WO2010071152A1 - 光学用成形体及びそれを用いた導光板及び光拡散体 - Google Patents

光学用成形体及びそれを用いた導光板及び光拡散体 Download PDF

Info

Publication number
WO2010071152A1
WO2010071152A1 PCT/JP2009/070978 JP2009070978W WO2010071152A1 WO 2010071152 A1 WO2010071152 A1 WO 2010071152A1 JP 2009070978 W JP2009070978 W JP 2009070978W WO 2010071152 A1 WO2010071152 A1 WO 2010071152A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
styrene resin
light
mass
resin
Prior art date
Application number
PCT/JP2009/070978
Other languages
English (en)
French (fr)
Inventor
高橋 淳
渡辺 真太郎
英章 坂本
佐藤 誠
哲也 新村
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2010542986A priority Critical patent/JP5597550B2/ja
Priority to CN200980151249XA priority patent/CN102257021B/zh
Publication of WO2010071152A1 publication Critical patent/WO2010071152A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects

Definitions

  • the present invention relates to an optical molded body, a light guide plate using the same, and a light diffuser.
  • Patent Document 1 discloses a resin molded body made of a copolymer mainly composed of methyl methacrylate and a styrene monomer
  • Patent Document 2 discloses a styrene- (meth) acrylate ester copolymer.
  • a light guide plate made of resin has been proposed.
  • Patent Documents 3 and 4 propose resin compositions comprising a copolymer comprising an aromatic vinyl monomer and a methyl methacrylate monomer.
  • Patent Document 5 proposes a multilayer diffusion plate of a styrene polymer or a styrene monomer-methyl methacrylate copolymer.
  • JP 2001-342263 A Japanese Patent Laid-Open No. 2003-075648 JP 2006-052349 A JP 2006-052350 A JP 2007-264598 A
  • Acrylic resins are widely used as optical molded articles, but have a problem that warpage and dimensional changes are likely to occur because of their high hygroscopicity. Moreover, since acrylic resin has high thermal decomposability at the time of molding, there is a problem that appearance defects are likely to occur in the molded body when molding at high temperature. As described above, various styrene resins have been proposed and used for these problems. However, since styrene resins are inferior in transparency and light resistance compared to acrylic resins, their use has been limited.
  • styrenic resins with low light transmittance are used for molded products in applications where the light transmission distance is long (hereinafter referred to as “long optical path”) among optical molded products, such as light guide plates for medium to large displays of 20 inches or more. There was a problem that could not be used.
  • fluorescent tubes FL tubes
  • external electrode tubes EEFL tubes
  • cold cathode tubes CCFL tubes
  • a new optical molded body suitable for LED light is desired.
  • An object of the present invention is to provide an optical molded article having low hygroscopicity, little loss of light transmittance in a long optical path, and excellent light resistance.
  • Another object of the present invention is to provide a light guide plate for a liquid crystal display, a light guide plate for illumination, or an optical molding useful as various light diffusers, particularly a light guide plate for medium to large liquid crystal displays using LEDs as a light source. It is to provide a light diffusing body useful as a light guide plate that is useful as a light source or a lighting application.
  • the inventor molded a styrene resin obtained by polymerizing a styrene monomer having a small amount of a polymerization inhibitor and a low phenylacetylene compound content.
  • the optical molded body is low in hygroscopicity, has little loss of light transmittance in a long optical path, has excellent light resistance, and found that this optical molded body is useful for a light guide plate and a light diffuser, The present invention has been reached.
  • the optical molded body according to the present invention is obtained by molding a styrene resin obtained by polymerizing a styrene monomer having a polymerization inhibitor of less than 10 ppm and a phenylacetylene compound of 50 ppm or less. This is an optical molded body.
  • the optical molded body according to the present invention in particular, the light guide plate and the light diffuser have low hygroscopicity, so that warpage and dimensional change are small, light transmittance loss in a long optical path is small, and light resistance is good.
  • the light diffuser also has good total light transmittance and diffusivity.
  • means “above” and “below”.
  • a to B means greater than A and less than B.
  • the “optical molded body” means, for example, one used for optical applications such as a light guide plate, a diffusion plate, and a lens.
  • a (meth) acrylic acid ester monomer is a general term for an acrylic acid ester monomer and a methacrylic acid ester monomer.
  • the “light diffuser” means a material that diffuses light and emits light into a flat surface or a curved surface, represented by a diffusion plate or a diffusion cover.
  • the molded article for optics according to this embodiment is formed by molding a styrene resin obtained by polymerizing a styrene monomer having a polymerization inhibitor of less than 10 ppm and a phenylacetylene compound of 50 ppm or less. This is an optical molded body.
  • the optical molded body having the above structure has low hygroscopicity, and therefore has little warpage and dimensional change, little loss of light transmittance in a long optical path, and good light resistance.
  • the light diffuser also has good total light transmittance and diffusivity.
  • the styrene resin is a polymer obtained by polymerizing a styrene monomer.
  • the styrene monomer include styrene, ⁇ -methyl styrene, p-methyl styrene, o-methyl styrene, m-methyl styrene, ethyl styrene, pt-butyl styrene, and preferably styrene. It is.
  • These styrenic monomers may be used alone or in combination of two or more.
  • the styrene resin may be a copolymer of a styrene monomer and a monomer copolymerizable with the styrene monomer, and a styrene monomer and a (meth) acrylic acid ester monomer.
  • a styrene- (meth) acrylic acid ester copolymer obtained by copolymerizing the polymer is preferred. Since the styrene resin is a styrene- (meth) acrylic acid ester copolymer, an effect of good light resistance can be obtained.
  • (Meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, methacrylic acid ester of 2-ethylhexyl (meth) acrylate, methyl acrylate, ethyl acrylate, n -Acrylic acid esters such as butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, etc. are preferable, and methyl methacrylate is particularly preferable.
  • These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.
  • the ratio of styrene monomer units in the styrene resin is 3% by mass or more, preferably 6% by mass to 90% by mass, and more preferably 10% by mass to 60% by mass.
  • the ratio of the styrenic monomer units is 3% by mass or more, the hygroscopicity of the optical molded article is lowered, and the thermal stability is improved. If the ratio of the styrene monomer unit is 6% to 90% by mass, not only the hygroscopicity of the optical molded body is lowered and the thermal stability is improved, but also the light transmittance loss of the long optical path is lost. The effect that there is little can be acquired.
  • the ratio of the (meth) acrylic acid ester monomer units in the styrene resin is 97% by mass or less, preferably 10% by mass to 94% by mass, and more preferably 40% by mass to 90% by mass. .
  • the ratio of the (meth) acrylic acid ester monomer unit is 97% by mass or less, the hygroscopicity of the optical molded article is lowered, and the thermal stability is improved. If the ratio of the (meth) acrylic acid ester monomer unit is 10% by mass to 94% by mass, not only the hygroscopicity of the optical molded article is lowered and the thermal stability is improved, but also the light in the long optical path The effect that there is little loss of transmittance can be obtained.
  • the styrenic resin may be a copolymer of a styrenic monomer and an ethylenically unsaturated monomer copolymerizable with the styrenic monomer, if necessary.
  • the monomer include acrylonitrile, (meth) acrylic acid, (meth) acrylate, maleic anhydride and the like.
  • methacrylic acid or maleic anhydride is preferred.
  • the ethylenically unsaturated monomer may be a mixture of two or more.
  • the ratio of the ethylenically unsaturated monomer units in the styrene resin is 35% by mass or less, preferably 25% by mass or less, and more preferably 20% by mass or less.
  • the ratio of the ethylenically unsaturated monomer units is 35% by mass or less, it is possible to obtain an effect that heat resistance and the like can be improved without losing the low hygroscopicity and molding processability that are characteristic of the styrene resin. it can.
  • the molecular weight of the styrene-based resin is preferably a polystyrene-equivalent weight average molecular weight Mw measured by GPC (gel permeation chromatography) of 7 to 450,000, and a molecular weight distribution (weight average molecular weight Mw / number).
  • the average molecular weight Mn) is preferably 1.7 to 2.3.
  • Mw / Mn when Mw / Mn is 1.7 or more, workability at the time of extrusion molding is good, and when it is 2.3 or less, a strong molded product can be obtained.
  • Mw and Mw / Mn can be adjusted with the temperature at the time of superposition
  • the photoelastic coefficient of the styrene resin is preferably ⁇ 6 ⁇ 10 ⁇ 12 to 6 ⁇ 10 ⁇ 12 / Pa. More preferably, it is ⁇ 4 ⁇ 10 ⁇ 12 to 4 ⁇ 10 ⁇ 12 / Pa.
  • a photoelastic coefficient of ⁇ 6 ⁇ 10 ⁇ 12 to 6 ⁇ 10 ⁇ 12 / Pa is preferable because luminance unevenness is reduced when a light guide plate is used.
  • a photoelastic coefficient can be adjusted with the ratio of the monomer copolymerizable with the styrene-type monomer in the case of superposition
  • the styrene resin melt mass flow rate (measured at a temperature of 200 ° C. and a load of 49 N based on MFR, JIS K7210) is preferably 0.5 to 30 g / 10 min, more preferably 3 to 20 g / 10 min. .
  • the MFR can be adjusted by adjusting the molecular weight, the type of monomer copolymerizable with the styrenic monomer, and its ratio during polymerization.
  • the shape of the styrenic resin is preferably a pellet shape.
  • a known method can be adopted as the pelletizing method. For example, a strand having a diameter of 2 to 5 mm is melt-extruded from a die nozzle and further cooled by passing through a cooling water tank to a length of 2 to 4 mm. It is obtained by cutting.
  • the amount of chips contained in the pellets is preferably less than 300 ppm, and more preferably 1 to 200 ppm.
  • the light transmittance in a long optical path becomes it high that a chip is less than 300 ppm.
  • tip is often contained in a pellet 1ppm or more on a manufacturing process.
  • the chip can be calculated by, for example, using a Tyler 20 mesh wire mesh sieve and measuring the amount of the chip that has passed through the wire mesh when 100 g of styrene resin is sieved for 5 minutes.
  • the amount of chips can be adjusted by strand cutting conditions, classification, and the like.
  • the total amount of monomer and solvent remaining in the styrene-based resin is preferably less than 1000 ppm, and more preferably 10 to 800 ppm. In addition, the amount of the monomer and solvent remaining in the styrene resin is often 10 ppm or more in the production process. When the total amount of the monomer and solvent remaining in the styrene-based resin is less than 1000 ppm, odor during molding and discoloration during long-term use can be reduced. The remaining monomer and residual solvent can be adjusted by temperature, pressure conditions, etc. in devolatilization.
  • the amount of oligomer in the styrene-based resin is not particularly limited, but it is not preferable to add a large amount of a polymerization initiator to reduce the amount of oligomer because the light transmittance in the long optical path is lowered.
  • a known antioxidant, light stabilizer, lubricant, plasticizer, and antistatic agent can be added to the styrene resin in an amount of less than 0.5 parts by mass with respect to 100 parts by mass of the styrene resin.
  • it is a light guide plate, it is preferable not to add. If the said additive is less than 0.5 mass part, there will be little fall of the light transmittance of a long optical path.
  • the optical molded body according to the present embodiment is characterized in that the content of the polymerization inhibitor in the styrene monomer is less than 10 ppm.
  • the content of the polymerization inhibitor in the styrene monomer is less than 10 ppm.
  • the content of the polymerization inhibitor is preferably less than 5 ppm, more preferably less than 1 ppm.
  • the content of the polymerization inhibitor is less than 5 ppm, it is possible to obtain an effect that the light transmittance in the long optical path is further increased and the light resistance is improved.
  • polymerization inhibitor examples include hydroquinones and catechols.
  • styrenic monomers contain about 10 to 30 ppm of a polymerization inhibitor and need to be removed or reduced.
  • limiting in particular as a method to remove or reduce Well-known methods, such as distillation and adsorption
  • the polymerization inhibitor in the monomer copolymerizable with a styrene-type monomer it is preferable that the polymerization inhibitor in the monomer copolymerizable with a styrene-type monomer shall also be less than 10 ppm, respectively.
  • the molded article for optics according to this embodiment is characterized in that the content of the phenylacetylene compound in the styrene monomer is 50 ppm or less.
  • the content of the phenylacetylene compound is preferably less than 40 ppm, more preferably less than 20 ppm.
  • the content of the phenylacetylene compound is less than 40 ppm, it is possible to obtain an effect that the light transmittance in the long optical path is further increased and the light resistance is improved.
  • styrene available on the market contains about 150 ppm of phenylacetylene and needs to be removed or reduced.
  • suction are employable.
  • a hydrogenation treatment performed in the presence of a hydrogenation catalyst is preferable.
  • the styrene resin used for the optical molded body according to the present embodiment is preferably obtained by solution polymerization, among polymerization reactions.
  • the solvent for the solution polymerization known solvents such as toluene, xylene, ethylbenzene, hexane, cyclohexane, acetone, methyl ethyl ketone, methyl isobutyl ketone and the like can be used.
  • the amount of the solvent to be used is preferably 1 to 70 parts by mass, more preferably 2 to 30 parts by mass with respect to 100 parts by mass in total of the monomers used. If the solvent is used in an amount of 1 to 70 parts by mass with respect to 100 parts by mass of the total amount of monomers used, the viscosity during polymerization is easily controlled by solution polymerization. The polymerization composition distribution becomes narrow, and the loss of light transmittance in the long optical path is small.
  • the polymerization reaction is particularly preferably radical solution polymerization.
  • radical solution polymerization compared with anionic polymerization, cationic polymerization, and coordination polymerization, the influence of initiators and auxiliaries remaining in the styrene resin is small, and light transmittance and light resistance of a long optical path are high.
  • Polymerization initiator At the time of radical polymerization, a known polymerization initiator such as an organic peroxide or an azo compound can be added as a radical generation source.
  • a known polymerization initiator such as an organic peroxide or an azo compound can be added as a radical generation source.
  • the polymerization initiator those having a one-hour half-life temperature of 95 to 140 ° C., low hydrogen abstraction ability, and no benzene ring are preferable. Those having a low hydrogen abstraction ability are unlikely to generate a micro gel component, so that the loss of light transmittance in the long optical path is small. In addition, those that do not contain a benzene ring are less likely to produce a colored component and have little loss of light transmittance in the long optical path.
  • Examples of preferred polymerization initiators include 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-hexylperoxy) -cyclohexane, t-hexylperper Examples thereof include oxyisopropyl monocarbonate and di-t-hexyl peroxide.
  • the addition amount of the polymerization initiator is preferably 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the total amount of monomers. More preferably, it is 0.02 to 0.2 parts by mass. When the addition amount of the polymerization initiator is 0.01 to 0.5 parts by mass, the light transmittance and light resistance of the long optical path are good.
  • Chain transfer agent Further, a known chain transfer agent such as n-dodecyl mercaptan, t-dodecyl mercaptan or 2,4-diphenyl-4-methyl-1-pentene may be added during radical polymerization.
  • the addition amount of the chain transfer agent is preferably 0.001 to 0.5 parts by mass, more preferably 0.005 to 0.2 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the addition amount of the chain transfer agent is 0.001 to 0.5 parts by mass, the light transmittance in the long optical path is high and the light resistance is good.
  • the polymerization temperature during the polymerization of the styrene resin is preferably 90 to 180 ° C., more preferably 95 to 170 ° C. When the temperature is 90 to 180 ° C., the light transmittance and light resistance of the long optical path are good.
  • the styrenic monomer and solvent used in the optical molded body according to this embodiment are preferably subjected to polymerization after removing dissolved oxygen.
  • the method for removing dissolved oxygen is not particularly limited, and a method of bubbling using nitrogen gas or the like can be employed.
  • the color of the molded body may be colorless and good for optical applications.
  • copolymerizing the monomer copolymerizable with a styrene-type monomer it is preferable to use for polymerization, after also removing the dissolved oxygen of the monomer copolymerizable with a styrene-type monomer.
  • the styrene monomer and solvent used in the optical molded body according to this embodiment are preferably subjected to polymerization after removing foreign substances.
  • the light transmittance of the long optical path may increase.
  • copolymerizing the monomer copolymerizable with a styrene-type monomer it is preferable to use for polymerization, after removing the foreign material of the monomer copolymerizable with a styrene-type resin.
  • the styrenic resin can be molded by a known method such as an injection molding method, an extrusion molding method, or a solvent casting method to obtain an optical molded body.
  • a known method such as an injection molding method, an extrusion molding method, or a solvent casting method to obtain an optical molded body.
  • an injection molding method or an extrusion molding method is preferable.
  • molding conditions There are no particular limitations on the molding conditions, but molding is preferably performed at 200 to 300 ° C.
  • the optical molded body according to the present embodiment includes a light guide plate, a diffusion plate, a lens, and the like.
  • the molded article for optics according to the present embodiment has little loss of light transmittance in a long optical path, and particularly has good light resistance to light having a wavelength of 400 nm or more. It is useful as a light guide plate, and particularly useful as a light guide plate for medium to large-sized liquid crystal displays using LEDs as light sources.
  • the thickness of the light guide plate of this embodiment is preferably 0.3 to 8 mm, more preferably 0.4 to 5 mm.
  • the light guide plate having such a thickness is effective in that light can be sufficiently taken in as a light guide plate for medium to large displays of 20 inches or more and has sufficient rigidity for handling.
  • the light guide plate according to the present embodiment other components such as crosslinked acrylic particles, crosslinked styrene particles, siloxane resin particles, organic light diffusing agents, barium sulfate, carbonate Inorganic light diffusing agents such as calcium and titanium oxide can be blended.
  • the optical molded body according to this embodiment is a light diffuser, the optical properties such as total light transmittance (or light transmittance) and diffusivity are good. Therefore, it is useful as a light diffuser used for various applications such as illumination.
  • a method of diffusing light as a light diffuser various methods such as a method of kneading a light diffusing agent, a method of shaping on the surface, and application of the light diffusing agent to the surface can be adopted.
  • organic light diffusing agents such as crosslinked acrylic particles, crosslinked styrene particles and siloxane resin particles, and inorganic light diffusing agents such as barium sulfate, calcium carbonate and titanium oxide can be used.
  • cross-linked acrylic particles, cross-linked styrene particles, siloxane resin particles, and calcium carbonate are used as a light diffuser, a good balance of optical properties such as total light transmittance and diffusivity is preferable.
  • the content of the light diffusing agent in the light diffuser is not particularly limited. An excellent light diffuser can be obtained. By containing the light diffusing agent in an amount of 0.1% by mass or more, high diffusing performance can be obtained, and by making it 10% by mass or less, the decrease in the total light transmittance is small.
  • a known method such as extrusion molding can be employed.
  • a known antioxidant, light stabilizer, lubricant, plasticizer, antistatic agent, fluorescent whitening agent, fluorescent material, and phosphorescent material with respect to 100 parts by mass of the styrene resin. In an amount of less than 0.5 parts by mass. If the said additive is less than 0.5 mass part, the fall of optical physical properties, such as a total light transmittance (or light transmittance) and a diffusivity, will be small.
  • the molded article for optics according to the embodiment is obtained by molding a styrene resin obtained by polymerizing a styrene monomer having a polymerization inhibitor of less than 10 ppm and a phenylacetylene compound of 50 ppm or less. This is an optical molded body.
  • the optical molded body according to the above embodiment has low hygroscopicity, the warpage and dimensional change are small, the light transmittance loss in the long optical path is small, and the light resistance is good.
  • the styrene resin is a styrene- (meth) acrylic acid ester copolymer
  • the effect of further improving the balance between warpage, dimensional change, light transmittance in a long optical path, and light resistance can be obtained. Can do.
  • the polymerization reaction is a radical solution polymerization reaction
  • the initiator and auxiliary agent remaining in the styrene resin there is little influence of the initiator and auxiliary agent remaining in the styrene resin, and the light transmittance and light resistance of the long optical path are increased. Can do.
  • the optical molded body according to the above embodiment has a small loss of light transmittance in a long optical path, and particularly has good light resistance to light having a wavelength of 400 nm or more. Therefore, a light guide plate for a liquid crystal display or a light guide for illumination. It is useful as a light plate, and particularly useful as a light guide plate for medium to large-sized liquid crystal displays using LEDs as a light source.
  • the optical molded body according to the above embodiment also has good optical properties such as total light transmittance (or light transmittance) and diffusivity. Therefore, it is useful as a light diffuser used for various applications such as illumination.
  • optical molded body which concerns on this invention, especially the light guide plate and the light diffusing body were mentioned and demonstrated, this invention is not limited to these.
  • the optical molded body according to the present invention since the optical molded body according to the present invention has little warpage and dimensional change, it can be preferably used not only for medium to large displays but also for small displays that require precise size adjustment. Furthermore, it can use preferably also for lighting fixtures other than a display, and a display fixture use.
  • the optical molded body according to the present invention may be obtained by a production method including the following steps.
  • a method for producing an optical molded body which includes a polymerization reaction step of polymerizing a styrene monomer to obtain a styrene resin, and a molding step of molding the styrene resin.
  • the molded article for optics obtained by the above production method has low hygroscopicity, and therefore has little warpage and dimensional change, little loss of light transmittance in a long optical path, and good light resistance.
  • Example 1 52 parts by mass of the styrene-1 and 48 parts by mass of the MMA-1 and 12 parts by mass of ethylbenzene as a solvent were mixed, and after bubbling with nitrogen for 1 hour to remove dissolved oxygen, the supernatant was filtered through a 1 ⁇ m filter. To obtain a raw material solution. A first fully mixed reactor of about 5 liters with a stirrer, a second fully mixed reactor of about 15 liters, a column type plug flow reactor of about 40 liters, and a preheater are attached. The devolatilization tanks were connected in series.
  • the rotational speed of the stirrer of the first complete mixing type reactor was 300 rpm.
  • the reaction solution was continuously withdrawn from the first complete mixing reactor and introduced into a second complete mixing reactor controlled at a temperature of 125 ° C.
  • the rotation speed of the stirrer of the second complete mixing type reactor was 180 rpm.
  • the reaction liquid was continuously withdrawn from the second complete mixing type reactor and introduced into a column type plug flow type reactor adjusted so as to have a gradient of 125 ° C. to 160 ° C. in the direction of flow.
  • this reaction liquid While heating this reaction liquid with a preheater, it was introduced into a devolatilization tank controlled at a temperature of 240 ° C. and a pressure of 1.0 kPa to remove volatile components such as a solvent and unreacted monomers.
  • the resin liquid was extracted with a gear pump, extruded into a strand, and cut while cooling to obtain a pellet-shaped styrene resin.
  • the fine powder contained in the pellets was removed by classification.
  • the chips were calculated by measuring the amount of chips that passed through the wire mesh when 100 g of styrene resin was sieved for 5 minutes using a Tyler 20 mesh wire mesh screen.
  • Example 2 The same procedure as in Example 1 was carried out except that 40 parts by mass of styrene-1 and 60 parts by mass of MMA-1 were used. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was carried out except that 11 parts by mass of styrene-1 and 89 parts by mass of MMA-1 were used. The results are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was conducted except that 100 parts by mass of styrene-1 and 0 parts by mass of MMA-1 were used. The results are shown in Table 1.
  • Example 5 The same procedure as in Example 1 was performed except that styrene-2 was used instead of styrene-1. The results are shown in Table 1.
  • Example 6 The same procedure as in Example 1 was performed except that styrene-4 was used instead of styrene-1. The results are shown in Table 1.
  • the characteristic evaluation of the said molded object was performed with the following method.
  • Polymerization inhibitor (4-tert-butylcatechol) Sodium hydroxide was added to the sample and stirred, and the absorbance of the colored liquid was measured with a spectrophotometer (wavelength 486 nm), and the concentration was calculated from a calibration curve prepared in advance.
  • GC12A FID detector column manufactured by Shimadzu Corporation: Glass column ⁇ 3mm ⁇ 3m
  • Filler Polyethylene glycol carrier: Nitrogen temperature: Column 115 ° C, inlet 220 ° C Sample pellets 0.5 g, cyclopentane 0.001 g, N, N-dimethylformamide were dissolved, and measurement was performed using cyclopentane as an internal standard. (3) Hygroscopicity Saturated water absorption (unit:%) was determined by A method based on JIS K7209 using a molded plate. Less than 1.5% was accepted.
  • the transparent loss rate (unit:%) is calculated using the light transmittance of the long optical path measured in (5) and the reflectance calculated in (7). did. Note that doubling the reflectivity represents two surfaces, a light incident surface and a light output surface. Less than 8% was accepted.
  • this ultraviolet filter hardly transmits light having a wavelength of less than 400 nm.
  • the molded product of the styrene-based resin obtained in Examples and Comparative Examples and an ultraviolet light filter were layered, and using a weatherometer Ci65A manufactured by Atlas Co., at a temperature of 63 ° C. and an irradiation intensity of 0.35 W / m 2 (intensity at 340 nm).
  • the xenon light source was irradiated for 200 hours from the ultraviolet filter side. That is, the styrene resin molded product was irradiated with light having a wavelength of 400 nm or more transmitted through an ultraviolet filter.
  • the b value (unit:-) in the 2 mm part of the light-irradiated molded product was measured according to JIS K7105 using a color difference meter ⁇ 80 manufactured by Nippon Denshoku Industries Co., Ltd., and ⁇ b was calculated by the following formula: did.
  • the ⁇ b was less than 1 as acceptable.
  • ⁇ b b value after 200 hours irradiation ⁇ b value before irradiation
  • the optical molded articles of the examples according to the present invention had low hygroscopicity, little loss of light transmittance in the long optical path, and good light resistance.
  • Example 1 The same procedure as in Example 1 was conducted except that 0 part by mass of styrene-1 and 100 parts by mass of MMA-1 were used. The results are shown in Table 1.
  • Example 2 The same procedure as in Example 1 was performed except that styrene-3 was used instead of styrene-1. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was performed except that styrene-5 was used instead of styrene-1. The results are shown in Table 1.
  • the optical molded body of the example according to the present invention has low hygroscopicity, the warpage and dimensional change are small, the loss of light transmittance in the long optical path is small, and the light resistance of 400 nm or more is good.
  • Comparative Example 1 since only the acrylic resin is used, the hygroscopicity is remarkably high.
  • Comparative Example 2 the light transmittance of the long light path is low, and the light transmittance loss of the long light path is large. Further, it can be seen that ⁇ b is large and light resistance is poor. This is thought to be because the content of the polymerization inhibitor is 10 ppm or more.
  • Comparative Example 3 it can be seen that the transparent loss of the long optical path is large, in particular, the value of ⁇ b is remarkably large and the light resistance is poor. This is considered to be because the content of the phenylacetylene compound is 50 ppm or more.
  • the optical molded body according to the present invention has low hygroscopicity, so that warpage and dimensional change are small, light transmittance in a long optical path is high, and light resistance is good. Further, when the optical molded body according to the present invention is used as a light guide plate, it is useful as a light guide plate for a liquid crystal display or a light guide plate for illumination, and particularly has good light resistance to light having a wavelength of 400 nm or more. Therefore, it is useful as a light guide plate for medium to large liquid crystal displays using LEDs as a light source.
  • Light diffuser The detailed contents of the light diffuser according to the present invention will be described using examples, but the present invention is not limited to the following examples.
  • the styrene resin obtained by the method of Example 1 is referred to as styrene resin 1.
  • the styrene resin obtained by the method of Example 2 is referred to as styrene resin 2.
  • the styrene resin obtained by the method of Example 3 is referred to as styrene resin 3.
  • the styrene resin obtained by the method of Example 4 is referred to as styrene resin 4.
  • a styrene resin obtained by the same method as in Example 1 using styrene 2 is referred to as a styrene resin 5.
  • a styrene resin obtained by the same method as in Example 2 using styrene 2 is referred to as a styrene resin 6.
  • a styrene resin obtained by the same method as in Example 3 using styrene 2 is referred to as a styrene resin 7.
  • a styrene resin obtained by the same method as in Example 4 using styrene 2 is referred to as a styrene resin 8.
  • a styrene resin obtained by the same method as in Example 1 using styrene 3 is referred to as a styrene resin 9.
  • a styrene resin obtained by the same method as in Example 2 using styrene 3 is referred to as a styrene resin 10.
  • a styrene resin obtained by the same method as in Example 3 using styrene 3 is referred to as a styrene resin 11.
  • a styrene resin obtained by the same method as in Example 4 using styrene 3 is referred to as a styrene resin 12.
  • a styrene resin obtained by the same method as in Example 1 using styrene 4 is referred to as a styrene resin 13.
  • a styrene resin obtained by the same method as in Example 2 using styrene 4 is referred to as a styrene resin 14.
  • a styrene resin obtained by the same method as in Example 3 using styrene 4 is referred to as a styrene resin 15.
  • a styrene resin obtained by the same method as in Example 4 using styrene 4 is referred to as a styrene resin 16.
  • a styrene resin obtained by the same method as in Example 1 using styrene 5 is referred to as a styrene resin 17.
  • a styrene resin obtained by the same method as in Example 2 using styrene 5 is referred to as a styrene resin 18.
  • a styrene resin obtained by the same method as in Example 3 using styrene 5 is referred to as a styrene resin 19.
  • a styrene resin obtained by the same method as in Example 4 using styrene 5 is referred to as a styrene resin 20.
  • Example 7 Using a twin-screw extruder TEM-35B manufactured by Toshiba Machine Co., Ltd., 96 mass% of styrene resin 1 under the condition of a tip temperature of 230 ° C., calcium carbonate manufactured by Nemoto Special Chemical Co., Ltd. (product name) : Lumipearl DSN-7) was kneaded and mixed at a mixing ratio of 4% by mass to obtain a pellet-shaped resin composition.
  • This pellet-shaped resin composition was molded under the conditions of a cylinder temperature of 230 ° C. and a mold temperature of 60 ° C. using an injection molding machine J140AD-180H manufactured by Nippon Steel, Ltd., and was 90 mm long, 90 mm wide, 90 mm wide and 2 mm thick. A molded body was obtained.
  • Example 8 The same procedure as in Example 7 was performed except that styrene resin 1 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 9 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 1 was used as the styrene resin, 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 10 The same procedure as in Example 7 was performed except that styrene resin 2 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 11 The same procedure as in Example 7 was carried out except that styrene resin 2 was used as the styrene resin and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 12 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 2 was used as the styrene resin and 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 13 The same procedure as in Example 7 was performed except that styrene resin 3 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 14 The same procedure as in Example 7 was performed except that styrene resin 3 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 15 The same procedure as in Example 7 was conducted except that styrene resin 4 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 16 The same procedure as in Example 7 was performed except that styrene resin 5 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 17 The same procedure as in Example 7 was performed except that styrene resin 5 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • styrene resin 5 was used as the styrene resin
  • cross-linked acrylic particles product name: Techpolymer MBX-8 manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 18 The same procedure as in Example 7 was conducted except that 98% by mass of styrene resin 5 was used as the styrene resin, 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 19 The same procedure as in Example 7 was performed except that styrene resin 6 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 20 The same procedure as in Example 7 was performed except that styrene resin 6 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • styrene resin 6 was used as the styrene resin
  • calcium carbonate product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 21 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 6 was used as the styrene resin, and 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials was used as the light diffusing agent. It was.
  • Example 22 The same procedure as in Example 7 was performed except that styrene resin 7 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • styrene resin 7 was used as the styrene resin
  • cross-linked styrene particles product name: Techpolymer SBX-8 manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 23 The same procedure as in Example 7 was performed except that styrene resin 7 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 24 The same procedure as in Example 7 was performed except that styrene resin 8 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 25 The same procedure as in Example 7 was performed except that styrene resin 13 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 26 The same procedure as in Example 7 was performed except that styrene resin 13 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • styrene resin 13 was used as the styrene resin
  • cross-linked acrylic particles product name: Techpolymer MBX-8 manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 27 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 13 was used as the styrene resin, 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 28 The same procedure as in Example 7 was performed except that styrene resin 14 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 29 The same procedure as in Example 7 was performed except that styrene resin 14 was used as the styrene resin and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 30 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 14 was used as the styrene resin, and 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 31 The same procedure as in Example 7 was performed except that styrene resin 15 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 32 The same procedure as in Example 7 was performed except that styrene resin 15 was used as the styrene resin and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 33 The same procedure as in Example 7 was performed except that styrene resin 16 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 4 The same procedure as in Example 7 was performed except that styrene resin 9 was used as the styrene resin and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 5 The same procedure as in Example 7 was conducted except that styrene resin 9 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • styrene resin 9 was used as the styrene resin
  • cross-linked acrylic particles product name: Techpolymer MBX-8 manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 6 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 9 was used as the styrene resin, 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 7 The same procedure as in Example 7 was performed except that styrene resin 10 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • styrene resin 10 was used as the styrene resin
  • cross-linked styrene particles product name: Techpolymer SBX-8 manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 8 The same procedure as in Example 7 was performed except that styrene resin 10 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 9 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 10 was used as the styrene resin, 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 10 The same procedure as in Example 7 was performed except that styrene resin 11 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 11 The same procedure as in Example 7 was performed except that styrene resin 11 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 12 The same procedure as in Example 7 was carried out except that styrene resin 12 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • styrene resin 12 was used as the styrene resin
  • cross-linked acrylic particles product name: Techpolymer MBX-8 manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 13 The same procedure as in Example 7 was performed except that styrene resin 17 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 14 The same procedure as in Example 7 was performed, except that styrene resin 17 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • styrene resin 17 was used as the styrene resin
  • cross-linked acrylic particles product name: Techpolymer MBX-8 manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 15 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 17 was used as the styrene resin, and 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 16 The same procedure as in Example 7 was performed except that styrene resin 18 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 17 The same procedure as in Example 7 was performed except that styrene resin 18 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 18 The same procedure as in Example 7 was performed except that 98% by mass of styrene resin 18 was used as the styrene resin, 2% by mass of siloxane resin particles (product name: Tospearl 120) manufactured by Momentive Performance Materials were used as the light diffusing agent. It was.
  • Example 19 The same procedure as in Example 7 was conducted except that styrene resin 19 was used as the styrene resin, and cross-linked styrene particles (product name: Techpolymer SBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • Example 20 The same procedure as in Example 7 was performed except that styrene resin 19 was used as the styrene resin, and calcium carbonate (product name: Lumipearl DSN-7) manufactured by Nemoto Special Chemical Co., Ltd. was used as the light diffusing agent.
  • Example 21 The same procedure as in Example 7 was performed except that styrene resin 20 was used as the styrene resin, and cross-linked acrylic particles (product name: Techpolymer MBX-8) manufactured by Sekisui Plastics Co., Ltd. were used as the light diffusing agent.
  • the optical molded bodies of the examples according to the present invention had good total light transmittance and diffusivity, and good light resistance of 400 nm or more.
  • the reason why the diffusivity has decreased in the comparative example is considered to be that the amount of the inhibitor is 10 ppm or more, or the amount of the phenylacetylene compound is 50 ppm or more.
  • the reason why the ⁇ b value indicating light resistance is large in the comparative example is considered to be that the amount of the polymerization inhibitor is 10 ppm or more and the content of the phenylacetylene compound is 50 ppm or more.
  • the light diffuser according to the present invention has good total light transmittance and diffusivity, and good light resistance. Therefore, it is useful as a light diffuser used for various applications such as lighting. Moreover, since the light resistance with respect to light having a wavelength of 400 nm or more is good, it is also useful as a light diffuser (such as a diffusion plate or a diffusion cover) using an LED as a light source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 吸湿性が低く、反りや寸法変化が少なく、長光路における光透過率の損失が少なく、耐光性が良好である光学用成形体、及びこれを用いた導光板及び光拡散体を提供する。 本発明によれば、重合禁止剤が10ppm未満であり、かつ、フェニルアセチレン系化合物が50ppm以下のスチレン系単量体を重合反応させることにより得られるスチレン系樹脂を成形してなる光学用成形体、及びこれを用いた導光板及び光拡散体が提供される。

Description

光学用成形体及びそれを用いた導光板及び光拡散体
 本発明は、光学用成形体及びそれを用いた導光板及び光拡散体に関するものである。
 アクリル樹脂は透明性に優れるため、導光板、拡散板、レンズ等の光学用成形体として広く使用されてきた。また、最近では、アクリル樹脂に代わり、光学用成形体としては種々のスチレン系樹脂も提案されて使用されている。
 例えば、特許文献1では、メタクリル酸メチルとスチレン系単量体とを主成分とする共重合体からなる樹脂成形体が、また、特許文献2では、スチレン-(メタ)アクリル酸エステル系共重合樹脂からなる導光板が提案されている。また、特許文献3及び4では、芳香族ビニル系単量体とメタクリル酸メチル単量体とからなる共重合体からなる樹脂組成物が提案されている。また、特許文献5にはスチレン系重合体やスチレン系単量体-メタクリル酸メチル共重合体の多層拡散板が提案されている。
特開2001-342263号公報 特開2003-075648号公報 特開2006-052349号公報 特開2006-052350号公報 特開2007-264598号公報
 アクリル樹脂は光学用成形体として広く使用されているが、吸湿性が高いため、反りや寸法変化が生じやすいという問題がある。また、アクリル樹脂は成形時の熱分解性が高いため、高温で成形する場合、成形体に外観不良が発生しやすいという問題がある。
 これらの問題に対し、上記のように、種々のスチレン系樹脂が提案され使用されているが、スチレン系樹脂はアクリル樹脂に比べ透明性や耐光性に劣るため、使用に制限があった。
 特に、光学用成形体の中で光線透過距離が長い(以下「長光路」)用途における成形体、例えば、20インチ以上の中~大型ディスプレイの導光板には、光透過率の低いスチレン系樹脂が使用できないという問題があった。
 また、ディスプレイ光源には、一般的には蛍光管(FL管)、外部電極管(EEFL管)、冷陰極管(CCFL管)が使用されているが、最近ではLEDの技術革新を背景に、LED光に適した新たな光学用成形体が望まれている。
 本発明の目的は、吸湿性が低く、長光路における光透過率の損失が少なく、耐光性に優れた光学用成形体を提供することである。
 また、本発明の目的は、液晶ディスプレイ用の導光板や照明用の導光板または種々の光拡散体として有用である光学用成形体、特にLEDを光源とする中~大型液晶ディスプレイ用の導光板として有用である導光板、または照明等の用途に有用である光拡散体を提供することである。
 本発明者は、上記の課題について、鋭意検討を行った結果、重合禁止剤が少なく、かつフェニルアセチレン系化合物含量が少ないスチレン系単量体を重合させることにより得られたスチレン系樹脂を成形してなる光学用成形体が、吸湿性が低く、長光路における光透過率の損失が少なく、耐光性に優れ、またこの光学用成形体が導光板や光拡散体に有用であることを見出し、本発明に至った。
 本発明に係る光学用成形体は、重合禁止剤が10ppm未満であり、かつ、フェニルアセチレン系化合物が50ppm以下のスチレン系単量体を重合反応させることにより得られるスチレン系樹脂を成形してなる光学用成形体である。
 本発明に係る光学用成形体、特に導光板及び光拡散体は、吸湿性が低いため反りや寸法変化が少なく、長光路における光透過率の損失が少なく、耐光性が良好である。また、光拡散体は全光線透過率や拡散率も良好である。
<用語の説明>
 本願明細書において、「~」という記号は「以上」及び「以下」を意味する。例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
 本明細書において、「光学用成形体」とは、例えば、導光板、拡散板、レンズ等の光学用途に用いるものを意味する。
 また、本明細書においては、(メタ)アクリル酸エステル系単量体とは、アクリル酸エステル単量体及びメタクリル酸エステル単量体の総称である。
 また、本明細書において「光拡散体」とは、拡散板や拡散カバーに代表される、光を拡散し、平面や曲面に面発光させるものを意味する。
 以下、本発明に係る光学用成形体、特に導光板及び光拡散体の実施形態を詳細に説明する。
 本実施形態に係る光学用成形体は、重合禁止剤が10ppm未満であり、かつ、フェニルアセチレン系化合物が50ppm以下のスチレン系単量体を重合反応させることにより得られるスチレン系樹脂を成形してなる光学用成形体である。
 上記構成からなる光学用成形体は、吸湿性が低いため反りや寸法変化が少なく、長光路における光透過率の損失が少なく、耐光性が良好である。また、光拡散体は全光線透過率や拡散率も良好である。
[スチレン系樹脂]
 スチレン系樹脂は、スチレン系単量体を重合してなる重合体である。
 スチレン系単量体としては、スチレン、α-メチルスチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、エチルスチレン、p-t-ブチルスチレン等を挙げることができるが、好ましくはスチレンである。これらのスチレン系単量体は単独であっても二種以上混合したものであってもよい。
 スチレン系樹脂は、スチレン系単量体及びスチレン系単量体と共重合可能な単量体との共重合体であってもよく、スチレン系単量体及び(メタ)アクリル酸エステル系単量体を共重合してなるスチレン-(メタ)アクリル酸エステル系共重合体が好ましい。
 上記スチレン系樹脂がスチレン-(メタ)アクリル酸エステル系共重合体であることにより、耐光性が良いという効果を得ることができる。
 (メタ)アクリル酸エステル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートのメタクリル酸エステル、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレート等のアクリル酸エステルが挙げられるが、特に好ましくはメチルメタクリレートが挙げられる。これらの(メタ)アクリル酸エステル系単量体は単独であっても二種以上混合したものであっても差し支えない。
 スチレン系樹脂中の、スチレン系単量体単位の比は、3質量%以上であり、好ましくは6質量%~90質量%、さらに好ましくは10~60質量%である。
 スチレン系単量体単位の比が3質量%以上であると、光学用成形体の吸湿性が低くなり、熱安定性が良好となる。スチレン系単量体単位の比が、6質量%~90質量%であれば、光学用成形体の吸湿性が低くなり、熱安定性が良好となるばかりか、長光路の光透過率の損失が少ないという効果を得ることができる。
 また、スチレン系樹脂中の(メタ)アクリル酸エステル系単量体単位の比は97質量%以下であり、好ましくは10質量%~94質量%、さらに好ましくは40質量%~90質量%である。
 (メタ)アクリル酸エステル系単量体単位の比が97質量%以下であると、光学用成形体の吸湿性が低くなり、熱安定性が良好となる。(メタ)アクリル酸エステル系単量体単位の比が10質量%~94質量%であれば、光学用成形体の吸湿性が低くなり、熱安定性が良好となるばかりか、長光路の光透過率の損失が少ないという効果を得ることができる。
 スチレン系樹脂は、必要に応じて、スチレン系単量体及びスチレン系単量体と共重合可能なエチレン系不飽和単量体の共重合体であっても良く、このようなエチレン系不飽和単量体としては、例えば、アクリロニトリル、(メタ)アクリル酸、(メタ)アクリル酸塩、無水マレイン酸等が挙げられる。導光板の耐熱性を向上させる場合、メタクリル酸や無水マレイン酸が好ましい。エチレン系不飽和単量体は二種以上混合したものであっても差し支えない。
 ここで、スチレン系樹脂中のエチレン系不飽和単量体単位の比は35質量%以下であり、好ましくは25質量%以下、さらに好ましくは20質量%以下である。
 エチレン系不飽和単量体単位の比が35質量%以下であると、スチレン系樹脂の特徴である低吸湿性や成形加工性を失うことなく、耐熱性等を向上できるという効果を得ることができる。
(スチレン系樹脂の分子量)
 スチレン系樹脂の分子量としては、GPC(ゲル・パーミエーション・クロマトグラフィー)にて測定されるポリスチレン換算の重量平均分子量Mwが7~45万であることが好ましく、分子量分布(重量平均分子量Mw/数平均分子量Mn)は1.7~2.3であることが好ましい。
 Mwが7万以上であると強い成形体が得られ、45万以下であると射出成形時の加工性が良好となる。また、Mw/Mnが1.7以上であると押出成形時の加工性が良好となり、2.3以下であると強い成形体を得ることができる。なお、MwやMw/Mnは重合時の温度や重合開始剤量等で調整できる。
(スチレン系樹脂の光弾性係数)
 スチレン系樹脂の光弾性係数は、-6×10-12~6×10-12/Paであることが好ましい。さらに好ましくは、-4×10-12~4×10-12/Paである。
 光弾性係数が-6×10-12~6×10-12/Paの場合は、導光板とした場合に輝度ムラが少なくなり好ましい。なお、光弾性係数は、重合の際のスチレン系単量体と共重合可能な単量体の割合で調整できる。
(スチレン系樹脂のメルトマスフローレイト)
 スチレン系樹脂のメルトマスフローレイト(MFR、JIS K7210に基づき、温度200℃、荷重49Nで測定したもの)は、好ましくは0.5~30g/10分、さらに好ましくは3~20g/10分である。
 MFRが0.5g/10分以上では射出成形性が良好であり、30g/10分以下では押し出し成形性が良好であり好ましい。MFRは、分子量、スチレン系単量体と共重合可能な単量体の種類や重合の際のその割合で調整できる。
(スチレン系樹脂の形状)
 スチレン系樹脂の形状は、ペレット形状であることが好ましい。ペレット化の方法は公知の方法が採用でき、特に限定されないが、例えば、ダイスノズルから直径が2~5mmのストランドを溶融押出し、さらに冷却水槽に通して冷却したストランドを、長さ2~4mmに切断することにより得られる。
 ここで、ペレット中に含まれる切粉は300ppm未満であることが好ましく、さらに好ましくは1~200ppmである。切粉が300ppm未満であると、長光路における光透過率が高くなる。なお、切粉は、製造プロセス上、ペレット中に1ppm以上含まれることが多い。
 なお、切粉は、例えばタイラー20メッシュの金網篩を用い、スチレン系樹脂100gを5分間篩った時の金網を通過した切粉量を計測することにより算出できる。切粉量はストランド切断条件や分級等により調整できる。
 スチレン系樹脂中に残存する単量体と溶剤の合計量は、1000ppm未満であることが好ましく、さらに好ましくは、10~800ppmである。なお、スチレン系樹脂中に残存する単量体と溶剤の量は、製造プロセス上、10ppm以上含まれることが多い。
 スチレン系樹脂中に残存する単量体と溶剤の合計量が1000ppm未満の場合は、成形時の臭気や長期使用における変色を少なくすることができる。残存する単量体や残溶剤は脱揮における温度や圧力条件等で調整できる。
 スチレン系樹脂中のオリゴマー量は特に制限は無いが、オリゴマー量を低減すべく多量の重合開始剤を添加すると、長光路の光透過率が低下するため好ましくない。
 スチレン系樹脂には、スチレン系樹脂100質量部に対して、公知の酸化防止剤、耐光安定剤、滑剤、可塑剤、帯電防止剤を0.5質量部未満添加することができるが、特に、導光板である場合、添加しないことが好ましい。上記添加剤が0.5質量部未満であれば、長光路の光透過率の低下が少ない。
[重合禁止剤]
 本実施形態に係る光学用成形体は、スチレン系単量体中の重合禁止剤の含有量が10ppm未満であることを特徴とする。重合禁止剤を10ppm未満とすることで、長光路における光透過率が高くなり、耐光性が良好なものとなる。
 また、重合禁止剤の含有量は、好ましくは5ppm未満、さらに好ましくは1ppm未満である。重合禁止剤の含有量が5ppm未満であることにより、さらに長光路における光透過率が高くなり、耐光性が良好なものとなるという効果を得ることができる。
 重合禁止剤としては、ハイドロキノン類やカテコール類等が挙げられる。
 通常、市場で入手できるスチレン系単量体には10~30ppm程度の重合禁止剤が含まれているため、除去または減少させる必要がある。除去または減少させる方法としては、特に制限はなく、蒸留や吸着等の公知の手法が採用できる。この方法としては、減圧蒸留が好ましい。
 なお、スチレン系単量体と共重合可能な単量体を共重合する場合、スチレン系単量体と共重合可能な単量体中の重合禁止剤も夫々10ppm未満とすることが好ましい。
[フェニルアセチレン系化合物]
 本実施形態に係る光学用成形体は、スチレン系単量体中のフェニルアセチレン系化合物の含有量が50ppm以下であることを特徴とする。フェニルアセチレン系化合物を50ppm以下とすることで、長光路における光透過率が高くなり、耐光性が良好なものとなる。
 フェニルアセチレン系化合物の含有量は、好ましくは40ppm未満、さらに好ましくは20ppm未満である。フェニルアセチレン系化合物の含有量が40ppm未満であることにより、さらに長光路における光透過率が高くなり、耐光性が良好なものとなるという効果を得ることができる。
 通常、スチレンにおけるフェニルアセチレンは沸点が近く分離が困難であるため、市場で入手できるスチレンには150ppm程度のフェニルアセチレンが含まれており、除去または減少させる必要がある。除去または減少させる方法としては、特に制限はなく、水素化処理や吸着等の公知の手法が採用できる。この方法としては、水素化触媒の存在下で行う水素化処理が好ましい。
[重合反応]
 本実施形態に係る光学用成形体に使用するスチレン系樹脂は、重合反応の中でも、特に溶液重合により得ることが好ましい。
 溶液重合の溶剤としては公知の溶剤、例えば、トルエン、キシレン、エチルベンゼン、ヘキサン、シクロヘキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン等が使用できる。
 溶剤の使用量は、使用する単量体の合計100質量部に対して、好ましくは1~70質量部、さらに好ましくは2~30質量部である。
 溶剤の使用量が、使用する単量体の合計100質量部に対して、1~70質量部であれば、溶液重合により重合時の粘度制御が容易であるばかりか、共重合する場合、共重合組成分布が狭くなり長光路の光透過率の損失が少ないものとなる。
 また、重合反応としては、特にラジカル溶液重合であることが好ましい。ラジカル溶液重合では、アニオン重合やカチオン重合、配位重合に比べて、スチレン系樹脂中に残存する開始剤や助剤の影響が少なく、長光路の光透過率や耐光性が高い。
(重合開始剤)
 ラジカル重合時に、ラジカル発生源として、有機過酸化物やアゾ化合物等公知の重合開始剤を添加することができる。
 重合開始剤としては、1時間半減期温度が95~140℃で、水素引き抜き能が低く、ベンゼン環を含まないものが好ましい。水素引き抜き能が低いものは、ミクロなゲル成分が発生しにくいため、長光路の光透過率の損失が少ないものとなる。また、ベンゼン環を含まないものは、着色成分が生成しにくく、長光路の光透過率の損失が少ないものとなる。
 好ましい重合開始剤の例としては、1、1-ジ(t-ヘキシルパーオキシ)-3、3、5-トリメチルシクロヘキサン、1、1-ジ(t-ヘキシルパーオキシ)-シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、ジ-t-ヘキシルパーオキサイド等である。
 また、重合開始剤の添加量は、単量体の合計100質量部に対して、0.01~0.5質量部であることが好ましい。さらに好ましくは、0.02~0.2質量部である。重合開始剤の添加量が0.01~0.5質量部であると、長光路の光透過率と耐光性が良好なものとなる。
(連鎖移動剤)
 また、ラジカル重合時に、n-ドデシルメルカプタン、t-ドデシルメルカプタンや2、4-ジフェニル-4-メチル-1-ペンテン等の公知の連鎖移動剤を添加してもよい。
 連鎖移動剤の添加量は、好ましくは単量体の合計100質量部に対して、0.001~0.5質量部、さらに好ましくは0.005~0.2質量部である。連鎖移動剤の添加量が0.001~0.5質量部であると、長光路における光透過率が高くなり、耐光性が良好なものとなる。
 スチレン系樹脂の重合時における重合温度は、好ましくは90~180℃、さらに好ましくは95~170℃である。90~180℃であると、長光路の光透過率と耐光性が良好なものとなる。
(溶存酸素の除去)
 本実施形態に係る光学用成形体に使用するスチレン系単量体及び溶剤は、溶存酸素を除去した後に重合に供することが好ましい。溶存酸素を除去する方法としては特に制限はなく、窒素ガスを使用してバブリング処理する方法等が採用できる。
 溶存酸素を除去すると、成形体の色が無色で光学用途に対し、良好なものとなる場合がある。なお、スチレン系単量体と共重合可能な単量体を共重合する場合、スチレン系単量体と共重合可能な単量体の溶存酸素も除去した後に重合に供することが好ましい。
(異物の除去)
 また、本実施形態に係る光学用成形体に使用するスチレン系単量体及び溶剤は、異物を除去した後に重合に供することが好ましい。異物を除去する方法としては特に制限はなく、フィルターで濾過する方法等が採用できる。
 異物を除去すると、長光路の光透過率が高くなる場合がある。なお、スチレン系単量体と共重合可能な単量体を共重合する場合、スチレン系樹脂と共重合可能な単量体の異物も除去した後に重合に供することが好ましい。
 本実施形態に係るスチレン系樹脂においては、スチレン系樹脂を射出成形法、押出成形法、溶剤キャスト法等公知の方法で成形して光学用成形体とすることができる。特に、射出成形法あるいは押出成形法が好ましい。
 成形条件には特に制限は無いが、200~300℃で成形することが好ましい。
[導光板]
 本実施形態に係る光学用成形体の用途としては、導光板、拡散板、レンズ等が挙げられる。特に、本実施形態に係る光学用成形体は、長光路における光透過率の損失が少なく、特に400nm以上の波長の光に対する耐光性が良好であるため、液晶ディスプレイ用の導光板や照明用の導光板として有用であり、特に、LEDを光源とする中~大型液晶ディスプレイ用の導光板として有用である。
 本実施形態の導光板の厚みは、好ましくは0.3~8mm、さらに好ましくは0.4~5mmである。このような厚みからなる導光板は、20インチ以上の中~大型ディスプレイ用の導光板として十分に光を取り入れることができ、また取り扱う上で十分な剛性を有するという点において、効果がある。
 本実施形態に係る導光板には、本実施形態の目的を損なわない範囲で、その他の成分として架橋アクリル系粒子、架橋スチレン系粒子、シロキサン樹脂粒子等の有機系光拡散剤、硫酸バリウム、炭酸カルシウム、酸化チタン等の無機系光拡散剤を配合することができる。
[光拡散体]
 また、本実施形態に係る光学用成形体の用途として光拡散体である場合にも、全光線透過率(あるいは光透過率)や拡散率などの光学物性が良好なものとなる。そのため、照明など様々な用途に用いられる光拡散体として有用である。
 光拡散体として光を拡散させる方法として、光拡散剤を練り込む方法や、表面への賦形による方法、光拡散剤の表面への塗布等、様々な方法を採用できる。
 光拡散剤として、架橋アクリル系粒子、架橋スチレン系粒子、シロキサン樹脂粒子等の有機系光拡散剤、硫酸バリウム、炭酸カルシウム、酸化チタン等の無機系光拡散剤を用いる事ができる。架橋アクリル系粒子や架橋スチレン系粒子、シロキサン樹脂粒子、炭酸カルシウムが、光拡散体とした際に、全光線透過率や拡散率などの光学物性のバランスが良く、好ましい。
 光拡散体中の光拡散剤の含有量に特に制限はないが、0.1質量%以上、10質量%以下の範囲で含有すると、全光線透過率と拡散率それぞれに、あるいは両方のバランスに優れた光拡散体を得ることができる。光拡散剤を0.1質量%以上含有することで高い拡散性能を持たせる事ができ、10質量%以下にすることで全光線透過率の低下が少ない。
 光拡散体中に光拡散剤を含有させる手段として、押出し成形等の公知の手法を採用できる。
 本実施形態に係る光拡散体には、スチレン系樹脂100質量部に対して、公知の酸化防止剤、耐光安定剤、滑剤、可塑剤、帯電防止剤、蛍光増白剤、蛍光材料、蓄光材料を0.5質量部未満添加することができる。上記添加剤が0.5質量部未満であれば、全光線透過率(あるいは光透過率)や拡散率等の光学物性の低下が小さい。
〈作用効果〉
 以下、上記実施形態に係る光学用成形体、特に導光板及び光拡散体の作用効果について説明する。
 上記実施形態に係る光学用成形体は、重合禁止剤が10ppm未満であり、かつ、フェニルアセチレン系化合物が50ppm以下のスチレン系単量体を重合反応させることにより得られるスチレン系樹脂を成形してなる光学用成形体である。
 上記実施形態に係る光学用成形体は、吸湿性が低いため反りや寸法変化が少なく、長光路における光透過率の損失が少なく、耐光性が良好である。
 特に、上記スチレン系樹脂がスチレン-(メタ)アクリル酸エステル系共重合体であることにより、反りや寸法変化、長光路における光透過率、耐光性のバランスがさらに良好になるという効果を得ることができる。
 また、上記重合反応が、ラジカル溶液重合反応であることにより、スチレン系樹脂中に残存する開始剤や助剤の影響が少なく、長光路の光透過率や耐光性が高くなるという効果を得ることができる。
 上記実施形態に係る光学用成形体は、長光路における光透過率の損失が少なく、特に、400nm以上の波長の光に対する耐光性が良好であるため、液晶ディスプレイ用の導光板や照明用の導光板として有用であり、特に、LEDを光源とする中~大型液晶ディスプレイ用の導光板として有用である。
 また、上記実施形態に係る光学用成形体は、全光線透過率(あるいは光透過率)や拡散率などの光学物性も良好なものとなる。そのため、照明など様々な用途に用いられる光拡散体として有用である。
 以上、本発明に係る光学用成形体、特に導光板及び光拡散体について実施形態を挙げて説明したが、本発明はこれらに限定されるものではない。
 例えば、本発明に係る光学用成形体は、反りや寸法変化が少ないため、中~大型ディスプレイのみならず、精密なサイズ調整が求められる小型のディスプレイにも好ましく用いることができる。さらに、ディスプレイ以外の照明器具や表示器具用途にも好ましく用いることができる。
 また、本発明に係る光学用成形体は、次の工程を含む製造方法によって得られてもよい。
 スチレン系単量体を準備する工程と、スチレン系単量体に含まれる重合禁止剤を10ppm未満に減少させる工程と、スチレン系単量体に含まれるフェニルアセチレン系化合物を50ppm以下に減少させる工程と、スチレン系単量体を重合反応させてスチレン系樹脂を得る重合反応工程と、スチレン系樹脂を成形する成形工程とを含む光学用成形体の製造方法。
 上記製造方法によって得られる光学用成形体は、吸湿性が低いため反りや寸法変化が少なく、長光路における光透過率の損失が少なく、耐光性が良好である。
 以下、本発明に係る光学用成形体、特に導光板及び光拡散体の詳細な内容について、実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
[スチレン系単量体]
 先ず、実施例及び比較例で用いるスチレン系単量体について説明する。
(スチレン-1)
 工業的なスチレンを準備したところ、重合禁止剤として4-t-ブチルカテコールが12ppm、不純物としてフェニルアセチレンが130ppm含まれていることがわかった。この工業的なスチレンを水素化触媒の存在下で水素化処理して、含有するフェニルアセチレンを選択的に水素化し、その後減圧蒸留して、4-t-ブチルカテコールが0.1ppm未満で、フェニルアセチレンが10ppm含まれるスチレン-1を得た。
(スチレン-2)
 スチレン-1に4-t-ブチルカテコールを添加して、4-t-ブチルカテコールが7ppm含まれるスチレン-2を得た。
(スチレン-3)
 スチレン-1に4-t-ブチルカテコールを添加して、4-t-ブチルカテコールが12ppm含まれるスチレン-3を得た。
(スチレン-4)
 スチレン-1にフェニルアセチレンを添加して、フェニルアセチレンが43ppm含まれるスチレン-4を得た。
(スチレン-5)
 スチレン-1にフェニルアセチレンを添加して、フェニルアセチレンが130ppm含まれるスチレン-5を得た。
[(メタ)アクリル酸エステル系単量体]
(MMA-1)
 次に、(メタ)アクリル酸エステル系単量体について説明する。
 工業的なメタクリル酸メチルを準備したところ、重合禁止剤としてトパノールが5ppm含まれることがわかった。これを、MMA-1とする。
[実施例1]
 上記スチレン-1を52質量部、上記MMA-1を48質量部、溶剤としてエチルベンゼンを12質量部混合し、窒素で1時間バブリングして溶存酸素を除去した後、上澄みを1μmのフィルターで濾過して原料溶液とした。
 そして、撹拌機を付した容積約5リットルの第一完全混合型反応器、容積約15リットルの第二完全混合型反応器、容積約40リットルの塔式プラグフロー型反応器、予熱器を付した脱揮槽を直列に接続して構成した。
 原料溶液に1、1-ジ(t-ヘキシルパーオキシ)-シクロヘキサン(日本油脂社製パーヘキサHC)0.03質量部、n-ドデシルメルカプタン(花王社製チオカルコール20)0.015質量部を混合し、毎時6kgで温度95℃に制御した第一完全混合型反応器に導入した。
 なお、第一完全混合型反応器の攪拌機の回転速度は300rpmで実施した。第一完全混合型反応器より反応液を連続的に抜き出し、温度125℃に制御した第二完全混合型反応器に導入した。
 また、第二完全混合型反応器の攪拌機の回転速度は180rpmで実施した。第二完全混合型反応器より反応液を連続的に抜き出し、流れの方向に向かって温度125℃から160℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。
 この反応液を予熱器で加温しながら、温度240℃で圧力1.0kPaに制御した脱揮槽に導入し、溶剤や未反応単量体等の揮発分を除去した。
 そして、この樹脂液をギアポンプで抜き出してストランド状に押出し、冷却しながら切断することによりペレット形状のスチレン系樹脂を得た。なお、ペレット中に含まれる微粉は分級により除去した。
 得られたスチレン系樹脂は、Mw=18万、Mw/Mn=1.8であり、スチレン系樹脂中に残存する単量体と溶剤の合計量が1000ppm未満、切粉300ppm未満であることを確認した。
 なお、切粉は、タイラー20メッシュの金網篩を用い、スチレン系樹脂100gを5分間篩った時の金網を通過した切粉量を計測することにより算出した。
 ペレットを電動射出成形機(株)日本製鋼所社製J350ELIIIにより、成形温度270℃で縦292.5mm、横220mm、厚さ2mmの成形体を得た。得られた成形体の光学特性評価を行った。その結果を表1に示す。
[実施例2]
 スチレン-1を40質量部、MMA-1を60質量部とした以外は実施例1と同様に行った。その結果を表1に示す。
[実施例3]
 スチレン-1を11質量部、MMA-1を89質量部とした以外は実施例1と同様に行った。その結果を表1に示す。
[実施例4]
 スチレン-1を100質量部、MMA-1を0質量部とした以外は実施例1と同様に行った。その結果を表1に示す。
[実施例5]
 スチレン-1の代わりに、スチレン-2を用いた以外は実施例1と同様に行った。その結果を表1に示す。
[実施例6]
 スチレン-1の代わりに、スチレン-4を用いた以外は実施例1と同様に行った。その結果を表1に示す。
 なお、上記成形体の特性評価は下記の方法により行った。
(1)重合禁止剤(4-t-ブチルカテコール)
 試料に水酸化ナトリウムを加え撹拌し、着色した液を分光光度計で吸光度を測定(波長486nm)し、あらかじめ作成しておいた検量線より濃度を算出した。
(2)残存単量体、残存溶剤、フェニルアセチレン
下記記載のGC測定条件で測定した。
装置名:島津製作所社製 GC12A FID検出器
カラム:ガラスカラム φ3mm×3m
充填剤:ポリエチレングリコール
キャリヤー:窒素
温度:カラム115℃、注入口220℃
試料ペレット0.5g、シクロペンタン0.001g、N、N-ジメチルホルムアミドを溶解させ、シクロペンタンを内部標準として測定した。
(3)吸湿性
 成形したプレートを用い、JIS K7209に基づき、A法で飽和吸水率(単位:%)を求めた。1.5%未満を合格とした。
(4)Haze
 成形したプレートの2mm厚み部を、JIS K7105に基づき、ヘーズメーター(日本電色工業社製NDH2000)を用いてヘーズ(単位:%)を測定した。0.3%未満を合格とした。
(5)長光路の透明性(光透過率)
 成形したプレートの端面を、メガロテクニカ(株)社製ゲート加工機GCPBを用いて研磨した。日本電色工業(株)社製長光路測定機ASA-300Aを用いて、研磨した面を垂直に透過する光の透過率(単位:%)を測定した。
(6)屈折率
 成形したプレートの2mm厚み部を、アッベ屈折計((株)アタゴ社製アッベ屈折計2-T)を用いて屈折率を測定した。
(7)反射率
 下式を用い、(6)で測定した屈折率を用い、反射率(単位:%)を算出した。
Figure JPOXMLDOC01-appb-M000001
(8)長光路の透明損失率
 下式を用い、(5)で測定した長光路の光透過率と、(7)で算出した反射率を用いて、透明損失率(単位:%)を算出した。なお、反射率を2倍しているのは、入光面と出光面の2面を表す。8%未満を合格とした。
Figure JPOXMLDOC01-appb-M000002
(9)耐光性
 IKG社製単軸押出機PMS40を用いて、シリンダー温度230℃の条件で、三菱レイヨン(株)社製PMMA VH5、チバ・スペシャルティ・ケミカルズ(株)社製紫外線吸収剤TinuvinP、クラリアントジャパン(株)社製光安定剤HostavinPR-25を99:0.5:0.5の質量比で溶融混練し、紫外光フィルター用樹脂を得た。この樹脂を電動射出成形機(株)日本製鋼所社製J350ELIIIにより、成形温度270℃で縦292.5mm、横220mm、厚さ2mmの紫外光フィルターを得た。この紫外光フィルターは、波長が400nm未満の光はほとんど透過しないことを確認した。
 実施例・比較例で得たスチレン系樹脂の成形体と紫外光フィルターを重ね、アトラス社製ウエザオメータCi65Aを用いて、温度63℃、照射強度0.35W/m(340nmにおける強度)の条件で紫外光フィルター側からキセノン光源の光を200時間照射した。すなわち、スチレン系樹脂の成形体には紫外光フィルターを透過した400nm以上の光が当たるようにした。光照射した成形体の2mm部におけるb値(単位:-)を、日本電色工業(株)社製色差計Σ80を用いて、JIS K7105に準拠して測定し、下記の式によりΔbを算出した。Δbが1未満を合格とした。
    Δb=200時間照射後のb値-照射前のb値
Figure JPOXMLDOC01-appb-T000003
 表1を見るとわかるように、本発明に係る実施例の光学用成形体は、吸湿性が低く、長光路における光透過率の損失が少なく、耐光性が良好であった。
[比較例1]
 スチレン-1を0質量部、MMA-1を100質量部とした以外は実施例1と同様に行った。その結果を表1に示す。
[比較例2]
 スチレン-1の代わりに、スチレン-3を用いた以外は実施例1と同様に行った。その結果を表1に示す。
[比較例3]
 スチレン-1の代わりに、スチレン-5を用いた以外は実施例1と同様に行った。その結果を表1に示す。
〈考察〉
 本発明に係る実施例の光学用成形体は、吸湿性が低いため反りや寸法変化が少なく、長光路における光透過率の損失が少なく、400nm以上の耐光性が良好であった。
 比較例1では、アクリル樹脂のみを使用しているので、著しく吸湿性が高い。
 また、比較例2では、長光路の光透過率が低く、長光路の光透過率損失が大きい。さらには、Δbの値が大きく耐光性が悪いことがわかる。これは、重合禁止剤の含有量が10ppm以上であるためだと考えられる。
 また、比較例3では、長光路の透明損失が大きく、特に、Δbの値が著しく大きく耐光性が悪いことがわかる。これは、フェニルアセチレン系化合物の含有量が50ppm以上であるためだと考えられる。
 以上のように、本発明に係る光学用成形体は、吸湿性が低いため反りや寸法変化が少なく、長光路における光透過率が高く、耐光性が良好である。
 また、本発明に係る光学用成形体を導光板として用いた場合、液晶ディスプレイ用の導光板や照明用の導光板として有用であり、特に、400nm以上の波長の光に対する耐光性が良好であるため、LEDを光源とする中~大型液晶ディスプレイ用の導光板として有用である。
[光拡散体]
 本発明に係る光拡散体の詳細な内容について、実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
[スチレン系樹脂]
 実施例及び比較例で用いるスチレン系樹脂について説明する。
 実施例1の方法で得たスチレン系樹脂をスチレン系樹脂1と称する。実施例2の方法で得たスチレン系樹脂をスチレン系樹脂2と称する。実施例3の方法で得たスチレン系樹脂をスチレン系樹脂3と称する。実施例4の方法で得たスチレン系樹脂をスチレン系樹脂4と称する。
 スチレン2を用いて実施例1と同様の方法で得たスチレン系樹脂をスチレン系樹脂5と称する。スチレン2を用いて実施例2と同様の方法で得たスチレン系樹脂をスチレン系樹脂6と称する。スチレン2を用いて実施例3と同様の方法で得たスチレン系樹脂をスチレン系樹脂7と称する。スチレン2を用いて実施例4と同様の方法で得たスチレン系樹脂をスチレン系樹脂8と称する。
 スチレン3を用いて実施例1と同様の方法で得たスチレン系樹脂をスチレン系樹脂9と称する。スチレン3を用いて実施例2と同様の方法で得たスチレン系樹脂をスチレン系樹脂10と称する。スチレン3を用いて実施例3と同様の方法で得たスチレン系樹脂をスチレン系樹脂11と称する。スチレン3を用いて実施例4と同様の方法で得たスチレン系樹脂をスチレン系樹脂12と称する。
 スチレン4を用いて実施例1と同様の方法で得たスチレン系樹脂をスチレン系樹脂13と称する。スチレン4を用いて実施例2と同様の方法で得たスチレン系樹脂をスチレン系樹脂14と称する。スチレン4を用いて実施例3と同様の方法で得たスチレン系樹脂をスチレン系樹脂15と称する。スチレン4を用いて実施例4と同様の方法で得たスチレン系樹脂をスチレン系樹脂16と称する。
 スチレン5を用いて実施例1と同様の方法で得たスチレン系樹脂をスチレン系樹脂17と称する。スチレン5を用いて実施例2と同様の方法で得たスチレン系樹脂をスチレン系樹脂18と称する。スチレン5を用いて実施例3と同様の方法で得たスチレン系樹脂をスチレン系樹脂19と称する。 スチレン5を用いて実施例4と同様の方法で得たスチレン系樹脂をスチレン系樹脂20と称する。
[実施例7]
 東芝機械(株)製、二軸押出機TEM-35Bを用いて、先端温度230℃の条件でスチレン系樹脂1を96質量%、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を4質量%の混合比となるように混練混合し、ペレット形状の樹脂組成物を得た。このペレット形状の樹脂組成物を(株)日本製鋼所製、射出成形機J140AD-180Hを用いて、シリンダー温度230℃、金型温度60℃の条件で成形し、縦90mm横90mm厚さ2mmの成形体を得た。
[実施例8]
 スチレン系樹脂としてスチレン系樹脂1、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[実施例9]
 スチレン系樹脂としてスチレン系樹脂1を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[実施例10]
 スチレン系樹脂としてスチレン系樹脂2、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[実施例11]
 スチレン系樹脂としてスチレン系樹脂2、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[実施例12]
 スチレン系樹脂としてスチレン系樹脂2を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[実施例13]
 スチレン系樹脂としてスチレン系樹脂3、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[実施例14]
 スチレン系樹脂としてスチレン系樹脂3、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[実施例15]
 スチレン系樹脂としてスチレン系樹脂4、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[実施例16]
 スチレン系樹脂としてスチレン系樹脂5、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[実施例17]
 スチレン系樹脂としてスチレン系樹脂5、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[実施例18]
 スチレン系樹脂としてスチレン系樹脂5を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[実施例19]
 スチレン系樹脂としてスチレン系樹脂6、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[実施例20]
 スチレン系樹脂としてスチレン系樹脂6、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[実施例21]
 スチレン系樹脂としてスチレン系樹脂6を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[実施例22]
 スチレン系樹脂としてスチレン系樹脂7、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[実施例23]
 スチレン系樹脂としてスチレン系樹脂7、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[実施例24]
 スチレン系樹脂としてスチレン系樹脂8、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[実施例25]
 スチレン系樹脂としてスチレン系樹脂13、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[実施例26]
 スチレン系樹脂としてスチレン系樹脂13、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[実施例27]
 スチレン系樹脂としてスチレン系樹脂13を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[実施例28]
 スチレン系樹脂としてスチレン系樹脂14、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[実施例29]
 スチレン系樹脂としてスチレン系樹脂14、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[実施例30]
 スチレン系樹脂としてスチレン系樹脂14を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[実施例31]
 スチレン系樹脂としてスチレン系樹脂15、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[実施例32]
 スチレン系樹脂としてスチレン系樹脂15、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[実施例33]
 スチレン系樹脂としてスチレン系樹脂16、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[比較例4]
 スチレン系樹脂としてスチレン系樹脂9、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[比較例5]
 スチレン系樹脂としてスチレン系樹脂9、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[比較例6]
 スチレン系樹脂としてスチレン系樹脂9を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[比較例7]
 スチレン系樹脂としてスチレン系樹脂10、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[比較例8]
 スチレン系樹脂としてスチレン系樹脂10、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[比較例9]
 スチレン系樹脂としてスチレン系樹脂10を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[比較例10]
 スチレン系樹脂としてスチレン系樹脂11、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[比較例11]
 スチレン系樹脂としてスチレン系樹脂11、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[比較例12]
 スチレン系樹脂としてスチレン系樹脂12、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[比較例13]
 スチレン系樹脂としてスチレン系樹脂17、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[比較例14]
 スチレン系樹脂としてスチレン系樹脂17、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
[比較例15]
 スチレン系樹脂としてスチレン系樹脂17を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[比較例16]
 スチレン系樹脂としてスチレン系樹脂18、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[比較例17]
 スチレン系樹脂としてスチレン系樹脂18、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[比較例18]
 スチレン系樹脂としてスチレン系樹脂18を98質量%、光拡散剤としてモメンティブ・パフォーマンス・マテリアルズ製、シロキサン樹脂粒子(製品名:トスパール120)を2質量%用いた以外は実施例7と同様に行った。
[比較例19]
 スチレン系樹脂としてスチレン系樹脂19、光拡散剤として積水化成品工業(株)製、架橋スチレン粒子(製品名:テクポリマーSBX-8)を用いた以外は実施例7と同様に行った。
[比較例20]
 スチレン系樹脂としてスチレン系樹脂19、光拡散剤として根本特殊化学(株)製炭酸カルシウム(製品名:ルミパールDSN-7)を用いた以外は実施例7と同様に行った。
[比較例21]
 スチレン系樹脂としてスチレン系樹脂20、光拡散剤として積水化成品工業(株)製、架橋アクリル粒子(製品名:テクポリマーMBX-8)を用いた以外は実施例7と同様に行った。
 実施例7ないし実施例33及び比較例4ないし比較例21の各成形体について以下の評価を行った。
(10)全光線透過率、Haze
 JIS K7105に基づき、ヘーズメーター(日本電色工業社製、NDH5000)を用いて成形体の全光線透過率及びHaze(単位:%)を測定した。
(11)拡散率
 変角光度計(日本電色工業社製、GC5000L)を用いて、成形体の各角度における光透過率を測定した。特定の角度における光透過率の数値を用いて以下の式で定義される拡散率(%)を計算した(拡散率:JIS Z8113 番号04100)。
Figure JPOXMLDOC01-appb-M000004
(12)照度の分散
 照度計(TOKYO OPTICAL製、IM-3)を用いてJIS C7612に基づき、以下に示す方法で照度測定をした。照明に取り付けた成形体からの垂直距離が1mである水平面における照度分布で、半値幅(単位:cm)を照度の分散とした。
[照度測定方法]
 LED照明(東芝ライテック製、ミゼットレフ型、LEL-SL5N-F 40W)に備え付けのカバーを外し、各成形体を貼り付けた(LEDチップと成形体の距離は8mm)。これを暗所にて点灯し、30分以上放置し光源を安定させた後、所定の場所の照度を測定した。
(13)耐光性
 試験品に実施例7ないし実施例33及び比較例4ないし比較例21の各成形体を用いた以外は「(9)耐光性」試験と同様に行った。
 以上の実施例及び比較例の結果を表2ないし表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
〈考察〉
 表2から表4に示される様に、本発明に係る実施例の光学用成形体は、全光線透過率や拡散率が良好であり、400nm以上の耐光性が良好であった。
 比較例において拡散率が下がっているのは、禁止剤の量が10ppm以上、あるいはフェニルアセチレン系化合物の量が50ppm以上であるためだと考えられる。耐光性を示すΔb値が比較例において大きいのは、重合禁止剤の量が10ppm以上である事、及びフェニルアセチレン系化合物の含有量が50ppm以上であるためだと考えられる。
 以上のように、本発明に係る光拡散体は、全光線透過率や拡散率が良好で、耐光性が良好である。したがって、照明など様々な用途に用いられる光拡散体として有用である。
 また、400nm以上の波長の光に対する耐光性が良好であるため、LEDを光源として用いた光拡散体(拡散板や拡散カバーなど)としても有用である。

Claims (6)

  1. 重合禁止剤が10ppm未満であり、かつ、フェニルアセチレン系化合物が50ppm以下のスチレン系単量体を重合反応させることにより得られるスチレン系樹脂を成形してなる光学用成形体。
  2. 前記スチレン系樹脂がスチレン-(メタ)アクリル酸エステル系共重合体である請求項1に記載の光学用成形体。
  3. 前記重合反応がラジカル溶液重合反応である請求項1又は2に記載の光学用成形体。
  4. 請求項1ないし3のいずれかに記載の光学用成形体を用いた導光板。
  5. 請求項1ないし3のいずれかに記載の光学用成形体を用いた光拡散体。
  6. 架橋アクリル系粒子、架橋スチレン系粒子、シロキサン樹脂粒子、炭酸カルシウムの群から選択される少なくとも1種の光拡散剤を0.1質量%以上10質量%以下含む請求項5記載の光拡散体。
PCT/JP2009/070978 2008-12-17 2009-12-16 光学用成形体及びそれを用いた導光板及び光拡散体 WO2010071152A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010542986A JP5597550B2 (ja) 2008-12-17 2009-12-16 光学用成形体及びそれを用いた導光板及び光拡散体
CN200980151249XA CN102257021B (zh) 2008-12-17 2009-12-16 光学用成型体以及使用了该光学用成型体的导光板和光漫射体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008321677 2008-12-17
JP2008-321677 2008-12-17

Publications (1)

Publication Number Publication Date
WO2010071152A1 true WO2010071152A1 (ja) 2010-06-24

Family

ID=42268823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070978 WO2010071152A1 (ja) 2008-12-17 2009-12-16 光学用成形体及びそれを用いた導光板及び光拡散体

Country Status (5)

Country Link
JP (1) JP5597550B2 (ja)
KR (1) KR101653849B1 (ja)
CN (1) CN102257021B (ja)
TW (1) TWI471341B (ja)
WO (1) WO2010071152A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891855A (zh) * 2010-07-09 2010-11-24 哈尔滨工程大学 以聚乳酸为侧链的新型光学活性聚苯乙炔合成方法
WO2013151055A1 (ja) * 2012-04-02 2013-10-10 Psジャパン株式会社 ポリスチレン系樹脂組成物及びこれを成形してなる導光板
JP2014001295A (ja) * 2012-06-18 2014-01-09 Ps Japan Corp ポリスチレン系樹脂組成物及び導光板
JP2014159517A (ja) * 2013-02-20 2014-09-04 Denki Kagaku Kogyo Kk 導光板
JP2014173033A (ja) * 2013-03-11 2014-09-22 Ps Japan Corp 導光板用ポリスチレン系樹脂組成物及び導光板
JP2015117282A (ja) * 2013-12-17 2015-06-25 株式会社カネカ 難燃性を付与した発泡性スチレン系樹脂粒子とその製造方法
JP2015140370A (ja) * 2014-01-27 2015-08-03 株式会社カネカ 発泡性スチレン系樹脂粒子とその製造方法
JP2016017156A (ja) * 2014-07-09 2016-02-01 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2017061697A (ja) * 2011-12-20 2017-03-30 東洋スチレン株式会社 光学用スチレン系樹脂組成物
JPWO2016129675A1 (ja) * 2015-02-12 2017-11-24 デンカ株式会社 光学用スチレン系樹脂組成物
WO2021132001A1 (ja) * 2019-12-24 2021-07-01 デンカ株式会社 光拡散板及び直下型面光源ユニット
WO2021199501A1 (ja) * 2020-04-01 2021-10-07 デンカ株式会社 光学用スチレン系樹脂組成物、導光板及びエッジライト型面光源ユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316404A (ja) * 2000-05-08 2001-11-13 Asahi Kasei Corp スチレン系樹脂の製造法
JP2004250609A (ja) * 2003-02-21 2004-09-09 Denki Kagaku Kogyo Kk スチレン−(メタ)アクリル酸系共重合樹脂の製造方法
JP2008158534A (ja) * 2005-11-28 2008-07-10 Asahi Kasei Chemicals Corp 光学フィルム
JP2008208147A (ja) * 2005-06-17 2008-09-11 Denki Kagaku Kogyo Kk スチレン系樹脂及びそれからなる光学用樹脂成形体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632626A (en) * 1968-06-17 1972-01-04 American Cyanamid Co Process for removing inhibitors from alkenyl monomers
US4748222A (en) * 1986-03-31 1988-05-31 The Dow Chemical Company Preparation of highly pure alpha-methylstyrene polymer
AU628194B2 (en) * 1989-07-28 1992-09-10 Idemitsu Kosan Co. Ltd Process for producing styrene polymers
EP0417724B1 (en) * 1989-09-14 1996-05-15 The Dow Chemical Company Coordination polymerization of styrene monomer
JPH03234746A (ja) * 1990-02-02 1991-10-18 Dow Chem Co:The 熱抵抗性高衝撃ポリスチレンブレンド
JP2001342263A (ja) 2000-03-31 2001-12-11 Sumitomo Chem Co Ltd 光学材料用樹脂成形体およびそれからなる導光板
JP2001342208A (ja) * 2000-06-05 2001-12-11 Asahi Kasei Corp スチレン系樹脂シート
JP2003075648A (ja) 2001-09-07 2003-03-12 Denki Kagaku Kogyo Kk 導光板
JP2006052349A (ja) 2004-08-13 2006-02-23 Nippon A & L Kk 低吸湿性光学用芳香族ビニル系樹脂組成物
JP2006052350A (ja) 2004-08-13 2006-02-23 Nippon A & L Kk 光学特性に優れる芳香族ビニル系樹脂組成物
JP2006133567A (ja) * 2004-11-08 2006-05-25 Denki Kagaku Kogyo Kk 光拡散板
JP4821597B2 (ja) 2006-01-06 2011-11-24 住友化学株式会社 多層光拡散板
TWI455950B (zh) * 2006-12-25 2014-10-11 Mitsubishi Rayon Co 流動性改良劑、芳香族聚碳酸酯樹脂組成物以及其成型品
JP5415788B2 (ja) * 2009-03-09 2014-02-12 東洋スチレン株式会社 導光板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316404A (ja) * 2000-05-08 2001-11-13 Asahi Kasei Corp スチレン系樹脂の製造法
JP2004250609A (ja) * 2003-02-21 2004-09-09 Denki Kagaku Kogyo Kk スチレン−(メタ)アクリル酸系共重合樹脂の製造方法
JP2008208147A (ja) * 2005-06-17 2008-09-11 Denki Kagaku Kogyo Kk スチレン系樹脂及びそれからなる光学用樹脂成形体
JP2008158534A (ja) * 2005-11-28 2008-07-10 Asahi Kasei Chemicals Corp 光学フィルム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101891855A (zh) * 2010-07-09 2010-11-24 哈尔滨工程大学 以聚乳酸为侧链的新型光学活性聚苯乙炔合成方法
JP2017061697A (ja) * 2011-12-20 2017-03-30 東洋スチレン株式会社 光学用スチレン系樹脂組成物
JP2017078172A (ja) * 2011-12-20 2017-04-27 東洋スチレン株式会社 光学用スチレン系樹脂組成物
WO2013151055A1 (ja) * 2012-04-02 2013-10-10 Psジャパン株式会社 ポリスチレン系樹脂組成物及びこれを成形してなる導光板
JP2014001295A (ja) * 2012-06-18 2014-01-09 Ps Japan Corp ポリスチレン系樹脂組成物及び導光板
JP2014159517A (ja) * 2013-02-20 2014-09-04 Denki Kagaku Kogyo Kk 導光板
JP2014173033A (ja) * 2013-03-11 2014-09-22 Ps Japan Corp 導光板用ポリスチレン系樹脂組成物及び導光板
JP2015117282A (ja) * 2013-12-17 2015-06-25 株式会社カネカ 難燃性を付与した発泡性スチレン系樹脂粒子とその製造方法
JP2015140370A (ja) * 2014-01-27 2015-08-03 株式会社カネカ 発泡性スチレン系樹脂粒子とその製造方法
JP2016017156A (ja) * 2014-07-09 2016-02-01 出光興産株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品
JPWO2016129675A1 (ja) * 2015-02-12 2017-11-24 デンカ株式会社 光学用スチレン系樹脂組成物
WO2021132001A1 (ja) * 2019-12-24 2021-07-01 デンカ株式会社 光拡散板及び直下型面光源ユニット
WO2021199501A1 (ja) * 2020-04-01 2021-10-07 デンカ株式会社 光学用スチレン系樹脂組成物、導光板及びエッジライト型面光源ユニット

Also Published As

Publication number Publication date
JPWO2010071152A1 (ja) 2012-05-31
CN102257021B (zh) 2013-07-17
JP5597550B2 (ja) 2014-10-01
CN102257021A (zh) 2011-11-23
KR20110105810A (ko) 2011-09-27
TWI471341B (zh) 2015-02-01
TW201030027A (en) 2010-08-16
KR101653849B1 (ko) 2016-09-02

Similar Documents

Publication Publication Date Title
JP5597550B2 (ja) 光学用成形体及びそれを用いた導光板及び光拡散体
JP5230363B2 (ja) 熱可塑性樹脂組成物の製造方法
KR101958719B1 (ko) 중합용 분산제를 이용하여 제조된 가교 고분자 입자를 포함하는 광확산 수지 조성물 및 이를 포함하는 광확산 성형체
JP2017101230A (ja) メタクリル系樹脂、メタクリル系樹脂組成物、フィルム
JP5209283B2 (ja) 光拡散板用樹脂組成物及び光拡散板
JP2009215476A (ja) 光拡散板用スチレン系樹脂組成物及びその製造方法
TWI532750B (zh) Styrene-based light guide plate
JP2007153959A (ja) 光拡散板用樹脂組成物及び光拡散板
KR20190038866A (ko) 입자들을 포함하는 (메타)아크릴계 조성물, 그 제조 방법, 그 용도 및 그것을 포함하는 오브젝트
TW201007217A (en) Resin composition and light diffusion plate with thermal resistance and impact resistance
JP4361393B2 (ja) 光学部材用メタクリル系樹脂組成物およびそれを用いた光学部材
JP2005326761A (ja) 光学特性に優れた導光体
JP2007204535A (ja) 光拡散性スチレン系樹脂組成物及び成形体
JP2009126996A (ja) 光拡散板用樹脂組成物及び光拡散板
JP2008291250A (ja) (メタ)アクリル酸エステル−スチレン系共重合体の製造法
KR102492892B1 (ko) 고내열성 아크릴계 공중합체 및 이를 포함하는 광확산판용 복합시트
JP4479894B2 (ja) 光拡散性樹脂
JP4360268B2 (ja) メタクリル樹脂製導光体の製造方法
KR20080105477A (ko) 광확산판용 수지 조성물 및 광확산판
JP2006052350A (ja) 光学特性に優れる芳香族ビニル系樹脂組成物
JP2005105102A (ja) 吸湿性に優れた導光体用樹脂組成物および導光体製品
JP5457617B2 (ja) スチレン系樹脂組成物および成形体
JP2003165885A (ja) 吸湿性に優れた導光体用樹脂組成物および導光体製品
JP2007031525A (ja) スクリーンレンズ用成形体
JP2020132801A (ja) 成形体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151249.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117016492

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09833455

Country of ref document: EP

Kind code of ref document: A1