WO2010067644A1 - 電圧発生器、制御回路、ベクトル合成型移相器および光トランシーバ - Google Patents
電圧発生器、制御回路、ベクトル合成型移相器および光トランシーバ Download PDFInfo
- Publication number
- WO2010067644A1 WO2010067644A1 PCT/JP2009/064240 JP2009064240W WO2010067644A1 WO 2010067644 A1 WO2010067644 A1 WO 2010067644A1 JP 2009064240 W JP2009064240 W JP 2009064240W WO 2010067644 A1 WO2010067644 A1 WO 2010067644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- signal
- control
- differential amplifier
- phase
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/02—Multiple-port networks
- H03H11/16—Networks for phase shifting
- H03H11/20—Two-port phase shifters providing an adjustable phase shift
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/4508—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
- H03F3/45085—Long tailed pairs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/45475—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/336—A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/408—Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising three power stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45138—Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45352—Indexing scheme relating to differential amplifiers the AAC comprising a combination of a plurality of transistors, e.g. Darlington coupled transistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45498—Indexing scheme relating to differential amplifiers the CSC comprising only resistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45702—Indexing scheme relating to differential amplifiers the LC comprising two resistors
Definitions
- the present invention provides a voltage generator for generating a reference voltage, a control signal for a means such as a variable gain amplifier or a four-quadrant multiplier that receives a control voltage and a reference voltage generated by the voltage generator and adjusts the signal amplitude. Synthesizes a vector synthesis type phase shifter that outputs a signal by arbitrarily changing the phase of an input signal using a control circuit, a variable gain amplifier or a four-quadrant multiplier, and a control circuit.
- the present invention relates to an optical transceiver used for clock timing adjustment in RZ conversion.
- FIG. 39 shows a configuration of a conventional voltage generator disclosed in Japanese Patent Application Laid-Open No. 2004-187188.
- the voltage generator is composed of resistors 3020 to 3024 connected in series. Voltage input terminals 3002 and 3003 are connected to both ends of the resistors 3020 to 3024.
- the resistors 3020 to 3024 divide the voltage to generate a plurality of different reference voltages.
- the configuration shown in FIG. 39 constitutes an analog / digital converter as a whole.
- the analog signal is input from the input terminal 3001 to the comparators (voltage comparators) 3031 to 3034. Further, the comparators 3031 to 3034 are supplied with the reference voltage output from the voltage generator.
- the comparators 3031 to 3034 hold the comparison result between the analog signal and the reference voltage for each clock input.
- the boundary detectors 3041 to 3044 detect the boundaries of the discrimination results of the comparators 3031 to 3034.
- the first and second encoders 3050 and 3070 convert the outputs of the boundary detectors 3041 to 3044 into binary data.
- the flip-flops 3061 to 3064 temporarily hold the output data of the encoder 3050, and the flip-flops 3081 to 3084 temporarily hold the output data of the encoder 3070.
- 3004 to 3007 are clock input terminals
- 3008 to 3011 are data output terminals
- 3090 to 3094 are transmission lines.
- FIG. 39 shows an example in which the voltage generator is applied to an analog / digital converter, but the voltage generator may be mounted inside the control circuit of the vector synthesis type phase shifter.
- FIG. 40 is a block diagram showing the configuration of the vector synthesis type phase shifter
- FIGS. 41A to 41D are diagrams showing the signals of the respective parts of the vector synthesis type phase shifter of FIG. 40 on a plane.
- the vector synthesis type phase shifter includes a 90 ° phase shifter 1000, two sign inverters 1001I and 1001Q, two variable gain amplifiers 1002I and 1002Q, a combiner 1003, and a control circuit 1004. .
- FIG. 41A represents the input signal VIN.
- the 90 ° phase shifter 1000 receives the input signal VIN, and outputs an in-phase signal VINI and a quadrature signal VINQ whose phase is shifted by 90 °.
- the in-phase signal VINI can be expressed only by the in-phase component (I).
- VINQ can be represented only by the orthogonal component (Q). If these two signals VINI and VINQ are synthesized, a signal corresponding to 220 (angle 45 °, amplitude 2 1/2 ) in FIG. 41B can be obtained.
- the in-phase signal VINI and the quadrature signal VINQ are input to a pair of sign inverters 1001I and 1001Q, respectively.
- the sign inverters 1001I and 1001Q switch whether to output the input signal as it is or to invert and output the voltage sign according to the levels of the control signals SI and SQ, respectively.
- the in-phase signal VINI is either a signal of the in-phase component (I) or a signal obtained by rotating the in-phase component (I) by 180 °
- the quadrature signal VINQ is the quadrature component (Q). Or a signal obtained by rotating the quadrature component (Q) by 180 °.
- the output signals of the pair of sign inverters 1001I and 1001Q are input to the pair of variable gain amplifiers 1002I and 1002Q, respectively.
- the variable gain amplifiers 1002I and 1002Q change the gain according to the levels of the control signals DAI and DAQ, respectively, and as a result change the amplitude of the input signal and output it.
- the in-phase signal VXI and the quadrature signal VXQ output from the pair of variable gain amplifiers 1002I and 1002Q are vector-synthesized by the synthesizer 1003 and output to the outside as the phase shifter output VOUT.
- a signal of 225 (angle 0 °, amplitude 1) in FIG. 41D is obtained as the phase shifter output VOUT in the constellation display. Can do.
- the gain on the in-phase signal side is set to cos (22.5 °) ⁇ 0.92
- the gain on the quadrature signal side is set to sin (22.5 °) ⁇ 0.38
- the gain on the in-phase signal side is cos (45 °).
- the operation example in the first quadrant (0 ° to 90 °) is taken up, but by controlling the pair of sign inverters 1001I and 1001Q, the four quadrants (0 ° to 360 °) are controlled.
- a signal having an arbitrary phase of 1 and an amplitude of 1 can be obtained. That is, if the gain on the in-phase signal side is cos ( ⁇ ) and the gain on the quadrature signal side is sin ( ⁇ ), a signal having an angle ⁇ and an amplitude of 1 can be obtained as the phase shifter output VOUT.
- the control circuit 1004 receives the digital signal DGTL including the information of the phase ⁇ to be output as an input, and controls the control signals SI, 1001I and 1001Q for the pair of sign inverters 1001I and 1001Q. SQ and control signals DAI and DAQ for a pair of variable gain amplifiers 1002I and 1002Q are generated.
- the control circuit 1004 includes a digital signal processing circuit (DSP) 1005 that performs an operation (or memory reference) of cos and sin to generate each control signal, and a signal generated by the DSP 1005 as a concrete control signal SI, SQ.
- DSP digital signal processing circuit
- DACs digital-to-analog converters
- the same function as the combination of the sign inverters 1001I and 1001Q and the variable gain amplifiers 1002I and 1002Q can be realized by a four-quadrant multiplier (for example, a Gilbert cell) (Japanese Patent Laid-Open No. 2004-32446, patent) No. 3063093).
- the configuration of the vector synthesis type phase shifter in this case is shown in FIG. 42 includes a 90 ° phase shifter 2000, two four-quadrant multipliers 2001I and 2001Q, a combiner 2002, and a control circuit 2003.
- the operation of the 90 ° phase shifter 2000 is the same as that of the 90 ° phase shifter 1000.
- FIG. 41B shows. It becomes like this.
- the four-quadrant multipliers 2001I and 2001Q change the sign and gain of the output according to the sign and level of the control signals CI and CQ, respectively. As a result, the amplitudes of the in-phase signal VINI and the quadrature signal VINQ are changed and output. .
- the in-phase signal VXI and quadrature signal VXQ output from the pair of four-quadrant multipliers 2001I and 2001Q are vector-synthesized by the synthesizer 2002 and output to the outside as the phase shifter output VOUT.
- this phase shifter output VOUT is constellation-displayed, it becomes as shown in FIG. 41D.
- the control circuit 2003 receives a digital signal DGTL including information on the phase ⁇ to be output, and generates control signals CI and CQ for the pair of four-quadrant multipliers 2001I and 2001Q.
- the control circuit 2003 includes a DSP 2004, an encoder 2005, and DACs 2006I and 2006Q. In the case of the configuration of FIG. 42, it is necessary to use a differential analog output type as the DACs 2006I and 2006Q in the control circuit 2003.
- the conventional voltage generator shown in FIG. 39 has a problem that it is necessary to provide an external reference voltage for generating a reference voltage. In addition, there is a problem that the reference voltage output from the voltage generator has power supply voltage dependency. The above-described problems also occur in a control circuit equipped with a voltage generator, a vector synthesis type phase shifter equipped with a control circuit, and an optical communication transceiver equipped with a vector synthesis type phase shifter. .
- An object of the present invention is to provide a voltage generator that does not need to supply an external reference voltage, and to provide a control circuit, a vector synthesis type phase shifter, and an optical transceiver using the voltage generator.
- Another object of the present invention is to provide a voltage generator capable of suppressing the dependency of the reference voltage on the power supply voltage, and to provide a control circuit using the voltage generator, a vector synthesis type phase shifter, and an optical transceiver. There is to do.
- a voltage generator includes a resistance ladder that divides a supplied voltage to generate a plurality of reference voltages, and a first voltage supply provided between a first power supply voltage and one end of the resistance ladder. It comprises a resistor, a second power supply voltage, and a second voltage supply resistor provided between the other end of the resistor ladder.
- the control circuit of the present invention includes a voltage generator that generates a reference voltage, a differential amplifier that outputs, as a control signal, a difference signal between an externally input control voltage and the reference voltage generated by the voltage generator; And the voltage generator divides a supplied voltage to generate a plurality of the reference voltages, and a first voltage provided between a first power supply voltage and one end of the resistance ladder.
- a supply resistor; a second voltage supply resistor provided between a second power supply voltage and the other end of the resistor ladder; and the differential amplifier has a control voltage close to the reference voltage.
- an analog operation for converting the control voltage into the control signal similar to a sine wave or a cosine wave is performed.
- the vector synthesis type phase shifter of the present invention includes a 90 ° phase shifter that generates an in-phase signal from an input signal and a quadrature signal that is 90 ° out of phase with the in-phase signal, A first four-quadrant multiplier for changing and outputting the amplitude of the in-phase signal in accordance with the first control signal, and changing the amplitude of the quadrature signal in accordance with the second control signal on the quadrature signal side.
- a second four-quadrant multiplier that outputs the signal, a combiner that combines and outputs the in-phase signal and the quadrature signal output from the first and second four-quadrant multipliers, and the first and second
- a control circuit that outputs a control signal of the first and second, a voltage generator that generates a reference voltage, and a difference signal between the control voltage input from the outside and the reference voltage.
- a differential amplifier that outputs a control signal, and the voltage generator divides the supplied voltage to generate a composite signal.
- a resistor ladder that generates a plurality of reference voltages, a first power supply resistor provided between a first power supply voltage and one end of the resistor ladder, a second power supply voltage, and the other end of the resistor ladder
- a second voltage supply resistor provided between the reference voltage and the differential amplifier, when the control voltage is in the vicinity of the reference voltage, the control voltage is similar to a sine wave or cosine wave. An analog operation for conversion into the first and second control signals is performed.
- the optical transceiver includes a laser that outputs continuous light, a serializer that outputs serial data and a clock to be transmitted, and phase modulation or amplitude modulation of continuous light input from the laser to generate NRZ signal light.
- a first Mach-Zehnder modulator for output, a first modulator driver for driving the first Mach-Zehnder modulator in accordance with the serial data, and an amplitude of the NRZ signal light input from the first Mach-Zehnder modulator
- a second Mach-Zehnder modulator that modulates and outputs an RZ signal light, a vector synthesis type phase shifter that receives the clock, and the second phase according to the clock that is phase-adjusted by the vector synthesis type phase shifter.
- a second modulator driver for driving two Mach-Zehnder modulators, and the phase shift amount corresponding to the phase shift amount of the vector synthesis type phase shifter A phase control circuit that outputs a control voltage, and the vector synthesis type phase shifter generates a 90 ° phase shift that generates an in-phase signal and a quadrature signal that is 90 ° out of phase with the in-phase signal from the clock.
- the second four-quadrant multiplier that outputs the quadrature signal with the amplitude changed, and the in-phase signal and the quadrature signal that are output from the first and second four-quadrant multipliers are combined,
- a synthesizer that outputs a signal as a phase-adjusted clock; and a control circuit that outputs the first and second control signals.
- the control circuit is a voltage generator that generates a reference voltage; The difference signal between the control voltage and the reference voltage is the first and second control signals.
- a differential amplifier that outputs the reference voltage, and the voltage generator divides a supplied voltage to generate a plurality of the reference voltages, a first power supply voltage, and one end of the resistance ladder. And a second voltage supply resistor provided between the second power supply voltage and the other end of the resistor ladder, and the differential amplifier includes the control voltage. Is an analog operation for converting the control voltage into the first and second control signals similar to a sine wave or a cosine wave.
- the resistor ladder that divides the supplied voltage to generate a plurality of reference voltages, and the first power supply voltage and the first end provided between the resistor ladders.
- FIG. 1 is a block diagram showing a configuration example of a control circuit using a voltage generator according to a first embodiment of the present invention.
- FIG. 2 is a block diagram showing a configuration example of a control circuit using a voltage generator according to the second embodiment of the present invention.
- FIG. 3 is a block diagram showing a configuration example of a control circuit using a voltage generator according to the third embodiment of the present invention.
- FIG. 4 is a block diagram showing a configuration example of a control circuit using a voltage generator according to the fourth embodiment of the present invention.
- FIG. 5 is a block diagram showing a configuration example of a control circuit using a voltage generator according to a fifth embodiment of the present invention.
- FIG. 1 is a block diagram showing a configuration example of a control circuit using a voltage generator according to a first embodiment of the present invention.
- FIG. 2 is a block diagram showing a configuration example of a control circuit using a voltage generator according to the second embodiment of the present invention.
- FIG. 3 is a
- FIG. 6 is a block diagram showing a configuration example of a control circuit using the voltage generator according to the sixth embodiment of the present invention.
- FIG. 7 is a block diagram showing a configuration example of a control circuit using the voltage generator according to the seventh embodiment of the present invention.
- FIG. 8 is a block diagram showing a configuration example of a control circuit using the voltage generator according to the eighth embodiment of the present invention.
- FIG. 9 is a block diagram showing a configuration example of a control circuit using the voltage generator according to the ninth embodiment of the present invention.
- FIG. 10 is a block diagram showing a configuration example of a control circuit using the voltage generator according to the tenth embodiment of the present invention.
- FIG. 11 is a block diagram showing the configuration of the vector synthesis type phase shifter according to the eleventh embodiment of the present invention.
- FIGS. 12A to 12C are diagrams in which signals of respective parts of the vector synthesis type phase shifter of FIG. 1 are constellation-displayed on a plane.
- FIG. 13 is a block diagram showing a configuration example of a 90 ° phase shifter according to the eleventh embodiment of the present invention.
- FIG. 14 is a block diagram showing a configuration example of a four-quadrant multiplier according to the eleventh embodiment of the present invention.
- FIG. 15 is a block diagram showing a configuration example of a combiner according to the eleventh embodiment of the present invention.
- FIG. 16 is a block diagram showing a configuration example of a control circuit according to the eleventh embodiment of the present invention.
- 17A to 17C are diagrams showing the circuit configuration and operation of a differential amplifier that is a component of the differential amplifier pair according to the eleventh embodiment of the present invention.
- 18A to 18C are diagrams showing the circuit configuration and operation of the differential amplifier pair according to the eleventh embodiment of the present invention.
- 19A to 19C are diagrams showing input / output characteristics of the differential amplifier pair according to the eleventh embodiment of the present invention.
- 20A to 20C are diagrams showing input / output characteristics and ideal input / output characteristics of the control circuit according to the eleventh embodiment of the present invention.
- FIG. 21 is a diagram showing the square value of the deviation from the ideal sine wave of the difference signal of the differential amplifier in the eleventh embodiment of the present invention.
- FIG. 22 is a circuit diagram showing a configuration example of the differential amplifier pair and differential amplifier on the in-phase signal side of FIGS.
- FIG. 23 is a diagram showing the input / output characteristics of the control circuit according to the eleventh embodiment of the present invention.
- FIG. 24 is a diagram showing the relationship between the control voltage of the vector synthesis type phase shifter according to the eleventh embodiment of the present invention and the phase shift amount of the output signal.
- FIG. 25 is a diagram showing the result of simulating the input / output characteristics of the control circuit using the transistor model when the configurations shown in FIGS. 1 to 10 and FIG. 22 are used as the configuration of the differential amplifier.
- 26A to 26B are diagrams showing another circuit configuration and operation of the differential amplifier that is a component of the differential amplifier pair according to the eleventh embodiment of the present invention.
- 27 is a circuit diagram showing another configuration example of the differential amplifier pair and differential amplifier on the in-phase signal side of FIG.
- FIG. 28 is a diagram showing the temperature dependence of the relationship between the control voltage and the phase shift amount of the output signal in the vector synthesis type phase shifter according to the eleventh embodiment of the present invention.
- FIG. 29 is a diagram showing the power supply voltage dependency of the relationship between the control voltage and the amount of phase shift of the output signal in the vector synthesis type phase shifter according to the eleventh embodiment of the present invention.
- FIG. 30 is a diagram showing the relationship between the control voltage and the output amplitude in the vector synthesis type phase shifter according to the eleventh embodiment of the present invention.
- FIG. 31 is a block diagram showing the configuration of the control circuit of the vector synthesis type phase shifter according to the twelfth embodiment of the present invention.
- FIG. 32 is a block diagram showing a detailed implementation example of the control circuit according to the twelfth embodiment of the present invention.
- FIG. 33 is a diagram showing input / output characteristics of the control circuit according to the twelfth embodiment of the present invention.
- FIG. 34 is a diagram showing the relationship between the control voltage of the vector synthesis type phase shifter according to the twelfth embodiment of the present invention and the phase shift amount of the output signal.
- FIG. 31 is a block diagram showing the configuration of the control circuit of the vector synthesis type phase shifter according to the twelfth embodiment of the present invention.
- FIG. 32 is a block diagram showing a detailed implementation example of the control
- FIG. 35 is a block diagram showing the configuration of the transmitter of the optical transceiver in the thirteenth embodiment of the present invention.
- FIG. 36 is a circuit diagram showing a configuration of a 90 ° phase shifter according to the fourteenth embodiment of the present invention.
- FIG. 37 is a circuit diagram showing a configuration of a 90 ° phase shifter according to the fifteenth embodiment of the present invention.
- FIG. 38 is a circuit diagram showing a configuration example of the high gain differential amplifier according to the fifteenth embodiment of the present invention.
- FIG. 39 is a block diagram showing a configuration of a conventional voltage generator.
- FIG. 40 is a block diagram showing a configuration of a vector synthesis type phase shifter.
- FIG. 41A to FIG. 41D are diagrams in which signals of respective parts of the vector synthesis type phase shifter of FIG. 40 are displayed in a constellation on a plane.
- FIG. 42 is a block diagram showing another configuration of the vector synthesis type phase shifter.
- FIG. 1 is a block diagram showing a configuration example of a control circuit using a voltage generator according to a first embodiment of the present invention.
- the control circuit shown in FIG. 1 is mounted on a vector synthesis type phase shifter and receives a control voltage VC corresponding to a phase ⁇ to be output as an input, and a control signal CI for a four-quadrant multiplier (not shown). , CQ.
- This control circuit is realized with a voltage generator 400 that generates a plurality of reference voltages, and differential amplifiers 440I to 444I and 440Q to 444Q that receive the control voltage VC and the reference voltage as components. Details of the control circuit and the vector synthesis type phase shifter will be described later.
- the voltage generator 400 is constituted by a resistance ladder including resistors 4000 to 4008.
- the reference voltages VRT and VRB are supplied from the outside.
- a resistor 4009 is provided between the power supply voltage VCC and the voltage VRT, and the power supply voltage VEE and the voltage VRB are provided.
- the resistor 4010 By providing the resistor 4010, the reference voltages VRT and VRB necessary for the conventional voltage generator can be generated internally.
- There is one type of resistance value used in the resistance ladder That is, by setting the resistances 4000 to 4008 to the same resistance value R, the reference voltages V1, V2, V3, V4, V5, V6, V7, V8, V9, and V10 generated by the voltage generator 400 are equally spaced. Can do.
- the combined resistance value of resistors 4000 to 4008 in the resistor ladder is RTL
- the resistance value of resistor 4009 is RT
- the resistance value of resistor 4010 is RB
- VRT VCC ⁇ RT ⁇ (VCC ⁇ VEE) / (RT + RTL + RB)
- the external reference voltages VRT and VRB necessary for the conventional voltage generator can be generated inside the voltage generator 400, and no external voltage application is required. can do. Further, in this embodiment, the generation of the reference voltage is realized by the resistance voltage division, so that even if the resistance value has temperature dependence, the reference voltages V1 to V10 output from the voltage generator are temperature dependence. There is an advantage of not having. As described above, the reference voltages VRT and VRB are determined by resistance values.
- the reference voltages VRT, VRB are canceled as a result of being canceled by the fractional denominator. Is kept constant. For example, it is assumed that the resistance value has increased 1.1 times due to a temperature change.
- RT 1.1 ⁇ RT
- RTL 1.1 ⁇ RTL
- RB 1.1 ⁇ RB
- VRT VCC ⁇ RT ⁇ (VCC ⁇ VEE) / (RT + RTL + RB)
- VRB VEE + RB ⁇ (VCC ⁇ VEE) /
- the reference voltages VRT and VRB do not change even if they are substituted into the equation (RT + RTL + RB). Therefore, it can be seen that the reference voltages V1 to V10 output from the voltage generator do not have temperature dependency even if the resistance value has temperature dependency.
- FIG. 2 is a block diagram showing a configuration example of a control circuit using a voltage generator according to the second embodiment of the present invention.
- the voltage generator 400 is configured by a single resistance ladder.
- the voltage generator 400I on the in-phase signal side and the voltage generator 400Q on the quadrature signal side are separately provided. The difference is that it consists of a resistance ladder.
- the in-phase signal side voltage generator 400I is configured by a resistance ladder including resistors 4011 to 4015
- the quadrature signal side voltage generator 400Q is configured by a resistance ladder including resistors 4016 to 4020.
- Reference voltages VRT and VRB are commonly applied to the resistance ladder on the in-phase signal side and the resistance ladder on the quadrature signal side.
- the reference voltages VRT and VRB are supplied from the outside.
- a resistor 4009 is provided between the power supply voltage VCC and the voltage VRT, and the power supply voltage VEE and the voltage VRB are provided.
- ⁇ Two resistance values are used in the two resistance ladders.
- the resistance values of the resistors 4011 and 4020 are R
- the resistance values of the resistors 4012 to 4019 are 2R. That is, for example, for a resistor provided between adjacent reference voltages such as between V10 and V9 or between V2 and V1, the resistance value is R, and between V10 and V8 or between V9 and V7. As for the resistance provided between every other reference voltage, the resistance value is 2R.
- the same effect as that of the first embodiment can be obtained.
- the in-phase signal-side voltage generator 400I and the quadrature-signal-side voltage generator 400Q are separately configured by resistor ladders, so that the voltage generator 400I and the in-phase signal-side differential amplifier 440I are configured.
- the wiring parasitic is the same on the in-phase signal side and the quadrature signal side Therefore, the reference voltage on the in-phase signal side and the reference voltage on the quadrature signal side can be accurately supplied to each differential amplifier, and the operation on the in-phase signal side and the quadrature signal side can be prevented from becoming unbalanced. .
- FIG. 3 is a block diagram showing a configuration example of a control circuit using a voltage generator according to the third embodiment of the present invention.
- the voltage generator 400a is constituted by a resistance ladder including resistors 4000 to 4008.
- a resistor 4009 is provided between the power supply voltage VCC and the voltage VRT, and a constant current source 4021 is provided between the power supply voltage VEE and the voltage VRB, which is necessary for the conventional voltage generator.
- the reference voltages VRT and VRB can be generated internally.
- the current value of the constant current source 4021 is I
- the combined resistance value of the resistors 4000 to 4008 in the resistor ladder is RTL
- the resistance value of the resistor 4009 is RT
- the external reference voltages VRT and VRB necessary for the conventional voltage generator can be generated inside the voltage generator 400a, and the application of voltage from the outside can be made unnecessary. Further, in this embodiment, assuming that the constant current value I of the constant current source 4021 does not have the power supply voltage VEE dependence, the reference voltages V1 to V10 generated by the voltage generator 400a have the power supply voltage VEE dependence. There is no advantage.
- FIG. 4 is a block diagram showing a configuration example of a control circuit using a voltage generator according to the fourth embodiment of the present invention.
- the same reference numerals are given to the same configurations as those in FIGS.
- the voltage generator 400a is configured by a single resistance ladder.
- the voltage generator 400Ia on the in-phase signal side and the voltage generator 400Qa on the quadrature signal side are separately provided. The difference is that it consists of a resistance ladder.
- the in-phase signal side voltage generator 400Ia is configured by a resistance ladder including resistors 4011 to 4015
- the quadrature signal side voltage generator 400Qa is configured by a resistance ladder including resistors 4016 to 4020.
- Reference voltages VRT and VRB are commonly applied to the resistance ladder on the in-phase signal side and the resistance ladder on the quadrature signal side.
- a resistor 4009 is provided between the power supply voltage VCC and the voltage VRT
- a constant current source 4021 is provided between the power supply voltage VEE and the voltage VRB, so that the reference required in the conventional voltage generator is provided. Voltages VRT and VRB can be generated internally.
- the same effect as that of the third embodiment can be obtained.
- the voltage generator 400Ia on the in-phase signal side and the voltage generator 400Qa on the quadrature signal side are separately configured with resistor ladders, so that the wiring parasitic is made the same on the in-phase signal side and the quadrature signal side. Therefore, the reference voltage on the in-phase signal side and the reference voltage on the quadrature signal side can be accurately supplied to each differential amplifier, and the operation on the in-phase signal side and the quadrature signal side can be prevented from becoming unbalanced.
- FIG. 5 is a block diagram showing a configuration example of a control circuit using a voltage generator according to a fifth embodiment of the present invention.
- the voltage generator 400b is configured by a resistance ladder including resistors 4000 to 4008.
- level shift diodes 4022 and 4023 and a voltage level fine adjustment resistor 4024 are provided between the power supply voltage VCC and the voltage VRT, and the constant current source 4021 is provided between the power supply voltage VEE and the voltage VRB.
- the voltage drop per level shift diode 4022, 4023 is VLS
- the current value of the constant current source 4021 is I
- the combined resistance value of the resistors 4000 to 4008 in the resistor ladder is RTL
- the resistance value of the resistor 4024 is RR
- the voltages VRT and VRB can be set to arbitrary voltage levels by appropriately designing the number of stages of the level shift diodes 4022 and 4023, the resistance value RR of the resistor 4024, and the current value I of the constant current source 4021. .
- the external reference voltages VRT and VRB necessary for the conventional voltage generator can be generated inside the voltage generator 400b, and external voltage application can be eliminated.
- the constant current value I of the constant current source 4021 does not have the power supply voltage VEE dependency
- the reference voltages V1 to V10 generated by the voltage generator 400b have the power supply voltage VEE dependency.
- the current dependency of the voltage drop of the level shift diode is generally the current dependency of the resistance voltage drop (Ohm's law). Therefore, the dependency of the reference voltages V1 to V10 output from the voltage generator 400b on the power supply voltage VEE can be suppressed.
- FIG. 6 is a block diagram showing a configuration example of a control circuit using a voltage generator according to a sixth embodiment of the present invention.
- the voltage generator 400b is composed of a single resistance ladder.
- the voltage generator 400Ib on the in-phase signal side and the voltage generator 400Qb on the quadrature signal side are separately provided. The difference is that it consists of a resistance ladder.
- the voltage generator 400Ib on the in-phase signal side is configured by a resistor ladder including resistors 4011 to 4015
- the voltage generator 400Qb on the quadrature signal side is configured by a resistor ladder including resistors 4016 to 4020.
- Reference voltages VRT and VRB are commonly applied to the resistance ladder on the in-phase signal side and the resistance ladder on the quadrature signal side.
- level shift diodes 4022 and 4023 and a resistor 4024 are provided between the power supply voltage VCC and the voltage VRT
- a constant current source 4021 is provided between the power supply voltage VEE and the voltage VRB.
- the reference voltages VRT and VRB required by the device can be generated internally.
- the same effect as that of the fifth embodiment can be obtained.
- the voltage generator 400Ib on the in-phase signal side and the voltage generator 400Qb on the quadrature signal side are separately configured by resistance ladders, so that the wiring parasitic is made the same on the in-phase signal side and the quadrature signal side. Therefore, the reference voltage on the in-phase signal side and the reference voltage on the quadrature signal side can be accurately supplied to each differential amplifier, and the operation on the in-phase signal side and the quadrature signal side can be prevented from becoming unbalanced.
- FIG. 7 is a block diagram showing a configuration example of a control circuit using a voltage generator according to a seventh embodiment of the present invention.
- the same reference numerals are given to the same configurations as those in FIGS.
- This embodiment is different from the fifth embodiment in that a PVT compensation circuit 600 is added.
- the PVT compensation circuit 600 includes a transistor 6000, a level shift diode 6001, resistors 6002 and 6003, and a constant current source 6004.
- the PVT compensation circuit 600 is an emitter follower that shifts the level of the control voltage VC, and matches the following circuit constants with the voltage generator 400b.
- the total number of stages of the emitter follower (transistor 6000) of the PVT compensation circuit 600 and the level shift diode 6001 is matched with the number of stages of the level shift diodes 4022 and 4023 of the voltage generator 400b.
- the resistance value of the resistor 6002 of the PVT compensation circuit 600 is matched with the resistance value RR of the voltage level fine adjustment resistor 4024 of the voltage generator 400b.
- the constant current value of the constant current source 6004 of the PVT compensation circuit 600 is matched with the constant current value I of the constant current source 4021 of the voltage generator 400b.
- the resistance value RTDL of the resistor 6003 of the PVT compensation circuit 600 can be arbitrarily selected.
- the resistance value RTDL may be matched with the combined resistance value RTL of the resistors 4000 to 4008 in the resistance ladder of the voltage generator 400b, or may be half of the combined resistance value RTL.
- the level shift diode 6001 of the PVT compensation circuit 600 is not necessary.
- the resistor 6002 of the PVT compensation circuit 600 is not necessary.
- the voltage drop per level shift diode 4022, 4023 is VLS
- the current value of the constant current source 4021 is I
- the combined resistance value of the resistors 4000 to 4008 in the resistor ladder is RTL.
- the voltages VRT and VRB can be set to arbitrary voltage levels by appropriately designing the number of stages of the level shift diodes 4022 and 4023, the resistance value RR of the resistor 4024, and the current value I of the constant current source 4021. .
- the voltage level of the control voltage VC is shifted by the emitter follower transistor 6000, the level shift diode 6001, and the resistor 6002. Assuming that the base-emitter voltage of the transistor 6000 is the same as the voltage drop VLS per one of the level shift diodes 4022, 4023, and 6001, the level-shifted control voltage sent to the differential amplifiers 440I to 444I and 440Q to 444Q.
- the external reference voltages VRT and VRB necessary for the conventional voltage generator can be generated inside the voltage generator 400b, and the application of an external voltage can be made unnecessary.
- the reference voltages V1 to V10 output from the voltage generator 400b have the power supply voltage VEE dependency.
- the voltages VRT and VCLS have a dependency on the power supply voltage VEE, respectively.
- the voltage difference between the voltages VRT and VCLS is the power supply voltage VEE. It will not depend.
- the voltage difference between the voltages VRT and VCLS is (VCC ⁇ VC) and does not depend on the power supply voltage VEE. Compared with the case where the voltage is not added, the dependency on the power supply voltage VEE as the control circuit can be suppressed.
- the voltage difference between the voltages VRT and VCLS is not affected. Therefore, the temperature dependence of the control circuit can be suppressed.
- the voltage difference between the voltages VRT and VCLS is affected. do not do.
- the PVT compensation circuit 600 varies the control voltage VC in the same manner, thereby depending on the PVT.
- the fluctuation of the control circuit output can be kept low.
- the PVT compensation circuit 600 it is possible to suppress the manufacturing variation dependency, power supply voltage dependency, and temperature dependency of the control circuit.
- the emitter follower composed of the bipolar transistor 6000 is used in the PVT compensation circuit 600, but a source follower composed of a field effect transistor may be used.
- FIG. 8 is a block diagram showing a configuration example of a control circuit using a voltage generator according to an eighth embodiment of the present invention.
- the voltage generator 400b is composed of a single resistance ladder.
- the voltage generator 400Ib on the in-phase signal side and the quadrature signal side are used.
- the voltage generator 400Qb is formed of a resistance ladder separately.
- the same effect as that of the seventh embodiment can be obtained.
- the voltage generator 400Ib on the in-phase signal side and the voltage generator 400Qb on the quadrature signal side are separately configured by resistance ladders, so that the wiring parasitic is made the same on the in-phase signal side and the quadrature signal side. Therefore, the reference voltage on the in-phase signal side and the reference voltage on the quadrature signal side can be accurately supplied to each differential amplifier, and the operation on the in-phase signal side and the quadrature signal side can be prevented from becoming unbalanced.
- FIG. 9 is a block diagram showing a configuration example of a control circuit using a voltage generator according to a ninth embodiment of the present invention.
- the same reference numerals are given to the same configurations as those in FIGS.
- This embodiment is different from the seventh embodiment in that a control gain adjusting circuit 700 is added.
- the control gain adjustment circuit 700 includes resistors 7000 and 7001.
- VRT ⁇ VCLS VCC ⁇ VC
- VCC the maximum value of the control voltage VC
- the total phase shift amount of the vector synthesis type phase shifter described later is 810 °.
- the control gain adjustment circuit 700 is inserted to meet such a requirement.
- the resistance values of the resistors 7000 and 7001 of the control gain adjustment circuit 700 are R1 and R2, respectively, the control gain is reduced to R1 / (R1 + R2) as compared with the eighth embodiment in which the control gain adjustment circuit 700 is not inserted. can do.
- the reason why the control gain adjustment circuit 700 can be realized with two resistors is that the PVT compensation circuit 600 is employed in the control circuit and the maximum voltage of the control voltage VC is fixed at VCC.
- the resistor 7001 may be a variable resistor, and the resistors 7000 and 7001 may be realized by a potentiometer. According to this embodiment, the control gain of the control circuit can be arbitrarily adjusted.
- FIG. 10 is a block diagram showing a configuration example of a control circuit using a voltage generator according to the tenth embodiment of the present invention.
- the voltage generator 400b is configured by a single resistance ladder.
- the voltage generator 400Ib on the in-phase signal side and the quadrature signal side are provided.
- the voltage generator 400Qb is formed of a resistance ladder separately.
- the same effect as that of the ninth embodiment can be obtained.
- the voltage generator 400Ib on the in-phase signal side and the voltage generator 400Qb on the quadrature signal side are separately configured by resistance ladders, so that the wiring parasitic is made the same on the in-phase signal side and the quadrature signal side. Therefore, the reference voltage on the in-phase signal side and the reference voltage on the quadrature signal side can be accurately supplied to each differential amplifier, and the operation on the in-phase signal side and the quadrature signal side can be prevented from becoming unbalanced.
- FIG. 11 is a block diagram showing a configuration of a vector synthesis type phase shifter according to an eleventh embodiment of the present invention.
- FIGS. 12A to 12C show signals of respective parts of the vector synthesis type phase shifter of FIG. 11 on a plane. It is the figure which carried out the constellation display.
- the vector composition type phase shifter of FIG. 11 includes a 90 ° phase shifter 1, two four-quadrant multipliers 2I and 2Q, a combiner 3, and a control circuit 4.
- FIG. 12A represents the input signal VIN.
- the 90 ° phase shifter 1 receives the input signal VIN, and outputs an in-phase signal VINI and a quadrature signal VINQ whose phase is shifted by 90 °.
- the in-phase signal VINI can be expressed only by the in-phase component (I).
- VINQ can be represented only by the orthogonal component (Q). If these two signals VINI and VINQ are synthesized, a signal corresponding to 20 (angle 45 °, amplitude 2 1/2 ) in FIG. 12B can be obtained.
- the in-phase signal VINI and the quadrature signal VINQ are input to the pair of four-quadrant multipliers 2I and 2Q, respectively.
- the four quadrant multipliers 2I and 2Q have a function equivalent to a combination of a sign inverter and a variable gain amplifier.
- the four-quadrant multipliers 2I and 2Q change the sign and gain of the output according to the sign and level of the control signals CI and CQ, respectively.
- the amplitudes of the in-phase signal VINI and the quadrature signal VINQ are changed and output. .
- the in-phase signal VXI and quadrature signal VXQ output from the pair of four-quadrant multipliers 2I and 2Q are vector-synthesized by the synthesizer 3 and output to the outside as the phase shifter output VOUT.
- a signal of 21 (angle 0 °, amplitude 1) in FIG. 12C is obtained as the phase shifter output VOUT in the constellation display. Can do.
- the gain on the in-phase signal side is set to cos (22.5 °) ⁇ 0.92
- the gain on the quadrature signal side is set to sin (22.5 °) ⁇ 0.38
- the gain on the in-phase signal side is cos (45 °).
- the operation example in the first quadrant (0 ° to 90 °) is taken up, but by changing the sign of the control signals CI and CQ of the pair of four quadrant multipliers 2I and 2Q, A signal having an arbitrary phase over the four quadrants (0 ° to 360 °) can be obtained. That is, by setting the gain on the in-phase signal side to cos ( ⁇ ) and the gain on the quadrature signal side to sin ( ⁇ ), a signal having an angle ⁇ and an amplitude of 1 can be obtained as the phase shifter output VOUT.
- the control circuit 4 receives as input the control voltage VC corresponding to (for example, proportional to) the phase ⁇ to be output, and is used for the pair of four-quadrant multipliers 2I and 2Q. Control signals CI and CQ are generated.
- the control voltage VC is input from a phase control circuit (not shown).
- the control circuit 4 is composed of an analog circuit that calculates cos and sin in order to generate control signals CI and CQ.
- the control circuit 4 receives a voltage generator that generates a plurality of reference voltages, a control signal and two reference voltages, and whether the control signal is within or outside the range of the two reference voltages. And a differential amplifier pair for detecting.
- the control circuit described in the first to tenth embodiments can be used.
- FIG. 13 is a block diagram illustrating a configuration example of the 90 ° phase shifter 1.
- FIG. 13 shows a case where all signals are differential signals, and the complementary signals are distinguished by adding bars.
- the 90 ° phase shifter 1 is composed of three differential amplifiers 100, 101 and 102.
- the input signals VIN and bar VIN are distributed by the two differential amplifiers 100 and 101.
- One signal is output from the differential amplifier 100 as it is and becomes the in-phase signal VINI and bar VINI.
- the other signal is input from the differential amplifier 101 to the differential amplifier 102, and is delayed by the differential amplifier 102, so that the quadrature signal VINQ, whose phase is shifted by 90 ° with respect to the in-phase signal VINI and the bar VINI, Bar VINQ.
- the delay time of the differential amplifier 102 may be 1 / (4 ⁇ f) seconds when the input frequency is f (Hz). For example, when the input frequency is 25 GHz, the delay time of the differential amplifier 102 is designed to be 10 picoseconds.
- the 90 ° phase shifter 1 is not limited to the configuration shown in FIG. 13, but a configuration using a 90 ° hybrid, a configuration using a pair of transistors with different grounding, and a configuration using a pair of transmission lines having different line lengths.
- a configuration using a pair of a low-pass filter and a high-pass filter, a configuration using a polyphase filter, and the like may be appropriately selected. Since the polyphase filter can easily match the amplitude of the in-phase signal side output and the amplitude of the quadrature signal side output and can realize a 90 ° phase shift operation over a wide band, the vector synthesis type phase shifter Suitable as a 90 ° phase shifter. Further, it may be realized by a combination of an in-phase power distributor and a 90 ° phase shifter without a distribution function.
- FIG. 14 is a block diagram showing a configuration example of the four-quadrant multipliers 2I and 2Q.
- the four-quadrant multiplier 2I includes a differential circuit including transistors 200 and 201 to which the control signal CI and bar CI are input to the base, and transistors 202 and 203 to which the control signal CI and bar CI are similarly input to the base.
- a common circuit signal VINI is input to the differential circuit and the base, the collector 204 is connected to the emitters of the transistors 200 and 201, and the common mode signal bar VINI is input to the base and the collector is the emitters of the transistors 202 and 203.
- a load resistor 207 to which a voltage VCC is applied and one end of the transistor 20 It is connected to the collector of 203, the power supply voltage VCC and a load resistor 208. given to the other end.
- the in-phase signal VXI is output from the connection point between the collectors of the transistors 201 and 202 and the load resistor 207, and the in-phase signal bar VXI is output from the connection point between the collectors of the transistors 200 and 203 and the load resistor 208.
- the four-quadrant multiplier 2Q has the same configuration. That is, the control signals CI and CI in FIG. 14 may be replaced with CQ and bar CQ, the in-phase signals VINI and bar VINI may be replaced with VINQ and bar VINQ, and the in-phase signals VXI and bar VXI may be replaced with VXQ and bar VXQ. .
- the four-quadrant multipliers 2I and 2Q shown in FIG. 14 are generally known circuits called gilbert cells or simply modulators.
- the in-phase signal VINI and bar VINI (or the quadrature signal VINQ and bar VINQ) are input, and the control signal CI and bar CI on the in-phase signal side (or the control signal CQ and bar CQ on the quadrature signal side) are input to this input.
- the control signal CI and bar CI on the in-phase signal side or the control signal CQ and bar CQ on the quadrature signal side
- the four-quadrant multipliers 2I and 2Q are not limited to the configuration shown in FIG. 14, and may be realized separately as functions of a sign inverter and a variable gain amplifier as described in the conventional example.
- a bipolar transistor is used, but a field effect transistor (FET) may be used.
- FET field effect transistor
- a resistor may be inserted in the emitter of each transistor.
- FIG. 15 is a block diagram showing a configuration example of the synthesizer 3.
- the synthesizer 3 includes a differential circuit including transistors 300 and 301 to which the in-phase signal VXI and bar VXI are input to the base, and a differential circuit including transistors 302 and 303 to which the quadrature signal VXQ and bar VXQ are input to the base. One end of which is connected to the emitters of the transistors 300 and 301 and the other end of which is supplied with the power supply voltage VEE, and one end of which is connected to the emitters of the transistors 302 and 303 and the other end of which is supplied with the power supply voltage VEE.
- the source 305 one end of which is connected to the collectors of the transistors 301 and 303, the other end of which is supplied with the power supply voltage VCC, and the other end of which is connected to the collectors of the transistors 300 and 302, and the other end of which is supplied with the power supply voltage VCC.
- the output signal VOUT is output from the connection point between the collectors of the transistors 301 and 303 and the load resistor 306, and the output signal bar VOUT is output from the connection point between the collectors of the transistors 300 and 302 and the load resistor 307.
- the synthesizer 3 realizes a function of vector combining the in-phase signals VXI and VXI output from the four-quadrant multipliers 2I and 2Q and the quadrature signals VXQ and VXQ. Therefore, voltage addition or current addition may be simply performed.
- the result of adding the currents of the in-phase signals VXI and VXI and the quadrature signals VXQ and VXQ is converted into a voltage to obtain the output signals VOUT and bar VOUT.
- the combiner 3 is not limited to the configuration shown in FIG. 15, and a Wilkinson type power combiner may be used.
- FIG. 16 is a block diagram showing a configuration example of the control circuit 4.
- the control circuit 4 receives a control voltage VC corresponding to the phase ⁇ to be output, and generates control signals CI and CQ for the pair of four-quadrant multipliers 2I and 2Q.
- the control circuit 4 receives the voltage generator 400 that generates a plurality of reference voltages, the control voltage VC and the two reference voltages, and the control voltage VC is within the range of the two reference voltages or is out of range.
- the differential amplifier pair 401I, 401Q, 402I, 402Q for detecting whether or not there is a component.
- the voltage generator 400 generates a plurality of reference voltages V1 to V10.
- the control circuit of the first embodiment is described as an example of the control circuit 4, but it goes without saying that the control circuits of the second to tenth embodiments may be used.
- the differential amplifier pair 401I, 401Q, 402I, 402Q receives the control voltage VC and the two reference voltages Vm, Vn, and is the control voltage VC within or outside the range of the two reference voltages Vm, Vn? Is detected.
- the function required for the differential amplifier pair 401I, 401Q, 402I, 402Q is not simply to detect two states whether the control voltage VC is within or out of the range of the two reference voltages.
- FIG. 17A to 17C are diagrams showing the circuit configuration and operation of the differential amplifier
- FIG. 17A is a circuit diagram of the differential amplifier
- FIG. 17B is a diagram showing a symbol of the differential amplifier in FIG. 17A
- FIG. It is a figure which shows the input / output characteristic (VC-CI characteristic) of the differential amplifier of 17A.
- the differential amplifier includes a transistor 410 to which the control voltage VC is input to the base, a transistor 411 to which the reference voltage Vm is input to the base, and one end connected to the emitters of the transistors 410 and 411.
- One end is connected to the collector of the transistor 411, one end is connected to the collector of the transistor 411, the other end is connected to the collector of the transistor 410, and the other end is connected to the collector of the transistor 410.
- a load resistor 414 to which a power supply voltage VCC is applied.
- the control signal CI is output from the connection point between the collector of the transistor 411 and the load resistor 413, and the control signal bar CI is output from the connection point between the collector of the transistor 410 and the load resistor 414.
- This differential amplifier is represented by a symbol as shown in FIG. 17B.
- the current amplification factor of the base of the bipolar transistor is ⁇
- the current value of the current source 412 is IEE
- the resistance values of the load resistors 413 and 414 are RL
- VT is a constant
- k is a Boltzmann constant
- T is an absolute temperature
- q is an electron charge
- the control signal CI that is the output voltage of the differential amplifier can be calculated by the following equation.
- CI RL ⁇ ⁇ ⁇ IEE / (1 + exp (( ⁇ VC + Vm) / VT)) (2)
- the control voltage VC when the control voltage VC is in the vicinity of the reference voltage Vm, the control signal CI is at an intermediate level between VH and VL.
- the pseudo control signal CI is analog-calculated from the control voltage VC to cos (VC) by setting the control voltage VC to a value near the reference voltage Vm and using this intermediate level.
- FIGS. 17A to 17C the configuration for calculating the control signal CI is shown, but the configuration for calculating the control signal CQ is the same, and the pseudo control signal CQ is changed from the control voltage VC to sin (VC). Analog operations can be performed.
- FIGS. 18A to 18C are diagrams showing the circuit configuration and operation of the differential amplifier pair 401I
- FIG. 18A is a circuit diagram of the differential amplifier pair 401I
- FIG. 18B shows the symbol of the differential amplifier pair 401I in FIG. 18A
- FIG. 18C is a diagram showing input / output characteristics (VC-CI characteristics) of the differential amplifier pair 401I of FIG. 18A.
- the differential amplifier pair 401I has a differential circuit composed of transistors 415 and 416 to which a control voltage VC and a reference voltage Vm are input and a base to which a control voltage VC and a reference voltage Vn are input.
- a differential circuit consisting of transistors 417 and 418, one end connected to the emitters of transistors 415 and 416, the other end connected to a power source 419 to which a power supply voltage VEE is applied, and one end connected to the emitters of transistors 417 and 418, A current source 420 to which the power supply voltage VEE is applied at the other end, one end connected to the collectors of the transistors 416 and 417, a load resistor 421 to which the power supply voltage VCC is applied to the other end, and one end connected to the collectors of the transistors 415 and 418 And a load resistor 422 to which the power supply voltage VCC is applied at the other end.
- the differential amplifier pair 401I is composed of two differential amplifiers.
- the control voltage VC and the reference voltage Vm are input to one differential amplifier, and the control voltage VC is referred to the other differential amplifier.
- the voltage Vn is input.
- the outputs of the two differential amplifiers are connected in reverse phase.
- the control signal CI is output from the connection point between the collectors of the transistors 416 and 417 and the load resistor 421, and the control signal bar CI is output from the connection point between the collectors of the transistors 415 and 418 and the load resistor 422.
- This differential amplifier is represented by a symbol as shown in FIG. 18B.
- the input may be connected in reverse phase and the output may be connected in positive phase.
- control voltage VC when the control voltage VC is in the vicinity of the reference voltage Vm or the reference voltage Vn, the control signal CI is at an intermediate level between VH and VL.
- the control voltage VC is set to a value in the vicinity of the reference voltage Vm or a value in the vicinity of the reference voltage Vn, and this intermediate level is used.
- FIG. 19A to 19C are diagrams showing input / output characteristics (VC-CI characteristics) of the differential amplifier.
- FIG. 19A shows a case where the difference between the reference voltages Vm and Vn is sufficiently larger than the constant VT (
- FIG. 19B shows the input / output characteristics when the difference between the reference voltages Vm and Vn is about eight times the constant VT (
- FIG. 19C shows input / output characteristics when the difference between the reference voltages Vm and Vn is sufficiently smaller than the constant VT (
- the control signal CI when the control voltage VC becomes an intermediate voltage between the reference voltages Vm and Vn, the control signal CI is minimized, but the behavior changes depending on the magnitude relationship between the voltage difference between the reference voltages Vm and Vn and the constant VT.
- the control signal VC becomes an intermediate voltage between the reference voltages Vm and Vn as shown in FIG. 19C. CI is minimized, but the voltage value of the control signal C does not drop to VL.
- control is performed as shown in FIG. 19B.
- the voltage VC becomes an intermediate voltage between the reference voltages Vm and Vn
- the change characteristic of the control signal CI with respect to the control voltage VC is made similar to cos (VC) or sin (VC). be able to.
- the control signal CI is suitable as a control signal because the control signal CI changes greatly with respect to the change of the control voltage VC and is not easily affected by noise.
- the control signal CI has a waveform deviating from the sine wave and cosine wave.
- the control signal CI in order to make the control signal CI have a waveform similar to a sine wave and a cosine wave, it is effective to set the voltage difference between the reference voltages Vm and Vn to be not less than 2 times and not more than 12 times the constant VT.
- the main feature of the present embodiment is that the pseudo cos characteristic and sin characteristic of the output of the differential amplifier pair are used for controlling the four-quadrant multiplier.
- the input / output characteristics of the control circuit can be expressed by a transition function of one differential amplifier when the control voltage VC is in the vicinity of any reference voltage Vn (n is an integer). Therefore, it will be described that the output of the differential amplifier has characteristics close to a sine wave or cosine wave.
- Videal represents the ideal value of the difference signal Vo of the differential amplifier.
- the deviation of the CI and CQ characteristics from the ideal sine wave shape causes deterioration of the linearity of the phase shift operation and deterioration of the constancy of the output amplitude.
- FIGS. 20A to 20B The results of calculating the input / output characteristics of the control circuit shown in Expression (7) and the ideal input / output characteristics shown in Expression (8) are shown in FIGS. 20A to 20B.
- the vertical axis represents the output voltage
- the horizontal axis represents the control voltage VC.
- 20A shows a case where V (n + 2) ⁇ Vn is 4.6 VT
- FIG. 20B shows a case where V (n + 2) ⁇ Vn is 7.7 VT
- FIG. 20C shows a case where V (n + 2) ⁇ Vn is 15.4 VT. Shows the case.
- the control circuit has a wide range of inputs. It can be seen that the output characteristics are similar to sine waves and cosine waves.
- the input / output characteristics of the control circuit be a characteristic that can be regarded as a sine wave or a cosine wave, it is estimated that it is preferable to set the voltage difference between the reference voltages Vm and Vn to be not less than 2 times and not more than 12 times the constant VT. it can. The reason for this is as follows.
- the upper limit of the voltage difference between the reference voltages Vm and Vn is that the maximum value of the difference signal Vo of the differential amplifier from the ideal sine wave
- the lower limit of the voltage difference between the reference voltages Vm and Vn was estimated in consideration of the following (A) and (B).
- the voltage difference between the reference voltages Vm and Vn is not less than 2 times and not more than 12 times the constant VT.
- a negative feedback circuit When a negative feedback circuit is added to the differential amplifier constituting the differential amplifier pair, the gain of the differential amplifier can be adjusted, and the input / output (VC-CI) characteristics of the differential amplifier pair can be changed. it can.
- negative feedback can be added by inserting a resistor into the emitter of each transistor. By adding a negative feedback circuit, it is possible to adjust the input / output characteristics of the differential amplifier pair without changing the conditions of Vm, Vn, and VT, and to improve the pseudo cos characteristics and pseudo sin characteristics.
- the differential amplifier pair 401I is configured by differential amplifiers 440I and 441I, and the differential amplifier pair 402I is configured by differential amplifiers 442I and 443I.
- the differential amplifier pair 401Q is configured by differential amplifiers 440Q and 441Q, and the differential amplifier pair 402Q is configured by differential amplifiers 442Q and 443Q.
- the differential amplifiers 440I to 444I on the in-phase signal side constitute a first differential amplifier group
- the differential amplifiers 440Q to 444Q on the quadrature signal side constitute a second differential amplifier group.
- the number N of reference voltages (N is an integer of 2 or more) can be selected from any integer in order to obtain a necessary total phase shift amount of the vector synthesis type phase shifter.
- the differential amplifier pair has been described as a unit that realizes one function, but the minimum unit that realizes a function that generates a pseudo cos characteristic or a sin characteristic is a differential amplifier.
- a pair of differential amplifiers (that is, two differential amplifiers) can realize characteristics corresponding to 360 ° of cos characteristics and sin characteristics, but characteristics can be added or deleted in units of differential amplifiers. This addition or deletion corresponds to addition or deletion of a characteristic corresponding to 180 ° of the cos characteristic and the sin characteristic.
- FIGS. 1 to 10 five differential amplifiers (two differential amplifier pairs and one differential amplifier) are used to generate the control signal CI on the in-phase signal side, and the control signal CQ is generated on the quadrature signal side.
- FIG. 22 is a circuit diagram showing a configuration example of the differential amplifier pair 401I, 402I and differential amplifier 444I on the in-phase signal side shown in FIGS.
- the differential amplifier 440I includes transistors 450 and 451, a current source 454, and load resistors 465 and 466.
- the differential amplifier 441I includes transistors 452 and 453, a current source 455, and load resistors 465 and 466.
- the differential amplifier 442I includes transistors 456 and 457, a current source 460, and load resistors 465 and 466.
- the differential amplifier 443I includes transistors 458 and 459, a current source 461, and a load resistor.
- the differential amplifier 444I includes transistors 462 and 463, a current source 464, and load resistors 465 and 466.
- FIG. 23 is a diagram showing the input / output characteristics of the control circuit 4.
- the overall operation of the control circuit 4 will be described using the configuration of the control circuit 4 shown in FIG. 16 and the input / output characteristics of the differential amplifier pair shown in FIG.
- VH the voltage value of cos (0 °) is VH
- the voltage value of cos (180 °) is VL
- the voltage value of cos (90 °) and cos (270 °) is an intermediate value between VH and VL. It is.
- VH is “1”
- VL is “ ⁇ 1”
- an intermediate value between VH and VL is “0”.
- the control signal CQ has the same characteristics as the control signal CI of FIG. 19B.
- the control signal CQ has the same characteristics as the control signal CI of FIG. 19B.
- the control signal CI on the in-phase signal side and the control signal CQ on the quadrature signal side can be obtained simultaneously by calculating a plurality of reference voltages generated by the voltage generator 400 in the control circuit 4 on the in-phase signal side. This is because the signal is alternately input to the differential amplifier pair to be performed and the differential amplifier pair to perform the operation on the orthogonal signal side, and this connection method is a main element characterizing the present embodiment. For example, in the examples of FIGS.
- the voltages V9, V7, V5, V3, and V1 are used for the calculation on the in-phase signal side, and the voltages V10, V8, V6, V4, and V2 are used for the calculation on the quadrature signal side. ing.
- FIG. 24 is a diagram showing the relationship between the control voltage VC of the vector synthesis type phase shifter of the present embodiment and the phase shift amount ⁇ of the output signal.
- FIG. 25 is a diagram showing the results of simulating the input / output characteristics of the control circuit 4 using the actual transistor model when the configurations shown in FIGS. 1 to 10 and FIG. 22 are used as the configuration of the differential amplifier. According to FIG. 25, it can be seen that pseudo cos characteristics and sin characteristics that are substantially the same as those in FIG. 23 are obtained.
- FIG. 26A to 26B are diagrams showing another circuit configuration and operation of the differential amplifier shown in FIG. 17A
- FIG. 26A is a circuit diagram of the differential amplifier
- FIG. 26B is an input / output of the differential amplifier of FIG. 26A. It is a figure which shows a characteristic (VC-CI characteristic).
- 150 indicates the input / output characteristics of the differential amplifier shown in FIG. 17A
- 151 indicates the input / output characteristics of the differential amplifier shown in FIG. 26A.
- the differential amplifier includes a transistor 500 to which the control voltage VC is input to the base, a transistor 501 to which the reference voltage Vm is input to the base, and a current source 502 to which the power supply voltage VEE is applied to one end.
- One end of the level shift resistor 503 is supplied with the power supply voltage VCC, one end is connected to the collector of the transistor 500, the other end is connected to the other end of the level shift resistor 503, and one end is the transistor 501.
- a load resistor 505 whose other end is connected to the other end of the level shift resistor 503, one end connected to the emitter of the transistor 500, and the other end connected to the other end of the current source 502.
- a resistor 507, a transistor 508 whose base is connected to the collector of the transistor 500, a transistor 509 whose base is connected to the collector of the transistor 501, a current source 510 to which one end is supplied with the power supply voltage VEE, and one end of the transistor 508 A load resistor 511 connected to the collector and supplied with the power supply voltage VCC at the other end, a load resistor 512 connected at one end to the collector of the transistor 509 and supplied with the power supply voltage VCC at the other end, and one end connected to the emitter of the transistor 508
- the voltage difference between the reference voltages Vm and Vn needs to be about 8 times the constant VT, and the constant VT is 26 mV when the ambient temperature is 300 K.
- the external reference voltages VRT and VRB Is determined to be about 8VT ⁇ 4.5 ⁇ 1V, and the degree of freedom in design is small.
- the input / output characteristics of the differential amplifier can be adjusted by the negative feedback resistor (the resistor added to the emitter of each transistor) as described above, but the voltage difference between the external reference voltage VRT and VRB increases. It can only be adjusted in the direction.
- the voltage difference between the external reference voltages VRT and VRB can be increased by the negative feedback resistor, and the degree of design freedom can be increased.
- the level shift resistor 503 by providing the level shift resistor 503, a plurality of differential amplifiers are connected in cascade without using an emitter follower, which is effective in reducing the circuit scale and reducing power consumption.
- FIG. 27 is a circuit diagram showing another configuration example of the differential amplifier pair 401I and 402I and the differential amplifier 444I on the in-phase signal side shown in FIGS.
- the differential amplifier 440I includes transistors 470, 471, 476, a current source 474, and a resistor 478.
- the differential amplifier 441I includes transistors 472, 473, 477, a current source 475, and a resistor 479.
- the differential amplifier 442I includes transistors 480, 481, 486, a current source 484, and a resistor 488.
- the differential amplifier 443I includes transistors 482, 483, 487, a current source 485, and a resistor 489.
- the differential amplifier 444I includes transistors 490, 491, 493, a current source 492, and a resistor 494. According to the circuit of FIG. 27, input / output characteristics similar to those of the circuit of FIG. 22 can be obtained. It goes without saying that the quadrature signal side differential amplifier pair 401Q, 402Q and the differential amplifier 444Q can also be realized in the same manner as in FIG.
- the conventional vector synthesis type phase shifter uses a large-scale digital circuit or a control circuit including a DAC, there is a problem that the circuit scale and power consumption increase. Such an increase in circuit scale and power consumption leads to an increase in size and cost of an optical communication transceiver equipped with a vector synthesis type phase shifter. Further, the conventional vector synthesis type phase shifter has a problem that its control band (the maximum speed at which the phase can be controlled) is limited to the band of the control circuit.
- control circuit of the conventional vector synthesis type phase shifter is deleted, and the analog level (voltage or current) of either the control signal DAI or DAQ (or either the control signal CI or CQ) of the variable gain amplifier is externally provided.
- the above-described control bandwidth problem can be solved by using the method given directly from the above.
- the problem arises that the output amplitude changes between the maximum value (51/2) / 2 and the minimum value 1/2).
- the signal amplitude can be obtained using an analog differential amplifier without using a digital circuit and a DAC. It is possible to provide a control circuit for generating a control signal for the means for adjusting the signal (variable gain amplifier or four-quadrant multiplier). Therefore, if the control circuit of this embodiment is applied to a vector synthesis type phase shifter, a vector synthesis type phase shifter that simultaneously achieves small circuit scale, low power consumption, wide control bandwidth, wide phase shift range, and output amplitude fluctuation suppression. A phaser can be provided.
- FIG. 28 is a diagram showing the temperature dependence of the relationship between the control voltage VC and the phase shift amount ⁇ of the output signal in an IC in which the vector synthesis type phase shifter of this embodiment is integrated by InP HBT (Heterojunction Bipolar Transistor). is there.
- the control circuit 4 the control circuit of the eighth embodiment shown in FIG.
- the input signal to the vector synthesis type phase shifter is a 21.5 GHz sine wave.
- FIG. 28 it can be seen that a vast phase shift from 0 ° to 810 ° is realized by changing the control voltage VC.
- the differential amplifier shown in FIG. 26A the range of the control voltage VC can be realized with a small value of 0.5V.
- FIG. 29 is a diagram showing the power supply voltage dependency of the relationship between the control voltage VC and the phase shift amount ⁇ of the output signal in an IC in which the vector synthesis type phase shifter of this embodiment is integrated by InP HBT.
- the input signal to the vector synthesis type phase shifter is a 21.5 GHz sine wave.
- the power supply voltage VCC is the ground potential. Even if the power supply voltage VEE fluctuates by + 5% from ⁇ 5.20V ( ⁇ 4.94V) or ⁇ 5% ( ⁇ 5.46V) by adopting the control circuit shown in FIG. It can be seen that it can be suppressed to a small phase fluctuation.
- FIG. 30 is a diagram showing the relationship between the control voltage VC and the output amplitude in an IC in which the vector synthesis type phase shifter of this embodiment is integrated by InP HBT.
- the input signal to the vector synthesis type phase shifter is a 21.5 GHz sine wave.
- the control circuit can generate control signals CI and CQ close to ideal sine waves and cosine waves.
- the amplitude variation is ⁇ 11 mV with respect to the average output amplitude 360 mV of the vector synthesis type phase shifter, and the amplitude variation is as small as 3%. It can be seen that it can be suppressed.
- FIG. 31 is a block diagram showing the configuration of the control circuit 4a according to the twelfth embodiment of the present invention.
- the same components as those in FIG. 16 are given the same reference numerals.
- the configuration of the entire vector synthesis type phase shifter is the same as that of the eleventh embodiment.
- the number N of reference voltages is set to 8 so that the total phase shift amount ⁇ of the vector synthesis type phase shifter is 630 °. Therefore, four differential amplifiers may be included in the first differential amplifier group on the in-phase signal side and four differential amplifiers in the second differential amplifier group on the quadrature signal side.
- FIG. 32 is a block diagram showing a more detailed implementation example of the control circuit 4a.
- the voltage generator 400c is configured by a resistance ladder including resistors 4000 to 4006.
- the differential amplifier pair 401I is configured by differential amplifiers 440I and 441I
- the differential amplifier pair 402I is configured by differential amplifiers 442I and 443I.
- the differential amplifier pair 401Q is configured by differential amplifiers 440Q and 441Q
- the differential amplifier pair 402Q is configured by differential amplifiers 442Q and 443Q.
- the differential amplifiers 444I and 444Q are deleted and the resistors 4007 and 4008 are deleted from the voltage generator in the control circuit of the first embodiment shown in FIG. It goes without saying that the control circuit 4a can also be realized by making similar changes in the control circuit of the embodiment.
- FIG. 33 shows the input / output characteristics of the control circuit 4a. The overall operation of the control circuit 4a will be described using the configuration of the control circuit 4a shown in FIG. 31 and the input / output characteristics of the differential amplifier pair shown in FIG.
- the control signal CQ has the same characteristics as the control signal CI of FIG. 19B.
- the control signal CQ has the same characteristics as the control signal CI of FIG. 19B.
- the control signal CI on the in-phase signal side and the control signal CQ on the quadrature signal side can be obtained simultaneously by calculating a plurality of reference voltages generated by the voltage generator 400a in the control circuit 4a on the in-phase signal side. This is because the signal is alternately input to the differential amplifier pair to be performed and the differential amplifier pair to perform the operation on the orthogonal signal side, and this connection method is a main element characterizing the present embodiment.
- the voltages V9, V7, V5, and V3 are used for the calculation on the in-phase signal side
- the voltages V10, V8, V6, and V4 are used for the calculation on the quadrature signal side.
- FIG. 34 is a diagram showing the relationship between the control voltage VC and the output signal phase shift amount ⁇ of the vector synthesis type phase shifter of this embodiment.
- the eleventh and twelfth embodiments a configuration is shown in which a plurality of differential amplifier pairs are disposed on the in-phase signal side and the quadrature signal side, respectively. Even if the configuration in which the amplifier pair is arranged is used, the operation of the control circuits 4 and 4a of the eleventh and twelfth embodiments (analog calculation of conversion from the input control voltage to a control signal similar to a sine wave or cosine wave) ) Can be realized. The operation of the control circuits 4 and 4a of the eleventh and twelfth embodiments can also be realized by using a configuration in which one differential amplifier is disposed on each of the in-phase signal side and the quadrature signal side.
- FIG. 35 is a block diagram showing the configuration of the transmitter of the optical transceiver according to the thirteenth embodiment of the present invention.
- the vector synthesis type phase shifter of the eleventh and twelfth embodiments is applied to an NRZ-RZ conversion circuit of an optical transceiver.
- the transmitter of the optical transceiver includes a laser 10, a Mach-Zehnder modulator 11, a serializer 12, a modulator driver 13, and an NRZ-RZ conversion circuit 14.
- the NRZ-RZ conversion circuit 14 includes a Mach-Zehnder modulator 15, a vector synthesis type phase shifter 16, a phase control circuit 17, and a modulator driver 18.
- the serializer 12 receives low-speed parallel data and outputs high-speed serial data.
- the output data of the serializer 12 is one when the modulation method is, for example, OOK (On-Off Keying) and DPSK (Differential Phase Shift + Keying) (two for differential signals), and the modulation method is DQPSK (Differential). In the case of QuadraturerPhase Shift Keying), there are two (four in the case of differential signals).
- the output data of the serializer 12 is amplified to a voltage amplitude that can drive the Mach-Zehnder modulator 11 by the modulator driver 13.
- the Mach-Zehnder modulator 11 phase-modulates or amplitude-modulates the continuous light input from the laser 10 according to the output signal of the modulator driver 13, and outputs NRZ signal light.
- the NRZ-RZ conversion circuit 14 receives the NRZ signal light and the clock, converts the NRZ signal light into an RZ signal light, and outputs it.
- the clock input from the serializer 12 to the NRZ-RZ conversion circuit 14 is adjusted to an optimum phase by the vector synthesis type phase shifter 16 and amplified by the modulator driver 18 to a voltage amplitude that can drive the Mach-Zehnder modulator 15.
- the optimum phase is a phase relationship in which the phase relationship between the NRZ signal light input to the Mach-Zehnder modulator 15 and the clock is the most appropriate.
- the phase in which the NRZ signal light is most stable is the clock. This is the phase relationship that is clipped to the RZ signal.
- the Mach-Zehnder modulator 15 outputs the RZ signal light by cutting the input NRZ signal light according to the output signal of the modulator driver 18 (that is, amplitude-modulating).
- the optimum phase of the clock is adjusted by the phase control circuit 17 monitoring the output waveform of the vector synthesis type phase shifter 16 and controlling the vector synthesis type phase shifter 16, for example.
- the deviation of the clock phase from the optimum phase is detected as voltage information, for example. Based on this information, the phase control circuit 17 outputs a control voltage VC so that the clock has an optimum phase, and controls the vector synthesis type phase shifter 16.
- the size and cost can be reduced by applying the vector synthesis type phase shifter of the eleventh and twelfth embodiments to the optical transceiver.
- the vector synthesizing phase shifter of the eleventh and twelfth embodiments is used for NRZ-RZ conversion in an optical transceiver, a wide control band can be obtained, so disturbance due to environmental changes (power supply voltage fluctuations, etc.) The phase fluctuation tolerance due to can be increased.
- phase control by analog level is possible.
- the phase shiftable range can be greatly expanded from the conventional 180 ° (for example, to 810 °). At this time, fluctuations in output amplitude can be suppressed.
- the vector synthesizing phase shifter of the eleventh and twelfth embodiments is applied to the NRZ-RZ conversion circuit of the transmitter of the optical transceiver.
- the present invention is not limited to this.
- the type phase shifter can also be used for measuring devices such as an arbitrary waveform generator and a pulse pattern generator.
- control circuit of the vector synthesis type phase shifter is described as an example of application of the voltage generator.
- present invention is not limited to this, and the voltage generation of the present invention is not limited thereto.
- the device is also applicable to other circuits that require a reference voltage for operation, such as an A / D converter.
- FIG. 36 is a circuit diagram showing a configuration of a 90 ° phase shifter according to the fourteenth embodiment of the present invention.
- the 90 ° phase shifter 1 in the vector synthesis type phase shifter of the eleventh and twelfth embodiments is realized by a polyphase filter.
- the polyphase filter has one end connected to the input terminal of the input signal VIN, the other end connected to the output terminal of the in-phase signal VINI, one end connected to the input terminal of the input signal VIN, and the other end
- a resistor 801 connected to the output terminal of the quadrature signal VINQ
- a resistor 802 having one end connected to the input terminal of the input signal bar VIN and the other end connected to the output terminal of the in-phase signal bar VINI, and one end being an input signal
- the resistor 803 is connected to the input terminal of the bar VIN, the other end is connected to the output terminal of the quadrature signal bar VINQ, and one end is connected to the input terminal of the input signal VIN, and the other end is connected to the output terminal of the quadrature signal VINQ.
- Capacitance 804 one end connected to the input terminal of the input signal VIN, the other end connected to the output terminal of the in-phase signal bar VINI, and one end input signal bar V
- a capacitor 806 connected to the N input terminal, the other end connected to the output terminal of the quadrature signal bar VINQ, one end connected to the input terminal of the input signal bar VIN, and the other end to the output terminal of the in-phase signal VINI.
- the phase filter outputs a single-phase signal having a phase of 0 ° from the connection point between the resistor 800 and the capacitor 807, and outputs a single-phase signal having a phase of 90 ° from the connection point between the resistor 801 and the capacitor 804.
- a single-phase signal having a phase of 180 ° is output from the connection point 805, and a single-phase signal having a phase of 270 ° is output from the connection point of the resistor 803 and the capacitor 806.
- the signals having phases of 0 ° and 180 ° are the in-phase signals VINI and bar VINI
- the signals having phases of 90 ° and 270 ° are the quadrature signals VINQ and bar VINQ
- the in-phase signal VINI , Bar VINI and quadrature signals VINQ and VINVINQ that are 90 ° out of phase with the in-phase signal VINI and bar VINI.
- the differential amplifier functions as a single balance (single phase differential) converter. Even if is a single-phase signal, a differential signal can be input to the polyphase filter, and in-phase signals VINI, bar VINI, quadrature signals VINQ, bar VINQ can be obtained.
- the connection between the resistor and the capacitor is different from that in FIG. 36 and the one in which the resistor and the capacitor are connected in multiple stages.
- FIG. 37 is a circuit diagram showing a configuration of a 90 ° phase shifter according to the fifteenth embodiment of the present invention.
- the 90 ° phase shifter 1 in the vector synthesis type phase shifters of the eleventh and twelfth embodiments is realized by a polyphase filter, and a configuration example different from the fourteenth embodiment is shown. It is.
- the polyphase filter of this embodiment is different from the configuration of the fourteenth embodiment shown in FIG. 36 in that the signal output from the connection point of the resistor 800 and the capacitor 807 is a non-inverted input signal PPSI, and the resistor 802 and the capacitor 805 A signal output from a connection point between the resistor 801 and the capacitor 804 is a non-inverted input signal PPSQ, and a resistor 803 and a capacitor 806 And a high-gain differential amplifier 809 using an inverted input signal bar PPSQ as a signal output from the connection point.
- the output of the high gain differential amplifier 808 becomes the in-phase signal VINI and bar VINI, and the output of the high gain differential amplifier 809 becomes the quadrature signal VINQ and bar VINQ.
- the gains of the high gain differential amplifiers 808 and 809 are approximately 2 or more.
- the configuration of the fourteenth embodiment is a passive filter, there is a transmission loss, and the amplitude of the output signal is significantly reduced (approximately 1 ⁇ 2 or less) with respect to the amplitude of the input signal.
- the vector composition type phase shifter when the in-phase signals VINI and bar VINI and the quadrature signals VINQ and bar VINQ having small amplitudes are input to the four-quadrant multiplier, not only the output amplitude of the vector composition type phase shifter is reduced, It causes waveform deterioration and jitter increase of the output signal.
- Two high gain differential amplifiers 808, 809 are inserted to compensate for this transmission loss and to input the appropriate amplitude in-phase signal VINI, bar VINI and quadrature signals VINQ, bar VINQ to the four quadrant multiplier. . Further, in this embodiment, in-phase noise generated in the configuration shown in FIG. 36 can be removed.
- FIG. 38 is a circuit diagram showing a configuration example of the high gain differential amplifier 808.
- the high gain differential amplifier 808 includes transistors 900 to 907, resistors 908 to 916, and current sources 917 to 920.
- the configuration shown in FIG. 38 is called a Cherry Hooper type or a full feedback type.
- the configuration shown in FIG. 38 is a circuit suitable for achieving both a high bandwidth and a high gain, and can compensate for the transmission loss that occurs in the configuration of the fourteenth embodiment. 38 illustrates the example of the high gain differential amplifier 808, it goes without saying that the configuration shown in FIG. 38 can also be applied to the high gain differential amplifier 809.
- the present invention provides a voltage generator for generating a reference voltage, a control signal for a means such as a variable gain amplifier or a four-quadrant multiplier that receives a control voltage and a reference voltage generated by the voltage generator and adjusts the signal amplitude.
- the present invention can be applied to a control circuit that outputs a signal, a vector combination type phase shifter that uses a variable gain amplifier or four-quadrant multiplier and a control circuit, and an optical transceiver that uses a vector synthesis type phase shifter.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- Control Of Electrical Variables (AREA)
- Analogue/Digital Conversion (AREA)
- Networks Using Active Elements (AREA)
Abstract
Description
ベクトル合成型移相器は、90°移相器1000と、2つの符号反転器1001I,1001Qと、2つの可変利得増幅器1002I,1002Qと、合成器1003と、制御回路1004とから構成されている。このベクトル合成型移相器は、文献「Kwang-Jin Koh,et al.,“0.13-μm CMOS Phase Shifters for X-,Ku-,and K-Band Phased Arrays”,IEEE Journal of Solid-State Circuits,vol.42,no.11,Nov.2007,p.2535-2546」に開示されている。
四象限乗算器2001I,2001Qは、それぞれ制御信号CI,CQの符号とレベルに応じて出力の符号と利得とを変化させ、結果として同相信号VINI、直交信号VINQの振幅を変化させて出力する。
また、電圧発生器から出力される参照電圧が、電源電圧依存性を持つという問題点があった。
なお、以上のような問題点は、電圧発生器を搭載する制御回路、制御回路を搭載するベクトル合成型移相器、ベクトル合成型移相器を搭載する光通信のトランシーバにおいても同様に発生する。
また、本発明の目的は、参照電圧の電源電圧依存性を抑圧することができる電圧発生器を提供すること、および電圧発生器を用いた制御回路、ベクトル合成型移相器、光トランシーバを提供することにある。
以下、本発明の実施例について図面を参照して説明する。図1は本発明の第1実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図である。
図1に示す制御回路は、ベクトル合成型移相器に搭載されるもので、出力させたい位相φに対応した制御電圧VCを入力とし、四象限乗算器(不図示)のための制御信号CI,CQを発生する。この制御回路は、複数の参照電圧を発生する電圧発生器400と、制御電圧VCおよび参照電圧を入力とする差動増幅器440I~444I,440Q~444Qとを構成要素として実現される。制御回路とベクトル合成型移相器の詳細については後述する。
次に、本発明の第2実施例について説明する。図2は本発明の第2実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1と同様の構成には同一の符号を付してある。第1実施例では、電圧発生器400は単一の抵抗ラダーにより構成されていたが、本実施例では、同相信号側の電圧発生器400Iと直交信号側の電圧発生器400Qとを別々に抵抗ラダーで構成している点が異なる。
次に、本発明の第3実施例について説明する。図3は本発明の第3実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1と同様の構成には同一の符号を付してある。第1実施例と同様に、電圧発生器400aは、抵抗4000~4008からなる抵抗ラダーによって構成されている。さらに、本実施例では、電源電圧VCCと電圧VRTとの間に抵抗4009を設け、電源電圧VEEと電圧VRBとの間に定電流源4021を設けることにより、従来の電圧発生器で必要であった参照電圧VRT,VRBを内部で発生させることができる。
次に、本発明の第4実施例について説明する。図4は本発明の第4実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1~図3と同様の構成には同一の符号を付してある。第3実施例では、電圧発生器400aは単一の抵抗ラダーにより構成されていたが、本実施例では、同相信号側の電圧発生器400Iaと直交信号側の電圧発生器400Qaとを別々に抵抗ラダーで構成している点が異なる。
次に、本発明の第5実施例について説明する。図5は本発明の第5実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1~図4と同様の構成には同一の符号を付してある。第1実施例と同様に、電圧発生器400bは、抵抗4000~4008からなる抵抗ラダーによって構成されている。さらに、本実施例では、電源電圧VCCと電圧VRTとの間にレベルシフトダイオード4022,4023および電圧レベルの微調整用の抵抗4024を設け、電源電圧VEEと電圧VRBとの間に定電流源4021を設けることにより、従来の電圧発生器で必要であった参照電圧VRT,VRBを内部で発生させることができる。
なお、電圧発生器400bにおいて電圧レベル微調整用の抵抗4024は必須の構成要素ではなく、RR=0としてもよい。
次に、本発明の第6実施例について説明する。図6は本発明の第6実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1~図5と同様の構成には同一の符号を付してある。第5実施例では、電圧発生器400bは単一の抵抗ラダーにより構成されていたが、本実施例では、同相信号側の電圧発生器400Ibと直交信号側の電圧発生器400Qbとを別々に抵抗ラダーで構成している点が異なる。
次に、本発明の第7実施例について説明する。図7は本発明の第7実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1~図6と同様の構成には同一の符号を付してある。本実施例は、第5実施例にPVT補償回路600を付加している点が異なる。PVT補償回路600は、トランジスタ6000、レベルシフトダイオード6001,抵抗6002,6003、および定電流源6004から構成される。
なお、電圧発生器400bにおいてレベルシフトダイオードの段数を4022のみの1段とした場合には、PVT補償回路600のレベルシフトダイオード6001は不要となる。また、電圧発生器400bにおいて電圧レベル微調整用の抵抗4024を用いない場合(RR=0)には、PVT補償回路600の抵抗6002は不要となる。
以上により、VRT-VCLS=VCC-VC、VCLS-VRB=RTL×I-(VCC-VC)となり、電圧VRTとVCLS間の電圧差および電圧VCLSとVRB間の電圧差は、(VCC-VC)の関数で表すことができる。
なお、本実施例では、PVT補償回路600にバイポーラトランジスタ6000からなるエミッタフォロアを用いているが、電界効果トランジスタからなるソースフォロアを用いてもよい。
次に、本発明の第8実施例について説明する。図8は本発明の第8実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1~図7と同様の構成には同一の符号を付してある。第7実施例では、電圧発生器400bは単一の抵抗ラダーにより構成されていたが、本実施例では、第5実施例と同様に、同相信号側の電圧発生器400Ibと直交信号側の電圧発生器400Qbとを別々に抵抗ラダーで構成している点が異なる。
次に、本発明の第9実施例について説明する。図9は本発明の第9実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1~図8と同様の構成には同一の符号を付してある。本実施例は、第7実施例に制御利得調整回路700を付加している点が異なる。制御利得調整回路700は、抵抗7000,7001から構成される。
次に、本発明の第10実施例について説明する。図10は本発明の第10実施例に係る電圧発生器を用いた制御回路の構成例を示すブロック図であり、図1~図9と同様の構成には同一の符号を付してある。第9実施例では、電圧発生器400bは単一の抵抗ラダーにより構成されていたが、本実施例では、第5実施例と同様に、同相信号側の電圧発生器400Ibと直交信号側の電圧発生器400Qbとを別々に抵抗ラダーで構成している点が異なる。
次に、本発明の第11実施例について説明する。図11は本発明の第11実施例に係るベクトル合成型移相器の構成を示すブロック図であり、図12A~図12Cは図11のベクトル合成型移相器の各部の信号を平面上にコンスタレーション表示した図である。本実施例は、第1~第10実施例の電圧発生器を使用する制御回路の詳細と、制御回路を使用するベクトル合成型移相器の詳細を説明するものである。
図11のベクトル合成型移相器は、90°移相器1と、2つの四象限乗算器2I,2Qと、合成器3と、制御回路4とから構成される。
90°移相器1は、入力信号VINを入力し、同相信号VINIと、これに対して位相が90°ずれた直交信号VINQとを出力する。同相成分(I)を横軸、直交成分(Q)を縦軸とするコンスタレーション表示では、図12Bに示すように、同相信号VINIは同相成分(I)のみで表すことができ、直交信号VINQは直交成分(Q)のみで表すことができる。この2つの信号VINI,VINQを仮に合成した場合には、図12Bの20(角度45°、振幅21/2)に相当する信号を得ることができる。
90°移相器1は、3つの差動増幅器100,101,102から構成されている。図13の構成では、入力信号VIN,バーVINを2つの差動増幅器100,101で分配する。一方の信号は、差動増幅器100からそのまま出力され、同相信号VINI,バーVINIとなる。他方の信号は、差動増幅器101から差動増幅器102に入力され、差動増幅器102で遅延が加えられることにより、同相信号VINI,バーVINIに対して位相が90°ずれた直交信号VINQ,バーVINQとなる。
合成器3は、図15の構成に限られるものではなく、ウィルキンソン型等の電力合成器を用いてもよい。
N=4×(Δφ-90°)/360°+2 ・・・(1)
図16では、総移相量Δφ=810°を実現するために参照電圧の数Nを10としている。ここでは、制御回路4の例として、第1実施例の制御回路を例に挙げて説明しているが、第2~第10実施例の制御回路を利用してもよいことは言うまでもない。
差動増幅器は、図17Aに示すように、ベースに制御電圧VCが入力されるトランジスタ410と、ベースに参照電圧Vmが入力されるトランジスタ411と、一端がトランジスタ410,411のエミッタに接続され、他端に電源電圧VEEが与えられる電流源412と、一端がトランジスタ411のコレクタに接続され、他端に電源電圧VCCが与えられる負荷抵抗413と、一端がトランジスタ410のコレクタに接続され、他端に電源電圧VCCが与えられる負荷抵抗414とから構成されている。制御信号CIは、トランジスタ411のコレクタと負荷抵抗413との接続点から出力され、制御信号バーCIは、トランジスタ410のコレクタと負荷抵抗414との接続点から出力される。この差動増幅器を記号で表すと、図17Bのようになる。
CI=RL・α・IEE/(1+exp((-VC+Vm)/VT)) ・・(2)
差動増幅器対401Iの出力電圧である制御信号CIは次式により計算できる。
CI=RL・α・IEE/(1+exp((-VC+Vn)/VT))
+RL・α・IEE/(1+exp((VC-Vm)/VT)) ・・(3)
参照電圧VmとVnとの電圧差が定数VTの2倍未満または定数VTの12倍よりも大きいときには、制御信号CIは正弦波、余弦波から外れた波形になる。このように、制御信号CIを正弦波、余弦波に類似した波形にするには、参照電圧VmとVnの電圧差を定数VTの2倍以上12倍以下程度に設定すると有効である。
制御回路の入出力特性は、制御電圧VCが何れかの参照電圧Vn(nは整数)の近傍の場合には、一つの差動増幅器の遷移関数で表すことができる。そこで、差動増幅器の出力が正弦波または余弦波に近い特性を有することについて説明する。一般的な差動増幅器の差信号の入出力特性はy=tanh(x)の形式で記述できる(文献「Paul R.Gray,Robert G.Meyer,“Analysis and design of analog integrated circuits”,John Wiley & Sons,Inc.,1977,P.227-231」参照)。これによれば、Vc近傍の差動増幅器の差信号Voの遷移関数は次式で表される。
このように、x=0(本実施例においてはVC=Vn、VC=Vmに相当)近傍において、差動増幅器の差信号の入出力特性(tanh波形)は正弦(sin)波形に類似していることが分かる。
Vo=RL・α・IEE[tanh[(VC-Vn)/(2・VT)]
+tanh[(V(n+2)-VC)/(2・VT)]-1] ・・・(7)
Videal=RL・α・IEEsin[(VC-Vn)・π/VT] ・・(8)
(A)参照電圧VmとVnの電圧差Vm-Vnを196mV(=7.5・VT)から減少させると、CI,CQの振幅が小さくなり、計算上は理想からかい離するものの、波形自体は正弦波、余弦波に近い形状を保つ(図20A参照)。そこで、下限については、差動増幅器の差信号Voの理想的な正弦波からのかい離|Vo-Videal|の最大値が理想的な正弦波の最大振幅の25%以内との条件を緩和し、かい離|Vo-Videal|の最大値が理想的な正弦波の最大振幅の50%以内との条件から決定した。具体的には、Vm-Vnを196mV(=7.5・VT)から減少させていくと、Vm-Vn=102mV(=3.9・VT)のときに、|Vo-Videal|の最大値が理想的な正弦波の最大振幅の50%に達する。
以上の理由により、制御回路の入出力特性を正弦波、余弦波と見なせる特性にするには、参照電圧VmとVnの電圧差を、定数VTの2倍以上12倍以下程度に設定すると好ましい。
次に、本発明の第12実施例について説明する。図31は本発明の第12実施例に係る制御回路4aの構成を示すブロック図であり、図16と同様の構成には同一の符号を付してある。ベクトル合成型移相器全体の構成は、第11実施例と同じである。
本実施例は、ベクトル合成型移相器の総移相量Δφが630°となるように、参照電圧の数Nを8とした例である。したがって、同相信号側の第1の差動増幅器グループに含まれる差動増幅器と直交信号側の第2の差動増幅器グループに含まれる差動増幅器を4個ずつにすればよい。
以上説明した2つの差動増幅器対401I,402Iにより、制御電圧VCが電圧V2からV10の領域で720°分に相当(電圧V3からV10の領域で630°分に相当)する疑似的なcos特性が得られることが分かる。
以上説明した2つの差動増幅器対401Q,402Qにより、制御電圧VCが電圧V3からV10の領域で630°分に相当する疑似的なsin特性が得られることが分かる。
また、同相信号側と直交信号側にそれぞれ1つの差動増幅器を配置する構成を用いても、第11、第12実施例の制御回路4,4aの動作を実現することができる。
次に、本発明の第13実施例について説明する。図35は本発明の第13実施例に係る光トランシーバの送信器の構成を示すブロック図である。本実施例は、第11、第12実施例のベクトル合成型移相器を光トランシーバのNRZ-RZ変換回路に適用したものである。
NRZ-RZ変換回路14は、マッハツェンダ変調器15と、ベクトル合成型移相器16と、位相制御回路17と、変調器ドライバ18とから構成されている。
マッハツェンダ変調器11は、レーザ10から入力される連続光を、変調器ドライバ13の出力信号に応じて位相変調または振幅変調し、NRZ信号光を出力する。
シリアライザ12からNRZ-RZ変換回路14に入力されるクロックは、ベクトル合成型移相器16によって最適位相に調整され、変調器ドライバ18によってマッハツェンダ変調器15を駆動できる電圧振幅に増幅される。なお、最適位相とは、マッハツェンダ変調器15に入力されるNRZ信号光とクロックとの位相関係が最も適切な位相関係のことであり、一般にはNRZ信号光が最も安定している位相をクロックでRZ信号に切り取る位相関係のことである。
ここで、クロックの最適位相の調整は、位相制御回路17が例えばベクトル合成型移相器16の出力波形をモニタして、ベクトル合成型移相器16を制御することにより行われる。クロック位相の最適位相からのずれは、例えば電圧情報として検出される。位相制御回路17は、この情報に基づいてクロックが最適位相になるように制御電圧VCを出力し、ベクトル合成型移相器16を制御する。
次に、本発明の第14実施例について説明する。図36は本発明の第14実施例に係る90°移相器の構成を示す回路図である。本実施例は、第11、第12実施例のベクトル合成型移相器における90°移相器1をポリフェーズフィルタで実現するものである。
次に、本発明の第15実施例について説明する。図37は本発明の第15実施例に係る90°移相器の構成を示す回路図である。本実施例は、第11、第12実施例のベクトル合成型移相器における90°移相器1をポリフェーズフィルタで実現するものであり、第14実施例とは別の構成例を示すものである。
Claims (22)
- 供給される電圧を分圧して複数の参照電圧を発生する抵抗ラダーと、
第1の電源電圧と前記抵抗ラダーの一端との間に設けられる第1の電圧供給用抵抗と、
第2の電源電圧と前記抵抗ラダーの他端との間に設けられる第2の電圧供給用抵抗とを備えることを特徴とする電圧発生器。 - 請求項1記載の電圧発生器において、
さらに、前記第2の電圧供給用抵抗の代わりに、前記第2の電源電圧と前記抵抗ラダーの他端との間に挿入された第1の定電流源を備えることを特徴とする電圧発生器。 - 請求項1記載の電圧発生器において、
さらに、前記第1の電圧供給用抵抗の代わりに、前記第1の電源電圧と前記抵抗ラダーの一端との間に挿入された第1のレベルシフトダイオードを備えることを特徴とする電圧発生器。 - 請求項2記載の電圧発生器において、
さらに、前記第1の電圧供給用抵抗の代わりに、前記第1の電源電圧と前記抵抗ラダーの一端との間に挿入された第1のレベルシフトダイオードを備えることを特徴とする電圧発生器。 - 請求項1記載の電圧発生器において、
さらに、前記第2の電圧供給用抵抗の代わりに、前記第2の電源電圧と前記抵抗ラダーの他端との間に挿入された第1の定電流源と、
前記第1の電圧供給用抵抗の代わりに、前記第1の電源電圧と前記抵抗ラダーの一端との間に挿入された第1のレベルシフトダイオードと、
外部から入力される制御電圧をレベル補償した電圧を、前記参照電圧を入力とする回路に与えるPVT補償回路とを備えることを特徴とする電圧発生器。 - 請求項5記載の電圧発生器において、
前記PVT補償回路は、
外部から入力される制御電圧がベースまたはゲートに入力され、前記第1の電源電圧がコレクタまたはドレインに与えられ、エミッタまたはソースがPVT補償回路の出力端子に接続されたトランジスタからなるエミッタフォロアまたはソースフォロアと、
前記第2の電源電圧とPVT補償回路の出力端子との間に挿入された第1の抵抗と、
前記第2の電源電圧とPVT補償回路の出力端子との間に前記第1の抵抗と直列に挿入された第2の定電流源とからなることを特徴とする電圧発生器。 - 請求項6記載の電圧発生器において、
前記PVT補償回路は、さらに、前記第1のレベルシフトダイオードが複数の場合に、前記トランジスタのエミッタまたはソースとPVT補償回路の出力端子との間に挿入された少なくとも一つの第2のレベルシフトダイオードを有し、
前記エミッタフォロアまたはソースフォロアと前記第2のレベルシフトダイオードの合計の段数が、前記第1のレベルシフトダイオードの段数と等しいことを特徴とする電圧発生器。 - 請求項5記載の電圧発生器において、
さらに、前記制御電圧の利得を調整する制御利得調整回路を備えることを特徴とする電圧発生器。 - 請求項1記載の電圧発生器において、
前記抵抗ラダーは、前記参照電圧を入力とする回路が備える第1の差動増幅器グループと第2の差動増幅器グループの各々に応じて、差動増幅器グループ毎に分割配置される2つの抵抗ラダーによって構成され、
第1の抵抗ラダーは、生成した参照電圧を前記第1の差動増幅器グループのみに1つずつ入力し、
第2の抵抗ラダーは、生成した参照電圧を前記第2の差動増幅器グループのみに1つずつ入力し、
前記第1の抵抗ラダーが生成する参照電圧と前記第2の抵抗ラダーが生成する参照電圧とを交互に並べたときに各参照電圧間の電圧レベルが一定であることを特徴とする電圧発生器。 - 信号振幅を調整する手段に対して制御信号を出力する制御回路であって、
参照電圧を発生する電圧発生器と、
外部から入力される制御電圧と前記電圧発生器が発生する参照電圧との差信号を制御信号として出力する差動増幅器とを備え、
前記電圧発生器は、
供給される電圧を分圧して複数の前記参照電圧を発生する抵抗ラダーと、
第1の電源電圧と前記抵抗ラダーの一端との間に設けられる第1の電圧供給用抵抗と、
第2の電源電圧と前記抵抗ラダーの他端との間に設けられる第2の電圧供給用抵抗とを備え、
前記差動増幅器は、前記制御電圧が前記参照電圧の近傍にあるときに、前記制御電圧を正弦波または余弦波に類似する前記制御信号へ変換するアナログ演算を行うことを特徴とする制御回路。 - 請求項10記載の制御回路において、
前記差動増幅器は、複数の差動増幅器を縦続接続したことを特徴とする制御回路。 - 請求項10記載の制御回路において、
振幅調整の対象となる信号として同相信号とこの同相信号に対して位相が90°ずれた直交信号とが存在する場合に、前記差動増幅器として、前記制御電圧と前記参照電圧とを入力とし同相信号側の第1制御信号を出力する第1の差動増幅器グループと、前記制御電圧と前記参照電圧とを入力とし直交信号側の第2の制御信号を出力する第2の差動増幅器グループとを備え、
前記第1の差動増幅器グループと前記第2の差動増幅器グループとは、それぞれ少なくとも1つずつの差動増幅器を備えることを特徴とする制御回路。 - 請求項12記載の制御回路において、
前記電圧発生器は、電圧を分圧して複数の前記参照電圧を生成し、この複数の参照電圧を前記第1の差動増幅器グループと前記第2の差動増幅器グループに交互に1つずつ入力することを特徴とする制御回路。 - 請求項12記載の制御回路において、
前記電圧発生器は、N(Nは2以上の整数)個の前記参照電圧を生成し、
前記第1の差動増幅器グループに含まれる差動増幅器の個数と前記第2の差動増幅器グループに含まれる差動増幅器の個数との総和は、Nであることを特徴とする制御回路。 - 請求項12記載の制御回路において、
前記第1の差動増幅器グループに含まれる隣接する2つの差動増幅器の出力は逆相で接続され、
前記第2の差動増幅器グループに含まれる隣接する2つの差動増幅器の出力は逆相で接続されることを特徴とする制御回路。 - 請求項12記載の制御回路において、
前記参照電圧Vmと1つおきの前記参照電圧Vnとは、前記第1の差動増幅器グループに含まれる隣接する2つの差動増幅器または前記第2の差動増幅器グループに含まれる隣接する2つの差動増幅器に入力され、
前記参照電圧Vmと前記参照電圧Vnとの電圧差は、定数VT=kT/q(kはボルツマン定数、Tは絶対温度、qは電子の電荷)の2倍以上12倍以下であることを特徴とする制御回路。 - 入力信号から同相信号とこの同相信号に対して位相が90°ずれた直交信号とを生成する90°移相器と、
同相信号側の第1の制御信号に応じて前記同相信号の振幅を変化させて出力する第1の四象限乗算器と、
直交信号側の第2の制御信号に応じて前記直交信号の振幅を変化させて出力する第2の四象限乗算器と、
前記第1、第2の四象限乗算器から出力される同相信号と直交信号とを合成して出力する合成器と、
前記第1、第2の制御信号を出力する制御回路とを備え、
前記制御回路は、
参照電圧を発生する電圧発生器と、
外部から入力される制御電圧と前記参照電圧との差信号を前記第1、第2の制御信号として出力する差動増幅器とを備え、
前記電圧発生器は、
供給される電圧を分圧して複数の前記参照電圧を発生する抵抗ラダーと、
第1の電源電圧と前記抵抗ラダーの一端との間に設けられる第1の電圧供給用抵抗と、
第2の電源電圧と前記抵抗ラダーの他端との間に設けられる第2の電圧供給用抵抗とを備え、
前記差動増幅器は、前記制御電圧が前記参照電圧の近傍にあるときに、前記制御電圧を正弦波または余弦波に類似する前記第1、第2の制御信号へ変換するアナログ演算を行うことを特徴とするベクトル合成型移相器。 - 請求項17記載のベクトル合成型移相器において、
前記90°移相器は、ポリフェーズフィルタであることを特徴とするベクトル合成型移相器。 - 請求項18記載のベクトル合成型移相器において、
前記90°移相器は、さらに、前記ポリフェーズフィルタの後段に高利得差動増幅器を備えることを特徴とするベクトル合成型移相器。 - 請求項19記載のベクトル合成型移相器において、
前記高利得差動増幅器は、Cherry Hooper型の高利得差動増幅器であることを特徴とするベクトル合成型移相器。 - 連続光を出力するレーザと、
送信したいシリアルデータとクロックとを出力するシリアライザと、
前記レーザから入力される連続光を位相変調または振幅変調してNRZ信号光を出力する第1のマッハツェンダ変調器と、
前記シリアルデータに応じて前記第1のマッハツェンダ変調器を駆動する第1の変調器ドライバと、
前記第1のマッハツェンダ変調器から入力されるNRZ信号光を振幅変調してRZ信号光を出力する第2のマッハツェンダ変調器と、
前記クロックを入力とするベクトル合成型移相器と、
このベクトル合成型移相器によって位相調整された前記クロックに応じて前記第2のマッハツェンダ変調器を駆動する第2の変調器ドライバと、
前記ベクトル合成型移相器の移相量に対応する前記制御電圧を出力する位相制御回路とを備え、
前記ベクトル合成型移相器は、
前記クロックから同相信号とこの同相信号に対して位相が90°ずれた直交信号とを生成する90°移相器と、
同相信号側の第1の制御信号に応じて前記同相信号の振幅を変化させて出力する第1の四象限乗算器と、
直交信号側の第2の制御信号に応じて前記直交信号の振幅を変化させて出力する第2の四象限乗算器と、
前記第1、第2の四象限乗算器から出力される同相信号と直交信号とを合成し、この合成後の信号を位相調整したクロックとして出力する合成器と、
前記第1、第2の制御信号を出力する制御回路とを備え、
前記制御回路は、
参照電圧を発生する電圧発生器と、
外部から入力される制御電圧と前記参照電圧との差信号を前記第1、第2の制御信号として出力する差動増幅器とを備え、
前記電圧発生器は、
供給される電圧を分圧して複数の前記参照電圧を発生する抵抗ラダーと、
第1の電源電圧と前記抵抗ラダーの一端との間に設けられる第1の電圧供給用抵抗と、
第2の電源電圧と前記抵抗ラダーの他端との間に設けられる第2の電圧供給用抵抗とを備え、
前記差動増幅器は、前記制御電圧が前記参照電圧の近傍にあるときに、前記制御電圧を正弦波または余弦波に類似する前記第1、第2の制御信号へ変換するアナログ演算を行うことを特徴とする光トランシーバ。 - 請求項21記載の光トランシーバにおいて、
前記位相制御回路は、前記ベクトル合成型移相器から出力されるクロックが最適位相になるように前記制御電圧を生成することを特徴とする光トランシーバ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09831750.6A EP2365413B1 (en) | 2008-12-09 | 2009-08-12 | Voltage generator, control circuit, vector synthesis type phase shifter and optical transceiver |
JP2010542047A JP5260680B2 (ja) | 2008-12-09 | 2009-08-12 | 電圧発生器、制御回路、ベクトル合成型移相器および光トランシーバ |
US13/132,308 US8687973B2 (en) | 2008-12-09 | 2009-08-12 | Voltage generator, control circuit, vector sum phase shifter, and optical transceiver |
CN200980148244.1A CN102232204B (zh) | 2008-12-09 | 2009-08-12 | 电压发生器、控制电路、矢量和相移器以及光收发机 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-313560 | 2008-12-09 | ||
JP2008313560 | 2008-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010067644A1 true WO2010067644A1 (ja) | 2010-06-17 |
Family
ID=42242637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/064240 WO2010067644A1 (ja) | 2008-12-09 | 2009-08-12 | 電圧発生器、制御回路、ベクトル合成型移相器および光トランシーバ |
Country Status (5)
Country | Link |
---|---|
US (1) | US8687973B2 (ja) |
EP (1) | EP2365413B1 (ja) |
JP (1) | JP5260680B2 (ja) |
CN (1) | CN102232204B (ja) |
WO (1) | WO2010067644A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110316495A1 (en) * | 2009-12-15 | 2011-12-29 | Nxp B.V. | Circuit for a switch mode power supply |
KR101352080B1 (ko) | 2012-02-07 | 2014-01-15 | 한국표준과학연구원 | 전압분배장치 및 그 구현방법 |
JP2014206652A (ja) * | 2013-04-12 | 2014-10-30 | 日本電信電話株式会社 | 光変調器 |
CN112787656A (zh) * | 2020-12-31 | 2021-05-11 | 重庆西山科技股份有限公司 | 采样保持控制方法、装置和主机 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010021280A1 (ja) * | 2008-08-18 | 2010-02-25 | 日本電信電話株式会社 | ベクトル合成型移相器、光トランシーバおよび制御回路 |
US10425165B1 (en) * | 2008-09-11 | 2019-09-24 | Luxtera, Inc. | Method and system for a distributed optical transmitter with local domain splitting |
JP5630325B2 (ja) * | 2011-02-25 | 2014-11-26 | 住友電気工業株式会社 | 利得可変差動増幅回路 |
US8732511B2 (en) * | 2011-09-29 | 2014-05-20 | Lsi Corporation | Resistor ladder based phase interpolation |
US9252743B2 (en) * | 2012-09-28 | 2016-02-02 | Intel Corporation | Distributed polyphase filter |
JP6471619B2 (ja) * | 2015-06-12 | 2019-02-20 | 株式会社デンソー | 電子装置 |
JP6755093B2 (ja) * | 2016-01-08 | 2020-09-16 | ラピスセミコンダクタ株式会社 | 無線送信装置及び無線送信方法 |
CN110048692A (zh) * | 2018-03-14 | 2019-07-23 | 平湖市奥特模星电子有限公司 | 一种矢量相加移相器跨象限移相方法与电路 |
EP3716493B1 (en) * | 2019-03-29 | 2021-11-10 | Nokia Solutions and Networks Oy | Full duplex transmission arrangement |
US11349576B2 (en) * | 2019-06-28 | 2022-05-31 | Adtran, Inc. | Systems and methods for communicating high speed signals in a communication device |
EP4256700A1 (en) * | 2020-12-07 | 2023-10-11 | Telefonaktiebolaget LM Ericsson (publ) | An amplifier arrangement with enhanced harmonic rejection |
US11177932B1 (en) * | 2021-04-20 | 2021-11-16 | Faraday Technology Corp. | System for generating multi phase clocks across wide frequency band using tunable passive polyphase filters |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0363093B2 (ja) | 1982-04-30 | 1991-09-30 | Nippon Electric Co | |
JPH0535349A (ja) * | 1991-06-25 | 1993-02-12 | Toshiba Corp | 半導体装置 |
JPH0798577A (ja) * | 1993-07-21 | 1995-04-11 | Seiko Epson Corp | 電源供給装置、液晶表示装置及び電源供給方法 |
JPH10256884A (ja) * | 1997-03-12 | 1998-09-25 | Mitsubishi Electric Corp | 電圧比較器及びa/dコンバータ |
JP2001217682A (ja) * | 1999-11-26 | 2001-08-10 | Fujitsu Ltd | 位相合成回路およびタイミング信号発生回路 |
JP2004032446A (ja) | 2002-06-26 | 2004-01-29 | Nec Saitama Ltd | 局部発振信号生成回路、及びそれを用いた無線装置 |
JP2004187188A (ja) | 2002-12-06 | 2004-07-02 | Nippon Telegr & Teleph Corp <Ntt> | アナログ・ディジタル変換器 |
JP2006318381A (ja) * | 2005-05-16 | 2006-11-24 | Seiko Epson Corp | 電圧発生回路 |
JP2007208472A (ja) * | 2006-01-31 | 2007-08-16 | Fujitsu Ltd | 光送信器 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2314423C3 (de) * | 1973-03-23 | 1981-08-27 | Robert Bosch Gmbh, 7000 Stuttgart | Verfahren zur Herstellung einer Referenzgleichspannungsquelle |
US4383212A (en) * | 1978-06-12 | 1983-05-10 | Ballman Gray C | Battery charger control device with D-C disconnect and A-C interrupt |
JPS57143915A (en) * | 1981-03-02 | 1982-09-06 | Nippon Telegr & Teleph Corp <Ntt> | Infinite phase shifter |
US5933010A (en) * | 1998-01-13 | 1999-08-03 | Moreno; Gil G. | Device to detect charging condition of a storage battery |
JP4692979B2 (ja) * | 2001-08-30 | 2011-06-01 | ルネサスエレクトロニクス株式会社 | Ad変換器 |
US6950030B2 (en) * | 2002-09-05 | 2005-09-27 | Credo Technology Corporation | Battery charge indicating circuit |
JP2006515971A (ja) | 2003-01-08 | 2006-06-08 | シリフィック ワイヤレス コーポレーション | 無線周波(rf)信号のアップコンバージョンおよびダウンコンバージョンのための再生分周器 |
CA2415917A1 (en) * | 2003-01-08 | 2004-07-08 | Sirific Wireless Corporation | Regenerative divider used for up-conversion and down conversion |
US6894550B2 (en) * | 2003-10-06 | 2005-05-17 | Harris Corporation | Phase shifter control voltage distribution in a phased array utilizing voltage-proportional phase shift devices |
JP4595309B2 (ja) | 2003-10-17 | 2010-12-08 | 東レ株式会社 | 難燃性ポリエステルの製造法 |
KR20090068454A (ko) * | 2007-12-24 | 2009-06-29 | 삼성전자주식회사 | 아날로그 디지털 컨버터의 기준 전압 발생 장치 |
WO2010021280A1 (ja) * | 2008-08-18 | 2010-02-25 | 日本電信電話株式会社 | ベクトル合成型移相器、光トランシーバおよび制御回路 |
-
2009
- 2009-08-12 CN CN200980148244.1A patent/CN102232204B/zh not_active Expired - Fee Related
- 2009-08-12 EP EP09831750.6A patent/EP2365413B1/en not_active Not-in-force
- 2009-08-12 WO PCT/JP2009/064240 patent/WO2010067644A1/ja active Application Filing
- 2009-08-12 US US13/132,308 patent/US8687973B2/en active Active
- 2009-08-12 JP JP2010542047A patent/JP5260680B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0363093B2 (ja) | 1982-04-30 | 1991-09-30 | Nippon Electric Co | |
JPH0535349A (ja) * | 1991-06-25 | 1993-02-12 | Toshiba Corp | 半導体装置 |
JPH0798577A (ja) * | 1993-07-21 | 1995-04-11 | Seiko Epson Corp | 電源供給装置、液晶表示装置及び電源供給方法 |
JPH10256884A (ja) * | 1997-03-12 | 1998-09-25 | Mitsubishi Electric Corp | 電圧比較器及びa/dコンバータ |
JP2001217682A (ja) * | 1999-11-26 | 2001-08-10 | Fujitsu Ltd | 位相合成回路およびタイミング信号発生回路 |
JP2004032446A (ja) | 2002-06-26 | 2004-01-29 | Nec Saitama Ltd | 局部発振信号生成回路、及びそれを用いた無線装置 |
JP2004187188A (ja) | 2002-12-06 | 2004-07-02 | Nippon Telegr & Teleph Corp <Ntt> | アナログ・ディジタル変換器 |
JP2006318381A (ja) * | 2005-05-16 | 2006-11-24 | Seiko Epson Corp | 電圧発生回路 |
JP2007208472A (ja) * | 2006-01-31 | 2007-08-16 | Fujitsu Ltd | 光送信器 |
Non-Patent Citations (3)
Title |
---|
KWANG-JIN KOH ET AL.: "0.13-pm CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 42, no. 11, November 2007 (2007-11-01), pages 2535 - 2546 |
PAUL R. GRAY, ROBERT G. MEYER: "Analysis and design of analog integrated circuits", 1977, JOHN WILEY & SONS, INC., pages: 227 - 231 |
See also references of EP2365413A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110316495A1 (en) * | 2009-12-15 | 2011-12-29 | Nxp B.V. | Circuit for a switch mode power supply |
US8659280B2 (en) * | 2009-12-15 | 2014-02-25 | Nxp B.V. | Circuit for a switch mode power supply having a transient detection portion |
KR101352080B1 (ko) | 2012-02-07 | 2014-01-15 | 한국표준과학연구원 | 전압분배장치 및 그 구현방법 |
JP2014206652A (ja) * | 2013-04-12 | 2014-10-30 | 日本電信電話株式会社 | 光変調器 |
CN112787656A (zh) * | 2020-12-31 | 2021-05-11 | 重庆西山科技股份有限公司 | 采样保持控制方法、装置和主机 |
CN112787656B (zh) * | 2020-12-31 | 2022-11-15 | 重庆西山科技股份有限公司 | 采样保持控制方法、装置和主机 |
Also Published As
Publication number | Publication date |
---|---|
EP2365413B1 (en) | 2014-07-02 |
CN102232204A (zh) | 2011-11-02 |
JP5260680B2 (ja) | 2013-08-14 |
EP2365413A1 (en) | 2011-09-14 |
CN102232204B (zh) | 2014-05-14 |
JPWO2010067644A1 (ja) | 2012-05-17 |
EP2365413A4 (en) | 2012-09-05 |
US20110236027A1 (en) | 2011-09-29 |
US8687973B2 (en) | 2014-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5266325B2 (ja) | ベクトル合成型移相器、光トランシーバおよび制御回路 | |
JP5260680B2 (ja) | 電圧発生器、制御回路、ベクトル合成型移相器および光トランシーバ | |
US8570199B2 (en) | Digital to analog converter circuits and methods | |
EP2497188A1 (en) | Digital affine transformation modulated power amplifier for wireless communications | |
JP2010538560A (ja) | 乗算器、ミキサ、モジュレータ、受信器及び送信器 | |
Ellermeyer et al. | DA and AD converters in SiGe technology: Speed and resolution for ultra high data rate applications | |
US8692700B2 (en) | Sigma-delta digital-to-analog converter | |
JP2010226234A (ja) | 増幅回路及び磁気センサ | |
JP5144672B2 (ja) | 電力増幅回路ならびにそれを用いた送信機および無線通信機 | |
Ferenci et al. | A 25 GHz analog multiplexer for a 50GS/s D/A-conversion system in InP DHBT technology | |
JP2016063535A (ja) | ダイレクトデジタル無線周波数変調器 | |
EP0892495A2 (en) | Balance-to-single signal converting circuit | |
JP2013118555A (ja) | 制御回路および位相変調器 | |
JP4926761B2 (ja) | デジタルアナログ変換回路 | |
JP6445286B2 (ja) | 位相検出器、位相調整回路、受信器及び送信器 | |
JP2013118554A (ja) | 位相変調器 | |
Schostak et al. | 190 GBd PAM-4 Signal Generation using Analog Multiplexer IC with On-Chip Clock Multiplier | |
JP3250579B2 (ja) | 歪補正回路 | |
JP2010113483A (ja) | 加算器並びにそれを用いた電力合成器、直交変調器、直交復調器、電力増幅器、送信機、及び無線通信機 | |
US6943643B2 (en) | Controllable two-phase network with amplitude compensation | |
JP2014206652A (ja) | 光変調器 | |
JPH0951360A (ja) | アナログ信号のレベルシフト回路及びこれを用いた信号波形発生装置 | |
JP2001156553A (ja) | 歪み信号発生回路 | |
JP2018533302A (ja) | アナログ信号発生装置および関連使用 | |
JPH06318825A (ja) | 直流増幅回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980148244.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09831750 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010542047 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009831750 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13132308 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |