WO2010074177A1 - アクリル酸の製造方法 - Google Patents
アクリル酸の製造方法 Download PDFInfo
- Publication number
- WO2010074177A1 WO2010074177A1 PCT/JP2009/071494 JP2009071494W WO2010074177A1 WO 2010074177 A1 WO2010074177 A1 WO 2010074177A1 JP 2009071494 W JP2009071494 W JP 2009071494W WO 2010074177 A1 WO2010074177 A1 WO 2010074177A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acrylic acid
- reaction
- propionaldehyde
- gas
- acrolein
- Prior art date
Links
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 title claims abstract description 172
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 title claims abstract description 171
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 69
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 claims abstract description 160
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 claims abstract description 80
- 238000002425 crystallisation Methods 0.000 claims abstract description 65
- 230000008025 crystallization Effects 0.000 claims abstract description 63
- 239000000203 mixture Substances 0.000 claims abstract description 63
- 239000011347 resin Substances 0.000 claims abstract description 44
- 229920005989 resin Polymers 0.000 claims abstract description 44
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 claims abstract description 17
- 239000000178 monomer Substances 0.000 claims abstract description 13
- 239000011949 solid catalyst Substances 0.000 claims abstract description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 156
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 claims description 143
- 235000011187 glycerol Nutrition 0.000 claims description 75
- 238000006297 dehydration reaction Methods 0.000 claims description 19
- 239000007789 gas Substances 0.000 description 103
- 238000006243 chemical reaction Methods 0.000 description 65
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 60
- 239000002994 raw material Substances 0.000 description 56
- 239000003054 catalyst Substances 0.000 description 40
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- 238000000034 method Methods 0.000 description 37
- 235000019260 propionic acid Nutrition 0.000 description 30
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 30
- 239000013078 crystal Substances 0.000 description 27
- 239000012071 phase Substances 0.000 description 27
- 238000007254 oxidation reaction Methods 0.000 description 26
- 238000000746 purification Methods 0.000 description 23
- 238000006116 polymerization reaction Methods 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000007788 liquid Substances 0.000 description 20
- 239000012452 mother liquor Substances 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 239000001301 oxygen Substances 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 18
- 239000007795 chemical reaction product Substances 0.000 description 14
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 14
- 235000011054 acetic acid Nutrition 0.000 description 13
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 12
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- -1 for example Chemical compound 0.000 description 10
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 description 10
- 238000006386 neutralization reaction Methods 0.000 description 10
- 239000002250 absorbent Substances 0.000 description 9
- 239000002253 acid Substances 0.000 description 9
- 239000006227 byproduct Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000001590 oxidative effect Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 230000003068 static effect Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000004821 distillation Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 235000019253 formic acid Nutrition 0.000 description 7
- 238000010574 gas phase reaction Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 230000035900 sweating Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229920002125 Sokalan® Polymers 0.000 description 6
- 238000007865 diluting Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 235000019645 odor Nutrition 0.000 description 6
- 239000004584 polyacrylic acid Substances 0.000 description 6
- 239000011973 solid acid Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 229940093915 gynecological organic acid Drugs 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 150000007524 organic acids Chemical class 0.000 description 4
- 235000005985 organic acids Nutrition 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000000967 suction filtration Methods 0.000 description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- 238000011437 continuous method Methods 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 229910052573 porcelain Inorganic materials 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 2
- HZVKHMQXJYFYRF-UHFFFAOYSA-N 2-methoxypropanal Chemical compound COC(C)C=O HZVKHMQXJYFYRF-UHFFFAOYSA-N 0.000 description 2
- HTNUUDFQRYBJPH-UHFFFAOYSA-N 3-methoxypropanehydrazide Chemical compound COCCC(=O)NN HTNUUDFQRYBJPH-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QUEDYRXQWSDKKG-UHFFFAOYSA-M [O-2].[O-2].[V+5].[OH-] Chemical compound [O-2].[O-2].[V+5].[OH-] QUEDYRXQWSDKKG-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- YZYDPPZYDIRSJT-UHFFFAOYSA-K boron phosphate Chemical compound [B+3].[O-]P([O-])([O-])=O YZYDPPZYDIRSJT-UHFFFAOYSA-K 0.000 description 2
- 229910000149 boron phosphate Inorganic materials 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- WUJISAYEUPRJOG-UHFFFAOYSA-N molybdenum vanadium Chemical compound [V].[Mo] WUJISAYEUPRJOG-UHFFFAOYSA-N 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 229940107700 pyruvic acid Drugs 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229940047670 sodium acrylate Drugs 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- 229910017119 AlPO Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000013500 performance material Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/888—Tungsten
- B01J23/8885—Tungsten containing also molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/23—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
- C07C51/235—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/16—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
Definitions
- the present invention relates to a method for efficiently producing high-purity acrylic acid using glycerin as a raw material.
- Acrylic acid used as a raw material for water-absorbing resins and the like is widely produced industrially by subjecting acrolein obtained by propylene gas-phase oxidation reaction to gas-phase oxidation reaction.
- acrolein is obtained by subjecting glycerin to a dehydration reaction (see Patent Document 2).
- the acrolein obtained by this method differs from the acrolein obtained by the gas phase oxidation reaction of propylene in the kind and amount of by-products. Therefore, it is preferable to purify acrolein using a conventionally known technique in order to produce acrylic acid by subjecting a composition containing such acrolein to a conventionally known gas phase oxidation reaction. (See Patent Document 2).
- acetaldehyde and acetic acid are known in the stage of producing acrolein, and in the stage of producing acrylic acid, for example, formic acid, acetic acid and propionic acid are known. Etc. are known.
- propionaldehyde, phenol, 1-hydroxyacetone, 2-methoxyacetone, methoxypropanal, and the like are known as by-products in the production method of acrylic acid using glycerin derived from biodiesel at the stage of producing acrolein.
- acrylic acid for example, formic acid, acetic acid, propionic acid, pyruvic acid, 3-methoxypropionic acid and the like are known. Moreover, the amount of impurities produced as a by-product is much greater in the method for producing acrylic acid using glycerin as a raw material than in the method for producing acrylic acid using propylene as a raw material. Therefore, in the method for producing acrylic acid using glycerin as a raw material, it is necessary to efficiently purify acrolein and acrylic acid.
- acrylic acid affects the production of a hydrophilic resin.
- acetic acid or propionic acid is present in acrylic acid, the odor of the resin becomes a problem.
- organic acids such as acetic acid and propionic acid are by-produced much more than the production method of acrylic acid using propylene as a raw material, so that acrylic acid can be purified efficiently.
- Technology to do is necessary.
- Acrylic acid obtained by the above production method can be generally purified by distillation or crystallization.
- the amount of impurities produced as a by-product is very large. While the cost increased, purification by crystallization was found to be simple and preferable. In addition, it has been found that purification by crystallization is also effective for removing organic acids such as propionic acid, which is a causative substance of resin odor.
- the problem to be solved by the present invention is to provide a method for efficiently producing high-purity acrylic acid using glycerin as a raw material.
- acrylic acid is produced by subjecting propionaldehyde to a gas phase oxidative dehydrogenation reaction.
- propionaldehyde was not contained in the composition containing acrolein which is a product of oxidation reaction of propylene widely used industrially in the production of acrylic acid. Therefore, in order to produce acrylic acid by acrolein oxidation reaction from a composition containing propionaldehyde and acrolein, which are glycerin dehydration reaction products, it was considered preferable to separate propionaldehyde and acrolein. .
- propionaldehyde and acrolein are the same aldehyde compound, and propylene aldehyde has a boiling point of 48 ° C, whereas acrolein has a boiling point close to 52 ° C. Separation was difficult with known methods.
- the present inventors have conducted extensive studies on a method for producing acrylic acid from a composition containing propionaldehyde, and as a result, gas phase oxidative dehydration using a solid catalyst in which Mo and V are essential in the composition containing propionaldehyde. It has been found that a composition containing acrylic acid and propionic acid is produced by performing an elementary reaction. Therefore, high-purity acrylic acid can be efficiently produced without separating propionaldehyde from a composition containing propionaldehyde and acrolein obtained by dehydration reaction of glycerin. Further, it was found that acrylic acid and propionic acid in the obtained composition can be efficiently separated by purification by crystallization as compared with purification by distillation.
- the resulting acrylic acid has propionic acid that causes odors removed to below the detection limit, it has the same polymerizability as acrylic acid obtained by the method for producing acrylic acid using propylene as a raw material.
- a hydrophilic resin such as a water-absorbing resin or a water-soluble resin is produced using the obtained acrylic acid, the obtained hydrophilic resin has no odor and has the same physical properties.
- the present invention is a method for producing acrylic acid from a composition containing propionaldehyde, wherein the composition is subjected to a gas phase oxidative dehydrogenation reaction using a solid catalyst containing Mo and V as essential components.
- a method for producing acrylic acid is provided.
- the composition may contain at least acrolein in addition to propionaldehyde. Further, the composition may be a composition containing propionaldehyde and acrolein obtained by a dehydration reaction of glycerin. Furthermore, when purifying the composition containing acrylic acid obtained by the gas phase oxidative dehydrogenation reaction, a crystallization step is preferably used.
- the present invention also provides a method for producing a hydrophilic resin such as a water-absorbing resin or a water-soluble resin, wherein the monomer component containing acrylic acid obtained by the above-described production method is polymerized. .
- acrylic acid can be obtained from a composition containing propionaldehyde, and acrylic acid can be obtained without separating propionaldehyde from a composition containing propionaldehyde and acrolein.
- impurities contained in acrylic acid obtained by gas phase oxidative dehydrogenation reaction and gas phase oxidation reaction can be efficiently removed by crystallization from a composition containing propionaldehyde and acrolein obtained from glycerin.
- Acrylic acid having the same quality as acrylic acid obtained by a conventional production method for producing acrylic acid from propylene via acrolein can be obtained.
- the obtained acrylic acid has good polymerizability and is suitable for the production of a water absorbent resin.
- FIG. 6 is a solid-liquid diagram showing the relative relationship of the acrylic acid concentrations of the mother liquors and crystals obtained in Experimental Examples 5 to 10.
- FIG. 6 is a concentration curve diagram showing a relative relationship between the acrylic acid concentration and temperature of crystals obtained in Experimental Examples 5 to 10. It is a flowchart which shows one embodiment of a continuous method among the methods of isolate
- a method for producing acrylic acid according to the present invention (hereinafter sometimes referred to as “the production method of the present invention”) is a method for producing acrylic acid from a composition containing propionaldehyde, wherein Mo and V are added to the composition. It is characterized by performing a gas phase oxidative dehydrogenation reaction using a solid catalyst as an essential component.
- the raw material used in the production method of the present invention is not particularly limited as long as it is a composition containing at least propionaldehyde.
- the gas phase oxidation reaction of acrolein is performed to produce acrylic acid. Therefore, in the production method of the present invention, a composition containing acrolein in addition to propionaldehyde may be used as a raw material. Such a composition containing propionaldehyde and acrolein is obtained, for example, by a dehydration reaction of glycerin.
- the solid catalyst used in the production method of the present invention is a molybdenum-vanadium catalyst containing Mo and V as essential components.
- the solid catalyst used in the production method of acrylic acid by gas phase oxidation reaction of acrolein is preferable. .
- a solid catalyst for example, after pulverizing and molding a solid obtained by evaporating and drying a solution containing ammonium molybdate, ammonium metavanadate, copper nitrate, ammonium paratungstate and zirconium oxide Molybdenum-vanadium catalyst obtained by drying and calcining (see Example 1 of JP-A-3-218334), ammonium paramolybdate, ammonium metavanadate, vanadium trioxide, copper nitrate, first oxide A molybdenum-vanadium catalyst obtained by adhering a solution containing copper and antimony trioxide to a carrier made of ⁇ -alumina, followed by drying and firing (see Example 1 of JP-A-8-206504) Illustrated.
- the shape of the solid catalyst is not particularly limited, and examples thereof include a spherical shape, a column shape, a ring shape, and a bowl shape.
- the size of the solid catalyst is equivalent to the diameter, and is usually about 0.1 to 10 mm.
- the production method of the present invention is performed by subjecting a composition containing propionaldehyde to a gas phase oxidative dehydrogenation reaction.
- the composition as a raw material may contain at least acrolein in addition to propionaldehyde.
- the raw material composition is, for example, a composition containing propionaldehyde and acrolein obtained by a dehydration reaction of glycerin.
- acrylic acid is produced by simultaneously performing a gas phase oxidative dehydrogenation reaction of propionaldehyde and a gas phase oxidation reaction of acrolein.
- the reaction conditions for carrying out the gas phase oxidative dehydrogenation reaction and the gas phase oxidation reaction may be the same as those conventionally known for producing acrylic acid from acrolein.
- a reactive raw material gas in which oxygen and a gas inert to the reaction in order to adjust the gas concentration are used in the raw material composition.
- oxygen include pure oxygen and oxygen-enriched air, but it is economically preferable to use oxygen in the air.
- the inert gas include water vapor, nitrogen, carbon dioxide, and the like.
- all or part of the residual gas after collecting the product of the oxidative dehydrogenation reaction, or all or part of the gas after burning organic substances present in the residual gas is used as an inert gas. It is economically preferable to reuse.
- Steam is generally known to have an effect of reducing the combustion range formed by organic matter and oxygen, and is preferably contained as an inert gas.
- the total concentration of propionaldehyde and acrolein in the reaction raw material gas is usually 0.1 to 15% by volume, preferably 0.4 to 12% by volume.
- the oxygen concentration in the reaction raw material gas is usually 0.5 to 25% by volume, preferably 2 to 20% by volume.
- the water vapor concentration in the reaction raw material gas is usually 0 to 50% by volume, preferably 3 to 45% by volume.
- the remaining gas is made of, for example, nitrogen or carbon dioxide.
- the flow rate of the reaction raw material gas is usually 500 to 20,000 hr ⁇ 1 , preferably 1,000 to 10,000 hr ⁇ 1 in terms of the reaction gas flow rate (GHSV) per unit catalyst volume.
- the reaction temperature is usually 180 to 350 ° C., more preferably 200 to 330 ° C.
- the reaction pressure is usually 0.001 to 1 MPa, preferably 0.01 to 0.5 MPa.
- ⁇ Dehydration reaction of glycerin> In order to obtain a composition containing propionaldehyde and acrolein by a dehydration reaction of glycerin, a conventionally known method can be used. Specifically, a homogeneous or heterogeneous liquid phase reaction in which liquid glycerin or glycerin in a solution is brought into contact with a solid acid catalyst at normal pressure or under pressure, or a glycerin gas or a glycerin-containing gas is brought into contact with a solid acid catalyst. Gas phase reaction to be performed. Of these reactions, the latter gas phase reaction is particularly preferred.
- a raw material gas containing glycerin is brought into contact with a solid acid catalyst in a reactor arbitrarily selected from a fixed bed reactor, a moving bed reactor, a fluidized bed reactor and the like.
- a composition containing propionaldehyde and acrolein is produced.
- the solid acid catalyst is not particularly limited as long as it is a catalyst having solid acidity.
- a crystalline metallosilicate for example, a crystalline metallosilicate; a metal oxide; a clay mineral; a catalyst in which a mineral acid is supported on an inorganic carrier; And a catalyst in which the metal salt is supported on an inorganic carrier.
- the crystalline metallosilicate for example, at least one element selected from Al, B, Fe, Ga and the like is a T atom, for example, LTA, CHA, FER, MFI, MOR, BEA, Examples thereof include compounds having a crystal structure such as MTW.
- the metal oxide include metal oxides such as Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , and V 2 O 5 , such as SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , and TiO 2.
- composite oxides such as —WO 3 and WO 3 —ZrO 2 .
- the clay mineral include bentonite, kaolin, and montmorillonite.
- Examples of the catalyst in which a mineral acid is supported on an inorganic carrier include a catalyst in which phosphoric acid, sulfuric acid or the like is supported on ⁇ -alumina, silica, zirconium oxide, titanium oxide, or the like.
- Examples of the catalyst having a mineral acid metal salt supported on an inorganic carrier include MgSO 4 , Al 2 (SO 4 ) 3 , K 2 SO 4 , AlPO 4 , Zr 3 (PO 4 ) 4 and the like, ⁇ -alumina And catalysts supported on silica, zirconium oxide, titanium oxide and the like.
- solid acids such as zirconium oxide carrying phosphoric acid, sulfuric acid, or tungsten oxide
- WO 2006/087083 pamphlet and WO 2006/087084 pamphlet may be used.
- a solid acid catalyst having good stability is preferable because it is exposed to an oxidizing atmosphere or a reducing atmosphere at a high temperature during a dehydration reaction or regeneration treatment, and a crystalline metallosilicate, a metal oxide, and a clay mineral are preferable. Etc. are more preferable.
- a crystalline metallosilicate HZSM5 having a TFI of Al and having an MFI structure is preferable.
- the metal oxide a crystalline phosphate compound is preferable, and aluminum phosphate is particularly preferable.
- the acid strength of HZSM5 is known to exhibit strong acidity having peaks near ⁇ 9 and ⁇ 16 in Hammett's acid strength function H 0 (Kenji Hashimoto et al., Catalyst, Vol. 29, No. 6, pp. 406-409, 1987). Further, although the acid strength of aluminum phosphate varies depending on the preparation method and crystal system, it is known that Hammett's acid strength function H 0 exhibits a weak solid acidity of +1.5 to +4.8 (Kyoko Sakamoto et al. , Journal of the Chemical Society of Japan, 1995 (9) pp. 681-688).
- the catalyst having reduced activity can be regenerated by bringing it into contact with a gas containing an oxidizing gas such as oxygen at a high temperature.
- a gas containing an oxidizing gas such as oxygen at a high temperature.
- the form of contact is not particularly limited, and the catalyst may be removed from the reactor, or may be switched by switching the gas to be circulated in the same reactor as the dehydration reaction.
- the dehydration reaction is carried out in a fixed bed, the latter method, which does not require the trouble of extracting and refilling the catalyst, is simpler and recommended.
- oxygen When oxygen is used as the oxidizing gas used for regeneration, it is inexpensive to use oxygen in the air, but an inert gas such as water vapor, nitrogen or carbon dioxide may be accompanied. In particular, it is recommended to use an inert gas to adjust the oxygen concentration when there is a concern about rapid heat generation due to the air containing about 20% by volume of oxygen. Before and after the regeneration treatment, purging with an inert gas such as nitrogen may be performed for the purpose of removing or reducing excess organic matter remaining in the system and residual oxygen after the regeneration treatment.
- an inert gas such as nitrogen may be performed for the purpose of removing or reducing excess organic matter remaining in the system and residual oxygen after the regeneration treatment.
- the regenerated catalyst can be used again as a catalyst for acrolein synthesis by contacting with the reaction raw material gas.
- the glycerin partial pressure in the reaction raw material gas at the reactor inlet is usually 30 kPa or less, preferably 25 kPa or less, more preferably 20 kPa or less, and even more preferably 15 kPa or less.
- a lower glycerin partial pressure is preferable, but in order to ensure a constant productivity, methods such as (I) lowering the reaction pressure and (II) entraining a large amount of diluted components are required. From an industrial point of view, the method (I) requires a highly airtight and high pressure resistant reactor and a large pressure reducing device.
- the produced acrolein is collected and a large amount of diluted components Increases in power costs due to cost and pressure loss become a problem. Therefore, from an industrial viewpoint, the glycerin partial pressure in the reaction raw material gas at the reactor inlet is preferably 0.01 kPa or more, more preferably 0.1 kPa or more, and further preferably 1 kPa or more.
- the glycerin partial pressure means the partial pressure of glycerin gas in the reaction raw material gas at the reactor inlet.
- the glycerin partial pressure is the pressure of the reaction raw material gas at the reactor inlet.
- the reaction raw material gas contains a gas component other than glycerin
- the glycerin partial pressure is a value corresponding to the glycerin gas concentration in the reaction raw material gas out of the total pressure of the reaction raw material gas at the reactor inlet.
- the total pressure of the reaction raw material gas at the reactor inlet is usually 0.01 kPa or more, preferably 0.1 kPa or more, more preferably 1 kPa or more.
- the upper limit of the total pressure is not particularly limited as long as the reaction raw material gas at the inlet of the reactor exists as a gas, but is usually 500 kPa or less, preferably 300 kPa or less, more preferably 200 kPa or less.
- the normal glycerin partial pressure is 30 kPa or less, if the pressure of the reaction raw material gas at the reactor inlet is 30 kPa or higher, a dilute component other than glycerin is always included in the reaction raw material gas. Moreover, even if the total pressure of the reaction raw material gas at the reactor inlet is 30 kPa or less, it may contain a diluted component.
- the dilution component examples include water vapor, nitrogen, air and the like.
- these diluting components it is preferable to add water vapor in particular because advantageous effects are obtained with respect to catalyst life and acrolein yield.
- the water vapor When water vapor is used as a diluting component, the water vapor may be accompanied by glycerin from the glycerin purification step, may be newly added, or both may be mixed.
- the amount of water vapor is preferably 5 times or less, more preferably 3 times or less, and even more preferably 2 times or less of the partial pressure of water vapor in the reaction raw material gas at the reactor inlet. Adjustment to such an amount of water vapor is preferable because advantageous effects on the catalyst life and acrolein yield can be obtained and a large burden is not imposed on the purification step of the reaction product.
- a non-condensable non-oxidizing gas that does not liquefy at room temperature and normal pressure such as nitrogen
- a diluting component other than water vapor can be used as a diluting component other than water vapor.
- the partial pressure of diluting components other than water vapor is usually 20 times or less, more preferably 15 times or less, and even more preferably 12 times or less with respect to the glycerin partial pressure in the gas.
- the space velocity of the reaction raw material gas including the glycerin and the diluted component is usually 70 to 50,000 hr ⁇ 1 , preferably 70 to 25,000 hr ⁇ 1 , more preferably 100 to 12,000 hr ⁇ 1. More preferably, it is 125 to 12,000 hr ⁇ 1 .
- the reaction temperature for carrying out the above gas phase reaction is preferably 250 to 500 ° C., more preferably 300 to 450 ° C., and further preferably 330 to 440 ° C. If the reaction temperature is too low, the conversion rate of glycerin is low, and the production amounts of propionaldehyde and acrolein are substantially reduced, which is not preferable. Conversely, if the reaction temperature is too high, the yields of propionaldehyde and acrolein are greatly reduced, which is not preferable.
- organic compounds other than glycerin when organic compounds other than glycerin are contained in the reaction raw material gas in a small amount, the yield of propionaldehyde and acrolein immediately after the start of the reaction is low, so that the so-called induction period can be shortened.
- Preferred organic compounds include acrolein, acetaldehyde, acetic acid, acrylic acid, methanol, ethanol, fatty acid, fatty acid ester and the like.
- the content of the organic compound is the total amount contained in the reaction raw material gas. Preferably it is 20 mass% or less with respect to an organic compound, More preferably, it is 10 mass% or less, More preferably, it is 5 mass% or less.
- an oxidizing gas such as oxygen can be included in the diluted component as a diluted component other than water vapor. If the diluting component contains an oxidizing gas, the accumulation of carbonaceous material on the catalyst may be reduced, and an effect of suppressing a decrease in the activity of the catalyst may be obtained. However, if the content of the oxidizing gas is too large, the yield of propionaldehyde and acrolein is reduced by the combustion reaction, which is not preferable.
- oxygen is used as the oxidizing gas, the content thereof is the lower of either 15% by volume or less as the oxygen concentration in the reaction raw material gas at the reactor inlet and 3.5 times or less the glycerin concentration. It is preferable that it is below the value.
- a composition containing propionaldehyde and acrolein obtained by a dehydration reaction of glycerin may be used as it is for the production of acrylic acid.
- Phenol, 1-hydroxyacetone, 2-methoxyacetone, methoxypropanal, etc. exist as living organisms, causing a decrease in catalytic activity and a decrease in yield, formic acid, acetic acid, propionic acid, Since it may cause by-products such as pyruvic acid and 3-methoxypropionic acid, they may be used after being purified.
- the purification can be carried out by a known method, and the collection liquid obtained using the aggregate liquid or collection solvent of the reaction composition can be distilled or the collection described in JP-A-2008-115103.
- a method using a purifier equipped with a tower and a stripping tower is exemplified.
- impurities in acrylic acid may be removed by purifying acrylic acid in a subsequent step. It is preferable to use the above composition without purification in terms of simplifying the process and reducing the production cost.
- a gaseous substance containing acrylic acid and propionic acid is obtained by subjecting a composition containing propionaldehyde to a gas phase oxidative dehydrogenation reaction using a solid catalyst containing Mo and V as essential components. can get.
- This gaseous matter is liquefied by cooling condensation, solvent collection, etc., and if necessary, the water and the collection solvent contained in this liquefied product are removed by a conventionally known method (for example, distillation), followed by a crystallization step.
- a conventionally known method for example, distillation
- the crystallization step can be performed using a conventionally known method capable of separating propionic acid from crude acrylic acid, for example, a method described in JP-A-9-227445 or JP-A-2002-519402. it can.
- the crystallization step is a step of obtaining purified acrylic acid by supplying crude acrylic acid to a crystallizer and causing it to crystallize.
- the crystallization method may be a conventionally known crystallization method and is not particularly limited.
- the crystallization may be performed using a continuous or batch crystallization apparatus. It can be carried out in stages or in two or more stages.
- the obtained acrylic acid crystals can be further purified by washing, sweating, or the like, if necessary, to obtain purified acrylic acid with higher purity.
- the continuous crystallizer examples include a crystallizer in which a crystallization part, a solid-liquid separation part and a crystal purification part are integrated (for example, a BMC (Backmixing Column Crystallizer) apparatus manufactured by Nippon Steel Chemical Co., Ltd., Tsukishima Continuous melt purification system manufactured by Kikai Co., Ltd., crystallization unit (for example, CDC (Cooling Disk Crystallizer) device manufactured by GMF GOUDA), solid-liquid separation unit (for example, centrifuge, belt filter) and crystal purification unit (
- a crystallizer combined with KCP (Kureha Crystal Purifier) manufactured by Kureha Techno Engineering Co., Ltd. can be used.
- a layer crystallizer (dynamic crystallizer) manufactured by Sulzer Chemtech, a static crystallizer manufactured by BEFS PROKEM, or the like can be used.
- Dynamic crystallization is, for example, a tubular crystallizer equipped with a temperature control mechanism for performing crystallization, sweating and melting, a tank for collecting the mother liquor after sweating, and supplying crude acrylic acid to the crystallizer.
- This is a method in which crystallization is performed using a dynamic crystallization apparatus that includes a circulation pump and can transfer crude acrylic acid from a reservoir provided at the lower part of the crystallizer to the upper part of the crystallizer tube.
- Static crystallization is, for example, a tubular crystallizer equipped with a temperature control mechanism for crystallization, sweating, and melting, and a crystallizer having an extraction valve at the bottom and a mother liquor after sweating are collected. The crystallization is carried out using a static crystallization apparatus equipped with a tank to be used.
- crude acrylic acid is introduced into the crystallizer as a liquid phase, and acrylic acid in the liquid phase is solidified and generated on the cooling surface (tube wall surface).
- the cooling surface tube wall surface
- the liquid phase is immediately removed from the crystallizer.
- the solid phase and the liquid phase are separated.
- the liquid phase may be discharged by either a pumping method (dynamic crystallization) or a discharging method from a crystallizer (static crystallization).
- purification such as washing and sweating may be performed in order to further improve the purity.
- the number of crystallization stages required depends on how much purity is required, but the number of stages required to obtain high purity acrylic acid is usually 1 to 6 purification steps (dynamic crystallization).
- the stripping stage (dynamic crystallization and / or static crystallization) is usually 0 to 5 times, preferably 0 to 3 times, preferably 2 to 5 times, more preferably 2 to 4 times.
- all the stages where acrylic acid having a higher purity than the crude acrylic acid supplied is obtained are purification stages, and all other stages are stripping stages.
- the stripping step is performed to recover acrylic acid contained in the residual mother liquor from the purification step. Note that the stripping step is not necessarily provided. For example, when the low boiling point component is separated from the residual mother liquor of the crystallizer using a distillation column, the stripping step may be omitted.
- the acrylic acid crystals obtained in the crystallization process may be used directly as products, or if necessary, such as washing and sweating. It may be a product after purification. On the other hand, the residual mother liquor discharged in the crystallization step may be taken out of the system.
- the method for producing a hydrophilic resin according to the present invention is characterized in that a monomer component containing acrylic acid obtained by the method for producing acrylic acid as described above is polymerized. That is, acrylic acid obtained by the production method of the present invention can be used as a raw material for hydrophilic resins such as water-absorbing resins or water-soluble resins.
- the acrylic acid obtained by the method for producing acrylic acid using glycerin as the raw material contains organic acids such as formic acid, acetic acid, propionic acid, etc., compared with the acrylic acid obtained by the method for producing acrylic acid using propylene as the raw material. It contains a lot of acid impurities, which may cause odor and coloring of the hydrophilic resin. It is therefore important to purify the resulting acrylic acid.
- the impurities contained in acrylic acid propionic acid has a boiling point close to that of acrylic acid, and therefore, if the content is large, purification of acrylic acid by distillation becomes difficult. Therefore, acrylic acid from which propionic acid has been removed by purification by crystallization is preferably used in the method for producing a hydrophilic resin according to the present invention.
- the acrylic acid obtained by the production method of the present invention is used as a raw material for producing a hydrophilic resin such as a water-absorbing resin or a water-soluble resin, the polymerization reaction is easily controlled, and the obtained hydrophilic resin The quality is stabilized, and various performances such as water absorption performance and inorganic material dispersion performance are improved.
- a water absorbent resin for example, acrylic acid and / or a salt thereof obtained by the production method of the present invention is used as a main component of the monomer component (preferably 70 mol% or more, more preferably 90 mol%).
- a crosslinking polymerization of about 0.001 to 5 mol% (value with respect to acrylic acid) and a radical polymerization initiator of about 0.001 to 2 mol% (value with respect to the monomer component) is obtained by drying and pulverizing.
- the water-absorbing resin is a water-swellable water-insoluble polyacrylic acid having a crosslinked structure, and absorbs pure water or physiological saline 3 times or more, preferably 10 to 1,000 times its own weight.
- it means polyacrylic acid that forms a water-insoluble hydrogel having a water-soluble component (water-soluble component) of preferably 25% by mass or less, more preferably 10% by mass or less.
- water-soluble component water-soluble component
- Specific examples of such water-absorbing resins and methods for measuring physical properties are described in, for example, US Pat. No. 6,107,358, US Pat. No. 6,174,978, US Pat. No. 6,241,928, and the like. ing.
- preferred production methods include, for example, US Pat. No. 6,867,269, US Pat. No. 6,906,159, US Pat. No. 7,091,253, International Publication No. 01/253, No. 038402 pamphlet, International Publication No. 2006/034806 pamphlet and the like.
- a series of steps for producing a water-absorbing resin by neutralization, polymerization, drying, etc. using acrylic acid as a starting material is as follows, for example.
- a part of acrylic acid obtained by the production method of the present invention is supplied to the production process of the water-absorbent resin through a line.
- the water-absorbent resin is produced by introducing acrylic acid into the neutralization step, the polymerization step, and the drying step, and performing a desired treatment.
- a desired treatment may be performed.
- a crosslinking step may be interposed during or after the polymerization.
- the neutralization step is an optional step.
- a method of mixing a predetermined amount of a basic substance powder or aqueous solution with acrylic acid or polyacrylic acid (salt) is exemplified. It may be employed and is not particularly limited.
- the neutralization step may be performed either before or after polymerization, or may be performed both before and after polymerization.
- a basic substance used for neutralization of acrylic acid or polyacrylic acid (salt) for example, a conventionally known basic substance such as a carbonic acid (hydrogen) salt, an alkali metal hydroxide, ammonia, an organic amine or the like is appropriately used. Use it.
- the neutralization rate of polyacrylic acid is not particularly limited, and may be adjusted so as to be an arbitrary neutralization rate (for example, an arbitrary value within a range of 30 to 100 mol%).
- the polymerization method in the polymerization step is not particularly limited, and a conventionally known polymerization method such as polymerization with a radical polymerization initiator, radiation polymerization, polymerization by irradiation with an electron beam or active energy ray, ultraviolet polymerization with a photosensitizer, etc. May be used.
- Various conditions such as a polymerization initiator and polymerization conditions can be arbitrarily selected.
- conventionally known additives such as a crosslinking agent and other monomers, and further a water-soluble chain transfer agent and a hydrophilic polymer may be added.
- the polymerized acrylate polymer (that is, water-absorbing resin) is subjected to a drying step.
- the drying method is not particularly limited, and a conventionally known drying means such as a hot air dryer, a fluidized bed dryer, a nauter dryer, etc. is used, and a desired drying temperature, preferably 70 to 230 ° C., What is necessary is just to dry suitably.
- the water-absorbent resin obtained through the drying step may be used as it is, or may be used after granulation / pulverization and surface cross-linking into a desired shape, and conventionally known reducing agents, perfumes, binders, etc. You may use it, after giving post-processing according to a use, such as adding an additive.
- the above oxidation catalyst was prepared as follows. 350 g of ammonium paramolybdate, 116 g of ammonium metavanadate, and 44.6 g of ammonium paratungstate were dissolved in 2500 mL of heated and stirred water, and then 1.5 g of vanadium trioxide was added. Separately, 87.8 g of copper nitrate was dissolved in 750 mL of water with stirring, and then 1.2 g of cuprous oxide and 29 g of antimony trioxide were added. After mixing these two liquids, 1,000 mL of a spherical ⁇ -alumina having a diameter of 3 to 5 mm as a carrier was added and evaporated to dryness with stirring to obtain a catalyst precursor. This catalyst precursor was calcined at 400 ° C. for 6 hours to prepare an oxidation catalyst for producing acrylic acid. Incidentally, supported metal composition of the oxidation catalyst for production of acrylic acid is Mo 12 V 6.1 W 1 Cu 2.3 Sb 1.2.
- Example 2 Oxidation reaction of mixed gas containing propionaldehyde and acrolein
- propionaldehyde-containing gas 0.2% by volume of propionaldehyde, 1.8% by volume of acrolein, 12% by volume of oxygen, 37% by volume of water
- the reaction was conducted in the same manner as in Experimental Example 1 except that a mixed gas containing propionaldehyde and acrolein consisting of 49% by volume of nitrogen was used.
- the acrylic acid-containing compositions obtained in Experimental Example 1 and Experimental Example 2 were quantified by gas chromatography, and propionaldehyde conversion rate, acrolein conversion rate, acrylic acid yield, and propionic acid yield were calculated.
- Table 1 shows the calculation results.
- the acrylic acid yield and the propionic acid yield in Table 1 are values calculated based on the total molar amount of propionaldehyde or propionaldehyde and acrolein in the reaction raw material gas.
- acrylic acid can be obtained from propionaldehyde by using the production method of the present invention. It can also be seen that acrylic acid can be obtained using a mixed gas containing propionaldehyde and acrolein.
- alumina Sud Boehmite, trade name: Caterpal B
- zinc oxide Wako Pure Chemicals, reagent grade
- nitric acid was added to 40 g of ion-exchanged water, and this aqueous solution was added to the mixture of alumina and zinc oxide, which was mixed well.
- the mixture was concentrated to a paste on a hot water bath.
- the obtained concentrate was transferred to a porcelain dish, dried at 100 ° C. for 4 hours and 150 ° C. for 3 hours under air flow, and further calcined at 700 ° C. for 2 hours under air flow.
- the obtained fired product was pulverized and sieved to a particle size of 0.7 mm to 2.0 mm to obtain a catalyst.
- 15 mL of the above catalyst was filled in a stainless steel reaction tube (inner diameter 10 mm, length 500 mm), prepared as a fixed bed reactor, and this reactor was placed in a 360 ° C. night bath.
- a glycerin-containing gas was circulated in the reactor.
- a mixed gas composed of 27% by volume of glycerin, 34% by volume of water and 39% by volume of nitrogen was circulated at a flow rate of a space velocity (GHSV) of 630 hr ⁇ 1 .
- GHSV space velocity
- the gas flowing out from the reactor between 0.5 to 1 hour and 2.5 to 3 hours after the start of circulation of the glycerin-containing gas is absorbed in acetonitrile in the gas washing bottle, and propionaldehyde and acrolein A composition containing was recovered.
- the conversion rate of glycerin was 100 mol%
- the yield of propionaldehyde was 10 mol%
- the acrolein yield was 0.5 to 1 hour after the start of circulation of the glycerin-containing gas.
- the conversion rate was 41 mol%. From 2.5 hours to 3 hours, the conversion rate of glycerin was 100 mol%, the yield of propionaldehyde was 8 mol%, and the yield of acrolein was 51 mol%.
- the stainless steel reaction tube shown in Experimental Example 3 was filled with 15 mL of the catalyst, prepared as a fixed bed reactor, and glycerol dehydration reaction was performed under the same conditions as in Experimental Example 3.
- the conversion of glycerin was 99 mol%
- the propionaldehyde yield was 9 mol%
- the acrolein yield was 0.5 to 1 hour after the start of circulation of the glycerin-containing gas.
- the rate was 40 mol%. From 2.5 to 3 hours, the conversion rate of glycerin was 100 mol%, the yield of propionaldehyde was 6 mol%, and the yield of acrolein was 42 mol%.
- a composition containing propionaldehyde and acrolein can be obtained from glycerin, and acrylic acid can also be obtained from propionaldehyde in these compositions as shown in Experimental Example 2. Therefore, it can be seen that acrylic acid can be produced from glycerin in a high yield by subjecting it to production of acrylic acid without separating propionaldehyde in these compositions.
- FIG. 2 shows a concentration curve showing the relative relationship between the acrylic acid concentration of the crystal and the temperature.
- the concentration curve (dotted line) shown in FIG. 2 is created by polynomial approximation from the acrylic acid concentration data (circles) of the crystals shown in Table 2.
- the crude acrylic acid can be highly purified by the crystallization process. Further, as is clear from Calculation Examples 1 and 2, propionic acid can be efficiently separated from crude acrylic acid regardless of whether the batch method or the continuous method is employed as the crystallization step. Therefore, when purifying a composition containing acrylic acid obtained by gas phase oxidative dehydrogenation of a composition containing propionaldehyde, high-purity acrylic acid can be efficiently obtained by using a crystallization step. Recognize.
- the boron phosphate catalyst used in the previous reaction was prepared as follows.
- the powder of boron phosphate (reagent manufactured by Johnson Matthey) was calcined at 800 ° C. for 5 hours under air flow, and then pulverized with an agate mortar.
- the obtained finely pulverized product was put into a cylindrical type made of vinyl chloride (outer diameter 48 mm, inner diameter 40 mm, thickness 5 mm), and pressed and hardened by applying a pressure of about 20 t with a press machine (compression molding).
- the obtained compression molded product was taken out from the cylindrical mold and pulverized, and sieved to a particle size of 0.7 mm to 2.0 mm to obtain a pre-stage reaction catalyst.
- a condenser was provided at the reactor outlet, and cooling water at about 4 ° C. was allowed to flow.
- the reaction system was depressurized to 62 kPa with a vacuum pump, and a constant vacuum apparatus was used to adjust the pressure. Thereafter, a glycerin-containing gas was circulated in the reactor.
- a glycerin-containing gas a mixed gas composed of 44% by volume of glycerin and 56% by volume of water was circulated at a flow rate of space velocity (GHSV) of 420 hr ⁇ 1 .
- the glycerin-containing gas was intermittently supplied for 20 hours from the start of the circulation, and all the gas flowing out from the reactor was condensed with a condenser and collected in a receiver cooled with an ice bath.
- the weight of the recovered reaction product was 939 g, which was 99% by mass of the feedstock.
- reaction product As a result of quantitative analysis of the obtained reaction product by gas chromatography, the reaction product was found to contain 34% by mass of acrolein, 0.5% by mass of propionaldehyde, 6.4% by mass of 1-hydroxyacetone, 44% by mass of water, The mass was 15% by mass.
- reaction product obtained in (1) was supplied to the thin film distillation apparatus at 0.12 kg / h and operated under conditions of normal pressure, liquid film wall temperature of 85 ° C., and blade rotation speed of 300 rpm. From the top of the column, a distillate containing 42% by mass of acrolein, 0.6% by mass of propionaldehyde, 4% by mass of 1-hydroxyacetone and 51% by mass of water (that is, a composition containing propionaldehyde and acrolein) is 0. Obtained at 11 kg / h.
- the mixed gas was circulated at a flow rate of space velocity (GHSV) 1,900 hr ⁇ 1 .
- GHSV space velocity
- a composition containing propionaldehyde and acrolein was intermittently supplied for 22 hours from the start of the reaction, and the gas flowing out from the reactor was condensed by a condenser and collected in a receiver cooled by an ice bath and a cold trap provided thereafter. .
- the weight of the reaction product containing the recovered crude acrylic acid was 620 g, which was 95% by mass of the feedstock.
- the reaction product was 62% by mass of crude acrylic acid, 0.1% by mass of propionic acid, 1% by mass of formic acid, 3% by mass of acetic acid, and 34% by mass of water.
- Crystallization operation in which the crude acrylic acid is cooled as a mother liquor to room temperature (about 15 ° C) to -5.8 ° C to precipitate crystals, kept at the same temperature, and then separated from the liquid by suction filtration Went. After melting the separated crystals, a part was sampled and analyzed, and the rest was cooled to a temperature range of room temperature (about 15 ° C.) to 4.8 ° C. as a mother liquor, and the crystals were precipitated and held at the same temperature. Thereafter, a crystallization operation for separating the crystals from the liquid by suction filtration was performed. A total of two crystallization operations finally yielded acrylic acid with a purity of 99.9% by mass or more. The results are shown in Table 5. The total amount of propionic acid and acetic acid was below the detection limit (1 ppm).
- Example 12 Production of water-absorbent resin
- acrylic acid containing 60 mass ppm of a polymerization inhibitor in acrylic acid having a total amount of acetic acid and propionic acid obtained by the second crystallization operation of 200 mass ppm was prepared. Separately, 75 mol% neutralization was performed by adding the above acrylic acid under cooling (liquid temperature 35 ° C.) to an aqueous NaOH solution obtained from caustic soda containing 0.2 mass ppm of iron. Acrylic acid and iron in water were below the detection limit. Therefore, the iron content of the monomer was calculated to be about 0.07 mass ppm.
- the obtained hydrogel crosslinked polymer was subdivided at 45 ° C. with a meat chopper (pore diameter: 8 mm), and then heat-dried with a hot air dryer at 170 ° C. for 20 minutes. Furthermore, a dry polymer (solid content: about 95%) is pulverized with a roll mill and classified with a JIS standard sieve to a particle size of 600 to 300 ⁇ m to obtain a polyacrylic acid water-absorbing resin (neutralization rate 75%). It was.
- the polymerizability of acrylic acid obtained by the production method of the present invention is equivalent to the polymerizability of acrylic acid obtained by the production method of acrylic acid using propylene as a raw material.
- the physical properties were also the same.
- acrylic acid can be efficiently produced using glycerin as a raw material. Moreover, if purification is carried out by crystallization, the resulting acrylic acid has been removed from the propionic acid that lowers the polymerizability to below the detection limit, so that the acrylic acid obtained by the method for producing acrylic acid using propylene as a raw material is used. If the hydrophilic resin such as a water-absorbent resin or a water-soluble resin is produced using the obtained acrylic acid with the same polymerizability as the acid, the obtained hydrophilic resin has no odor, The physical properties are also equivalent. Therefore, the present invention makes a great contribution in the technical field using acrylic acid.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明によるアクリル酸の製造方法(以下「本発明の製造方法」ということがある。)は、プロピオンアルデヒドを含む組成物からアクリル酸を製造する方法であって、前記組成物にMoおよびVを必須成分とする固体触媒を用いた気相酸化脱水素反応を施すことを特徴とする。
本発明者らが見出したように、プロピオンアルデヒドに気相酸化脱水素反応を施すことにより、アクリル酸が生成する。それゆえ、本発明の製造方法に用いる原料としては、少なくともプロピオンアルデヒドを含む組成物である限り、特に限定されるものではない。また、本発明の製造方法によれば、プロピオンアルデヒドの気相酸化脱水素反応に加え、アクロレインの気相酸化反応が施されて、アクリル酸が生成する。それゆえ、本発明の製造方法には、プロピオンアルデヒド以外にアクロレインを含む組成物を原料として用いてもよい。このようなプロピオンアルデヒドとアクロレインとを含む組成物は、例えば、グリセリンの脱水反応により得られる。
本発明の製造方法に用いる固体触媒は、MoおよびVを必須成分とするモリブデン-バナジウム系触媒であり、例えば、アクロレインの気相酸化反応によるアクリル酸の製造方法に用いられている固体触媒が好ましい。
本発明の製造方法は、プロピオンアルデヒドを含む組成物に気相酸化脱水素反応を施すことにより行われる。原料となる組成物は、プロピオンアルデヒド以外に少なくともアクロレインを含んでいてもよい。この場合、原料となる組成物は、例えば、グリセリンの脱水反応により得られたプロピオンアルデヒドとアクロレインとを含む組成物である。プロピオンアルデヒド以外にアクロレインを含む場合は、プロピオンアルデヒドの気相酸化脱水素反応とアクロレインの気相酸化反応とを同時に施すことにより、アクリル酸が製造される。
グリセリンの脱水反応によりプロピオンアルデヒドとアクロレインとを含む組成物を得るには、従来公知の方法を用いることができる。具体的には、液状のグリセリンまたは溶液中のグリセリンを常圧下または加圧下で固体酸触媒と接触させる均一系または不均一系の液相反応や、グリセリンガスまたはグリセリン含有ガスを固体酸触媒と接触させる気相反応などが挙げられる。これらの反応のうち、後者の気相反応が特に好ましい。
本発明の製造方法においては、プロピオンアルデヒドを含む組成物にMoおよびVを必須成分とする固体触媒を用いた気相酸化脱水素反応を施すことにより、アクリル酸およびプロピオン酸を含むガス状物が得られる。このガス状物を冷却凝縮や溶剤捕集などにより液化し、必要に応じて、この液化物に含まれる水や捕集溶剤を従来公知の方法(例えば、蒸留)により除去した後、晶析工程を施すことにより、高純度のアクリル酸を得ることができる。
本発明による親水性樹脂の製造方法は、上記のようなアクリル酸の製造方法により得られるアクリル酸を含む単量体成分を重合することを特徴とする。すなわち、本発明の製造方法により得られたアクリル酸は、吸水性樹脂または水溶性樹脂などの親水性樹脂の原料として用いることができる。
プロピオンアルデヒドの酸化反応
20mLの酸化触媒を充填したステンレス製反応管(内径25mm、長さ500mm)を固定床酸化反応器として準備し、この反応器を230℃のナイターバス中に設置した。その後、プロピオンアルデヒド含有ガスを反応器内に流通させた。ここで、プロピオンアルデヒド含有ガスとして、プロピオンアルデヒド2容量%、酸素12容量%、水37容量%、窒素49容量%からなる混合ガスを、空間速度(GHSV)1,800hr-1の流量で流通させた。プロピオンアルデヒド含有ガスの流通開始から1時間後に、反応器から流出するガスを冷却液化回収して、アクリル酸含有組成物を得た。
プロピオンアルデヒドとアクロレインとを含む混合ガスの酸化反応
実験例1において、プロピオンアルデヒド含有ガスに代えて、プロピオンアルデヒド0.2容量%、アクロレイン1.8容量%、酸素12容量%、水37容量%、窒素49容量%からなる混合ガスをからなるプロピオンアルデヒドとアクロレインとを含む混合ガスを用いたこと以外は、実験例1と同様に反応を行った。
グリセリンの脱水反応によるプロピオンアルデヒドおよびアクロレインの製造
グリセリンを脱水してプロピオンアルデヒドとアクロレインとを合成する際に用いるZnAl2O4触媒を以下のように調製した。
グリセリンの脱水反応によるプロピオンアルデヒドおよびアクロレインの製造
グリセリンを脱水してプロピオンアルデヒドとアクロレインとを合成する際に用いるTiO2/ZrO2触媒(TiO2担持量7.4質量%)を以下のように調製した。
粗アクリル酸からプロピオン酸を分離する晶析工程
実験例1および2に示すように、プロピオンアルデヒドの酸化反応およびプロピオンアルデヒドとアクロレインとを含む混合ガスの酸化反応により、アクリル酸を製造することができるが、得られた粗アクリル酸には、主たる副生成物として、プロピオン酸が含まれている。そこで、本発明者らは、粗アクリル酸からプロピオン酸を効率よく分離する方法について考察した。
プロピオン酸3.8質量%を含む粗アクリル酸を母液として-2.3℃から10.0℃の範囲で冷却して結晶を析出させ、同温度で保持した後、吸引濾過により、結晶を液体と分離する。分離した結晶を全量融解させてから、上記と同様の晶析操作を繰り返した場合、表3に示すように、3回目の晶析操作で、純度99.8%のアクリル酸が得られることになる。
プロピオン酸2.0質量%を含む粗アクリル酸を母液として1000g/hで晶析槽Aに供給し、図3に示すフローチャートに従って、連続的に晶析工程を行う場合、晶析槽Cから、純度99.9%の精製アクリル酸が928g/hで得られることになる。また、晶析槽Fから、プロピオン酸が26.4質量%に濃縮されたアクリル酸をパージ液(残留母液)として72g/hで抜き出すことができる。各段階における結晶および濾液の組成を表4に示す。
グリセリンからアクリル酸の製造
下記に示す工程で、グリセリンからアクリル酸の製造を行った。
(1)前段反応工程:グリセリンを脱水してプロピオンアルデヒドとアクロレインとを含む反応生成物を得る。
(2)前段精製工程:(1)で得られた反応生成物を精製して後段反応に供することができるプロピオンアルデヒドとアクロレインとを含む組成物を得る。
(3)後段反応工程:(2)で得られた組成物を酸化反応に供して粗アクリル酸を含む反応生成物を得る。
(4)後段精製工程:(3)で得られた反応生成物を蒸留して粗アクリル酸を得た後、この粗アクリル酸を晶析により精製してアクリル酸を得る。
以下、上記の各行程を順に説明する。
(前段反応触媒)
前段反応に用いたリン酸ホウ素触媒は、以下のように調製した。リン酸ホウ素(ジョンソン・マッセイ社製試薬)の粉末を空気流通下、800℃で5時間焼成した後、これをメノウ製の乳鉢で微粉砕した。得られた微粉砕物を塩化ビニル製の円筒型(外径48mm、内径40mm、厚さ5mm)に入れ、プレス機で約20tの圧力を加えて押し固めた(圧縮成型)。得られた圧縮成型物を円筒型から取り出して粉砕し、粒径0.7mm~2.0mmに篩い分けて前段反応触媒を得た。
上記の触媒50mLをステンレス製反応管(内径25mm、長さ500mm)に充填、固定床反応器として準備し、この反応器を360℃のナイターバス中に設置した。
(1)で得られた反応生成物を0.12kg/hで薄膜蒸留装置に供給し、常圧、液膜の壁温85℃、翼回転速度300rpmの条件で運転し、塔頂から、アクロレイン42質量%、プロピオンアルデヒド0.6質量%、1-ヒドロキシアセトン4質量%、水51質量%を含む留出液(すなわち、プロピオンアルデヒドとアクロレインとを含む組成物)を0.11kg/hで得た。
実験例1で調製した酸化触媒50mLを充填したステンレス製反応管(内径25mm、長さ500mm)を固定床酸化反応器として準備し、この反応器を260℃のナイターバス中に設置した。その後、(2)で得られた組成物を反応器に供給した。反応器出口部分には、コンデンサーを設け、約15℃の冷却水を流した。ここで、プロピオンアルデヒド含有ガスとして、アクロレイン6.5容量%、プロピオンアルデヒド0.09容量%、1-ヒドロキシアセトン0.46容量%、酸素6容量%、水13容量%、窒素74容量%からなる混合ガスを、空間速度(GHSV)1,900hr-1の流量で流通させた。プロピオンアルデヒドとアクロレインとを含む組成物を反応開始から断続的に22時間供給し、反応器から流出するガスをコンデンサーで凝縮させ、氷浴で冷却した受器およびその後に設けたコールドトラップに回収した。
(3)で得られた反応生成物を段数10の蒸留塔の5段目に0.2kg/hで供給し、還流比1、塔頂からの留出量0.067kg/hの条件で連続蒸留を行った。その結果、塔底より、アクリル酸86.6質量%、プロピオン酸0.1質量%、酢酸2.4質量%、ギ酸0.04質量%、水10.9質量%の組成を有する粗アクリル酸を0.133kg/hで得た。この粗アクリル酸を母液として室温(約15℃)~-5.8℃の温度範囲まで冷却して結晶を析出させ、同温度で保持した後、吸引濾過により結晶を液体から分離する晶析操作を行った。分離した結晶を融解させてから、一部をサンプリングして分析し、残りを母液として室温(約15℃)~4.8℃の温度範囲まで冷却して結晶を析出させ、同温度で保持した後、吸引濾過により結晶を液体から分離する晶析操作を行った。合計2回の晶析操作により、最終的に、純度99.9質量%以上のアクリル酸を得ることができた。結果を表5に示す。なお、プロピオン酸および酢酸の合計量は、検出限界(1ppm)以下であった。
吸水性樹脂の製造
実験例11において、2回目の晶析操作で得られた酢酸およびプロピオン酸の合計量が200質量ppmのアクリル酸に重合禁止剤を60質量ppm含有するアクリル酸を調製した。別途、鉄を0.2質量ppm含有する苛性ソーダから得られたNaOH水溶液に対して、上記のアクリル酸を冷却下(液温35℃)で添加することにより、75モル%中和を行なった。アクリル酸や水中の鉄は検出限界以下であり、よって、単量体の鉄含有量は計算値で約0.07質量ppmであった。
Claims (6)
- プロピオンアルデヒドを含む組成物からアクリル酸を製造する方法であって、前記組成物にMoおよびVを必須成分とする固体触媒を用いた気相酸化脱水素反応を施すことを特徴とするアクリル酸の製造方法。
- 前記組成物がプロピオンアルデヒド以外に少なくともアクロレインを含む請求項1に記載の製造方法。
- 前記組成物がグリセリンの脱水反応により得られたプロピオンアルデヒドとアクロレインとを含む請求項1または2に記載の製造方法。
- 前記気相酸化脱水素反応により得られたアクリル酸を含む組成物を精製する際に晶析工程を用いる請求項1~3のいずれか1項に記載の製造方法。
- 請求項1~4のいずれか1項に記載の製造方法により得られたアクリル酸を含む単量体成分を重合することを特徴とする親水性樹脂の製造方法。
- 請求項1~4のいずれか1項に記載の製造方法により得られたアクリル酸を含む単量体成分を重合することを特徴とする吸水性樹脂の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09834975A EP2371801A4 (en) | 2008-12-26 | 2009-12-24 | PROCESS FOR THE PRODUCTION OF ACRYLIC ACID |
US13/141,325 US8404887B2 (en) | 2008-12-26 | 2009-12-24 | Process for producing acrylic acid |
JP2010544134A JPWO2010074177A1 (ja) | 2008-12-26 | 2009-12-24 | アクリル酸の製造方法 |
SG2011045044A SG172273A1 (en) | 2008-12-26 | 2009-12-24 | Process for producing acrylic acid |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008333737 | 2008-12-26 | ||
JP2008-333737 | 2008-12-26 | ||
JP2009-157995 | 2009-07-02 | ||
JP2009157995 | 2009-07-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010074177A1 true WO2010074177A1 (ja) | 2010-07-01 |
Family
ID=42287784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/071494 WO2010074177A1 (ja) | 2008-12-26 | 2009-12-24 | アクリル酸の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8404887B2 (ja) |
EP (1) | EP2371801A4 (ja) |
JP (1) | JPWO2010074177A1 (ja) |
SG (1) | SG172273A1 (ja) |
WO (1) | WO2010074177A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010042216A1 (de) | 2010-10-08 | 2011-06-09 | Basf Se | Verfahren zur Hemmung der unerwünschten radikalischen Polymerisation von in einer flüssigen Phase P befindlicher Acrylsäure |
WO2012034929A2 (de) | 2010-09-16 | 2012-03-22 | Basf Se | Verfahren zur herstellung von acrylsäure aus methanol und essigsäure |
WO2012102411A2 (ja) | 2011-01-28 | 2012-08-02 | 日本化薬株式会社 | 飽和アルデヒドを選択的に低減させる触媒と、その製造方法 |
WO2012101471A1 (en) | 2011-01-28 | 2012-08-02 | Arkema France | Improved process for manufacturing acrolein/acrylic acid |
WO2013047479A1 (ja) | 2011-09-29 | 2013-04-04 | 株式会社日本触媒 | アクロレイン、アクリル酸、およびその誘導体の製造方法 |
WO2013084258A1 (en) * | 2011-12-06 | 2013-06-13 | Nippon Kayaku Kabushiki Kaisha | Catalyst for the manufacturing of acrylic acid and a process for producing acrylic acid by using the catalyst |
JP2013155319A (ja) * | 2012-01-31 | 2013-08-15 | Nippon Shokubai Co Ltd | アクリル酸系共重合体およびその製造方法 |
WO2014070735A1 (en) | 2012-10-31 | 2014-05-08 | Celanese International Corporation | Integrated process for the production of acrylic acids and acrylates |
JP2014522399A (ja) * | 2011-06-03 | 2014-09-04 | ビーエーエスエフ ソシエタス・ヨーロピア | アクリル酸及びその共役塩基を含む水溶液 |
WO2014209633A2 (en) | 2013-06-27 | 2014-12-31 | Celanese International Corporation | Integrated process for the production of acrylic acids and acrylates |
JP2015505713A (ja) * | 2011-12-06 | 2015-02-26 | 日本化薬株式会社 | アクリル酸製造用触媒およびこの触媒を使用することによってアクリル酸を製造するための方法 |
JP5780763B2 (ja) * | 2009-02-06 | 2015-09-16 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 |
WO2017209126A1 (ja) * | 2016-05-31 | 2017-12-07 | 三菱ケミカル株式会社 | プロピオンアルデヒドの製造方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5869436B2 (ja) * | 2011-07-22 | 2016-02-24 | 株式会社日本触媒 | 3−ヒドロキシカルボン酸又はそのエステルの脱水用触媒の再生方法、及び、(メタ)アクリル酸又はそのエステルの製造方法 |
US10106484B2 (en) | 2012-04-11 | 2018-10-23 | The Procter & Gamble Company | Catalysts for the conversion of hydroxypropionic acid or its derivatives to acrylic acid or its derivatives |
US20130296602A1 (en) | 2012-05-07 | 2013-11-07 | Jane Ellen Godlewski | Conversion of Methyl-2-Acetoxy Propionate to Methyl Acrylate and Acrylic Acid |
FR3017617B1 (fr) | 2014-02-19 | 2016-02-12 | Arkema France | Procede de production d'acide acrylique bio-source |
CA2969528C (en) * | 2014-12-02 | 2021-01-05 | Archer Daniels Midland Company | Process for making acrylic acid from dextrose |
CN114425382B (zh) * | 2020-10-15 | 2024-01-30 | 中国石油化工股份有限公司 | 一种丙烯醛氧化制备丙烯酸的催化剂及其制备方法和应用 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5382715A (en) * | 1976-11-24 | 1978-07-21 | Mitsubishi Rayon Co Ltd | Preparation of unsaturated compound |
JPH03218334A (ja) | 1989-11-06 | 1991-09-25 | Nippon Shokubai Kagaku Kogyo Co Ltd | アクリル酸の製造方法 |
JPH08206504A (ja) | 1994-11-14 | 1996-08-13 | Nippon Shokubai Co Ltd | アクリル酸製造用触媒の製法 |
JPH09227445A (ja) | 1996-01-12 | 1997-09-02 | Basf Ag | アクリル酸及びそのエステルを製造する方法及び装置 |
US6107358A (en) | 1996-08-23 | 2000-08-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and method for production thereof |
US6174978B1 (en) | 1997-12-10 | 2001-01-16 | Nippon Shokubai Co., Ltd. | Production process of water-absorbent resin |
WO2001038402A1 (de) | 1999-11-20 | 2001-05-31 | Basf Aktiengesellschaft | Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
JP2002519402A (ja) | 1998-07-01 | 2002-07-02 | ビーエーエスエフ アクチェンゲゼルシャフト | 結晶化及び蒸留によりアクリル酸又はメタクリル酸を精製する方法 |
US6867269B2 (en) | 2001-12-19 | 2005-03-15 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process therefor |
US6906159B2 (en) | 2000-08-03 | 2005-06-14 | Nippon Shokubai Co., Ltd. | Water-absorbent resin, hydropolymer, process for producing them, and uses of them |
JP2005213225A (ja) | 2004-01-30 | 2005-08-11 | Nippon Shokubai Co Ltd | アクリル酸の製造方法 |
WO2006034806A1 (de) | 2004-09-28 | 2006-04-06 | Basf Aktiengesellschaft | Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten |
WO2006087084A2 (en) | 2005-02-15 | 2006-08-24 | Arkema France | Process for dehydrating glycerol to acrolein |
WO2006087083A2 (en) | 2005-02-15 | 2006-08-24 | Arkema France | Process for dehydrating glycerol to acrolein |
JP2008115103A (ja) | 2006-11-02 | 2008-05-22 | Nippon Shokubai Co Ltd | アクリル酸の製造方法、アクリル酸製造用装置、およびアクリル酸製造用組成物 |
JP2008162907A (ja) | 2006-12-27 | 2008-07-17 | Nippon Shokubai Co Ltd | グリセリンからのアリルアルコールおよびアクリル酸の製造方法 |
JP2008264766A (ja) * | 2007-03-29 | 2008-11-06 | Nippon Shokubai Co Ltd | 酸化物触媒および該触媒を用いたアクロレインまたはアクリル酸の製造方法ならびに当該アクリル酸を用いた吸水性樹脂の製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5446705A (en) | 1977-09-16 | 1979-04-12 | Chisso Corp | Preparation of unsaturated compounds |
YU41495B (en) * | 1979-01-23 | 1987-08-31 | Nippon Kayaku Kk | Process for obtaining methacrolein and methacrylic acid |
CA2029277A1 (en) | 1989-11-06 | 1991-05-07 | Tatsuya Kawajiri | Method for production of acrylic acid |
DE4238493C1 (de) | 1992-11-14 | 1994-04-21 | Degussa | Verfahren zur Herstellung von Acrolein und dessen Verwendung |
EP0811597B1 (en) | 1994-11-14 | 2000-08-23 | Nippon Shokubai Co., Ltd. | Process for production of acrylic acid |
JPH1135519A (ja) | 1997-07-25 | 1999-02-09 | Mitsubishi Chem Corp | アクリル酸の製造方法 |
DE10138150A1 (de) | 2001-08-03 | 2003-02-13 | Basf Ag | Verfahren zur Herstellung wasserabsorbierender Harze |
FR2884818B1 (fr) | 2005-04-25 | 2007-07-13 | Arkema Sa | Procede de preparation d'acide acrylique a partir de glycerol |
US7851397B2 (en) * | 2005-07-25 | 2010-12-14 | Saudi Basic Industries Corporation | Catalyst for methacrolein oxidation and method for making and using same |
US7649111B2 (en) * | 2005-07-25 | 2010-01-19 | Saudi Basic Industries Corporation | Catalyst for the oxidation of a mixed aldehyde feedstock to methacrylic acid and methods for making and using same |
US8178718B2 (en) | 2007-02-05 | 2012-05-15 | Saudi Basic Industries Corporation | Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof |
EP1987877A3 (en) | 2007-03-29 | 2010-10-13 | Nippon Shokubai Co., Ltd. | Oxide catalyst, process for producing acrolein or acrylic acid and process for producing water-absorbent resin |
-
2009
- 2009-12-24 EP EP09834975A patent/EP2371801A4/en not_active Withdrawn
- 2009-12-24 WO PCT/JP2009/071494 patent/WO2010074177A1/ja active Application Filing
- 2009-12-24 US US13/141,325 patent/US8404887B2/en not_active Expired - Fee Related
- 2009-12-24 JP JP2010544134A patent/JPWO2010074177A1/ja active Pending
- 2009-12-24 SG SG2011045044A patent/SG172273A1/en unknown
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5382715A (en) * | 1976-11-24 | 1978-07-21 | Mitsubishi Rayon Co Ltd | Preparation of unsaturated compound |
JPH03218334A (ja) | 1989-11-06 | 1991-09-25 | Nippon Shokubai Kagaku Kogyo Co Ltd | アクリル酸の製造方法 |
JPH08206504A (ja) | 1994-11-14 | 1996-08-13 | Nippon Shokubai Co Ltd | アクリル酸製造用触媒の製法 |
JPH09227445A (ja) | 1996-01-12 | 1997-09-02 | Basf Ag | アクリル酸及びそのエステルを製造する方法及び装置 |
US6107358A (en) | 1996-08-23 | 2000-08-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and method for production thereof |
US6174978B1 (en) | 1997-12-10 | 2001-01-16 | Nippon Shokubai Co., Ltd. | Production process of water-absorbent resin |
US6241928B1 (en) | 1998-04-28 | 2001-06-05 | Nippon Shokubai Co., Ltd. | Method for production of shaped hydrogel of absorbent resin |
JP2002519402A (ja) | 1998-07-01 | 2002-07-02 | ビーエーエスエフ アクチェンゲゼルシャフト | 結晶化及び蒸留によりアクリル酸又はメタクリル酸を精製する方法 |
WO2001038402A1 (de) | 1999-11-20 | 2001-05-31 | Basf Aktiengesellschaft | Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten |
US6906159B2 (en) | 2000-08-03 | 2005-06-14 | Nippon Shokubai Co., Ltd. | Water-absorbent resin, hydropolymer, process for producing them, and uses of them |
US7091253B2 (en) | 2000-08-03 | 2006-08-15 | Nippon Shokubai Co., Ltd. | Water-absorbent resin, hydropolymer, process for producing them, and uses of them |
US6867269B2 (en) | 2001-12-19 | 2005-03-15 | Nippon Shokubai Co., Ltd. | Water-absorbent resin and production process therefor |
JP2005213225A (ja) | 2004-01-30 | 2005-08-11 | Nippon Shokubai Co Ltd | アクリル酸の製造方法 |
WO2006034806A1 (de) | 2004-09-28 | 2006-04-06 | Basf Aktiengesellschaft | Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten |
WO2006087084A2 (en) | 2005-02-15 | 2006-08-24 | Arkema France | Process for dehydrating glycerol to acrolein |
WO2006087083A2 (en) | 2005-02-15 | 2006-08-24 | Arkema France | Process for dehydrating glycerol to acrolein |
JP2008530151A (ja) * | 2005-02-15 | 2008-08-07 | アルケマ フランス | グリセロールを脱水してアクロレインを製造する方法 |
JP2008115103A (ja) | 2006-11-02 | 2008-05-22 | Nippon Shokubai Co Ltd | アクリル酸の製造方法、アクリル酸製造用装置、およびアクリル酸製造用組成物 |
JP2008162907A (ja) | 2006-12-27 | 2008-07-17 | Nippon Shokubai Co Ltd | グリセリンからのアリルアルコールおよびアクリル酸の製造方法 |
JP2008264766A (ja) * | 2007-03-29 | 2008-11-06 | Nippon Shokubai Co Ltd | 酸化物触媒および該触媒を用いたアクロレインまたはアクリル酸の製造方法ならびに当該アクリル酸を用いた吸水性樹脂の製造方法 |
Non-Patent Citations (3)
Title |
---|
KENJI HASHIMOTO ET AL., SHOKUBAI, vol. 29, no. 6, 1987, pages 406 - 409 |
KIYOKO SAKAMOTO ET AL., NIPPON KAGAKU KAISHI, 1995, pages 681 - 688 |
See also references of EP2371801A4 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5780763B2 (ja) * | 2009-02-06 | 2015-09-16 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 |
WO2012034929A2 (de) | 2010-09-16 | 2012-03-22 | Basf Se | Verfahren zur herstellung von acrylsäure aus methanol und essigsäure |
US8877966B2 (en) | 2010-09-16 | 2014-11-04 | Basf Se | Process for preparing acrylic acid from methanol and acetic acid |
DE102010042216A1 (de) | 2010-10-08 | 2011-06-09 | Basf Se | Verfahren zur Hemmung der unerwünschten radikalischen Polymerisation von in einer flüssigen Phase P befindlicher Acrylsäure |
WO2012045738A1 (de) | 2010-10-08 | 2012-04-12 | Basf Se | Verfahren zur hemmung der unerwünschten radikalischen polymerisation von in einer flüssigen phase p befindlicher acrylsäure |
US9212122B2 (en) | 2010-10-08 | 2015-12-15 | Basf Se | Process for inhibiting unwanted free-radical polymerization of acrylic acid present in a liquid phase P |
KR101876599B1 (ko) * | 2011-01-28 | 2018-08-02 | 아르끄마 프랑스 | 아크롤레인/아크릴산의 개선된 제조 방법 |
WO2012102411A3 (ja) * | 2011-01-28 | 2012-10-26 | 日本化薬株式会社 | 飽和アルデヒドを選択的に低減させる触媒と、その製造方法 |
WO2012101526A1 (en) | 2011-01-28 | 2012-08-02 | Arkema France | Improved process for manufacturing acrolein/acrylic acid |
US9296676B2 (en) | 2011-01-28 | 2016-03-29 | Arkema France | Process for manufacturing acrolein/acrylic acid |
JP5881620B2 (ja) * | 2011-01-28 | 2016-03-09 | 日本化薬株式会社 | 飽和アルデヒドを選択的に低減させる触媒と、その製造方法 |
WO2012101471A1 (en) | 2011-01-28 | 2012-08-02 | Arkema France | Improved process for manufacturing acrolein/acrylic acid |
CN103328428A (zh) * | 2011-01-28 | 2013-09-25 | 阿肯马法国公司 | 制备丙烯醛/丙烯酸的改进方法 |
KR20140015349A (ko) * | 2011-01-28 | 2014-02-06 | 아르끄마 프랑스 | 아크롤레인/아크릴산의 개선된 제조 방법 |
WO2012102411A2 (ja) | 2011-01-28 | 2012-08-02 | 日本化薬株式会社 | 飽和アルデヒドを選択的に低減させる触媒と、その製造方法 |
JP2014511363A (ja) * | 2011-01-28 | 2014-05-15 | アルケマ フランス | 改善されたアクロレイン/アクリル酸の製造方法 |
JP2014522399A (ja) * | 2011-06-03 | 2014-09-04 | ビーエーエスエフ ソシエタス・ヨーロピア | アクリル酸及びその共役塩基を含む水溶液 |
WO2013047479A1 (ja) | 2011-09-29 | 2013-04-04 | 株式会社日本触媒 | アクロレイン、アクリル酸、およびその誘導体の製造方法 |
US9422377B2 (en) | 2011-09-29 | 2016-08-23 | Nippon Shokubai Co., Ltd. | Process for producing acrolein, acrylic acid and derivatives thereof |
JP2015505713A (ja) * | 2011-12-06 | 2015-02-26 | 日本化薬株式会社 | アクリル酸製造用触媒およびこの触媒を使用することによってアクリル酸を製造するための方法 |
WO2013084500A3 (en) * | 2011-12-06 | 2013-07-25 | Nippon Kayaku Kabushiki Kaisha | Catalyst for the manufacturing of acrylic acid and a process for producing acrylic acid by using the catalyst |
WO2013084500A2 (en) * | 2011-12-06 | 2013-06-13 | Nippon Kayaku Kabushiki Kaisha | Catalyst for the manufacturing of acrylic acid and a process for producing acrylic acid by using the catalyst |
WO2013084258A1 (en) * | 2011-12-06 | 2013-06-13 | Nippon Kayaku Kabushiki Kaisha | Catalyst for the manufacturing of acrylic acid and a process for producing acrylic acid by using the catalyst |
JP2013155319A (ja) * | 2012-01-31 | 2013-08-15 | Nippon Shokubai Co Ltd | アクリル酸系共重合体およびその製造方法 |
WO2014070735A1 (en) | 2012-10-31 | 2014-05-08 | Celanese International Corporation | Integrated process for the production of acrylic acids and acrylates |
WO2014209633A2 (en) | 2013-06-27 | 2014-12-31 | Celanese International Corporation | Integrated process for the production of acrylic acids and acrylates |
WO2017209126A1 (ja) * | 2016-05-31 | 2017-12-07 | 三菱ケミカル株式会社 | プロピオンアルデヒドの製造方法 |
JPWO2017209126A1 (ja) * | 2016-05-31 | 2018-06-14 | 三菱ケミカル株式会社 | プロピオンアルデヒドの製造方法 |
US10384998B2 (en) | 2016-05-31 | 2019-08-20 | Mitsubishi Chemical Corporation | Method for producing propionaldehyde |
Also Published As
Publication number | Publication date |
---|---|
US20110257355A1 (en) | 2011-10-20 |
EP2371801A4 (en) | 2012-10-17 |
SG172273A1 (en) | 2011-07-28 |
US8404887B2 (en) | 2013-03-26 |
EP2371801A1 (en) | 2011-10-05 |
JPWO2010074177A1 (ja) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010074177A1 (ja) | アクリル酸の製造方法 | |
WO2011125623A1 (ja) | グリセリン脱水用触媒、ならびに、この触媒を用いたアクロレインの製造方法、アクリル酸の製造方法、および親水性樹脂の製造方法 | |
JP5654615B2 (ja) | アクリル酸および/またはそのエステルおよびその重合体の製法 | |
JP6173314B2 (ja) | (メタ)アクリル酸の製造方法、及び、親水性樹脂の製造方法 | |
JP5583666B2 (ja) | (メタ)アクリル酸の晶析方法および製品(メタ)アクリル酸の重合防止剤含有量の調整方法 | |
KR20140054070A (ko) | 탈수 반응의 개선된 방법 | |
TW201139355A (en) | Process for the manufacture of acrolein and/or acrylic acid from glycerol | |
JP5869436B2 (ja) | 3−ヒドロキシカルボン酸又はそのエステルの脱水用触媒の再生方法、及び、(メタ)アクリル酸又はそのエステルの製造方法 | |
JP2011224536A (ja) | グリセリン脱水用触媒、ならびに、この触媒を用いたアクロレインの製造方法、アクリル酸の製造方法および親水性樹脂の製造方法 | |
JP2012111751A (ja) | 共役ジエンの製造方法 | |
JP5702205B2 (ja) | グリセリン脱水用触媒、ならびに、この触媒を用いたアクロレインの製造方法、アクリル酸の製造方法、および親水性樹脂の製造方法 | |
JP5380434B2 (ja) | アクリル酸の製造方法ならびにその製造方法を用いた親水性樹脂の製造方法および吸水性樹脂の製造方法 | |
JP2011224537A (ja) | グリセリン脱水用触媒、ならびに、この触媒を用いたアクロレインの製造方法、アクリル酸の製造方法および親水性樹脂の製造方法 | |
WO2013047479A1 (ja) | アクロレイン、アクリル酸、およびその誘導体の製造方法 | |
WO1992022378A1 (en) | Process for preparing catalyst for producing methacrylic acid | |
JP6193010B2 (ja) | (メタ)アクリル酸の製造方法、及び、親水性樹脂の製造方法 | |
JP2012091157A (ja) | グリセリン脱水用触媒、ならびに、この触媒を用いたアクロレインの製造方法、アクリル酸の製造方法、および親水性樹脂の製造方法 | |
JP6078447B2 (ja) | (メタ)アクリル酸の製造方法、及び、親水性樹脂の製造方法 | |
JP6169315B2 (ja) | グリセリンからのアクリル酸の製造方法、および親水性樹脂の製造方法 | |
RU2778318C2 (ru) | Способ очистки сточных вод | |
JP6193011B2 (ja) | (メタ)アクリル酸の製造方法、及び、親水性樹脂の製造方法 | |
JP5785910B2 (ja) | (メタ)アクリル酸又はそのエステルの製造方法 | |
WO2012010923A1 (en) | Process for manufacturing acrolein from glycerol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09834975 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010544134 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13141325 Country of ref document: US Ref document number: 2009834975 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |