WO2010066230A2 - Verfahren zur herstellung nahtloser rohre mittels eines drei-walzen-stangenwalzwerks - Google Patents

Verfahren zur herstellung nahtloser rohre mittels eines drei-walzen-stangenwalzwerks Download PDF

Info

Publication number
WO2010066230A2
WO2010066230A2 PCT/DE2009/001685 DE2009001685W WO2010066230A2 WO 2010066230 A2 WO2010066230 A2 WO 2010066230A2 DE 2009001685 W DE2009001685 W DE 2009001685W WO 2010066230 A2 WO2010066230 A2 WO 2010066230A2
Authority
WO
WIPO (PCT)
Prior art keywords
rolling mill
upstream
employment
stand
hollow block
Prior art date
Application number
PCT/DE2009/001685
Other languages
English (en)
French (fr)
Other versions
WO2010066230A3 (de
Inventor
Rolf Kümmerling
Manfred Bellmann
Winfried Braun
Hidenori Kinugasa
Sasaki Kenichi
Original Assignee
V & M Deutschland Gmbh
Sumitomo Metal Industries, Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN200980149662.2A priority Critical patent/CN102245321B/zh
Priority to ES09805676T priority patent/ES2396424T3/es
Priority to US13/133,518 priority patent/US9056341B2/en
Priority to MX2011006054A priority patent/MX2011006054A/es
Priority to CA2745586A priority patent/CA2745586A1/en
Priority to EP09805676A priority patent/EP2358485B1/de
Priority to EA201100924A priority patent/EA018319B1/ru
Priority to UAA201108582A priority patent/UA100933C2/ru
Application filed by V & M Deutschland Gmbh, Sumitomo Metal Industries, Ltd filed Critical V & M Deutschland Gmbh
Priority to JP2011539891A priority patent/JP5679981B2/ja
Priority to BRPI0922639-7A priority patent/BRPI0922639B1/pt
Priority to AU2009326655A priority patent/AU2009326655A1/en
Priority to PL09805676T priority patent/PL2358485T3/pl
Publication of WO2010066230A2 publication Critical patent/WO2010066230A2/de
Publication of WO2010066230A3 publication Critical patent/WO2010066230A3/de
Priority to TN2011000273A priority patent/TN2011000273A1/fr
Priority to ZA2011/04275A priority patent/ZA201104275B/en
Priority to HRP20120985AT priority patent/HRP20120985T1/hr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/024Rolls for bars, rods, rounds, tubes, wire or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B23/00Tube-rolling not restricted to methods provided for in only one of groups B21B17/00, B21B19/00, B21B21/00, e.g. combined processes planetary tube rolling, auxiliary arrangements, e.g. lubricating, special tube blanks, continuous casting combined with tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length
    • B21B17/04Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills

Definitions

  • the invention relates to a method for producing seamless pipes by means of a three-roll bar rolling mill according to the preamble of claim 1.
  • Bar rolling mills e.g. Working according to the tube contour method are used for the production of seamless tubes. They have the task to strip a previously produced by means of oblique rolling hot hollow block to a mother tube. This mother tube is then reduced in a rectifier- or stretch-reducing mill to the desired final size.
  • bar rolling mills are very sensitive to variations in the wall thickness and the diameter of the incoming hollow block. However, such variations can not always be avoided in the cross rolling process, over which the hollow block is normally made.
  • cross-rolling mills with Diescher discs as guide means produce hollow blocks with diameters that deviate from the "fillet area" in the head and foot areas.These deviations can lead to caliber underfilling, wall thickening, holes and caliber overfilling in the bar rolling process.
  • a disadvantage of known Hohlblockreduzierger ⁇ sten is that change the rolling conditions in the bar mill at different diameters of the hollow block yet.
  • Object of the present invention is for a three-roll bar mill, the calibration and the driving of Void Reduction Stands (VRS) set so that apply even with different diameters of the hollow block almost equal rolling conditions for forming in bar mill.
  • VRS Void Reduction Stands
  • a method is used to solve this problem, in which the rolls of the upstream scaffold up and shut down to the same extent as the deformation stands of the rod rolling mill, the Kalibergroundradius the rolls of the upstream scaffold extends over 60 ° and this a flank radius follows with a tangential transition, which is so dimensioned that even with maximum infeed of the rolls in the region of the flank almost no reduction in diameter of the largest expected hollow block diameter takes place.
  • the great advantage of the present invention is that with the proposed procedure and the corresponding calibration on the one hand the fluctuation range of the diameter of the incoming into the bar mill hollow block can be significantly reduced, on the other hand, it is possible by the calibration of the invention, even at different diameters of the hollow block tube almost same conditions for to adjust the bar rolling, which manifests itself in a much more uniform quality in the geometry of the tube.
  • the employment of the upstream scaffold is adjusted according to the employment of the first stand of the rod rolling mill, that the average game to the rod for the employment of the 1st scaffold remains the same in its absolute size.
  • a constant rod clearance at the outlet of the hollow block reducing framework leads to uniform deformation conditions during rolling and thus to a significantly improved tube quality.
  • all stands of the bar rolling mill can be employed for a given rod diameter to achieve the desired wall thickness behind the bar mill by the same amount, this amount also corresponds to the setting of the upstream scaffold.
  • the employment of the upstream scaffold corresponds only to the employment of the first stand of the rod rolling mill in its absolute size.
  • the cooperation of hollow block reduction scaffolding and subsequent 1st scaffolding is crucial for the quality of the rolling process.
  • the employment of the upstream scaffold corresponds to the employment of the first stand of the rod rolling mill in its relative size.
  • the employment in its relative size has the advantage that in addition to the almost constant input conditions for the rod rolling mill and the wear is taken into account (wear compensation) and so the maturities are improved.
  • the caliber base radius has an eccentricity which is dimensioned such that it becomes zero when the upstream framework is driven up to the maximum.
  • so-forming contact surface roller rolling has a positive effect on the roller wear on the calibration jump. Furthermore, this has the positive effect of reducing outer surface imperfections, such as caliber strips.
  • a Kaibergroundradius AI is defined, which is constantly enlarging into a Kaliberflankenradius Bl passes.
  • a round calibration is proposed, in which a basic radius R1 transitions tangentially into an edge radius over an angular length of 60 °, whose working area per flank is 30 ° (FIG. 1a). Also shown in FIG. 1a is the roll axis (1), the caliber contour (2), the eccentricity (3) of the caliber base radius R1, the caliber base radius R1 (4) and the caliber flank radius R2 (5).
  • the advantage of this calibration is that it can halve the variation in the hollow block diameter from the hollow block reduction frame (VRS) compared to the oval calibration.
  • the size Bl is used for the distance between the roll axis and the caliber base
  • the size AI is used for the distance between the roll axis and the caliber flank.
  • the hollow blocks produced by the cross rolling mill generally have a tolerance in the outer diameter of z. B. 2.5%.
  • the VRS should be able to record the maximum hollow block diameter x 0.99 to 1.00 in the change in the caliber (2 x AI).
  • the diameter in the center of the caliber (2 x Bl) should correspond to the minimum hollow block diameter x 0.99 to 1.00.
  • the mean caliber diameter is 2 x (Bl + (AI - Bl) / 2)
  • AI 1, 00 x hollow block diameter max. / 2 51, 25 mm
  • AI 1, 00 x hollow block diameter max. 51.25 mm
  • the oval calibration achieves a tolerance improvement from 5 to 2.5% (50%) and the round calibration improves from 5 to 1.25% (75%).
  • FIG. 1b shows the VRS stand (left) and the first stand of the bar rolling mill (right), c and c 'correspond to the nominal position VRS stand and 1st stand of the three-roll bar rolling mill, where c' is the opening dimension of the caliber of the VRS and c is the opening dimension of the caliber of the bar rolling mill at nominal position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)
  • Forging (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von nahtlosen Rohren aus Metall, insbesondere aus Stahl, wobei ein zuvor erzeugter heißer Hohlblock mittels eines Drei-Walzen-Stangenwalzwerkes auf einer Dornstange zu einem Mutterohr abgestreckt wird und der Hohlblock vor Einlaufen in das Stangenwalzwerk über ein vorgeschaltetes Gerüst mit einem den Durchmesser vergleichmäßigenden Walzschritt versehen wird. Dabei ist vorgesehen, dass die Walzen des vorgeschalteten Gerüstes in gleichem Maße auf- und zugefahren werden wie die Verformungsgerüste des Stangenwalzwerkes, wobei der Kalibergrundradius der Walzen des vorgeschalteten Gerüstes sich über 60° erstreckt und diesem ein Flankenradius mit tangentialem Übergang folgt, der so bemessen ist, dass auch bei maximalem Zustellen der Walzen im Bereich der Flanke nahezu keine Durchmesserreduktion des größten zu erwartenden Hohlblockdurchmessers erfolgt.

Description

Verfahren zur Herstellung nahtloser Rohre mittels eines Drei-Walzen- Stangenwalzwerks
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung nahtloser Rohre mittels eines Drei- Walzen-Stangenwalzwerks gemäß dem Oberbegriff des Patentanspruches 1.
Ein gattungsgemäßes Verfahren wird im Stahlrohr Handbuch (Vulkan-Verlag, Essen, 12. Auflage 1995, S.107-111) beschrieben.
Stangenwalzwerke, die z.B. nach dem Rohrkontiverfahren arbeiten, werden für die Herstellung nahtloser Rohre benutzt. Sie haben die Aufgabe, einen zuvor mittels Schrägwalzen erzeugten heißen Hohlblock zu einem Mutterrohr abzustrecken. Dieses Mutterrohr wird anschließend in einem Maß- oder Streckreduzierwalzwerk auf die gewünschte Endabmessung reduziert.
Grundsätzlich gibt es Stangenwalzwerke in zwei Ausführungsformen, mit zwei oder drei Walzen pro Gerüst. Die Gerüstanzahl schwankt dabei üblicherweise zwischen vier und acht.
Es ist bekannt, dass Stangenwalzwerke sehr empfindlich auf Schwankungen der Wanddicke und des Durchmessers des einlaufenden Hohlblocks reagieren. Solche Schwankungen lassen sich beim Schrägwalzprozess, über den der Hohlblock normalerweise hergestellt wird jedoch nicht immer vermeiden.
Insbesondere Schrägwalzwerke mit Diescherscheiben als Führungsmittel erzeugen Hohlblöcke mit Durchmessern, die im Kopf- und Fußbereich vom „Filetbereich" abweichen. Diese Abweichungen können im Stangenwalzprozess zu Kaliberunterfüllungen, Wanddickeneinschnürungen bis hin zu Löchern und Kaliberüberfüllungen führen.
Um solche Fehler zu minimieren ist es weiterhin bekannt, dem Stangenwalzprozess ein Hohlblockreduziergerüst (Void Reduction Stand) vorzuschalten. Bei einem Zwei-Walzen- Stangenwalzwerkes hat ein solches Gerüst vier Walzen und bei einem Drei- Walzen- Walzwerkes drei Walzen.
Nachteilig bei bekannten Hohlblockreduziergerϋsten ist, dass sich die Walzbedingungen im Stangenwalzwerk bei unterschiedlichen Durchmessern des Hohlblockes dennoch ändern.
Hieraus resultiert, dass für das Stangenwalzwerk unterschiedliche Eingangsbedingungen bei der Verformung entstehen (Eingangsspiel Hohlblock zu Stange,
Außendurchmesserreduktion im 1. Gerüst), was wiederum negative Auswirkungen auf die Qualität des Rohres haben kann.
Aufgabe der vorliegenden Erfindung ist es für ein Drei-Walzen-Stangenwalzwerk die Kalibrierung und die Fahrweise des Void Reduction Stands (VRS) so festzulegen, dass auch bei unterschiedlichen Durchmessern des Hohlblocks nahezu gleiche Walzbedingungen für die Umformung im Stangenwalzwerk gelten.
Hierbei gilt es die Durchmesserabweichungen im Hohlblock oder auch von Hohlblock zu Hohlblock für das Walzen im Stangenwalzwerk möglichst auszugleichen und gleichzeitig ein Unter- oder Überfüllen des Kalibers zu verhindern.
Diese Aufgabe wird nach dem Oberbegriff in Verbindung mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand von Unteransprüchen.
Nach der Lehre der Erfindung wird zur Lösung dieser Aufgabe ein Verfahren verwendet, bei dem die Walzen des vorgeschalteten Gerüstes in gleichem Maße auf- und zugefahren werden wie die Verformungsgerüste des Stangenwalzwerkes, wobei der Kalibergrundradius der Walzen des vorgeschalteten Gerüstes sich über 60° erstreckt und diesem ein Flankenradius mit tangentialem Übergang folgt, der so bemessen ist, dass auch bei maximalem Zustellen der Walzen im Bereich der Flanke nahezu keine Durchmesserreduktion des größten zu erwartenden Hohlblockdurchmessers erfolgt.
Der große Vorteil der vorliegenden Erfindung besteht darin, dass mit der vorgeschlagenen Verfahrensweise und der entsprechenden Kalibrierung einerseits die Schwankungsbreite des Durchmessers des in das Stangenwalzwerk einlaufenden Hohlblocks deutlich reduziert werden kann, andererseits wird es durch die erfindungsgemäße Kalibrierung möglich, auch bei unterschiedlichen Durchmessern des Hohlblockrohres nahezu gleiche Bedingungen für das Stangenwalzen einzustellen, was sich in einer sehr viel gleichmäßigeren Qualität in der Geometrie des Rohres bemerkbar macht.
In einer vorteilhaften Weiterbildung der Erfindung wird die Anstellung des vorgeschalteten Gerüstes entsprechend der Anstellung des ersten Gerüstes des Stangenwalzwerkes so eingestellt, dass das mittlere Spiel zur Stange für den Anstellungsbereich des 1. Gerüstes in seiner absoluten Größe gleich bleibt.
Ein konstantes Stangenspiel am Ausgang des Hohlblockreduziergerüstes führt zu gleichmäßigen Verformungsbedingungen beim Walzen und damit zu einer deutlich verbesserten Rohrqualität.
Nach einem weiteren vorteilhaften Merkmal der Erfindung können alle Gerüste des Stangenwalzwerks bei gegebenem Stangendurchmesser zum Erzielen der gewünschten Wanddicke hinter dem Stangenwalzwerk um den gleichen Betrag angestellt werden, wobei dieser Betrag auch der Einstellung des vorgeschalteten Gerüstes entspricht.
Hierzu bedarf es im Gegensatz zum konstanten Eingangsspiel keiner komplizierten Berechnung für die Anstellungsänderung. Dies hat den.weiteren Vorteil, dass für das Stangenwalzwerk kein Über- und Unterfüllen des Kalibers erfolgen kann, d. h. die Eingangsbedingungen bezogen auf den Außendurchmesser für das Walzen im Stangenwalzwerk sind nahezu konstant.
Nach weiteren vorteilhaften Merkmalen der Erfindung entspricht die Anstellung des vorgeschalteten Gerüstes nur der Anstellung des ersten Gerüstes des Stangenwalzwerkes in seiner absoluten Größe. Das Zusammenarbeiten von Hohlblockreduziergerüst und nachfolgendem 1. Arbeitsgerüst ist entscheidend für die Qualität des Walzprozesses. Alternativ ist es aber auch möglich, dass die Anstellung des vorgeschalteten Gerüstes der Anstellung des ersten Gerüstes des Stangenwalzwerkes in seiner relativen Größe entspricht.
Die Anstellung in seiner relativen Größe hat den Vorteil, dass neben den nahezu konstanten Eingangsbedingungen für das Stangenwalzwerk auch dem Verschleiß Rechnung getragen wird (Verschleißausgleich) und so die Laufzeiten verbessert werden. In einer weiteren vorteilhaften Weiterbildung der Erfindung weist der Kalibergrundradius eine .Exzentrizität auf, die so bemessen ist, dass diese bei maximalem Auffahren des vorgeschalteten Gerüstes zu Null wird.
Vorteilhaft ist hierbei, dass die sich so ausbildende Kontaktfläche Walze-Walzgut positiv auf den Walzenverschleiß am Kalibersprung auswirkt. Des Weiteren hat dies den positiven Effekt, dass Außenoberflächenfehler, wie beispielsweise Kaliberstreifen, reduziert werden.
Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von einem in einer Zeichnung dargestellten Ausführungsbeispiel. In der einzigen Figur ist die erfindungsgemäße Kalibrierung des vorgeschalteten Gerüstes eines Void Reduction Stands (VRS) dargestellt und wird im Folgenden näher beschrieben.
Reduziergerüste nach dem Stand der Technik werden üblicherweise oval kalibriert. Dazu wird ein Kaibergrundradius AI definiert, der sich ständig vergrößernd in einen Kaliberflankenradius Bl übergeht.
Im Gegensatz dazu wird erfindungsgemäß eine Rundkalibrierung vorgeschlagen, bei der ein Grundradius R1 auf einer Winkellänge von 60° tangential in einen Flankenradius übergeht, dessen Arbeitsbereich je Flanke 30 ° beträgt (Figur 1a). Dargestellt ist in Figur 1a außerdem die Walzenachse (1), die Kaliberkontur (2), die Exzentrizität (3) des Kalibergrundradius R1, der Kalibergrundradius R1 (4) sowie der Kaliberflankenradius R2 (5).
Vorteil dieser Kalibrierung ist es, dass damit die Schwankung des aus dem Hohlblockreduziergerüst (VRS) auslaufenden Hohlblockdurchmessers gegenüber der Ovalkalibrierung halbiert werden kann.
Am folgenden Beispiel wird dies näher erläutert. Hierbei werden für den Abstand Walzenachse zum Kalibergrund die Größe Bl und für den Abstand Walzenachse zur Kaliberflanke die Größe AI verwendet.
Die vom Schrägwalzwerk erzeugten Hohlblöcke weisen im Allgemeinen eine Toleranz im Außendurchmesser von z. B. 2,5 % auf. Der VRS sollte im Kalibersprung den maximalen Hohlblockdurchmesser x 0,99 bis 1 ,00 aufnehmen können (2 x AI). Der Durchmesser in Kalibermitte (2 x Bl) sollte dem minimalen Hohlblockdurchmesser x 0,99 bis 1,00 entsprechen.
Die beiden Kalibrierungsmethoden führen zu folgenden Ergebnissen:
Ovalkalibrierung
Radius mit Bl auf Kalibermitte und kontinuierlichem Anstieg auf AI im Kalibersprung. Der mittlere Kaliberdurchmesser ergibt sich zu 2 x (Bl + (AI - Bl) / 2)
Rundkalibrierung
Radius mit Bl auf Kalibermitte über 60 Grad (+/- 30 Grad) und kontinuierlichem Anstieg auf AI im Kalibersprung (jeweils 30 Grad). Der mittlere Kaliberdurchmesser ergibt sich in guter Näherung zu 2 x (Bl + (AI - Bl) / 4)
Beispiel:
Hohlblockdurchmesser maximal 102,50 mm
Hohlblockdurchmesser im Mittel 100,00 mm
Hohlblockdurchmesser minimal 97,50 mm
Eingangstoleranz maximal 5,00 mm
Ovalkalibrierung
AI = 1 ,00 x Hohlblockdurchmesser max. / 2 51 ,25 mm
Bl = 1 ,00 x Hohlblockdurchmesser min. / 2 48,75 mm
VRS-Durchmesser min. = 2 x Bl 97,50 mm
VRS-Durchmesser max. 2 x (48,75 + (51,25 - 48,75) / 2) 100,00 mm
Damit verlässt ein Hohlblock mit einem Durchmesser >=100 mm den VRS mit 100 mm. Ein kleinerer Durchmesse bleibt in seiner Größe erhalten.
Ausgangstoleranz maximal 2,50 %
Rundkalibrierung
AI = 1 ,00 x Hohlblockdurchmesser max. 51,25 mm
Bl = Hohlblockdurchmesser min. / 2 48,75 mm VRS-Durchmesser min. = 2 x BI 97,50 mm
VRS-Durchmesser max. 2 x (48,75 + (51 ,25 - 48,75) / 4) 98,75 mm
Damit verlässt ein Hohlblock mit einem Durchmesser >=98,75 mm den VRS mit 98,75 mm. Ein kleinerer Durchmesse bleibt in seiner Größe erhalten.
Ausgangtoleranz maximal 1,25 % (bezogen auf den Nennhohlblockdurchmesser)
Mit der Ovalkalibrierung wird eine Toleranzverbesserung von 5 auf 2,5 % (50 %) erreicht und mit der Rundkalibrierung eine Verbesserung von 5 auf 1 ,25 % (75 %).
Auf derselben Walzstange werden unterschiedliche Wanddicken gewalzt. Dazu müssen die Arbeitsgerüste auf und zugefahren werden. Diesem Auf und Zufahren sollte der VRS näherungsweise folgen, da nur so die Zusammenarbeit VRS mit den Arbeitsgerüsten näherungsweise gleich bleibt.
In Figur 1b ist das VRS Gerüst (links) und das 1. Gerüst des Stangenwalzwerkes (rechts) dargestellt, c und c' entsprechen der Nominalstellung VRS-Gerüst und 1. Gerüst des Drei- Walzen-Stangenwalzwerks, wobei c' das Öffnungsmaß des Kalibers des VRS und c das Öffnungsmaß des Kalibers des Stangenwalzwerkes bei Nominalanstellung ist.
a und a' symbolisieren die positive Änderung der Anstellung (Auffahren) des Stangenwalzwerkes und des VRS- Gerüstes.
b und b' symbolisieren die negative Änderung der Anstellung (Zufahren) des Stangenwalzwerkes und des VRS- Gerüstes.
Berechnung
„absolut gleich":
Der Verfahrweg (positiv = Auffahren, negativ = Zufahren) erste Gerüste des Stangenwalzwerks und des VRS-Gerüstes sind in ihrem Betrag absolut gleich (a' = a und b' = b).
„relativ gleich": Der Verfahrweg (positiv = Auffahren, negativ = Zufahren) des VRS-Gerüstes zum ersten Gerüst des Stangenwalzwerks ist relativ gleich, d. h. es ist eine Funktion aus Nominalstellung (c, c') und dem Verfahrweg des 1. Walzgerüstes (a, b)
„absolut gleich": b ≥ a a' = a b' = b oder
„relativ gleich": a + c a' + cf
C C'
Figure imgf000009_0001
z B c = 100mm ; a = lmm , c' = 88mm
Figure imgf000009_0002
Bezugszeichenliste
Figure imgf000010_0001

Claims

Patentansprüche
1. Verfahren zur Herstellung von nahtlosen Rohren aus Metall, insbesondere aus Stahl, wobei ein zuvor erzeugter heißer Hohlblock mittels eines Drei-Walzen-Stangenwalzwerks auf einer Dornstange zu einem Mutterrohr abgestreckt wird und der Hohlblock vor Einlaufen in das Stangenwalzwerk über ein vorgeschaltetes Gerüst mit einem den Durchmesser vergleichmäßigenden Walzschritt versehen wird dadurch gekennzeichnet, dass die Walzen des vorgeschalteten Gerüstes in gleichem Maße auf- und zugefahren werden wie die Verformungsgerüste des Stangenwalzwerkes, wobei der Kalibergrundradius der Walzen des vorgeschalteten Gerüstes sich über 60° erstreckt und diesem ein Flankenradius mit tangentialem Übergang folgt, der so bemessen ist, dass auch bei maximalem Zustellen der Walzen im Bereich der Flanke nahezu keine Durchmesserreduktion des größten zu erwartenden Hohlblockdurchmessers erfolgt.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass alle Gerüste des Stangenwalzwerks bei gegebenem Stangensatz zum Erzielen der gewünschten Wanddicke hinter dem Stangenwalzwerk um den gleichen Betrag angestellt werden, wobei dieser Betrag auch der Einstellung des vorgeschalteten Gerüstes entspricht.
3. Verfahren nach Anspruch 1 und 2 dadurch gekennzeichnet, dass die Anstellung des vorgeschalteten Gerüstes der Anstellung des ersten Gerüstes des Stangenwalzwerkes in seiner absoluten Größe entspricht.
4. Verfahren nach Anspruch 1 und 2 dadurch gekennzeichnet, dass die Anstellung des vorgeschalteten Gerüstes der Anstellung des ersten Gerüstes des Stangenwalzwerks in seiner relativen Größe entspricht.
5. Verfahren nach einem der Ansprüche 1 - 4 dadurch gekennzeichnet, dass die Anstellung des vorgeschalteten Gerüstes entsprechend der Anstellung des ersten Gerüstes des Stangenwalzwerkes so eingestellt wird, dass das mittlere Spiel zur Stange für den Anstellungsbereich des 1. Gerüstes in seiner absoluten Größe gleich bleibt:
6. Verfahren nach einem der Ansprüche 1 - 5 dadurch gekennzeichnet, dass der Kalibergrundradius eine Exzentrizität aufweist, die so bemessen ist, dass diese bei maximalem Auffahren des vorgeschalteten Gerüstes zu Null wird.
PCT/DE2009/001685 2008-12-09 2009-11-20 Verfahren zur herstellung nahtloser rohre mittels eines drei-walzen-stangenwalzwerks WO2010066230A2 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP2011539891A JP5679981B2 (ja) 2008-12-09 2009-11-20 3ロール式のマンドレル圧延機によって継目無管を製造する方法
ES09805676T ES2396424T3 (es) 2008-12-09 2009-11-20 Procedimiento para la fabricación de tubos sin costura por medio de un tren de laminación de barras de tres cilindros
BRPI0922639-7A BRPI0922639B1 (pt) 2008-12-09 2009-11-20 Processo para a fabricação de tubos sem costura de metal, por meio de um laminador de barra de três cilindros
CA2745586A CA2745586A1 (en) 2008-12-09 2009-11-20 Method for producing seamless tubes by means of a three-roll bar rolling mill
EP09805676A EP2358485B1 (de) 2008-12-09 2009-11-20 Verfahren zur herstellung nahtloser rohre mittels eines drei-walzen-stangenwalzwerks
EA201100924A EA018319B1 (ru) 2008-12-09 2009-11-20 Способ изготовления бесшовных труб на сортовом трехвалковом стане
UAA201108582A UA100933C2 (ru) 2008-12-09 2009-11-20 Способ изготовления бесшовных труб на сортовом трехвалковом стане
CN200980149662.2A CN102245321B (zh) 2008-12-09 2009-11-20 用于借助一台三辊式棒材轧机制造无缝管的方法
US13/133,518 US9056341B2 (en) 2008-12-09 2009-11-20 Method for producing seamless tubes by means of a three-roll bar rolling mill
MX2011006054A MX2011006054A (es) 2008-12-09 2009-11-20 Metodo para produccion de tubos sin costura mediante tren de laminacion de mandril de tres cilindros.
AU2009326655A AU2009326655A1 (en) 2008-12-09 2009-11-20 Method for producing seamless tubes by means of a three-roll bar rolling mill
PL09805676T PL2358485T3 (pl) 2008-12-09 2009-11-20 Sposób wytwarzania rur bez szwu za pomocą trójwalcowej walcarki do prętów
TN2011000273A TN2011000273A1 (en) 2008-12-09 2011-05-26 Method for producing seamless tubes by means of a three-roll bar rolling mill
ZA2011/04275A ZA201104275B (en) 2008-12-09 2011-06-08 Method for producing seamless tubes by means of a three-roll bar rolling mill
HRP20120985AT HRP20120985T1 (hr) 2008-12-09 2012-12-03 Postupak proizvodnje bešavnih cijevi u valjaonici cijevi s tri valjka

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008061141.7 2008-12-09
DE102008061141A DE102008061141B4 (de) 2008-12-09 2008-12-09 Verfahren zur Herstellung nahtloser Rohre mittels eines Drei-Walzen-Stangenwalzwerks

Publications (2)

Publication Number Publication Date
WO2010066230A2 true WO2010066230A2 (de) 2010-06-17
WO2010066230A3 WO2010066230A3 (de) 2010-09-16

Family

ID=42145697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2009/001685 WO2010066230A2 (de) 2008-12-09 2009-11-20 Verfahren zur herstellung nahtloser rohre mittels eines drei-walzen-stangenwalzwerks

Country Status (19)

Country Link
US (1) US9056341B2 (de)
EP (1) EP2358485B1 (de)
JP (1) JP5679981B2 (de)
KR (1) KR101607585B1 (de)
CN (1) CN102245321B (de)
AR (1) AR073952A1 (de)
AU (1) AU2009326655A1 (de)
BR (1) BRPI0922639B1 (de)
CA (1) CA2745586A1 (de)
DE (1) DE102008061141B4 (de)
EA (1) EA018319B1 (de)
ES (1) ES2396424T3 (de)
HR (1) HRP20120985T1 (de)
MX (1) MX2011006054A (de)
PL (1) PL2358485T3 (de)
TN (1) TN2011000273A1 (de)
UA (1) UA100933C2 (de)
WO (1) WO2010066230A2 (de)
ZA (1) ZA201104275B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012006941B4 (de) 2012-03-30 2013-10-17 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils aus Stahl durch Warmumformen
CN104874616B (zh) * 2014-02-28 2018-02-16 中南大学 一种热轧无缝钢管壁厚精度的控制方法及轧辊孔型

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137009A (en) * 1981-02-17 1982-08-24 Sumitomo Metal Ind Ltd Manufacture of seamless metallic pipe
FR2486831A1 (fr) * 1980-07-18 1982-01-22 Sumitomo Metal Ind Procede de fabrication de tubes metalliques sans soudures
JPS63144807A (ja) * 1986-12-09 1988-06-17 Kawasaki Steel Corp 円管の絞り圧延方法
IT1238224B (it) * 1989-11-30 1993-07-12 Dalmine S R L C Processo perfezionato di laminazione a caldo di tubi senza saldatura con preventiva riduzione degli sbozzati forati
JP2924523B2 (ja) * 1992-12-11 1999-07-26 住友金属工業株式会社 マンドレルミルによる金属管の延伸圧延方法
JPH09314205A (ja) * 1996-05-31 1997-12-09 Kawasaki Steel Corp 円形鋼管の絞り圧延方法
JP4389869B2 (ja) * 2003-03-26 2009-12-24 住友金属工業株式会社 継目無管の製造方法
US8166789B2 (en) * 2004-01-21 2012-05-01 Sumitomo Metal Industries, Ltd. Pipe or tube reducing mill and roll for reducing mill
CN100401257C (zh) * 2005-02-25 2008-07-09 浙江大学 无缝钢管张力减径过程仿真方法
JP4441912B2 (ja) * 2005-03-28 2010-03-31 住友金属工業株式会社 マンドレルミル圧延方法
CN101024229A (zh) * 2006-02-20 2007-08-29 李铁铎 一种不锈钢无缝复合管连铸连轧生产方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Stahlrohr Handbuch", 71119, VULKAN-VERLAG, pages: 107 - 111

Also Published As

Publication number Publication date
JP5679981B2 (ja) 2015-03-04
KR101607585B1 (ko) 2016-03-30
EP2358485A2 (de) 2011-08-24
CA2745586A1 (en) 2010-06-17
US20120125068A1 (en) 2012-05-24
EA201100924A1 (ru) 2011-12-30
TN2011000273A1 (en) 2012-12-17
EP2358485B1 (de) 2012-09-26
JP2012510902A (ja) 2012-05-17
HRP20120985T1 (hr) 2013-03-31
BRPI0922639A2 (pt) 2017-10-24
MX2011006054A (es) 2011-09-06
KR20110102443A (ko) 2011-09-16
CN102245321B (zh) 2014-09-10
ES2396424T3 (es) 2013-02-21
ZA201104275B (en) 2012-02-29
DE102008061141B4 (de) 2012-08-30
DE102008061141A1 (de) 2010-06-10
CN102245321A (zh) 2011-11-16
BRPI0922639B1 (pt) 2020-09-29
WO2010066230A3 (de) 2010-09-16
BRPI0922639A8 (pt) 2018-01-02
UA100933C2 (ru) 2013-02-11
EA018319B1 (ru) 2013-07-30
AR073952A1 (es) 2010-12-15
AU2009326655A1 (en) 2010-06-17
US9056341B2 (en) 2015-06-16
PL2358485T3 (pl) 2013-05-31

Similar Documents

Publication Publication Date Title
DE102012007379A1 (de) Verfahren zum Schrägwalzen von zylindrischen Erzeugnissen
DE102009024847B4 (de) Vorrichtung zur Herstellung wendelförmiger Wellrohre
DE2333916C2 (de) Kalibrierung der Walzen einer Reduzierwalzstraße für Rohre
DE3128055C2 (de) Schrägwalzgerüst ohne Dorn für nahtlose Metallrohre
DE2820865C2 (de) Vorrichtung zum Herstellen von Rohren
EP2358485B1 (de) Verfahren zur herstellung nahtloser rohre mittels eines drei-walzen-stangenwalzwerks
DE2347891C2 (de) Walzstraße zum Streckreduzieren von Rohren
DE3406841A1 (de) Walzenanstellung fuer ein dreiwalzen-kegelschraegwalzwerk
DE2814493A1 (de) Verfahren zum herstellen duenner rohre sowie schraegwalzwerk zur durchfuehrung des verfahrens
DE2848990A1 (de) Stossbank zum herstellen von rohrluppen
DE102005028667A1 (de) Vorrichtung zum Herstellen eines nahtlosen Hohlkörpers aus Stahl
AT391640B (de) Schraegwalzwerk zur herstellung von rundprofilen
DE3914016C1 (de)
DE680743C (de) Rohrreduzier- und Masswalzwerk
EP0445899B1 (de) Verfahren zur Herstellung von mittel- und dünnwandigen nahtlosen Rohren und Walzeinrichtung zur Durchführung des Verfahrens
DE2450224C2 (de)
DE2605486C2 (de) Verfahren zum Herstellen längsnahtgeschweißter Rohre
DE2403686C2 (de) Verfahren zum Herstellen von Metallrohren aus gut verformbaren Werkstoffen, insbesondere aus NE-Metallen, durch Kaltpilgern
DE19725314C1 (de) Schrägwalzwerk zum Strecken eines auf Umformtemperatur erwärmten nahtlosen Hohlkörpers
DE4339228C1 (de) Mehrgerüstige Walzstraße
DE102008045728B4 (de) Walzstange sowie Verfahren zur Herstellung einer Verzahnung
DE4335063C1 (de) Kaltpilgerwalzwerk zum Kaltwalzen von Rohren
DE102022004111A1 (de) Verfahren zum Schrägwalzen von Rohlingen mit der im Walzkaliber wirkenden axialen Zugkraft
EP1949979B1 (de) Walzwerk zur Herstellung nahtloser Rohre und Verfahren zum Betreiben eines Walzwerks
EP0542387B1 (de) Verfahren zum Längswalzen nahtloser Rohre

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149662.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805676

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009805676

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009326655

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2745586

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/006054

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011539891

Country of ref document: JP

Ref document number: 4033/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009326655

Country of ref document: AU

Date of ref document: 20091120

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117015851

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201100924

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201108582

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 13133518

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0922639

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110608