JP2007273817A - 面発光型半導体レーザ素子及び面発光型半導体レーザ素子の製造方法 - Google Patents

面発光型半導体レーザ素子及び面発光型半導体レーザ素子の製造方法 Download PDF

Info

Publication number
JP2007273817A
JP2007273817A JP2006098694A JP2006098694A JP2007273817A JP 2007273817 A JP2007273817 A JP 2007273817A JP 2006098694 A JP2006098694 A JP 2006098694A JP 2006098694 A JP2006098694 A JP 2006098694A JP 2007273817 A JP2007273817 A JP 2007273817A
Authority
JP
Japan
Prior art keywords
layer
reflective film
semiconductor
semiconductor laser
multilayer reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006098694A
Other languages
English (en)
Inventor
Norihiro Iwai
則広 岩井
Tatsuo Kageyama
健生 影山
Kinuka Tanabe
衣加 田辺
Kazuaki Nishikata
一昭 西片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006098694A priority Critical patent/JP2007273817A/ja
Publication of JP2007273817A publication Critical patent/JP2007273817A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】活性層内での転位の増殖を防ぎ、信頼性の優れたメサポストを有する面発光型半導体レーザ素子の実現を目的とする。
【解決手段】半導体基板1と、前記半導体基板1上に設けられ、複数の積層した半導体層からなる上部多層反射膜6及び下部多層反射膜2と、前記上部多層反射膜6と前記下部反射膜2の間に設けられ、Alを含まない半導体層からなる活性層と、前記活性層よりも下の半導体層を裾部とするメサポスト9と、前記メサポストが形成された箇所の前記上部多層反射膜6又は前記下部多層反射膜2を構成する半導体層内に設けられ、Alを含む半導体層の一部を選択的に酸化してなる電流狭窄層と、を有する面発光型半導体レーザ素子20。
【選択図】図1

Description

本発明は、メサポストを有する酸化狭窄型の面発光型半導体レーザ素子に関し、信頼性の優れた面発光型半導体レーザ素子に関するものである。また、信頼性の優れたメサポストを有する酸化狭窄型の面発光型半導体レーザ素子の製造方法に関するものである。
垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser、以下面発光型半導体レーザ素子という。)は、基板に対して直交方向に光を出射させる半導体レーザ素子であって、従来のファブリペロー共振器型半導体レーザ素子とは異なり、同じ基板上に2次元アレイ状に多数の面発光型半導体レーザ素子を配列することも可能である。
そのため、面発光型半導体レーザ素子は通信用光源として、また、その他の様々なアプリケーション用デバイスとして注目されている。また、ギガビットイーサネット(登録商標)やファイバーチャネル等のデータコム通信における高速光伝送の信号光源用途を中心とするニーズが高くなっている。
面発光型半導体レーザ素子は、GaAsやInPといった半導体基板上に1対の半導体多層反射膜(例えば、GaAs系ではAl(Ga)As/GaAlAs等)を形成し、その対の反射膜の間に発光領域となる活性層を備えている。
特に、850nm帯の発光波長を有するGaAs系の面発光型半導体レーザ素子は、GaAs基板上に作製が可能なAl(Ga)As/GaAlAsからなる多層反射膜を使用する。多層反射膜を構成するAlGaAsの組成を変化させることにより、ペアとなるGaAsと屈折率差を容易につけることができ反射率を高くすることができる。さらに、このような多層反射膜を構成する材料は熱伝導が良好であるので、面発光型半導体レーザ素子の発光効率を向上させることができる。
こういった面発光型半導体レーザ素子では、電流効率を高め、閾値電流値を下げるために、Al酸化層で電流狭窄構造を構成した酸化狭窄型の面発光型半導体レーザ素子が提案されている。
従来の850nm帯の電流狭窄型の面発光型半導体レーザ素子について、図3を参照しながら説明する。図3は面発光型半導体レーザ素子100の概略断面図を示したものであり、特許文献1に記載されている。
面発光型半導体レーザ素子100は、n−GaAs基板101上に、それぞれの層の厚さがλ/4n(λは発振波長、nは屈折率)のn−Al0.9Ga0.1As/n−Al0.2 Ga0.8Asの35ペアからなる下部多層反射膜102、下部クラッド層103、量子井戸活性層104、上部クラッド層105、及び、それぞれの層の厚さがλ/4n(λは発振波長、nは屈折率)のp−Al0.9Ga0.1As/p−Al0.2 Ga0.8Asの25ペアからなる上部多層反射膜106の積層構造を備えている。
量子井戸活性層104は、GaAsからなる量子井戸層と、Al0.2Ga0.8Asからなる障壁層とを交互に形成した多重量子井戸(MQW:Multiple Quantum Well)構造を有している。
上部多層反射膜106では、量子井戸活性層104に近い側の一層が、Al0.9Ga0.1s層に代えて、AlAs層107で形成され、かつ電流注入領域以外の領域のAlAs層107のAlが、選択的に酸化され、Al酸化層108からなる電流狭窄層を構成している。
積層構造のうち、上部多層反射膜106は、フォトリソグラフィー処理及びエッチング加工により、少なくともAlAs層107よりも下方の半導体層まで、例えば直径30μmの円形のメサポスト109に加工されている。メサポスト109の形成を行う場合は、図3に示したようなメサポスト109が形成される領域以外の半導体を全てエッチングする形態の他、エッチングによって円筒状溝内にメサポストを形成する形態がある。
メサポスト109を形成した積層構造を水蒸気雰囲気中にて、約400℃の温度で酸化処理を行い、メサポスト109の外側からAlAs層107のAlを選択的に酸化させることにより、Al酸化層108からなる電流狭窄層が形成されている。
メサポスト109は、周囲が例えばポリイミド層110により埋め込まれている。そして、メサポスト層109の上部に外周5μm〜10μm程度の幅で接触するリング状電極が、p側電極111として設けられている。また、基板裏面を適宜研磨して基板厚さを例えば200μm厚に調整した後、n−GaAs基板101の裏面にn側電極112が形成されている。更に、ポリイミド層110には、外部端子とワイヤーで接続するための電極パッド113が、リング状電極と接触するように形成されている。
なお、GaAs系の半導体レーザは、特許文献1に記載されているような、面発光型半導体レーザ素子の他、980nm帯のInGaAs量子井戸を使用した埋め込み型(BH:Buried Heterostructure)半導体レーザもある。埋め込み型半導体レーザは、活性半導体層をストライプ形状に加工した後、その両側を高抵抗な半導体結晶で埋め込んだ構造を有しており、低しきい値を実現でき、横方向のモードの安定性に優れている。
特開2003−008142号公報 特開2004−200276号公報
図3に示した酸化狭窄型の面発光型半導体レーザ素子100は、メサポスト109の側面のAlAs層107を選択的に酸化し、Al酸化層108からなる電流狭窄層を形成する際、酸化されたAlAs層107の体積が収縮する。すなわち、AlAs層107を酸化することにより形成されたAl酸化層108が、その層を含む上部多層反射膜106を構成する層に応力を発生させる。
図3に示したように、量子井戸活性層104とAl酸化層108の位置が接近しているので、上部多層反射膜106を構成する層に加わった応力によって、量子井戸活性層104にも応力が加わり損傷が発生する。さらに、AlAs層107を酸化することにより発生する応力は、メサポスト109側面の量子井戸活性層104の端面に生じた転位の増殖を助長させる。こういった損傷や転位の増殖は、面発光型半導体レーザ素子100の寿命を短くする原因となる。
そこで、AlAs層107に代えてガリウム(Ga)を微量に含んだAl0.98Ga0.02As層を酸化させる層として利用したり、AlAs層107層の厚さ自体を40nm程度と薄くして、酸化による体積収縮による影響ができるだけ出ないようにすることも提案されている。
なお、メサポスト109を構成する上部多層反射膜106もAl組成の高いAl0.9Ga0.1As層を含んでいる。そのため、AlAs層107を酸化する際に、Al0.9Ga0.1As層の一部も一緒にメサポスト109の周囲に沿って円環状に酸化される。上部多層反射膜106のAl0.9Ga0.1As層の一部が酸化されることにより、量子井戸活性層104に応力が加わる原因となる。そこで、上記と同様な対策も考えられている。
しかしながら、こういったように量子井戸活性層104に応力が加わらないような対策を行ったとしても、依然として、面発光型半導体レーザ素子100を駆動中に、量子井戸活性層104内で転位が増殖し、故障が頻発するという問題がある。そこで、本発明が解決しようとする課題は、面発光型半導体レーザ素子において、活性層内での転位の増殖を防ぎ、信頼性の優れたメサポストを有する面発光型半導体レーザ素子の実現を目的とする。また、信頼性の優れたメサポストを有する面発光型半導体レーザ素子の製造方法の実現を目的とする。
本発明は、半導体基板と、前記半導体基板上に設けられ、複数の積層した半導体層からなる上部多層反射膜及び下部多層反射膜と、前記上部多層反射膜と前記下部反射膜の間に設けられ、Alを含まない半導体層からなる活性層と、前記活性層よりも下の半導体層を裾部とするメサポストと、前記メサポストが形成された箇所の前記上部多層反射膜又は前記下部多層反射膜を構成する半導体層内に設けられ、Alを含む半導体層の一部を選択的に酸化してなる電流狭窄層と、を有する面発光型半導体レーザ素子である。
好ましくは、前記活性層は量子井戸層と障壁層を有する。
好ましくは、前記活性層は、Alを含まない半導体層からなる上下のクラッド層により挟まれている。
好ましくは、前記活性層の半導体層にはInが含まれる。
好ましくは、前記上部多層反射膜、前記下部多層反射膜を構成する半導体層は、Alを含む材料からなる。
さらには、前記上部多層反射膜、前記下部多層反射膜を構成する半導体層は、AlxGa1-xAs(0.9≦x≦1)が含まれる。
より好ましくは、前記電流狭窄層を構成する半導体層は、AlyGa1-yAs(0.98≦y≦1)である。
より好ましくは、前記活性層の量子井戸層は、GaInAs系の半導体材料からなる。
また、本発明は、複数の積層した半導体層からなる上部多層反射膜及び下部多層反射膜と、前記上部多層反射膜と前記下部反射膜の間に設けられ、Alを含まない半導体層からなる活性層とが少なくとも形成された半導体基板に前記活性層よりも下の半導体層を裾部とするメサポストを形成するステップと、前記メサポストが形成された箇所の前記上部多層反射膜又は前記下部多層反射膜を構成する半導体層内に設けられ、Alを含む半導体層の一部を選択的に酸化して電流狭窄層を形成するステップと、を有する面発光型半導体レーザ素子の製造方法である。
本発明の面発光型半導体レーザ素子では活性層において転位が増殖しにくく、信頼性に優れている。また、本発明の面発光型半導体レーザ素子の製造方法では、活性層において転位が増殖しにくく、信頼性に優れる面発光型半導体レーザ素子を得ることができる。
図3に示した従来の面発光型半導体レーザ素子100では、量子井戸活性層104を構成する障壁層には、Alを含んだAl0.2 Ga0.8Asからなる半導体材料が含まれている。例えば、メサポスト109の裾部が下部多層反射膜102にまで達する場合は、量子井戸活性層104を構成する障壁層はメサポスト109を形成した際に円盤形状をなす当該障壁層の縁が露出する。そのため、サポスト109の側面のAlAs層107を選択的に酸化し、Al酸化層108からなる電流狭窄層を形成する際に、量子井戸活性層104を構成する障壁層の縁部分のAl0.2 Ga0.8As層もわずかに酸化される。酸化がわずかであっても、障壁層の縁部分のAl0.2 Ga0.8As層には、応力が加わり図4(a)に示したように微小な転位114が多数発生する。
図4(a)に示したような障壁層の縁部分に微小な転位114が発生した状態で面発光型半導体レーザ素子100の製造を完了した後、その面発光型半導体レーザ素子100の駆動を行うと、時間経過に伴って、その転位114が増殖する。すなわち、面発光型半導体レーザ素子100の駆動を行うと図4(b)に示したように、障壁層の縁部分の転位114を起点として、転位114が増殖拡大し、その転位はAl酸化層108からなる電流狭窄層により規定される発光領域115に到達する。
ここで、メサポスト109が形成されることにより、円盤形状をなす量子井戸活性層104のうち、電流狭窄層により規定された発光領域115に相当する領域のみに電流が流れ、レーザ発振が行われる。そのため、レーザ発振が行われている箇所の量子井戸活性層104に転位が到達すると、その転位の場所で発振光が吸収されて熱が発生し、最終的に発振が停止する。
以上を鑑みて本発明では、メサポストを形成することにより活性層の一部が露出し、かつ、選択酸化により電流狭窄層を形成するための半導体層にAlを用いている面発光型半導体レーザ素子について、Alを含まない半導体層を活性層として用いている。
例えば、活性層として用いる半導体層として、GaInAs系が好ましい。又は、GaInAsP系の半導体材料を用いることができる。活性層として用いる半導体層に多元系の化合物半導体を使用する場合、Alを使用できないことにより、所望のバンドギャップを選択する上で制約が生ずる場合がある。しかし、GaInAs系、又は、GaInAsP系の半導体材料を使用することにより、こういった制約が軽減する。また、これらの材料の元素はAlを含む半導体材料と比較して酸化されにくいので、電流狭窄層を形成する際に、活性層に転位が生じにくい。さらに、Inを含むことによって酸化が抑制され、活性層に転位が生じにくい。
さらに具体的には、例えば、量子井戸層の材料をGaxIn1-xAs、(0.095≦x≦0.999)、障壁層の材料をGaxIn1-xAsy1-y、(0.095≦x≦0.999、0.08≦y≦0.09)とした活性層を用いることができる。
メサポストの側面側から電流狭窄層を形成するために、Alを用いた半導体層を選択酸化する場合は、他の酸化されやすい半導体層がメサポストに存在する場合はその層も必然的に酸化されてしまう。そこで、活性層にAlを含まない半導体層を使用することにより、電流狭窄層形成時の選択酸化の際に活性層が酸化されることによる転位の発生を防ぐことできる。こういった面発光型半導体レーザ素子は、製造完了時において活性層には転位がほとんど存在せず、発光領域にまで転位が増殖しにくいため、信頼性に優れている。
さらに、活性層を挟む上下のクラッド層の半導体層にもAlが含まれないことがより望ましい。クラッド層は活性層と近接するので、クラッド層に酸化による転位が発生すると、その転位の増殖が活性層にまで及ぶ場合もあるためである。
上記のように、活性層にAlを含まない半導体層を使用することにより、活性層のバンドギャップが小さくなってしまい、活性層を構成する複数の半導体層間においてバンドオフセットの差をつけにくくなることもある。しかし、活性層にInが含まれるようにすれば、バンドギャップを調整できる範囲が拡大し、バンドオフセットの差をつけることもできるようになる。
なお、面発光型半導体レーザ素子の上部と下部の多層反射膜を構成する半導体層は活性層から離れているので、これらの層にAlを使用しても活性層において転位の増殖による影響が少ない場合がある。例えば、面発光型半導体レーザ素子がGaAs系であり、基板にGaAsを使用した場合は、多層反射膜として基板と格子整合するAlxGa1-xAs層の組成比の異なるペアを使用することができる。なお、多層反射膜に使用する高屈折率層となるAlxGa1-xAs層の組成xは、0.9≦x≦1とし、低屈折率層となるAlxGa1-xAs層の組成xは、0≦x≦0.2とすることによって、大きな屈折率差をつけることができる。
上記のような構成の面発光型半導体レーザ素子の電流狭窄層を形成するため、選択酸化するAlを用いた半導体層は、AlyGa1-yAsとすることができる。特に、AlyGa1-yAsの組成yを0.98≦y≦1と大きくすることにより、選択酸化の際の酸化速度を向上させることができる。これにより、選択酸化の時間が短縮し、他の半導体層が酸化されるおそれが少なくなる。
このような、選択酸化をするAlを用いた半導体層は面発光型半導体レーザ素子のメサポストが形成された箇所の上部多層反射膜又は下部多層反射膜を構成する半導体層内に設けることができる。上部多層反射膜又は下部多層反射膜は、活性層から離れているので、これらの膜を構成する半導体層内に、選択酸化されるAlを用いた半導体層を設けた場合に、その層が酸化されても活性層には応力が加わりにくい。
(実施例1)
図1は、本発明の実施例についての面発光型半導体レーザ素子20の概略断面図を示したものである。
n−GaAs基板1上に、それぞれの層の厚さがλ/4n(λは発振波長、nは屈折率)のn−Al0.9Ga0.1As/n−Al0.2 Ga0.8Asの35ペアからなる下部多層反射膜2、Al0.3Ga0.7Asからなる下部クラッド層3、量子井戸活性層4、Al0.3Ga0.7Asからなる上部クラッド層5、及び、それぞれの層の厚さがλ/4n(λは発振波長、nは屈折率)のp−Al0.9Ga0.1As/p−Al0.2 Ga0.8Asの25ペアからなる上部多層反射膜6の積層構造を備えている。上部多層反射膜6の上には、電極とコンタクトをとるためのp−GaAsからなるキャップ層11が形成されている。
量子井戸活性層4は、Alを含まない半導体層から構成されている。すなわち、本実施例の量子井戸活性層4はGa0.98In0.02Asからなる量子井戸層と、Ga0.98In0.02As0.90.1からなる障壁層とを交互に形成した多重量子井戸(MQW:Multiple Quantum Well)構造を有している。
上部多層反射膜6では、量子井戸活性層4に近い側の一層が、Al0.9Ga0.1As層に代えて、AlAs層7で形成され、かつ電流注入領域以外の領域のAlAs層7のAlが、選択的に酸化され、Al酸化層8からなる電流狭窄層を構成している。
積層構造のうち、上部多層反射膜6は、フォトリソグラフィー処理及びエッチング加工により、量子井戸活性層4よりも下の半導体層を裾部とする例えば直径30μmの円形のメサポスト9に加工されている。メサポスト9の形成を行う場合は、図1に示したような、メサポスト9が形成される領域以外の半導体を全てエッチングする形態の他、エッチングによって円筒状溝内にメサポストを形成する態様がある。
メサポスト9に加工した積層構造を水蒸気雰囲気中にて、約400℃の温度で酸化処理を行い、メサポスト9の外側からAlAs層7のAlを選択的に酸化させることにより、Al酸化層8からなる電流狭窄層が形成されている。
メサポスト9は、周囲が例えばポリイミド層10により埋め込まれている。そして、メサポスト9の上部に外周5μm〜10μm程度の幅で接触するリング状電極が、p側電極12として設けられている。また、基板裏面を適宜研磨して基板厚さを例えば200μm厚に調整した後、n−GaAs基板1の裏面にn側電極13が形成されている。更に、ポリイミド層10には、外部端子とワイヤーで接続するための電極パッド14が、リング状電極と接触するように形成されている。
図1に示した面発光型半導体レーザ素子20は以下の工程で製造することができる。
本実施形態例の面発光型半導体レーザ素子20の製造方法は、先ず、図2(a)に示したように、有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)により、n−GaAs基板1上に、下部多層反射膜2、下部クラッド層3、量子井戸活性層4、上部クラッド層5、上部多層反射膜6及びp−GaAsキャップ層11を成長させる。
量子井戸活性層4の成長の際には、3層の膜厚3nmのGa0.98In0.02As量子井戸層(発光波長は850nm)と、Ga0.98In0.02As量子井戸層の間に形成された膜厚3nmのGa0.98In0.02As0.90.1障壁層を成長させる。下部多層反射膜2の成長の際には、各層の膜厚がλ/4nのn−Al0.9Ga0.1As/n−Al0.2 Ga0.8Asの35ペアからなる多層膜を成長させる。そして、上部多層反射膜6の成長の際には、各層の厚さがλ/4nのp−Al0.9Ga0.1As/p−Al0.2 Ga0.8Asの25ペアからなる多層膜を成長させる。なお、上部多層反射膜6を成長する際、途中に一層のAlAs層7を成長させる
次に、p−GaAsキャップ層11上にプラズマCVD法によりSiNx膜(図示せず)を成膜し、更にその上にフォトレジスト膜(図示せず)を成膜する。続いて、直径約40μmの円形パターンをフォトリソグラフィ技術でフォトレジスト膜に転写し、円形レジスト・エッチングマスク(図示せず)を形成する。続いて、円形レジスト・エッチングマスクを用い、CF4ガスをエッチングガスとする反応性イオンエッチング(RIE)法によりSiNx膜をエッチングし、SiNxマスク15を形成する。
次いで、図2(b)に示すように、SiNxマスク15をエッチングマスクとして、反応性イオンビームエッチング(Reactive Ion Beam Etching)法によるドライエッチングを行い、メサポスト9を形成する。
次いで、400℃の水蒸気雰囲気中で約25分間の酸化処理を行い、メサポスト9の一部として形成されたAlAs膜7をメサポスト9の側壁から中心に向かって選択的に酸化する。この酸化処理により、メサポスト9の側壁に沿って環状のAl酸化層8を生成すると共に、中央近傍の直径10μmの円形の領域を元のAlAs膜7のままに残して、非酸化領域とし電流狭窄層を形成する。
ここで、メサポスト9に含まれる上部多層反射膜6(及び下部多層反射膜2)を構成するAl0.9Ga0.1As層、及び、Al0.2 Ga0.8As層にもAlが含まれている。そのため、AlAs膜7を選択酸化する際は、これらの層の一部もAl組成量に依存してメサポスト9の側面から数nm〜数μm程度の酸化が行われる。
しかし、同様にメサポスト9に含まれる量子井戸活性層4を構成する量子井戸層と障壁層には、Alを含む層がないので、これらの層はほとんど酸化されない。また、メサポスト9の側面に露出している量子井戸活性層4にも転位の発生が見られなかった。
次いで、図2(b)に示したSiNxマスク15をRIE法により完全に除去した後に、メサポスト9の外側に、ポリイミド層10を形成する。次いで、p−GaAsキャップ層11上に、レーザ出射口を成す円形の窓を除いてAuZnから成るp側電極12を蒸着する。また、p側電極12の外側の側面にAuCrからなる電極パッド14を形成する。そして、n−GaAs基板1の裏面を研磨して基板厚さを100μm程度に調整した後、裏面にTi/Pt/Auの多層膜からなるn側電極13を蒸着する。最後に、窒素雰囲気中でのアニール処理等の工程を経ることにより面発光型半導体レーザ素子10を完成することができる。
(実施例2)
本実施例2における面発光型半導体レーザ素子は、図1に示した実施例1における面発光型半導体レーザ素子20と構造を共通にする。ただし、実施例2における面発光型半導体レーザ素子20では、実施例1における面発光型半導体レーザ素子20の下部クラッド層3及び上部クラッド層5を構成するAl0.9Ga0.1As層に代えて、Ga0.98In0.02As0.90.1を使用している。
実施例2における面発光型半導体レーザ素子においても、量子井戸活性層4はAlを含まない半導体層から構成されている。そのため、電流狭窄層を形成するための選択酸化を行う工程において、メサポスト9の側面に露出している量子井戸活性層4はほとんど酸化されず、また、転位の発生が見られなかった。
さらに、面発光レーザ素子20の下部クラッド層3及び上部クラッド層5を構成する半導体層は、Alが含まれていない。そのため、同様にして電流狭窄層を形成するための選択酸化を行う工程において、メサポストの側面に露出している下部クラッド層3及び上部クラッド層5はほとんど酸化されない。ゆえに、これらの層の一部が酸化されることによる体積変化によって、量子井戸活性層4に応力が加わることがない。量子井戸活性層4に応力が加わらないため、量子井戸活性層4に転位が生じにくい。
(実施例3)
本実施例3における面発光型半導体レーザ素子は、図1に示した実施例1における面発光型半導体レーザ素子20と構造を共通にする。ただし、実施例3における面発光型半導体レーザ素子20では、実施例2同様に、上下のクラッド層はGa0.98In0.02As0.90.1で構成されている。実施例1における面発光型半導体レーザ素子20の下部多層反射膜2及び上部多層反射膜6を構成するn−Al0.9Ga0.1As/n−Al0.2 Ga0.8Asのペアに代えて、GaxIn1-xAsy1-yの組成比の異なるペアを使用している。高屈折率層はInの組成比を多くし、低屈折率層はInの組成比を少なくすることにより、屈折率差を設けることができる。また、Inの組成比を変えることによって、結晶の格子定数が異なってくるが、As又はPの組成比を変えることによって、格子定数を整合させ、歪の少ない積層構造を作製することができる。
実施例3における面発光型半導体レーザ素子20の上部多層反射膜6では、量子井戸活性層4に近い側の一層を、GaxIn1-xAsy1-y層に代えて、AlAs層7で形成され、かつ電流注入領域以外の領域のAlAs層7のAlが、選択的に酸化され、Al酸化層8からなる電流狭窄層を構成している。
下部多層反射膜2及び上部多層反射膜6を構成する半導体層には、Alが含まれている半導体層が存在しないため、電流狭窄層を形成するための選択酸化を行う工程において、メサポスト9の側面に露出している下部多層反射膜2及び上部多層反射膜6はほとんど酸化されない。
通常、下部多層反射膜2及び上部多層反射膜6は、量子井戸活性層4から離れているので、これらの層が酸化されることによる体積変化によって量子井戸活性層4に応力が加わりにくい。しかし、下部多層反射膜2及び上部多層反射膜6の半導体層が酸化されるような場合は若干の応力が量子井戸活性層4に加わる場合もある。そこで、下部多層反射膜2及び上部多層反射膜6が酸化されにくくすることによって、量子井戸活性層4に加わる応力を一層低減させることができる。
本発明の実施形態の面発光型半導体レーザ素子の概略断面図である。 本発明の実施形態の面発光型半導体レーザ素子の製造方法に係る一製造工程の段階を示す断面図である。 従来技術に係る面発光型半導体レーザ素子の概略断面図である。 従来技術に係る面発光型半導体レーザ素子の活性層部分の平面断面図であり、(a)は製造完了時のもので、(b)は駆動時のものである。
符号の説明
1…基板, 2…下部多層反射膜, 3…下部クラッド層, 4…量子井戸活性層, 5…上部クラッド層, 6…上部多層反射膜, 7…AlAs層, 8…Al酸化層, 9…メサポスト, 10…ポリイミド層, 11…キャップ層, 12…p側電極, 13…n側電極, 14…電極パッド, 15…SiNxマスク, 20…面発光型半導体レーザ素子
100…面発光型半導体レーザ素子, 101…基板, 102…下部多層反射膜, 103…下部クラッド層, 104…量子井戸活性層, 105…上部クラッド層, 106…上部多層反射膜, 107…AlAs層, 108…Al酸化層, 109…メサポスト, 110…ポリイミド層, 111…p側電極, 112…n側電極, 113…電極パッド, 114…転位, 115…発光領域

Claims (9)

  1. 半導体基板と、
    前記半導体基板上に設けられ、複数の積層した半導体層からなる上部多層反射膜及び下部多層反射膜と、
    前記上部多層反射膜と前記下部反射膜の間に設けられ、Alを含まない半導体層からなる活性層と、
    前記活性層よりも下の半導体層を裾部とするメサポストと、
    前記メサポストが形成された箇所の前記上部多層反射膜又は前記下部多層反射膜を構成する半導体層内に設けられ、Alを含む半導体層の一部を選択的に酸化してなる電流狭窄層と、
    を有する面発光型半導体レーザ素子。
  2. 前記活性層は量子井戸層と障壁層を有する請求項1の面発光型半導体レーザ素子。
  3. 前記活性層は、Alを含まない半導体層からなる上下のクラッド層により挟まれている請求項1又は請求項2のいずれか一に記載の面発光型半導体レーザ素子。
  4. 前記活性層の半導体層にはInが含まれる請求項1〜請求項3のいずれか一に記載の面発光型半導体レーザ素子。
  5. 前記上部多層反射膜、前記下部多層反射膜を構成する半導体層は、Alを含む材料からなる請求項1〜請求項4のいずれか一に記載の面発光型半導体レーザ素子。
  6. 前記上部多層反射膜、前記下部多層反射膜を構成する半導体層は、AlxGa1-xAs(0.9≦x≦1)が含まれる請求項5記載の面発光型半導体レーザ素子。
  7. 前記電流狭窄層を構成する半導体層は、AlyGa1-yAs(0.98≦y≦1)である請求項1〜請求項6のいずれか一に記載の面発光型半導体レーザ素子。
  8. 前記活性層の量子井戸層は、GaInAs系の半導体材料からなる請求項2〜請求項7のいずれか一に記載の面発光型半導体レーザ素子。
  9. 複数の積層した半導体層からなる上部多層反射膜及び下部多層反射膜と、前記上部多層反射膜と前記下部反射膜の間に設けられ、Alを含まない半導体層からなる活性層とが少なくとも形成された半導体基板について前記活性層よりも下の半導体層を裾部とするメサポストを形成するステップと、
    前記メサポストが形成された箇所の前記上部多層反射膜又は前記下部多層反射膜を構成する半導体層内に設けられ、Alを含む半導体層の一部を選択的に酸化して電流狭窄層を形成するステップと、
    を有する面発光型半導体レーザ素子の製造方法。

JP2006098694A 2006-03-31 2006-03-31 面発光型半導体レーザ素子及び面発光型半導体レーザ素子の製造方法 Pending JP2007273817A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098694A JP2007273817A (ja) 2006-03-31 2006-03-31 面発光型半導体レーザ素子及び面発光型半導体レーザ素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098694A JP2007273817A (ja) 2006-03-31 2006-03-31 面発光型半導体レーザ素子及び面発光型半導体レーザ素子の製造方法

Publications (1)

Publication Number Publication Date
JP2007273817A true JP2007273817A (ja) 2007-10-18

Family

ID=38676289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098694A Pending JP2007273817A (ja) 2006-03-31 2006-03-31 面発光型半導体レーザ素子及び面発光型半導体レーザ素子の製造方法

Country Status (1)

Country Link
JP (1) JP2007273817A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178271A (ja) * 2015-03-20 2016-10-06 新科實業有限公司SAE Magnetics(H.K.)Ltd. 垂直キャビティ表面発光レーザ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202320A (ja) * 1993-12-28 1995-08-04 Furukawa Electric Co Ltd:The 半導体レーザ素子
JP2001320134A (ja) * 2000-05-01 2001-11-16 Ricoh Co Ltd 半導体発光素子およびその製造方法並びに光送信モジュールおよび光送受信モジュールおよび光通信システムおよびコンピュータシステムおよびネットワークシステム
JP2004015027A (ja) * 2002-06-11 2004-01-15 Furukawa Electric Co Ltd:The 面発光レーザ素子、面発光レーザ素子を使用した光送受信器、光通信器および光通信システム
JP2004214311A (ja) * 2002-12-27 2004-07-29 Furukawa Electric Co Ltd:The 画発光レーザ素子、面発光レーザ素子を使用した光送信器、光送受信器および光通信システム
JP2005353623A (ja) * 2004-06-08 2005-12-22 Ricoh Co Ltd 面発光レーザ及び光伝送システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202320A (ja) * 1993-12-28 1995-08-04 Furukawa Electric Co Ltd:The 半導体レーザ素子
JP2001320134A (ja) * 2000-05-01 2001-11-16 Ricoh Co Ltd 半導体発光素子およびその製造方法並びに光送信モジュールおよび光送受信モジュールおよび光通信システムおよびコンピュータシステムおよびネットワークシステム
JP2004015027A (ja) * 2002-06-11 2004-01-15 Furukawa Electric Co Ltd:The 面発光レーザ素子、面発光レーザ素子を使用した光送受信器、光通信器および光通信システム
JP2004214311A (ja) * 2002-12-27 2004-07-29 Furukawa Electric Co Ltd:The 画発光レーザ素子、面発光レーザ素子を使用した光送信器、光送受信器および光通信システム
JP2005353623A (ja) * 2004-06-08 2005-12-22 Ricoh Co Ltd 面発光レーザ及び光伝送システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178271A (ja) * 2015-03-20 2016-10-06 新科實業有限公司SAE Magnetics(H.K.)Ltd. 垂直キャビティ表面発光レーザ

Similar Documents

Publication Publication Date Title
JP4184769B2 (ja) 面発光型半導体レーザ及びその製造方法
US6898226B2 (en) Surface emitting semiconductor laser and process for producing the same
JP4594814B2 (ja) フォトニック結晶レーザ、フォトニック結晶レーザの製造方法、面発光レーザアレイ、光伝送システム、及び書き込みシステム
JP4141172B2 (ja) 面発光半導体レーザ素子の製造方法および面発光半導体レーザ素子および光伝送システム
JP2007165798A (ja) 半導体レーザ素子
JP5005937B2 (ja) 面発光レーザ素子
JP2003347670A (ja) 面発光半導体レーザ素子及びレーザアレイ
JP4876428B2 (ja) 半導体発光素子
JP5006242B2 (ja) 面発光半導体レーザ素子
JPWO2007135772A1 (ja) 発光素子
US7888145B2 (en) Method of manufacturing vertical-cavity surface-emitting laser device and vertical-cavity surface-emitting laser device
JP4205208B2 (ja) 面発光型半導体レーザ及びその作製方法
JP2007235030A (ja) 面発光レーザ素子及びその製造方法
JP2007273817A (ja) 面発光型半導体レーザ素子及び面発光型半導体レーザ素子の製造方法
JP5322800B2 (ja) 垂直共振器型面発光レーザ
JP2009088333A (ja) 面発光型半導体レーザーアレイおよびその製造方法
JP2008153341A (ja) 面発光レーザ
JP2005108983A (ja) 面発光レーザ素子
JP2005191260A (ja) 半導体レーザおよびその製造方法および光送信用モジュールおよび光通信システム
JP2006216752A (ja) 回折格子の製造方法および半導体レーザ
JP2002185081A (ja) 半導体レーザ素子
JP2005085836A (ja) 面発光半導体レーザ素子及びその製造方法
JP2009238832A (ja) 面発光半導体レーザの製造方法
JP2005085876A (ja) 面発光半導体レーザおよびその製造方法および光送信モジュール
JP2005123416A (ja) 面発光レーザ素子およびその作製方法および面発光レーザアレイおよび光伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110208

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Effective date: 20110422

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228