用いてp側およびn側電極110、111を形成する。
p側電極110は取り出しのための円形窓が形成されている。良好な電気特性を得るため、高温窒素雰囲気中で電極と半導体を合金化し素子が完成する。
[実施例2]
図4を用いて、実施例2における赤色面発光レーザ構造について説明する。
本実施例において、実施例1と同じ部材により構成される部材には符号を付している。
具体的には、GaAs基板101の裏面の電極111からコンタクト層107までの層構成とp側電極110は実施例1と同じ部材である。本実施例と実施例1の違いは、コンタクト層107の上部に位置している第2のDBRの構成、具体的には最上層の形状およびその下に位置する層の光学的厚さである。
実施例1の最上層、つまりノンドープGaAs層120は中心部分がエッチングされているのに対し、実施例2ではノンドープGaAs最上層がリング状にエッチングされ円筒形の中心部分220が形成されていることである。
最表面層のエッチングパターンは対照的であるが、DBRとしての光学的反射率は、つぎのような設計になっている。
すなわち、横モード制御を目的として、どちらも中心部分(実施例1ではエッチングされた部分123、本実施例であれば円筒形の最上層220)の反射率をその周囲と比較して高くする設計になっている。
そのため、本実施例と実施例1では上から2番目の各層(実施例1であればノンドープAlGaInP層119、本実施例であればノンドープAlGaInP層219)の光学的厚さが異なる。
実施例1ではAlGaInP層119は発振波長の半分の光学的厚さであったが、本実施例ではAlGaInP層219は発振波長の1/4の光学的厚さとなっている。
本実施例でもコンタクト層107の上部はノンドープとなっており、最表面層(AlGaInP層219およびGaAs層220)には電流が流れない。
そのため、エッチングやその他の要因により半導体表面に転移の始点となるダメージが入ってもその成長が電流により加速されることがない。
その結果、これによる素子の劣化を防止することができ、素子の信頼性低下を防ぐことができる。
[実施例3]
実施例3では、図5を用いて上記実施例1、2と異なる構成例について説明する。
上記実施例1では、第2の多層膜半導体層の表面層の面内方向の中央部に形成されたレーザ光出射領域が、円形にエッチングして形成されている。
また、上記実施例2では、中心部分を残してリング状にエッチングして形成されている。しかし、横モードを制御する必要がない場合には、このような加工を施さなくてもよい。例えば、図5に示すように、導電性の第1のDBR105の上部にコンタクト層107を配置する。
そして、その上部にノンドープのDBRとしてAlGaInP層319およびGaAs層320を配し、デバイス表面には実施例1や実施例2で示したような表面加工を施していない構成となっている。
なお、図5中の部材のうち、実施例1と同じ部材には同じ符号を付している。
本実施例では、DBR最上層表面に意図的な加工を施さないので、それによるダメージは生じない。
しかし、加工工程において意図しない小さなダメージが入った場合には、それに端を発する故障が生じ、信頼性の低下が起きる。
それに対して、本実施例の構成では、加工工程において意図しない小さなダメージが入った場合でも、表面のGaAs層320やその下のAlGaInP層319に電流が流れていないため、転移の電流による大幅な加速が生じない。
その結果、ダメージに起因する故障を抑えることができ、信頼性の向上されることが可能となる。
また、実施例1、実施例2および本実施例の垂直共振器型面発光レーザを、同一基板上に複数配置し、レーザアレイとしてもよい。
また、1つの基板上に、実施例1から3で示した1つまたは複数配置した垂直共振器型面発光レーザをレーザビームプリンタに用いてもよい。
101:n型GaAs基板
102:n型AlGaAs/AlAs DBR
104:量子井戸を含む共振器
105:p型AlGaAs/AlGaAs DBR
106:厚さ30nmのAl 0.98 Ga 0.02 As層
107:厚さ10nmの高ドープp型GaAs層
110:上部電極
111:下部電極
113:GaInP/AlGaInP 量子井戸
114:102を構成する高屈折率層
115:102を構成する低屈折率層
117:選択酸化層106のうち酸化工程により酸化された領域
118:選択酸化層106のうち酸化工程により酸化されていない領域
119:ノンドープAlGaInP層
120:ノンドープGaAs層
123:120ののうち円形に除去された部分
130:105を構成する低屈折率層
131:105を構成する高屈折率層

Claims (5)

  1. 基板上に、下部DBR層、上部DBR層、これらの間に介在する活性層、とが少なくとも積層されて構成され、前記上部DBR層の表面層にレーザ光を外部に出射するレーザ光出射領域を備えた垂直共振器型面発光レーザであって、
    前記上部DBR層は、ドービングされた第1の多層膜半導体層と、ドービングされていない第2の多層膜半導体層と、を備え、
    前記上部DBR層に設けられる電極が、前記第1の多層膜半導体層の上部であって、前記第2の多層膜半導体層に囲まれた領域に形成され、
    前記レーザ光出射領域が前記第2の多層膜半導体層の表面層に形成されていることを特徴とする垂直共振器型面発光レーザ。
  2. 前記第1の多層膜半導体層と前記第2の多層膜半導体層とが、連続した半導体単結晶で構成されていることを特徴とする請求項1に記載の垂直共振器型面発光レーザ。
  3. 前記第1の多層膜半導体層の表面層がコンタクト層によって形成され、コンタクト層の上に前記第2の多層膜半導体層が積層されていることを特徴とする請求項1または請求項2に記載の垂直共振器型面発光レーザ。
  4. 前記コンタクト層は、前記第1の多層膜半導体層における該コンタクト層以外の他の多層膜半導体層と比較して、高濃度にドービングされていることを特徴とする請求項3に記載の垂直共振器型面発光レーザ。
  5. 前記第2の多層膜半導体層の表面層は、該表面層の面内方向の中央部にレーザ光出射領域を備え
    前記レーザ光出射領域が円形にエッチングされ、中心部分を残してリング状にエッチングされて形成されていることを特徴とする請求項1から4のいずれか1項に記載の垂直共振器型面発光レーザ。
JP2009145550A 2009-06-18 2009-06-18 垂直共振器型面発光レーザ Active JP5322800B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009145550A JP5322800B2 (ja) 2009-06-18 2009-06-18 垂直共振器型面発光レーザ
US12/817,514 US8340149B2 (en) 2009-06-18 2010-06-17 Vertical cavity surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145550A JP5322800B2 (ja) 2009-06-18 2009-06-18 垂直共振器型面発光レーザ

Publications (3)

Publication Number Publication Date
JP2011003725A true JP2011003725A (ja) 2011-01-06
JP2011003725A5 JP2011003725A5 (ja) 2012-07-26
JP5322800B2 JP5322800B2 (ja) 2013-10-23

Family

ID=43354345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145550A Active JP5322800B2 (ja) 2009-06-18 2009-06-18 垂直共振器型面発光レーザ

Country Status (2)

Country Link
US (1) US8340149B2 (ja)
JP (1) JP5322800B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134746A (ja) * 2009-12-22 2011-07-07 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056154B2 (ja) * 2011-07-21 2017-01-11 富士ゼロックス株式会社 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963576A (en) * 1997-08-04 1999-10-05 Motorola, Inc. Annular waveguide vertical cavity surface emitting laser and method of fabrication
US6185241B1 (en) * 1998-10-29 2001-02-06 Xerox Corporation Metal spatial filter to enhance model reflectivity in a vertical cavity surface emitting laser
JP2003051642A (ja) * 2001-08-03 2003-02-21 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子
JP2003347671A (ja) * 2002-05-28 2003-12-05 Ricoh Co Ltd 面発光半導体レーザおよび光伝送モジュールおよび光交換装置および光伝送システム
US20050063440A1 (en) * 2003-09-18 2005-03-24 Deppe Dennis G. Epitaxial mode-confined vertical cavity surface emitting laser (VCSEL) and method of manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144682A (en) 1998-10-29 2000-11-07 Xerox Corporation Spatial absorptive and phase shift filter layer to reduce modal reflectivity for higher order modes in a vertical cavity surface emitting laser
US7505503B2 (en) * 2007-02-23 2009-03-17 Cosemi Technologies, Inc. Vertical cavity surface emitting laser (VCSEL) and related method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5963576A (en) * 1997-08-04 1999-10-05 Motorola, Inc. Annular waveguide vertical cavity surface emitting laser and method of fabrication
US6185241B1 (en) * 1998-10-29 2001-02-06 Xerox Corporation Metal spatial filter to enhance model reflectivity in a vertical cavity surface emitting laser
JP2003051642A (ja) * 2001-08-03 2003-02-21 Furukawa Electric Co Ltd:The 面発光型半導体レーザ素子
JP2003347671A (ja) * 2002-05-28 2003-12-05 Ricoh Co Ltd 面発光半導体レーザおよび光伝送モジュールおよび光交換装置および光伝送システム
US20050063440A1 (en) * 2003-09-18 2005-03-24 Deppe Dennis G. Epitaxial mode-confined vertical cavity surface emitting laser (VCSEL) and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134746A (ja) * 2009-12-22 2011-07-07 Fuji Xerox Co Ltd 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置

Also Published As

Publication number Publication date
US8340149B2 (en) 2012-12-25
US20100322277A1 (en) 2010-12-23
JP5322800B2 (ja) 2013-10-23

Similar Documents

Publication Publication Date Title
JP4066654B2 (ja) 面発光型半導体レーザ装置及びその製造方法
JP4062983B2 (ja) 表面発光型半導体レーザおよびその製造方法
JP5038371B2 (ja) 面発光レーザの製造方法
JP3748807B2 (ja) 電気光学的特性が改善された半導体光放出装置及びその製造方法
JP4184769B2 (ja) 面発光型半導体レーザ及びその製造方法
JP2008270432A (ja) 発光素子及びその製造方法
JPWO2005071808A1 (ja) 面発光レーザ
US8228964B2 (en) Surface emitting laser, surface emitting laser array, and image formation apparatus
US8085827B2 (en) Vertical cavity surface emitting laser and method of manufacturing the same
JP2001085788A (ja) 面発光型半導体レーザ素子及び面発光型半導体レーザアレイ
US8389308B2 (en) Method for producing surface emitting semiconductor device
JP3800856B2 (ja) 面発光レーザ及び面発光レーザアレイ
JP6004063B1 (ja) 面発光型半導体レーザ素子の製造方法
US20090180509A1 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP5006242B2 (ja) 面発光半導体レーザ素子
JP4235674B2 (ja) 面発光レーザ装置およびその製造方法
JP4224981B2 (ja) 面発光半導体レーザ素子およびその製造方法
JP5322800B2 (ja) 垂直共振器型面発光レーザ
JP2001085789A (ja) 面発光型半導体レーザ素子及びその製造方法
JP5074786B2 (ja) 面発光レーザ素子の製造方法および面発光レーザ素子
JP2009246252A (ja) 面発光レーザ素子及び面発光レーザアレイ
JP2004031863A (ja) 面発光型半導体レーザ素子
JP4845055B2 (ja) 面発光レーザ素子の製造方法および面発光レーザ素子
JP5261201B2 (ja) 面発光レーザ、面発光レーザアレイ及びその製造方法
JP2005085836A (ja) 面発光半導体レーザ素子及びその製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R151 Written notification of patent or utility model registration

Ref document number: 5322800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03