JP2018533302A - アナログ信号発生装置および関連使用 - Google Patents

アナログ信号発生装置および関連使用 Download PDF

Info

Publication number
JP2018533302A
JP2018533302A JP2018520418A JP2018520418A JP2018533302A JP 2018533302 A JP2018533302 A JP 2018533302A JP 2018520418 A JP2018520418 A JP 2018520418A JP 2018520418 A JP2018520418 A JP 2018520418A JP 2018533302 A JP2018533302 A JP 2018533302A
Authority
JP
Japan
Prior art keywords
generator
current
input
group
analog signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018520418A
Other languages
English (en)
Inventor
ガレック,パトリック
モンティニー,リシャール
リベ,フランソワ
ドバル,ヤン
ベラック,ヨアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of JP2018533302A publication Critical patent/JP2018533302A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/502Details of the final digital/analogue conversion following the digital delta-sigma modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/02Generating pulses having essentially a finite slope or stepped portions having stepped portions, e.g. staircase waveform
    • H03K4/023Generating pulses having essentially a finite slope or stepped portions having stepped portions, e.g. staircase waveform by repetitive charge or discharge of a capacitor, analogue generators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/742Simultaneous conversion using current sources as quantisation value generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)
  • Amplifiers (AREA)

Abstract

本発明の主題は、ノイズ整形を伴うデジタル符号を計算するためのモジュール(11)によって生成される制御符号(cmd)によって制御される電流ポンプ(12)を備えたアナログ信号発生装置(10)である。計算モジュール(11)は、発生させるべきアナログ信号を表すデジタル信号(In)を入力として受け取り、少なくとも1つの量子化器と、量子化誤差補償段(115)とを備える。電流ポンプ(12)は、少なくとも1つの電流発生器(51)の2つの群(G1、G2)と、少なくとも1つのスイッチ手段(52)の2つの群(c1、C2)とを備え、前記スイッチ手段は、制御信号により制御されて、電流発生器と、主として容量性の入力インピーダンスを呈しスイッチ手段の前記2つの群の間に直列に接続される差動増幅器(55)の入力との間に、電流を流れさせる。

Description

本発明は、信号発生の分野に関する。本発明は、より詳細にはアナログ信号発生装置およびその関連使用に関する。
本発明による装置の特定用途は、ソフトウェア無線との関連における、より具体的には第5世代携帯電話通信規格(5G)のための、アナログ信号の送出に関する。
一般的な方式では、信号発生装置は、レーダ信号の発生、ジャム信号の発生、遠距離通信信号の発生、インタリーブ信号の発生などの、デジタル符号に基づいたアナログ信号の発生を実施する任意の分野にその用途を見いだすことができる。
従来、無線信号は、デジタル領域内のベースバンドで発生し、アナログ領域に変換され、それからキャリア信号を乗じることによって無線周波数に引き上げられて増幅器に導かれた。この方法の欠点は、それが周波数引き上げ部をアナログ領域に一体化し、一度アナログに変換された信号がその後別のアナログ信号と混合されるので、したがって増幅器の非線形性をデジタル領域で補償することができないことである。この方法を用いて、ベースバンド誤差だけを補償することができる。そのうえ、この方法は、幾分柔軟性がなく再構成可能でない。
別の方法は、ダイレクトデジタル合成(DDS)によってデジタル領域で周波数を引き上げるものである。周波数引き上げ動作は、動作周波数の倍数であるキャリア周波数を実施し、それにより、発生させることが可能なキャリア周波数の範囲を限定するので、この第2の方法もまた、柔軟性を欠いている。
具体的には仏国特許出願第13 01142号明細書から、アナログ信号を発生させるためのシステムが同様に知られている。しかしながら、このシステムは、0次積分を使用し、したがって作り出される誤差は、1次積分に対してかなり大きい。
仏国特許出願第13 01142号明細書
本発明の目的は、具体的には、障害を限定し、かつエネルギーをほとんど消費せずに、デジタル符号化に基づいて任意のアナログ信号を発生させることを可能にする、再構成可能な解決策を提案することによって、従来技術の欠点のすべてまたは一部を補正することである。
この目的で、本発明の主題は、ノイズ整形を伴うデジタル符号を計算するためのモジュールによって生成されるデジタル制御符号によって制御される電流ポンプを備えたアナログ信号発生装置であり、ノイズ整形を伴うデジタル符号を計算するための前記モジュールは、少なくとも1つの量子化器を備えて、発生させるべきアナログ信号を表すデジタル信号をモジュールの入力において受け取り、
ノイズ整形を伴うデジタル符号を計算するための前記モジュールは、量子化誤差補償段を備え、
前記電流ポンプは、
− 少なくとも1つの電流発生器の第1および第2の群であって、第1の群の各発生器は第2の群の発生器に相補的であり、2つの相補的な発生器は反対の振幅の電流を供給する、少なくとも1つの電流発生器の第1および第2の群と、
− 主として容量性の入力インピーダンスを呈する差動増幅器と、
− 少なくとも1つのスイッチ手段の第1および第2の群であって、スイッチ手段の第1の群は、少なくとも1つの電流発生器の第1の群の各発生器によって供給される電流を、差動増幅器の第1の入力に向かって、または第2の入力に向かって、独立して方向づけ、スイッチ手段の第2の群は、差動増幅器の第1の入力から、または第2の入力から生じる電流を、少なくとも1つの電流発生器の第2の群の各発生器に向かって、独立して方向づけ、前記差動増幅器の入力は、スイッチ手段の2つの群の間に直列に接続される、少なくとも1つのスイッチ手段の第1および第2の群と、
を備え、
− スイッチ手段の第1の群はデジタル制御符号によって制御され、スイッチ手段の第2の群は前記デジタル制御符号の相補的な符号によって制御される。
一実施形態によれば、電流ポンプは、差動増幅器の入力の1つに対して電圧の平均振幅を調整するように構成された調整モジュールを備え、前記調整モジュールは、所定の振幅の基準電圧と同様に、差動増幅器の前記入力における電圧の振幅を表す信号を入力として受け取り、電流発生器の2つの群のうちの1つの各発生器の方向に制御信号を出力として供給し、前記制御信号は、相補的な発生器によって供給される電流の振幅間で起こり得る不均衡を補償するように、発生器の出力電流の振幅を修正するように構成される。
一実施形態によれば、アナログ信号発生装置は、ノイズ整形を伴うデジタル符号を計算するためのモジュールと電流ポンプとの間に接続された予歪モジュールを備え、前記予歪モジュールは、予歪を作成して差動増幅器の非線形性を補償するように、デジタル符号を修正するように構成される。
一実施形態によれば、アナログ信号発生装置は、少なくとも2つの電流発生器の2つの群および少なくとも2つのスイッチ手段の2つの群を備える。
一実施形態によれば、アナログ信号発生装置は、全く同一の集積回路上に集積される。
本発明の主題は、同様に、デルタ変調器における、前述のアナログ信号発生装置の使用である。
本発明の他の特徴および利点は、非限定的な実例を用い添付の図面を参照して与えられる、以下の説明を読めばよりはっきりと明らかになるであろう。
本発明によるアナログ信号発生器の例示的な実施形態を表す。 誤差の補償の原理を例示する。 リーマン符号の計算を例示するブロック図の実施例である。 リーマン符号の計算を例示するブロック図の実施例である。 本発明によるノイズ整形の原理を例示するブロック図の実施例である。 本発明によるノイズ整形の原理を例示するブロック図の実施例である。 本発明による電流ポンプの例示的な実施形態を表す。 本発明によるアナログ信号構成の原理を例示する 本発明による信号発生装置の使用例を表す。 量子化器の例示的な実施形態を表す
図1は、本発明によるアナログ信号発生装置10の例示的な実施形態を表す。
任意の信号を発生させるためのこの装置10は、望ましい信号の時間的変化のデジタル符号化によって、あらゆるアナログ信号の構成を可能にする。装置は、2進列を発生させ、容量性負荷における切替電流の時間積分によってアナログ信号を構成することを可能にする電流ポンプ12を駆動する、信号のデジタル符号化を実施する(完全に表されていない)デジタル部を備える。デジタル部は、発生させるアナログ信号の周波数帯域から量子化ノイズの一部を排除することを可能にする、ノイズ整形を伴うデジタル符号を計算するためのモジュール11を備え、したがって、制限されたビット数を遵守しつつ、発生させるアナログ信号の品質を改善する。このモジュール11は、前記デジタル部の最終段に対応する。ノイズ整形を伴うデジタル符号を計算するためのモジュール11は、(Nは整数である)Nビットデジタルバスを通して電流ポンプ12と直列に接続される。ノイズ整形を伴うデジタル符号を計算するためのモジュール11は、前記アナログ信号発生装置10の出力における望ましいアナログ信号の(wはNよりも厳密に大きい整数である)wビットでのデジタル表現に対応するデジタル信号Inを入力として受け取る。このモジュール11の機能は、発生させるべきアナログ信号のNビット離散導関数を計算することである。
ノイズ整形を伴うデジタル符号を計算するためのモジュール11は、1つまたは複数のマイクロプロセッサ、プロセッサ、コンピュータまたは適当な方式でプログラムされたその他の同等の手段を備え得る。
図2から図4を参照して、誤差の補正の原理を解説する。
図2は、時間領域における誤差の補償の原理を例示する。yをアナログ信号発生装置10からの出力として発生させたいアナログ信号とする。発明者らは、ナイキスト基準に準拠して周波数fでサンプリングされた、発生させたいアナログ信号yのk番目のサンプルをy(k)で表示する。y(k)は、リーマンの公式で計算された信号の信号のk番目のサンプルを表す。k番目のサンプルの量子化誤差は、e(k)で表示され、
(k)=y(k)−y(k)
で定義される。
発明者らは、図2の図表(a)について言及する。提示された実施例で、k番目の繰返しの後、取得された信号のサンプルy(k)の値と理論的信号のサンプルy(k)の値との間に量子化誤差e(k)が存在する。y(k)の値は、目標サンプルy(k)の値よりも小さい。
従来の近似符号では、次の繰返しにおける目標サンプルは、y(k+1)になる。ノイズ整形符号の原理は、次の繰返しk+1においてサンプルy(k+1)を計算するために、繰返しkにおいて生じた誤差を考慮することである。したがって、次の繰返しにおけるサンプルy(k+1)の計算中に、サンプルy(k+1)の理論値を目指す代わりに、符号は、前の繰返しの誤差e(k)を統合し、
s_corr(k+1)=y(k+1)−e(k)
で定義される、このサンプルの補正値ys_corr(k+1)を目指すことになる。
図2の図表bを参照すると、符号は、次の繰返しの計算の前に現在の繰返しの量子化誤差e(k)をサンプルy(k)の値に加算する。したがって、サンプルy(k+1)が計算されるとき、2つのサンプル間の平均誤差が減じられる。
図3は、ブロック図を活用して、誤差補償がないリーマン符号の計算の原理を例示する。(wは整数である)wビットでサンプリングされたデジタル入力信号Inは、レジスタ30に送り込まれる。レジスタの出力において、この信号305から、前の繰返し345において取得された信号が加算器31を通して減算される。結果として生じる信号315は、その後、量子化器32を通して(Nはwよりも小さい整数である)Nビットで量子化される。信号を再構成するために、現在の繰返しの信号と前の繰返しの信号との間の差分に対応する出力信号325の一部は、前の繰返し345において取得された信号に加算器33を通して加算され、そして次に、その信号を遅延させてそれを次の繰返しの信号と同期させるように、遅延ブロック34を通過する。
図4は、例示的なブロック図を活用して、本発明による誤差補償原理を解説する。この図表は、量子化誤差補償段115が付加された、前に提示した図表に対応する。この補償段115は、再構成された信号に量子化誤差を加算するように構成される。
前と同じように、ブロック図は、レジスタ40、第1の加算器41および量子化器42を含む。第1の加算器41は、レジスタ40からの出力として取得された現在の繰返しの信号405と補償後の前の繰返しの信号475との間の差分を形成するように構成される。量子化器42により、この信号の差分415をNビットで量子化することが可能になる。
ブロック図は、加算器43および遅延ブロック44を含む、現在の繰返しの信号を再構成するためのループ112を同様に含む。加算器43は、出力信号425の一部に前の繰返しにおいて取得された信号445の一部を加算するように構成される。遅延ブロック44は、再構成された信号435を遅延させ、したがってそれを次の繰返しの信号と同期させるように構成される。
量子化誤差補償段115は、2つの加算器45、47および遅延ブロック46を備える。第1の加算器45は、量子化器42の入力と出力との間に接続される。この加算器45は、前記量子化器42によって生じた量子化誤差455を計算するために、前記量子化器42の出力信号425から前記量子化器42の入力に存在する信号415を減算するように構成される。遅延ブロック46は、量子化誤差に対応する信号455を次の繰返しの信号と同期させるために遅延させるように構成される。第2の加算器47は、補償された信号を形成するために、量子化誤差に対応する信号455と再構成された信号445とを合算するように構成される。
前に述べたように、出力信号は、Nビットで符号化され、誤差の計算は、wはNよりも大きい整数である、wビットで行われる。実際に、量子化誤差は、Nビットで符号化される最小有効ビット(または”Less significant Bit”を表すLSB)よりも小さいので、前記量子化誤差の計算は、より良い分解能で行われなければならず、したがって、Nよりも大きいビット数wで符号化される。理論上、wとNとの間の差が大きいほど計算はより正確になるが、実際は1つまたは2つの追加ビットで十分である。
発明者らは、図3bおよび4bについて言及する。これらのブロック図で、量子化器は追加のノイズE(z)によってモデル化される。
誤差補償なしのリーマン符号では、入力信号Xおよび量子化誤差Eに関する伝達関数Uは、式
(z)=X(z)(1−z−1)+E(z)(1−z−1
によって与えられる。
そして、積分後に、出力信号Yは、形式
Y(z)=X(z)−1+E(z)−1
で記すことができる。
入力信号Xおよび量子化誤差Eに関する、本発明によるノイズ整形を伴うデジタル符号を計算するためのモジュール11の伝達関数Uは、式
U(z)=X(z)(1−z−1)+E(z)(1−z−1
によって与えられる。
積分後に、出力信号Yは、形式
Y(z)=X(z)−1+E(z)−1.(1−z−1
で記すことができる。
前と同じように、信号Xおよび量子化誤差Eは、z−1を乗じられ、したがって遅延させられるが、量子化誤差は、(1−z−1)を同様に乗じられ、これは1次高域通過タイプのフィルタ処理に対応する。ノイズ整形を伴うデジタル符号を計算するためのモジュール11内の量子化誤差補償段115の追加により、発生させるアナログ信号の周波数帯域から量子化ノイズの一部を除くことが可能になる。
量子化ノイズを低減することによって性能を改善するために、より高次の誤差補償ループが実施され得るが、これは、実装の簡潔性、通過帯域および安定性を犠牲にすることになる。
図5は、本発明による電流ポンプ12の例示的な実施形態を表す。この電流ポンプは、1次の電流遮断器を備える。この回路の役割は、前述の誤差補償モジュール11によってNビットで符号化され供給されたデジタル符号またはデジタル制御信号cmdに基づいて、望ましいアナログ信号を構成することである。したがって、電流ポンプ12は、少なくとも1つの電流発生器51の2つの群G1、G2と、少なくとも1つのスイッチ手段52の2つの群C1、C2と、主として容量性の入力インピーダンスを呈する差動増幅器とを備える。本発明は、これらの2つの群G1、G2の間に直列に接続された増幅器の入力段からなる容量性負荷を有する、少なくとも1つの電流発生器51の2つの群G1、G2の相補システムを用いる。
1つの発生器群G1の各電流発生器51は、調節可能な振幅の電流を供給するのに対して、もう1つの群G2の1つまたは複数の発生器の振幅は、固定されている。
第1の発生器群G1の各電流発生器51は、第2の発生器群G2の発生器51に相補的である。2つの相補的な電流発生器51は、同じ振幅であるが反対符号の電流を供給する。第1の発生器51群G1は電流をプッシュし、第2の群G2は電流をプルする。各電流発生器51は、振幅+/−2n−1の電流を供給し、ここでnは、電流発生器のランクを表し1からNまで変化する整数であり、Iは、所定の電流振幅の値である。
スイッチ手段52の第1の群C1は、少なくとも1つの電流発生器51の第1の群G1の各発生器51によって供給される電流を、差動増幅器55の第1の入力e1に向かって、または第2の入力e2に向かって、独立して方向づける。スイッチ手段52の第2の群C2は、差動増幅器55の第1の入力e1から、または第2の入力e2から、生じる電流を、少なくとも1つの電流発生器51の第2の群G2の各発生器51に向かって、独立して方向づける。各スイッチ手段52は、制御信号によって活性化または非活性化される。第1の群C1のスイッチ手段は、制御信号cmdによって制御され、第2の群C2は、その相補信号
Figure 2018533302
によって制御される。この目的で、モジュール53が電流ポンプ12の入力に接続される。このモジュール53は、制御信号cmdを入力として受け取り、前記制御信号cmdおよびその相補信号
Figure 2018533302
を出力として供給する。
スイッチ手段52の各群C1、C2および電流発生器51の各群G1、G2は、電流発生器と同数のスイッチ手段を備える。スイッチ手段52のそれぞれは、電流発生器51と差動増幅器55の入力e1、e2との間に直列に接続される。差動増幅器55の各入力e1、e2を通して流れる電流の振幅は、したがって、活性化されたスイッチ手段の数およびランクに依存する。
電流発生器51の各群G1、G2およびスイッチ手段52の各群C1、C2が少なくとも2つの要素を備える実施形態では、それらのそれぞれのスイッチ手段と直列に接続された電流発生器は、互いに並列に接続される。差動増幅器55は、スイッチ手段52の2つの群C1、C2の間に直列に接続される。
有利な方式では、増幅器55は差動的に供給され、それにより、非対称電源に対してその消費量を減少させることが可能になる。
同じように、デジタル入力符号が変化しないとき、電流源はオフにされることがわかる。実際に、容量性負荷は電流源と直列に接続されているので、この負荷を通過する直流は存在し得ず、したがって電流源のDC消費量は存在し得ない。可変デジタル信号が入力で受け渡されるとすぐに、直列に接続されたコンデンサと電流源の組合せは、その動作ゾーンで自己バイアスする。それにより、信号を発生させる必要がないとすぐに、システムが自動的にオフにされるので、信号発生装置10の消費量は、従来のアーキテクチャに対して低減される。
図6を参照すると、発生させるべきアナログ信号の構成は、この信号の区分線形関数への分解に依拠する。この図で、yは、時間の関数としてのアナログ信号のグラフ表示である。さまざまな時点x(0)、x(1)、x(2)、...およびこれらの時点における信号yのそれぞれの振幅ys(0)、ys(1)、ys(2)の値が考慮される。サンプリングステップ幅に対応する2つの連続的な時点x(i)およびx(i+1)を隔てる時間間隔δtにわたってこれらの関数を表す曲線に対応する直線S(1)、S(2)、S(3)およびS(4)の部分によって表される、所定の方向係数を有する4つの線形関数が同様に考慮される。各線形関数の方向係数は、異なる勾配を定義することになる。
目的は、望ましい信号yを近似することになる、さまざまな所定の線形関数を活用して区分的に線形関数を生成することである。したがって、各時点x(i)において、線形関数は、時点x(i)における信号yの振幅の値ys(i)とこの同じ時点における選択された線形関数の値yr(i)との間の誤差eq(i)を最小化するように、所定の関数のセットの中から選択されることになる。
図5を参照すると、活性化されたスイッチ手段52の数および活性化されたスイッチ手段のランクに従って、差動増幅器55の入力インピーダンスを通過する電流は、より大きくまたはより小さくなる。電流ポンプ12の原理は、区分アナログ信号を発生させるための、差動増幅器55の主として容量性の入力インピーダンスにおける定電流の積分に基づいている。増幅器55の入力インピーダンスは、それを通過する電流およびこの電流が流れる時間に応じて多少急速に充電される、RC回路(Rは抵抗器を表し、Cはコンデンサを表す)に例えることができる。発生する電流に従って、発生させるべきアナログ信号を近似するために、異なる方向係数を有し、したがって異なる勾配を有する、いくつかの定義済み線形関数を生成することができる。N個の電流発生器51の2つの群G1、G2を用いて、2個の異なる線形関数を定義することができる。
有利な方式では、供給される電流を対にすることにより、正の勾配と負の勾配の良好なバランスをとることが可能になる。
一実施形態によれば、電流ポンプ12は、差動増幅器55の入力e1またはe2とグラウンドとの間に、差動増幅器の端子の1つに対して電圧の振幅の平均値を調整するように構成された調整モジュール54を備える。したがって、調整モジュール54は、電流発生器51の2つの群G1、G2のうちの1つに接続され、所定の振幅の基準電圧と同様に、差動増幅器55の前記端子または入力e1、e2における電圧の振幅を表す信号を入力として受け取る。
調整モジュール54は、差動増幅器55の入力とグラウンドとの間の電圧の平均値を基準信号と比較し、電流発生器51の2つの群G1、G2のうちの1つの各発生器51の方向に制御信号を出力として供給する。この制御信号は、相補的な発生器51によって供給される電流の振幅で起こり得る不均衡を補償するように、発生器51の出力電流の振幅を修正するように構成される。電流発生器51によって供給される電流は、差動増幅器55の2つの入力の一方または他方にバランスよく切り替えられるので、これらの2つの分岐の間にDC電圧は確立されない。したがって、差動増幅器の2つの入力分岐の1つとグラウンドとの間の平均電圧を支配下に置くことによって同相を調整することが可能である。
調整モジュール54の目的は、平均電圧が特に温度的にドリフトするのを防ぐために、電流発生器51の2つの群G1、G2のバランスをとることである。
代替の実施形態によれば、調整モジュール54は、電流発生器51の2つの群G1、G2の発生器51のそれぞれの方向に制御信号を出力として供給することができる。
優先的な方式では、さらなる安定性のために、調整モジュール54は、電流発生器の2つの群のうちのただ1つだけを、第2の群に対してそのバランスをとるために調整する。
一実施形態によれば、信号発生装置10は、ノイズ整形を伴うデジタル符号を計算するためのモジュール11と電流ポンプ12との間に直列に予歪モジュール13を備え得る。この予歪モジュール13は、差動増幅器55の起こり得る非線形性を補償することが可能なデジタル信号を発生させるように構成される。増幅器の非線形性の補償は、周知の技術であり、当業者に既知の任意の方法を介して実行することができる。それは、例えば、予歪を作成するようにデジタル符号を修正することによって実行することができる。
一実施形態によれば、信号発生装置10は、全く同一のチップ、集積回路または特定用途向け集積回路(ASIC)上に集積することができる。
有利な方式では、本発明によるアナログ信号発生装置10により、同じ速度で従来の変換器の電力消費量よりもはるかに低い電力消費量を有するデジタルアナログ変換器を製造することが可能になる。装置10により、適度な複雑さで良好な性能のアナログ信号を発生させることが可能になる。実際に装置10は、ほんの少数の構成要素しか必要とせず、したがってそのコストを低減し、とりわけ、その非常に低いエネルギー消費量は、自律性へのその影響を最小化する。この最後の点は、携帯電話通信、ワイヤレス分野、または自律性が主要パラメータである無人飛行機での使用に非常に有利である。
本発明によるアナログ信号発生装置10の別の利点は、それにより同相ノイズを低減することが可能になるということである。
図7は、デルタ変調器における信号発生装置10の可能な使用例を提示する。このデルタ変調器は、加算器71、量子化器72、クロックを再形成するためのモジュール73(または通常の専門用語による”Delay Flip Flop”を表すDFF)および前述のようなアナログ信号発生装置10を備える。
デルタ変調器の入力信号Sinは、加算器71を通して、量子化後のこの信号の再構成された値から減算される。前記加算器71の出力信号715は、その後、量子化器72を活用してNレベルで量子化される。Nレベルの出力信号725は、その後、クロック信号clockに対してさまざまなレベルを同期させるために、クロックを再形成するためのモジュール73を通してデジタル化される。
量子化器72の出力信号725の一部は、量子化後の入力信号を再構成するためにアナログ信号発生装置10に向けられる。
実例として、図8は、N個の比較器80を活用した量子化器72の例示的な実施形態を提示する。各比較器80は、加算器71の出力における信号715の電圧を基準レベルの基準電圧特性と比較する。

Claims (6)

  1. ノイズ整形を伴うデジタル符号を計算するためのモジュール(11)によって生成されるデジタル制御符号(cmd)によって制御される電流ポンプ(12)を備えたアナログ信号発生装置(10)であって、ノイズ整形を伴う前記デジタル符号を計算するための前記モジュール(11)は、少なくとも1つの量子化器を備えて、発生させるべきアナログ信号を表すデジタル信号(In)を入力として受け取り、
    前記装置(10)は、ノイズ整形を伴う前記デジタル符号を計算するための前記モジュール(11)が量子化誤差補償段(115)を備えることと、
    前記電流ポンプ(12)が、
    − 少なくとも1つの電流発生器(51)の第1および第2の群(G1、G2)であって、前記第1の群(G1)の各発生器(51)は前記第2の群(G2)の発生器(51)に相補的であり、2つの相補的な発生器(51)は反対の振幅の電流を供給する、少なくとも1つの電流発生器(51)の第1および第2の群(G1、G2)と、
    − 主として容量性の入力インピーダンスを呈する差動増幅器(55)と、
    − 少なくとも1つのスイッチ手段(52)の第1および第2の群(C1、C2)であって、スイッチ手段(52)の前記第1の群(C1)は、少なくとも1つの電流発生器の前記第1の群(G1)の各発生器(51)によって供給される前記電流を、前記差動増幅器(55)の第1の入力(e1)に向かって、または第2の入力(e2)に向かって、独立して方向づけ、スイッチ手段(52)の前記第2の群は、前記差動増幅器(55)の前記第1の入力(e1)から、または前記第2の入力(e2)から生じる前記電流を、少なくとも1つの電流発生器の前記第2の群(G2)の各発生器(51)に向かって、独立して方向づけ、前記差動増幅器(55)の前記入力は、スイッチ手段(52)の前記2つの群(C1、C2)の間に直列に接続される、少なくとも1つのスイッチ手段(52)の第1および第2の群(C1、C2)と、
    を備え、
    − スイッチ手段(52)の前記第1の群(C1)は前記デジタル制御符号(cmd)によって制御され、スイッチ手段(52)の前記第2の群(C2)は前記デジタル制御符号(cmd)の相補的な符号
    Figure 2018533302
    によって制御されることと、
    を特徴とする、アナログ信号発生装置(10)。
  2. 前記電流ポンプ(12)は、前記差動増幅器(55)の前記入力(e1、e2)の1つに対して電圧の平均振幅を調整するように構成された調整モジュール(54)を備え、前記調整モジュール(54)は、所定の振幅の基準電圧と同様に、前記差動増幅器(55)の前記入力における前記電圧の前記振幅を表す信号を入力として受け取り、電流発生器(51)の前記2つの群(G1、G2)のうちの1つの各発生器(51)の方向に制御信号を出力として供給し、前記制御信号は、前記相補的な発生器(51)によって供給される前記電流の前記振幅間で起こり得る不均衡を補償するように、前記発生器の前記出力電流の前記振幅を修正するように構成される、請求項1に記載のアナログ信号発生装置(10)。
  3. 前記装置(10)は、ノイズ整形を伴う前記デジタル符号を計算するための前記モジュール(11)と前記電流ポンプ(12)との間に接続された予歪モジュール(13)を備え、前記予歪モジュール(13)は、予歪を作成して前記差動増幅器(55)の非線形性を補償するように前記デジタル符号を修正するように構成される、請求項1または2に記載のアナログ信号発生装置(10)。
  4. 前記装置(10)は、少なくとも2つの電流発生器(51)の2つの群(G1、G2)および少なくとも2つのスイッチ手段(52)の2つの群(C1、C2)を備える、請求項1〜3のいずれか一項に記載のアナログ信号発生装置(10)。
  5. 前記装置(10)は、全く同一の集積回路上に集積される、請求項1〜4のいずれか一項に記載のアナログ信号発生装置(10)。
  6. デルタ変調器における、請求項1〜5のいずれか一項に記載のアナログ信号発生装置(10)の使用。
JP2018520418A 2015-10-21 2016-10-10 アナログ信号発生装置および関連使用 Pending JP2018533302A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1502229A FR3042928B1 (fr) 2015-10-21 2015-10-21 Dispositif de generation de signaux analogiques et utilisation associee
FR1502229 2015-10-21
PCT/EP2016/074148 WO2017067804A1 (fr) 2015-10-21 2016-10-10 Dispositif de generation de signaux analogiques et utilisation associee

Publications (1)

Publication Number Publication Date
JP2018533302A true JP2018533302A (ja) 2018-11-08

Family

ID=55542708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018520418A Pending JP2018533302A (ja) 2015-10-21 2016-10-10 アナログ信号発生装置および関連使用

Country Status (7)

Country Link
US (1) US10340942B2 (ja)
EP (1) EP3365974A1 (ja)
JP (1) JP2018533302A (ja)
KR (1) KR20180071342A (ja)
CN (1) CN108292915A (ja)
FR (1) FR3042928B1 (ja)
WO (1) WO2017067804A1 (ja)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1301142A (fr) 1961-09-08 1962-08-10 Perfectionnement aux dispositifs d'affichage et similaires
US5977899A (en) * 1997-09-25 1999-11-02 Analog Devices, Inc. Digital-to-analog converter using noise-shaped segmentation
DE10038372C2 (de) * 2000-08-07 2003-03-13 Infineon Technologies Ag Differentieller Digital/Analog-Wandler
US7421037B2 (en) * 2003-11-20 2008-09-02 Nokia Corporation Reconfigurable transmitter with direct digital to RF modulator
US7173554B2 (en) * 2004-11-17 2007-02-06 Analog Devices, Inc. Method and a digital-to-analog converter for converting a time varying digital input signal
US7307568B1 (en) * 2004-11-19 2007-12-11 Analog Devices, Inc. Return-to-hold switching scheme for DAC output stage
EP1966894B1 (en) * 2005-12-28 2010-02-10 Analog Devices, Inc. Architecture combining a continuous-time stage with a switched-capacitor stage for digital-to-analog converters and low-pass filters
DE102007056732B4 (de) * 2007-11-26 2012-10-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur effizienten Analog-zu-Digital-Wandlung
US7956782B2 (en) * 2009-06-11 2011-06-07 Honeywell International Inc. Current-mode sigma-delta digital-to-analog converter
US7969340B2 (en) * 2009-07-22 2011-06-28 Mediatek Inc. Noise-shaped segmented digital-to-analog converter
CN101621298A (zh) * 2009-08-03 2010-01-06 和芯微电子(四川)有限公司 一种能提高信噪比的δ-σ调制器
US7986255B2 (en) * 2009-11-24 2011-07-26 Nxp B.V. High resolution overlapping bit segmented DAC
US8519877B1 (en) * 2012-03-28 2013-08-27 Texas Instruments Incorporated Low noise and low power arrangement for playing audio signals
FR3005815B1 (fr) 2013-05-17 2019-09-20 Thales Systeme de generation d'un signal analogique
CN104980159B (zh) * 2015-06-29 2017-11-28 清华大学深圳研究生院 一种基于电荷泵和压控振荡器的过采样模数转换器
US9397676B1 (en) * 2015-09-29 2016-07-19 Analog Devices, Inc. Low power switching techniques for digital-to-analog converters

Also Published As

Publication number Publication date
US20180287627A1 (en) 2018-10-04
EP3365974A1 (fr) 2018-08-29
FR3042928B1 (fr) 2018-11-30
CN108292915A (zh) 2018-07-17
FR3042928A1 (fr) 2017-04-28
WO2017067804A1 (fr) 2017-04-27
KR20180071342A (ko) 2018-06-27
US10340942B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
US6373334B1 (en) Real time correction of a digital PWM amplifier
JP2024055899A (ja) ミックスドシグナル回路における直交関数を用いた適応的非直線性識別及び補償
US20160134300A1 (en) Sar adc and method thereof
US8193845B2 (en) Binary-weighted delta-sigma fractional-N frequency synthesizer with digital-to-analog differentiators canceling quantization noise
JP2010526496A (ja) 積分回路への直接出力接続のある内部安定器経路を持つデルタシグマ変調を使用した信号処理システム
JP6271764B2 (ja) 無線周波数通信のための信号変調
US9240801B2 (en) Analog-to-digital converter
US10615820B2 (en) Systems and methods for digital excess loop delay compensation in a continuous time delta sigma modulator
WO2005029694A1 (en) An adaptive wideband digital amplifier for linearly modulated signal amplification and transmission
US10833699B1 (en) Resistor based delta sigma multiplying DAC with integrated reconstruction filter
US8284088B2 (en) Digital to-analog converter
WO2015094454A1 (en) Circuits and methods for transmitting signals
US6980139B2 (en) Sigma-delta-modulator
US9813077B2 (en) Asynchronous electrical circuitry techniques for producing stationary carrier signal to encode input signal amplitude into output signal time-sequence information
US10523234B2 (en) Signal processing arrangement, sensor arrangement and signal processing method
US7230559B2 (en) Quantizer in a multilevel sigma-delta analogue/digital converter
KR19980702855A (ko) 호모다인 수신기를 위한 평형 압신 델타 변환
JP2018533302A (ja) アナログ信号発生装置および関連使用
Runge et al. A digital compensation method canceling static and non-linear time-variant feedback DAC errors in ΣΔ analog-to-digital converters
JP2005117431A (ja) アナログ信号出力回路及び該アナログ信号出力回路を用いたマルチレベルδς変調器
JP2852282B2 (ja) クロックジェネレータ
JP4376598B2 (ja) アナログ/ディジタル変換器における誤りを適応的に補償する方法および装置
WO2005036734A1 (en) Power supply compensation
US8698661B2 (en) System and method for pulse width modulation digital-to-analog converter
US20230421167A1 (en) Noise shaper variable quantizer