WO2010058692A1 - 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス - Google Patents

新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス Download PDF

Info

Publication number
WO2010058692A1
WO2010058692A1 PCT/JP2009/068660 JP2009068660W WO2010058692A1 WO 2010058692 A1 WO2010058692 A1 WO 2010058692A1 JP 2009068660 W JP2009068660 W JP 2009068660W WO 2010058692 A1 WO2010058692 A1 WO 2010058692A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound
naphthalene
reaction
dihydroxynaphthalene
Prior art date
Application number
PCT/JP2009/068660
Other languages
English (en)
French (fr)
Inventor
和男 瀧宮
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Priority to US13/130,551 priority Critical patent/US20110224445A1/en
Priority to EP09827473.1A priority patent/EP2368892B1/en
Priority to KR1020117011371A priority patent/KR101399770B1/ko
Priority to CN200980146474.4A priority patent/CN102224157B/zh
Publication of WO2010058692A1 publication Critical patent/WO2010058692A1/ja
Priority to US14/062,545 priority patent/US8816100B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/02Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
    • C07D517/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Definitions

  • the present invention relates to a novel compound, a method for producing the same, an organic semiconductor material, and an organic semiconductor device.
  • the mobility of charge carriers is important.
  • the carrier mobility affects the charge transport efficiency.
  • the charge transport efficiency is important for improving the light emission efficiency and driving at a low voltage.
  • the carrier mobility directly affects the switching speed of the transistor and the performance of the driven device. For this reason, carrier mobility is important for practical use and performance improvement of organic FET devices.
  • Non-Patent Document 1 exemplifies compounds having various benzene-thiophene skeletons.
  • Non-Patent Document 1 gives a structural formula of a compound having a naphthalene-thiophene skeleton.
  • this compound is a compound that has not been successfully synthesized so far, that is, a compound that does not exist. According to conventional knowledge of organic synthetic chemistry, it is extremely difficult to introduce a thiophene ring into a naphthalene skeleton.
  • An object of the present invention is to provide a novel compound having a naphthalene-thiophene skeleton or a naphthalene-selenophene skeleton and having good carrier mobility, and a method for producing the same, and an organic semiconductor material containing the compound, It is to provide an organic semiconductor device.
  • the compound according to the first aspect of the present invention is a compound represented by the following general formula (1), general formula (2), general formula (3) or general formula (4).
  • Z represents a sulfur atom or a selenium atom
  • R represents a hydrogen atom, an alkyl group or a phenyl group.
  • the compound according to the second aspect of the present invention is a compound represented by the following general formula (5), general formula (6), general formula (7) or general formula (8).
  • Z represents a sulfur atom or a selenium atom
  • X represents a halogen atom.
  • the method for producing a compound according to the third aspect of the present invention includes: Reacting dihalogenodihydroxynaphthalene with trifluoromethanesulfonic anhydride to obtain dihalogeno-bis (trifluoromethanesulfonyl) naphthalene; Reacting the dihalogeno-bis (trifluoromethanesulfonyl) naphthalene with a terminal acetylene compound to obtain a dihalogeno-diethynylnaphthalene derivative; Reacting the dihalogeno-diethynylnaphthalene derivative with a sulfide salt or a selenide salt; Is a method for producing a compound represented by the following general formula (1), general formula (2), general formula (3) or general formula (4). (In the above formula, Z represents a sulfur atom or a selenium atom, and R represents a hydrogen atom, an alkyl group or a phenyl group.)
  • the method for producing a compound according to the third aspect of the present invention may further include a step of reacting dihydroxynaphthalene with a halogenating agent to obtain the dihalogenodihydroxynaphthalene.
  • the dihydroxynaphthalene is 2,6-dihydroxynaphthalene;
  • the obtained compound may be a compound represented by the general formula (1) or the general formula (3).
  • the dihydroxynaphthalene is 2,7-dihydroxynaphthalene
  • the obtained compound may be a compound represented by the general formula (2).
  • the dihydroxynaphthalene is 1,5-dihydroxynaphthalene
  • the obtained compound may be a compound represented by the general formula (4).
  • the halogenating agent is preferably a brominating agent or a chlorinating agent.
  • the halogenating agent is a brominating agent; Adding a catalyst for promoting bromination of the dihydroxynaphthalene; The step of adding the brominating agent is preferably performed twice or more.
  • the terminal acetylene compound is preferably any one of trimethylsilylacetylene, phenylacetylene, and 1-decyne.
  • the reaction between the dihalogeno-bis (trifluoromethanesulfonyl) naphthalene and the terminal acetylene compound is preferably performed in a polar solvent capable of dissolving the dihalogeno-bis (trifluoromethanesulfonyl) naphthalene.
  • the polar solvent is preferably an aprotic polar solvent.
  • the aprotic polar solvent is particularly preferably dimethylformamide.
  • the method for producing a compound according to the fourth aspect of the present invention includes: The following general formula (1), general formula (2), general formula (3) or general formula (4) (In the above formula, Z represents a sulfur atom or a selenium atom, and R represents a hydrogen atom.)
  • a compound represented by the following general formula (5), general formula (6), general formula (7) or general formula (8), comprising a step of adding a halogenating agent to the compound represented by It is a manufacturing method.
  • Z represents a sulfur atom or a selenium atom
  • X represents a halogen atom.
  • the organic semiconductor material according to the fifth aspect of the present invention includes one or more compounds represented by the following general formula (1), general formula (2), general formula (3), or general formula (4).
  • Z represents a sulfur atom or a selenium atom
  • R represents a hydrogen atom, an alkyl group or a phenyl group.
  • the organic semiconductor device according to the sixth aspect of the present invention includes the organic semiconductor material according to the fifth aspect of the present invention.
  • the compound according to the present invention has a naphthalene-thiophene skeleton or a naphthalene-selenophene skeleton.
  • This compound has a conjugated system in each molecule due to the interaction of ⁇ orbitals, and further exhibits a strong intermolecular interaction via a sulfur atom or selenium atom contained in the thiophene ring or selenophene ring of each molecule. For this reason, effective carrier movement is possible. Since the compound according to the present invention has good electric field mobility, it can be used as an organic semiconductor material. This organic semiconductor material can be used for organic semiconductor devices.
  • a compound having a naphthalene-thiophene skeleton or a naphthalene-selenophene skeleton can be produced through a dihalogeno-diethynylnaphthalene derivative.
  • the hydrogen atom of naphthalene can be selectively halogenated. According to this production method, the yield of a compound having a naphthalene-thiophene skeleton or a naphthalene-selenophene skeleton can be increased.
  • FIG. 1 It is a figure which shows schematic structure of the FET element produced in the Example, Comprising: (A) is sectional drawing of FET element, (B) is the top view. (A) is a Vg-Id curve of an FET device fabricated using Compound A, and (B) is the Vd-Id curve. (A) is a Vg-Id curve of an FET device fabricated using Compound B, and (B) is the Vd-Id curve. (A) is a Vg-Id curve of an FET device fabricated using Compound C, and (B) is the Vd-Id curve. (A) is a Vg-Id curve of an FET device fabricated using Compound D, and (B) is the Vd-Id curve.
  • the novel compound according to the first embodiment of the present invention is contained in naphthalene as represented by the following general formula (1), general formula (2), general formula (3), or general formula (4).
  • Z represents a sulfur atom or a selenium atom
  • R represents a hydrogen atom, an alkyl group, or a phenyl group.
  • the two Rs contained in each compound may be the same or different from each other, but are preferably the same.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n- Linear saturated alkyl groups such as decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl Branched chain saturated alkyl groups such as i-propyl group, i-butyl group, s-butyl group and t-butyl group, cyclic saturated alkyl groups such as cyclopropyl group and cyclobutyl group, 1-propenyl,
  • the compounds represented by the general formulas (1) to (4) have a conjugated system in the molecule due to the interaction of ⁇ orbitals, and further, sulfur atoms contained in the thiophene ring or selenophene ring in each molecule or Strong intermolecular interaction through selenium atoms. Therefore, the compounds represented by the general formulas (1) to (4) can move carriers effectively and have a good electric field mobility. These compounds can be used as organic semiconductor materials.
  • the novel compound according to the second embodiment of the present invention is represented by the following general formula (5), general formula (6), general formula (7), or general formula (8).
  • Z represents a sulfur atom or a selenium atom
  • X represents a halogen atom.
  • halogen atom examples include chlorine, bromine, iodine and the like.
  • dihydroxynaphthalene and a halogenating agent are reacted to synthesize dihalogenodihydroxynaphthalene.
  • dihydroxynaphthalene one in which one hydroxy group is bonded to each of two benzene rings contained in naphthalene is used.
  • dihydroxynaphthalenes 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene or 1,5-dihydroxynaphthalene is preferable.
  • halogenating agent known substances can be used.
  • brominating agents such as bromine, N-bromosuccinimide, pyridinium perbromide hydrobromide or tetraalkylammonium tribromide, or chlorination such as chlorine, N-chlorosuccinimide, tetraalkylammonium trichloride, thionyl chloride or sulfuryl chloride
  • chlorination such as chlorine, N-chlorosuccinimide, tetraalkylammonium trichloride, thionyl chloride or sulfuryl chloride
  • An agent can be preferably used.
  • dihalogenodihydroxynaphthalene is reacted with trifluoromethanesulfonic anhydride (CF 3 SO 2 —O—SO 2 CF 3 ).
  • trifluoromethanesulfonic anhydride CF 3 SO 2 —O—SO 2 CF 3
  • Two hydroxy groups contained in dihalogenodihydroxynaphthalene react with trifluoromethanesulfonic anhydride to be converted to trifluoromethanesulfonic acid ester.
  • dihalogeno-bis (trifluoromethanesulfonyl) naphthalene is obtained.
  • dihalogeno-bis (trifluoromethanesulfonyl) naphthalene is reacted with a terminal acetylene compound.
  • the carbon to which the trifluoromethanesulfonyl group is attached is substituted to give a dihalogeno-diethynylnaphthalene derivative.
  • terminal acetylene compound for example, trimethylsilylacetylene (HC 2 Si (CH 3 ) 3 ), phenylacetylene (C 8 H 6 ), 1-decyne (C 10 H 18 ) and the like can be used.
  • the reaction between dihalogeno-bis (trifluoromethanesulfonyl) naphthalene and the terminal acetylene compound is preferably carried out in a polar solvent capable of dissolving dihalogeno-bis (trifluoromethanesulfonyl) naphthalene.
  • a polar solvent capable of dissolving dihalogeno-bis (trifluoromethanesulfonyl) naphthalene.
  • an aprotic polar solvent examples include dimethylformamide (DMF), tetrahydrofuran (THF) and the like. Note that the higher the polarity of the aprotic polar solvent used, the higher the yield of the dihalogeno-diethynylnaphthalene derivative obtained. For this reason, it is particularly preferable to use dimethylformamide having the highest polarity.
  • the obtained dihalogeno-diethynylnaphthalene derivative is reacted with a sulfide salt or a selenide salt.
  • the halogen atom contained in the dihalogeno-diethynylnaphthalene derivative is replaced with a sulfur atom or a selenium atom.
  • the introduced sulfur atom or selenium atom reacts with the triple bond of the previously introduced ethynyl group to form a thiophene ring or a selenophene ring.
  • the compounds represented by the general formula (1) to the general formula (4) can be obtained.
  • a sulfide metal salt is preferably used, and a sulfide alkali metal salt is more preferably used.
  • NaSH ⁇ nH 2 O A Japanese product (NaSH ⁇ nH 2 O) or the like is preferable.
  • selenide salt a commercially available selenide salt can be used.
  • metal selenide can be derived into a selenide salt by a known method such as reaction with sodium borohydride and used without isolation.
  • the sulfide salt used for the reaction is usually used in an amount of 1 to 16 mol per 1 mol of the dihalogeno-diethynylnaphthalene derivative. Preferably 2 to 8 moles, more preferably 2 to 5 moles are used.
  • the reaction solvent may or may not be used, but when the dihalogeno-diethynylnaphthalene derivative to be used is a solid, it is preferable to use a solvent. In this case, it is preferable that a solvent having a boiling point of 100 ° C. or higher is contained in the reaction mixture. By including a solvent having a boiling point of 100 ° C. or higher in the reaction mixture, the reaction temperature can be set high, so that the reaction rate is improved.
  • Examples of the solvent having a boiling point of 100 ° C. or higher include amides such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, ethylene glycol, propylene glycol, polyethylene glycol and the like.
  • Examples thereof include sulfoxides such as glycols and dimethyl sulfoxide.
  • the above solvent may be used usually in an amount of 0.01 to 100 mol per 1 mol of dihalogeno-diethynylnaphthalene derivative. Preferably 0.1 to 80 mol, more preferably 20 to 50 mol is used.
  • the reaction temperature is preferably -50 ° C to 300 ° C. Preferably, it is carried out at ⁇ 10 ° C. to 250 ° C., more preferably 40 ° C. to 200 ° C.
  • the catalyst may be added at each stage.
  • a catalyst for promoting the cyclization reaction metal copper or copper chloride (I), copper chloride (II), copper bromide (I), copper bromide (II), copper iodide (I) or copper iodide (II ) And the like.
  • copper halide such as metallic copper or copper (I) bromide or copper (II) bromide.
  • the target compound is isolated and purified from the reaction mixture by a known method.
  • sublimation purification particularly vacuum sublimation purification can be performed.
  • the method for producing the compound represented by the general formula (1) will be specifically described.
  • 2,6-dihydroxynaphthalene is used as dihydroxynaphthalene.
  • a brominating agent may be used as the halogenating agent.
  • the hydrogen atom bonded to the 3rd and 7th carbons can be replaced with a bromine atom relatively easily.
  • the bromine atom first replaces the hydrogen atoms bonded to the highly reactive 1st and 5th carbon atoms with a brominating agent.
  • a catalyst that promotes bromination such as iron, is added.
  • 1,3,5,7-tetrabromo-2,6-dihydroxynaphthalene can be obtained in a high yield (50% or more).
  • This is ⁇ Reaction of Tetrasulfur Tetranitride with Naphthalenols and Related Compounds '' (Bull. Chem. Soc. Jpn., Vol. 64, p. 68-73; Shuntaro Mataka, Kazufumi Takahashi, Youji Ikezaki, Taizo Taizo
  • the yield of synthesis of 1,3,5,7-tetrabromo-2,6-dihydroxynaphthalene reported by Tashiro is very high compared to 4%.
  • the 1,3,5,7-tetrabromo-2,6-dihydroxynaphthalene is reduced using, for example, flower-like tin (flaky tin).
  • flower-like tin flower-like tin
  • the bromine atom bonded to the 1-position and the 5-position is substituted with a hydrogen atom to obtain 3,7-dibromo-2,6-dihydroxynaphthalene.
  • a compound represented by the general formula (1) to the general formula (4) obtained by the above-described method for example, a compound represented by the general formula (1) to the general formula (4) obtained by the above-described method.
  • a halogenating agent is added to the compound in which R is a hydrogen atom.
  • a compound represented by general formula (1) to general formula (4), in which R is a hydrogen atom is dissolved in a solvent such as tetrahydrofuran (THF).
  • THF tetrahydrofuran
  • n-BuLi normal butyllithium
  • a solution in which a halogenating agent such as dibromotetrachloroethane is dissolved in THF is added dropwise to obtain the target product.
  • n-BuLi is added to the compounds represented by the above general formulas (1) to (4) and R is a hydrogen atom, so that the adjacent carbon of sulfur or selenium is added.
  • the bonded hydrogen is withdrawn to produce a lithium salt.
  • the substrate is halogenated.
  • a compound represented by the general formula (5) to the general formula (8) is obtained.
  • a brominating agent or an iodinating agent can be used as the halogenating agent.
  • brominating agents include dibromotetrachloroethane, bromine, pyridinium perbromide hydrobromide, and tetraalkylammonium tribromides.
  • iodizing agents include iodine, diiodoethane, perfluorohexyl iodide, and tetraalkylammonium triiodide. It can be preferably used.
  • N-BuLi is preferably added in an amount of at least 2 equivalents relative to the compound in which R is a hydrogen atom in the general formulas (1) to (4). This is because the target compound can be efficiently obtained by extracting two of the hydrogen atoms contained in the compound represented by the general formula (4) from the general formula (1).
  • an excess of n-BuLi may be added.
  • the halogenating agent may be added at a molar ratio of n-BuLi or higher.
  • these compounding ratios for example, about 3 to 5 mol of n-BuLi and about 10 mol of halogenating agent may be added to 1 mol of the compounds represented by the general formulas (1) to (4). .
  • the reaction time may be about 30 minutes to 1 hour, and even if it is less than 30 minutes, it may be shorter than this as long as the hydrogen abstraction reaction with n-BuLi is completed.
  • halogenation by halogen / lithium exchange reaction using n-BuLi is shown, but the halogenation method is not limited to this.
  • Known methods such as a method using other proton abstracting agent can be applied.
  • the organic semiconductor material according to the present invention includes one or more compounds represented by the above general formula (1), general formula (2), general formula (3), or general formula (4). .
  • the compound represented by the general formula (1), the general formula (2), the general formula (3), or the general formula (4) has a naphthalene-thiophene skeleton or a naphthalene-selenophene skeleton.
  • This compound has a conjugated system in each molecule due to the interaction of ⁇ orbitals, and further exhibits a strong intermolecular interaction via a sulfur atom or selenium atom contained in the thiophene ring or selenophene ring of each molecule. For this reason, effective carrier movement is possible.
  • the compound according to the present invention has good electric field mobility and can be used as an organic semiconductor material.
  • the organic semiconductor material may contain only one of the compounds represented by the general formulas (1) to (4), or may contain two or more of these compounds. Moreover, unless the characteristic of the compound represented by General formula (1) to General formula (4) is inhibited, other substances may be included. Alternatively, the electric field mobility may be adjusted by doping impurities using a known method.
  • the organic semiconductor device according to the present invention uses an organic semiconductor material containing at least one compound represented by the above general formula (1), general formula (2), general formula (3), or general formula (4). It is characterized by being.
  • Examples of such an organic semiconductor device include a thin film transistor having an organic semiconductor layer, and a light emitting device having an organic carrier transport layer and / or a light emitting layer.
  • organic semiconductor device known materials and structures can be employed except that the organic semiconductor material according to the present invention described above is used, and there is no particular limitation.
  • the manufacturing method of the organic semiconductor device is not particularly limited, and various conventionally known manufacturing methods can be used. Note that since the organic semiconductor material has a slightly low solubility, when it is difficult to use the coating method, the organic semiconductor material is preferably manufactured by a vacuum deposition method or the like.
  • the organic semiconductor material according to the present invention is used instead of silicon, a costly manufacturing process that is essential when using silicon is not required. For this reason, a semiconductor device can be manufactured at low cost.
  • bromine (2.6 ml) was further added dropwise to the reaction solution five times, and iron powder (50 mg, 1.3 mol) was added as a catalyst, and the reaction was allowed to proceed for 76 hours.
  • 1,3,5,7-tetrabromo-2,6-dihydroxynaphthalene was synthesized in high yield by adding bromine multiple times and adding iron powder as a catalyst. .
  • trifluoromethanesulfonic anhydride (0.7 ml, 4.4 mmol) was slowly added in an ice bath. After stirring this at room temperature for 15 hours and a half, pure water (10 ml) and 1N hydrochloric acid (10 ml) were added.
  • this reaction solution was extracted with methylene chloride (20 ml). This extraction was performed three times in the same procedure. Thereafter, the organic phase was washed with saturated brine (20 ml). This washing was performed three times in the same procedure.
  • This reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • This reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • reaction solution was cooled to room temperature and then poured into a saturated aqueous ammonium chloride solution (20 ml).
  • the precipitated yellow solid (75 mg, yield 96%) was collected by filtration.
  • This reaction solution was extracted with methylene chloride (10 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (10 ml). This washing was performed three times in the same procedure.
  • reaction solution was cooled to room temperature and then poured into a saturated aqueous ammonium chloride solution (30 ml). The precipitated solid was collected by filtration.
  • trifluoromethanesulfonic anhydride (3.3 ml, 21 mmol) was slowly added in an ice bath. After stirring for 4 and a half hours at room temperature, pure water (10 ml) and 1N hydrochloric acid (10 ml) were added to stop the reaction.
  • this reaction solution was extracted with methylene chloride (20 ml). This extraction was performed three times in the same procedure. Thereafter, the organic phase was washed with saturated brine (20 ml). This washing was performed three times in the same procedure.
  • this reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • reaction solution was cooled to room temperature and then poured into a saturated aqueous ammonium chloride solution (20 ml). The precipitated solid was collected by filtration.
  • This reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • the filtrate was extracted with hexane (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • trifluoromethanesulfonic anhydride (3.6 ml, 22 mmol) was slowly added in an ice bath. After stirring this at room temperature for 18 hours, pure water (10 ml) and 1N hydrochloric acid (10 ml) were added to stop the reaction.
  • this reaction solution was extracted with methylene chloride (20 ml). This extraction was performed three times in the same manner. After extraction, the organic phase was washed with saturated brine (20 ml). This washing was performed three times in the same manner.
  • This reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • 1,5-dichloro-2,6-bis (trimethylsilylethynyl) naphthalene 250 mg, 0.64 mmol was added and stirred at 190 ° C. for 12 hours. This was cooled to room temperature and then poured into a saturated aqueous ammonium chloride solution (50 ml). The precipitated solid was collected by filtration.
  • 1,5-dichloro-2,6-bis (trifluoromethanesulfonyl) naphthalene (493 mg, 1.0 mmol) and triethylamine (0.42 mg, 3.0 mmol) were dissolved in DMF (10 ml). The solution was degassed for 30 minutes.
  • This reaction solution was extracted with methylene chloride (10 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (10 ml). This washing was performed three times in the same procedure.
  • 1,5-dichloro-2,6-bis (trifluoromethanesulfonyl) naphthalene (493 mg, 1.0 mmol) and triethylamine (0.42 mg, 3.0 mmol) were dissolved in DMF (10 ml). The solution was degassed for 30 minutes.
  • This reaction solution was extracted with methylene chloride (10 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (10 ml). This washing was performed three times in the same procedure.
  • NMP (10 ml) and 1,5-dichloro-2,6-bis (trimethylsilylethynyl) naphthalene (100 mg, 0.26 mmol) synthesized as described above were added to this suspension and stirred at 190 ° C. for 12 hours. .
  • reaction solution was cooled to room temperature and then poured into a saturated aqueous ammonium chloride solution (50 ml).
  • the precipitated solid was collected by filtration.
  • NMP 20 ml
  • 1,5-dichloro-2,6-bis (phenylethynyl) naphthalene (200 mg, 0.5 mmol) synthesized as described above were added and stirred at 190 ° C. for 12 hours. did. After cooling this reaction liquid to room temperature, it poured into saturated ammonium chloride aqueous solution (50 mL). The precipitated solid was collected by filtration.
  • trifluoromethanesulfonic anhydride (3.3 ml, 21 mmol) was slowly added in an ice bath. After stirring this at room temperature for 4 hours 30 minutes, pure water (10 ml) and 1N hydrochloric acid (10 ml) were added to stop the reaction.
  • This reaction solution was extracted with methylene chloride (20 ml). This extraction was performed three times in the same manner. After extraction, the organic phase was washed with saturated brine (20 ml). This washing was performed three times in the same manner.
  • This reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • This reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • This reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • reaction solution was warmed to room temperature and stirred for 16 hours, and then the reaction was stopped by adding pure water (1 ml) and 1N hydrochloric acid (1 ml).
  • the reaction solution was extracted with methylene chloride (5 ml). This extraction was performed three times in the same procedure. After extraction, the organic phase was washed with saturated brine (5 ml). This washing was performed three times in the same procedure.
  • An FET element using Compound A was produced as follows. First, the SiO 2 substrate was cut into a size of 1 cm ⁇ 1 cm in area. The back surface of the SiO 2 substrate was treated with hydrofluoric acid to remove silica oxidized in the air. Next, Au was vacuum-deposited on the SiO 2 substrate to form a gate electrode. An organic thin film of Compound A was formed on the surface of the SiO 2 substrate by a vacuum deposition method. The SiO 2 substrate was used after being surface-treated with octyltrichlorosilane.
  • Au was vacuum deposited on the formed organic thin film of Compound A using a shadow mask to form a source electrode and a drain electrode.
  • FIG. 1 shows a schematic configuration of the fabricated FET element (FIG. 1A is a cross-sectional view of the FET element, and FIG. 1B is a plan view of the FET element).
  • the manufactured FET element is a top contact type.
  • the channel length is 50 ⁇ m and the channel width is 1.5 mm.
  • An FET element using Compound B was produced as follows. First, the SiO 2 substrate was cut into a size of 1 cm ⁇ 1 cm in area. The back surface of the SiO 2 substrate was treated with hydrofluoric acid to remove silica oxidized in the air. Next, Au was vacuum-deposited on the SiO 2 substrate to form a gate electrode. An organic thin film of Compound B was formed on the surface of the SiO 2 substrate by spin coating (organic thin film production conditions: 3000 rpm, 30 sec). At this time, Compound B was used as a chloroform solution (concentration 0.4 wt%).
  • Au was vacuum-deposited on the formed organic thin film of Compound B using a shadow mask to form a source electrode and a drain electrode.
  • the structure and the like of this FET element are the same as those of the other FET elements.
  • the performance of the FET element depends on the amount of current that flows when a potential is applied between the source electrode and the drain electrode while a potential is applied to the gate electrode. By measuring this current value, the electric field mobility which is a characteristic of the FET element can be determined.
  • Id is a saturated source-drain current value
  • W is a channel width
  • Co is a gate capacitance
  • Vg is a gate voltage
  • Vt is a threshold voltage
  • L is a channel length.
  • represents the electric field mobility (cm 2 / Vs) of the FET element determined by measurement. Co is determined by the dielectric constant of the SiO 2 insulating film used. W and L are determined by the element structure of the FET element.
  • Id and Vg are determined when the current value of the FET element is measured.
  • Vt can be obtained from Id and Vg.
  • the threshold voltage [Vt] was obtained as the Vg value at which the curve rises when plotting the square root of -Id on the Y axis and Vg on the X axis.
  • Each FET element was evaluated by applying a negative gate voltage and driving it in the atmosphere in order to investigate the p-type FET characteristics.
  • FIG. 2 is a diagram showing the FET characteristics of an FET element produced using Compound A.
  • FIG. 3 is a diagram showing the FET characteristics of an FET element manufactured using Compound B.
  • FIG. 4 is a diagram showing the FET characteristics of an FET element produced using Compound C.
  • FIG. 5 is a diagram showing the FET characteristics of an FET element produced using Compound D.
  • FIG. 2 (A), FIG. 3 (A), FIG. 4 (A) and FIG. 5 (A) are Vg-Id curves of the respective FET elements.
  • 2B, FIG. 3B, FIG. 4B, and FIG. 5B are Vd-Id curves of the respective FET elements.
  • the Vg-Id curve shows the gate voltage (Vg) and current (Id) when the source-drain voltage (Vd) is fixed so that the current (Id) becomes a saturation current value in the output characteristics.
  • the Vg-Id curve indicates the transfer characteristic (transfer characteristic) of the FET element.
  • the sharper the rise from the off state to the on state the better the switching characteristics, and it can be said that the transistor characteristics are excellent. Further, it can be said that the lower the off current and the higher the on current, the larger the on / off ratio and the better the transistor.
  • the Vd-Id curve represents the relationship between the source-drain voltage (Vd) and the current (Id) when the gate voltage (Vg) is changed stepwise.
  • the Vd-Id curve shows the output characteristic (output characteristic) of the FET element.
  • the current (Id) is saturated (saturation current) and the source-drain voltage (Vd) in a region where the source-drain voltage (Vd) is high. If the current (Id) rises linearly in a low region, the FET element has good output characteristics and can be said to have high performance.
  • the current (Id) suddenly rises with the application of the gate voltage (Vg).
  • Vg gate voltage
  • the FET device according to the present invention has good switching characteristics.
  • 2B, FIG. 3B, FIG. 4B, and FIG. 5B in the region where the source-drain voltage (Vd) is low, all the Vd-Id curves are It rises substantially linearly, and the drain current is constant in a region where the source-drain voltage (Vd) is high, and a saturation current is observed.
  • the FET element according to the present invention is a high-performance FET element having good output characteristics.
  • each FET element was determined based on the method described above.
  • the off state is set, and when the Vg is -60V, the on state is set, and the ratio of the Id values in the off state and the on state is set to on. / Off ratio.
  • the results were as follows.
  • the electric field mobility was 0.7 cm 2 / Vs, and the on / off ratio was 10 6 .
  • the electric field mobility was 0.2 cm 2 / Vs, and the on / off ratio was 10 7 .
  • the electric field mobility was 0.2 cm 2 / Vs, and the on / off ratio was 10 7 .
  • the field mobility of the FET element manufactured by the coating method (spin coating method) using Compound B is in the order of 10 ⁇ 3 cm 2 / Vs, and the on / off ratio is 10 5 , Compound A, Compound C, As compared with the FET device using Compound D, the results were slightly inferior.
  • this FET element also has FET characteristics, it can be seen that a coating method can also be used as a method for manufacturing the FET element according to the present invention.
  • the FET element using Compound A, Compound B, Compound C, and Compound D synthesized in this example can be used as a p-type transistor.
  • the compound according to the present invention has a conjugated system in each molecule due to the interaction of ⁇ orbitals, and further exhibits a strong intermolecular interaction via a sulfur atom or selenium atom contained in a thiophene ring or a selenophene ring in each molecule. Show. For this reason, the compound according to the present invention can effectively move carriers. Since these compounds have good electric field mobility, they can be used as an organic semiconductor material, and an organic semiconductor device using the compound can be formed.

Abstract

 電子移動度の良好な新規化合物及びその製造方法、並びにこの新規化合物を含有する有機半導体材料及び有機半導体デバイスを提供する。  新規化合物は、一般式(1)、一般式(2)、一般式(3)又は一般式(4) (式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子、アルキル基又はフェニル基を表す。)で表されるように、ナフタレンの2つのベンゼン環にそれぞれチオフェン環又はセレノフェン環が結合した構造を有する。これらの化合物はπ軌道の相互作用により各分子内に共役系を有し、さらに各分子のチオフェン環又はセレノフェン環に含まれる硫黄原子又はセレン原子を介した強い分子間相互作用を示すため、良好な電子移動度を有する。

Description

新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス
 本発明は、新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイスに関する。
 近年、有機半導体材料が用いられた有機EL(エレクトロルミネセンス)デバイス、有機FET(電界効果トランジスタ)デバイス、有機薄膜光電変換デバイス等の薄膜デバイスが注目されており、実用化が始まっている。
 これらの薄膜デバイスに用いられる有機半導体材料の基本的物性の中では、電荷キャリア(以下、単にキャリアと呼ぶ。)の移動度が重要である。例えば有機ELデバイスの場合、キャリアの移動度は電荷の輸送効率に影響する。電荷の輸送効率は、発光効率の向上や低電圧での駆動のために重要である。また、有機FETデバイスの場合、キャリアの移動度はトランジスタのスイッチング速度や駆動させる装置の性能に直接影響する。このため、キャリアの移動度は有機FETデバイスの実用化及び性能向上のためにも重要である。
 このような状況下、有機半導体材料として利用可能な種々の有機化合物の研究、開発が進められている。好適なキャリアの移動度を有する化合物として、ベンゼン-チオフェン骨格を有する化合物が検討されている。非特許文献1には、種々のベンゼン-チオフェン骨格を有する化合物が例示されている。
Vibronic Coupling in Organic Semiconductors: The Case of Fused Polycyclic Benzene-Thiophene Structures; Veaceslav Coropceanu, Ohyun Kwon, Brigitte Wex, Bilal R. Kaafarani, Nadine E. Gruhn, Jason C. Durivage, Douglas C. Neckers and Jean-Luc Bredas; Chem. Eur. J. 2006, Vol. 12, p.2073-2080
 非特許文献1では、ナフタレン-チオフェン骨格を有する化合物の構造式が挙げられている。しかし、この化合物はこれまでに合成が成功していない化合物、いわば実在しない化合物である。従来の有機合成化学の知見によると、ナフタレン骨格にチオフェン環を導入することは極めて困難である。
 本発明の目的とするところは、ナフタレン-チオフェン骨格又はナフタレン-セレノフェン骨格を有し、キャリアの移動度が良好な新規化合物及びその製造方法を提供すること、並びにこの化合物を含有する有機半導体材料及び有機半導体デバイスを提供することにある。
 本発明の第1の観点に係る化合物は、下記一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表される化合物である。

Figure JPOXMLDOC01-appb-C000007

(上記式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子、アルキル基又はフェニル基を表す。)
 本発明の第2の観点に係る化合物は、下記一般式(5)、一般式(6)、一般式(7)又は一般式(8)で表される化合物である。
Figure JPOXMLDOC01-appb-C000008

(上記式中、Zは硫黄原子又はセレン原子を表し、Xはハロゲン原子を表す。)
 本発明の第3の観点に係る化合物の製造方法は、
 ジハロゲノジヒドロキシナフタレンと無水トリフルオロメタンスルフォン酸とを反応させてジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンを得る工程と、
 前記ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンと末端アセチレン化合物とを反応させてジハロゲノ-ジエチニルナフタレン誘導体を得る工程と、
 前記ジハロゲノ-ジエチニルナフタレン誘導体と、硫化物塩又はセレン化物塩と、を反応させる工程と、
 を含む、下記一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表される化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000009

(上記式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子、アルキル基又はフェニル基を表す。)
 本発明の第3の観点に係る化合物の製造方法は、ジヒドロキシナフタレンとハロゲン化剤とを反応させて前記ジハロゲノジヒドロキシナフタレンを得る工程を更に含んでいてもよい。
 前記ジヒドロキシナフタレンは2,6-ジヒドロキシナフタレンであり、
 得られる化合物は前記一般式(1)又は前記一般式(3)で表される化合物であってもよい。
 また、前記ジヒドロキシナフタレンは2,7-ジヒドロキシナフタレンであり、
 得られる化合物は前記一般式(2)で表される化合物であってもよい。
 また、前記ジヒドロキシナフタレンは1,5-ジヒドロキシナフタレンであり、
 得られる化合物は前記一般式(4)で表される化合物であってもよい。
 前記ハロゲン化剤は臭素化剤又は塩素化剤である、ことが好ましい。
 前記ハロゲン化剤は臭素化剤であり、
 前記ジヒドロキシナフタレンの臭素化を促進する触媒を添加する工程を更に含み、
 前記臭素化剤を添加する工程は2回以上行われる、ことが好ましい。
 また、前記末端アセチレン化合物は、トリメチルシリルアセチレン、フェニルアセチレン又は1-デシンのいずれかである、ことが好ましい。
 また、前記ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンと前記末端アセチレン化合物との反応は、前記ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンを溶解可能な極性溶媒中で行われる、ことが好ましい。
 また、前記極性溶媒は非プロトン性極性溶媒である、ことが好ましい。
 また、前記非プロトン性極性溶媒はジメチルホルムアミドである、ことが特に好ましい。
 本発明の第4の観点に係る化合物の製造方法は、
 下記一般式(1)、一般式(2)、一般式(3)又は一般式(4)
Figure JPOXMLDOC01-appb-C000010

(上記式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子を表す。)
 で表される化合物にハロゲン化剤を添加する工程を含むことを特徴とする、下記一般式(5)、一般式(6)、一般式(7)又は一般式(8)で表される化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000011

(上記式中、Zは硫黄原子又はセレン原子を表し、Xはハロゲン原子を表す。)
 本発明の第5の観点に係る有機半導体材料は、下記一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表される化合物を1種以上含むことを特徴とする。

Figure JPOXMLDOC01-appb-C000012

(上記式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子、アルキル基又はフェニル基を表す。)
 本発明の第6の観点に係る有機半導体デバイスは、本発明の第5の観点に係る有機半導体材料を含むことを特徴とする。
 本発明に係る化合物は、ナフタレン-チオフェン骨格又はナフタレン-セレノフェン骨格を有する。この化合物は、π軌道の相互作用により各分子内に共役系を有し、さらに各分子のチオフェン環又はセレノフェン環に含まれる硫黄原子又はセレン原子を介した強い分子間相互作用を示す。このため、効果的なキャリアの移動が可能である。本発明に係る化合物は良好な電界移動度を有するので、有機半導体材料として利用できる。この有機半導体材料は有機半導体デバイスに利用可能である。
 また、本発明に係る化合物の製造方法によれば、ジハロゲノ-ジエチニルナフタレン誘導体を経ることで、ナフタレン-チオフェン骨格又はナフタレン-セレノフェン骨格を有する化合物を製造することができる。
 また、本発明に係る化合物の製造方法によれば、ナフタレンの水素原子を選択的にハロゲン化できる。この製造方法によれば、ナフタレン-チオフェン骨格又はナフタレン-セレノフェン骨格を有する化合物の収率を高めることができる。
実施例にて作製したFET素子の概略構成を示す図であって、(A)はFET素子の断面図、(B)はその平面図である。 (A)は化合物Aを用いて作製したFET素子のVg-Id曲線であり、(B)はそのVd-Id曲線である。 (A)は化合物Bを用いて作製したFET素子のVg-Id曲線であり、(B)はそのVd-Id曲線である。 (A)は化合物Cを用いて作製したFET素子のVg-Id曲線であり、(B)はそのVd-Id曲線である。 (A)は化合物Dを用いて作製したFET素子のVg-Id曲線であり、(B)はそのVd-Id曲線である。
 以下に、本発明に係る新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイスの実施形態について説明する。
(新規化合物)
 本発明の第1の実施形態に係る新規化合物は、下記の一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表されるように、ナフタレンに含まれる2つのベンゼン環にそれぞれチオフェン環又はセレノフェン環が結合した化合物である。
Figure JPOXMLDOC01-appb-C000013

(上記一般式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子、アルキル基又はフェニル基を表す。)
 各化合物に含まれる2つのRは互いに同一の置換基であっても、互いに異なる置換基であってもよいが、同一であることが好ましい。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基等の直鎖の飽和アルキル基、i-プロピル基、i-ブチル基、s-ブチル基、t-ブチル基等の分岐鎖の飽和アルキル基、シクロプロピル基、シクロブチル基等の環状の飽和アルキル基、1-プロペニル、2-プロペニル、1-ブチニル、2-ブチニル、3-ブチニル等の不飽和アルキル基が挙げられる。
 上記一般式(1)から一般式(4)で表される化合物は、π軌道の相互作用により分子内に共役系を有し、さらに各分子内のチオフェン環又はセレノフェン環に含まれる硫黄原子又はセレン原子を介した強い分子間相互作用を示す。このため、上記一般式(1)から一般式(4)で表される化合物は、効果的なキャリアの移動が可能であり、良好な電界移動度を有する。これらの化合物は有機半導体材料として利用可能である。
 本発明の第2の実施形態に係る新規化合物は、下記一般式(5)、一般式(6)、一般式(7)又は一般式(8)で表される。
Figure JPOXMLDOC01-appb-C000014

(上記式中、Zは硫黄原子又はセレン原子を表し、Xはハロゲン原子を表す。)
 ハロゲン原子として、例えば塩素、臭素、ヨウ素等が挙げられる。
(新規化合物の製造方法)
 続いて、上述した一般式(1)、一般式(2)、一般式(3)及び一般式(4)で表される化合物の製造方法について段階的に説明する。
 まず、ジヒドロキシナフタレンとハロゲン化剤とを反応させ、ジハロゲノジヒドロキシナフタレンを合成する。
 ジヒドロキシナフタレンとしては、ナフタレンに含まれる2つのベンゼン環にそれぞれ1つのヒドロキシ基が結合したものが用いられる。このようなジヒドロキシナフタレンの中では、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン又は1,5-ジヒドロキシナフタレンが好ましい。
 ハロゲン化剤としては公知の物を使用できる。例えば、臭素、N-ブロモスクシンイミド、過臭化ピリジニウムハイドロブロミド若しくはテトラアルキルアンモニウムトリブロミド等の臭素化剤、又は塩素、N-クロロスクシンイミド、テトラアルキルアンモニウムトリクロリド、塩化チオニル若しくは塩化スルフリル等の塩素化剤を好適に使用することができる。
 続いて、得られたジハロゲノジヒドロキシナフタレンと無水トリフルオロメタンスルフォン酸(CFSO-O-SOCF)とを反応させる。ジハロゲノジヒドロキシナフタレンに含まれる2つのヒドロキシ基は無水トリフルオロメタンスルフォン酸と反応し、トリフルオロメタンスルフォン酸エステルへと変換される。この結果、ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンが得られる。
 次に、得られたジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンと末端アセチレン化合物とを反応させる。トリフルオロメタンスルフォニル基が結合している炭素は置換され、ジハロゲノ-ジエチニルナフタレン誘導体が得られる。
 末端アセチレン化合物としては、例えば、トリメチルシリルアセチレン(HCSi(CH)、フェニルアセチレン(C)、1-デシン(C1018)等を用いることができる。
 ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンと末端アセチレン化合物との反応は、ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンを溶解可能な極性溶媒中で行われることが好ましい。反応が極性溶媒中で行われることにより、トリフルオロメタンスルフォニル基は選択的にエチニル基に置換される。これにより、得られるジハロゲノ-ジエチニルナフタレン誘導体の収率を高めることができる。ジハロゲノ-ジエチニルナフタレン誘導体の収率を高めることにより、用いる試薬等の無駄がなくなり、製造コストを低下させることができる。
 極性溶媒としては、非プロトン性極性溶媒を用いることが好ましい。非プロトン性極性溶媒としては、例えば、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)等が挙げられる。なお、用いる非プロトン性極性溶媒の極性が高いほど、得られるジハロゲノ-ジエチニルナフタレン誘導体の収率が高くなる。このため、この中では最も極性の高いジメチルホルムアミドを用いることが特に好ましい。
 次に、得られたジハロゲノ-ジエチニルナフタレン誘導体と、硫化物塩又はセレン化物塩とを反応させる。この工程において、ジハロゲノ-ジエチニルナフタレン誘導体に含まれるハロゲン原子は、硫黄原子又はセレン原子に置換される。導入された硫黄原子又はセレン原子はあらかじめ導入されているエチニル基の三重結合と反応してチオフェン環又はセレノフェン環を形成する。このようにして、上記一般式(1)から一般式(4)により表される化合物を得ることができる。
 硫化物塩としては、硫化物金属塩を用いることが好ましく、硫化物アルカリ金属塩を用いることがより好ましい。例えば、硫化ナトリウム・9水和物(NaS・9HO)、硫化ナトリウム・5水和物(NaS・5HO)、硫化ナトリウム無水物(NaS)、水硫化ナトリウム水和物(NaSH・nHO)等が好ましい。セレン化物塩としては商業的に入手可能なセレン化物塩を用いることができる。又は、例えば金属セレンを水素化ホウ素ナトリウムと反応させる等の公知の方法によりセレン化物塩に誘導し、これを単離することなく用いることもできる。
 反応に用いる硫化物塩は、ジハロゲノ-ジエチニルナフタレン誘導体1モルに対して、通常1~16モル使用すればよい。好ましくは2~8モル、より好ましくは2~5モル使用される。
 反応溶媒は使用しても使用しなくてもよいが、用いるジハロゲノ-ジエチニルナフタレン誘導体が固体である場合、溶媒を使用することが好ましい。この場合、反応混合物中に沸点100℃以上の溶媒が含まれていることが好ましい。反応混合物中に沸点100℃以上の溶媒が含まれていることにより、反応温度を高く設定することができるため、反応速度が向上する。
 沸点100℃以上の溶媒としては、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、エチレングリコール、プロピレングリコール、ポリエチレングリコール等のグリコール類、ジメチルスルフォキシド等のスルフォキシド類が挙げられる。
 上記の溶媒は、ジハロゲノ-ジエチニルナフタレン誘導体1モルに対して、通常0.01~100モル使用すればよい。好ましくは0.1~80モル、より好ましくは20~50モル使用される。
 反応温度は-50℃~300℃で行うとよい。好ましくは-10℃~250℃、より好ましくは40℃~200℃で行われる。
 本発明において、触媒を添加することは必須ではないが、触媒を添加することにより反応が円滑に進行する場合は、各段階において触媒を添加してもよい。環化反応を促進する触媒として、金属銅又は塩化銅(I)、塩化銅(II)、臭化銅(I)、臭化銅(II)、ヨウ化銅(I)若しくはヨウ化銅(II)等の金属ハロゲン化物が挙げられる。好ましくは金属銅又は臭化銅(I)若しくは臭化銅(II)等の銅ハロゲン化物である。
 また必要に応じて、公知の方法により、反応混合物から目的化合物が単離・精製される。高純度の目的化合物を得るために、例えば、昇華精製、特に真空昇華精製を行うことも可能である。
 上記一般式(1)で表される化合物の製造方法について具体的に説明する。上記一般式(1)で表されるトランス型の直線構造の化合物を合成する場合、ジヒドロキシナフタレンとしては2,6-ジヒドロキシナフタレンが用いられる。この際、ハロゲン化剤としては臭素化剤を用いるとよい。
 一般式(1)で表されるような直線構造の化合物を得るには、2,6-ジヒドロキシナフタレンの3位及び7位の炭素に結合している水素原子をハロゲン原子に置換する必要がある。ハロゲン化剤として塩素化剤を用いる場合、塩素原子によって、ジヒドロキシナフタレンに含まれる水素原子のうち反応性の高い1位及び5位の炭素に結合している水素原子は置換されるが、3位及び7位の炭素に結合している水素原子は置換されにくい。
 これに対し、ハロゲン化剤として臭素等の臭素化剤を用いることで、3位及び7位の炭素に結合している水素原子も比較的容易に臭素原子に置換することができる。具体的には、例えば、まず臭素化剤によって、反応性の高い1位及び5位の炭素に結合する水素原子が臭素原子によって置換される。次に、臭素化を促進する触媒、例えば鉄等を添加する。触媒の存在下、臭素化剤を複数回に分けて順次添加することにより、3位及び7位の炭素に結合している水素原子も置換され、1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレンを得ることができる。
 上記手法によると、1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレンを高い収率(50%以上)で得ることができる。これは、「Reaction of Tetrasulfur Tetranitride with Naphthalenols and Related Compounds」(Bull. Chem. Soc. Jpn., Vol. 64, p. 68-73; Shuntaro Mataka, Kazufumi Takahashi, Youji Ikezaki, Taizo Hatta, Akiyoshi Torii, Masashi Tashiro)で報じられている1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレンの合成の収率4%に比べて非常に高いことがわかる。
 次に、この1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレンを、華状錫(フレーク状のスズ)等を用いて還元する。1位及び5位に結合した臭素原子は水素原子によって置換され、3,7-ジブロモ-2,6ジヒドロキシナフタレンが得られる。
 この3,7-ジブロモ-2,6ジヒドロキシナフタレンを用い、上述した無水トリフルオロメタンスルフォン酸との反応、末端アセチレン化合物との反応及び硫化物塩又はセレン化物塩との反応が行われる。これらの各工程を経ることで、一般式(1)で表されるトランス型の直線構造の化合物を選択的に得ることができる。この方法によれば、上述のように高い収率で1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレンを得ることができる。このため試薬を効率的に利用することができ、製造コストを安くすることができる。
 続いて、上記一般式(2)で表される化合物の製造方法について具体的に説明する。上記一般式(2)により表されるシス型の直線構造の化合物を合成する場合、ジヒドロキシナフタレンとしては2,7-ジヒドロキシナフタレンが用いられる。ハロゲン化剤としては、臭素化剤を用いるとよい。2,7-ジヒドロキシナフタレンと臭素等の臭素化剤とを反応させると、8位の立体障害のため、三臭化物で反応が止まり、1,3,6-トリブロモ-2,7-ジヒドロキシナフタレンが得られる。これを華状錫等を用いて還元することで、3,6-ジブロモ-2,7-ジヒドロキシナフタレンを得ることができる。この3,6-ジブロモ-2,7-ジヒドロキシナフタレンを用い、上述した無水トリフルオロメタンスルフォン酸との反応、末端アセチレン化合物との反応及び硫化物塩又はセレン化物塩との反応が行われる。これらの各工程を経ることで、一般式(2)で表されるシス型の直線構造の化合物を選択的に得ることができる。
 続いて、上記一般式(3)で表される化合物の製造方法について具体的に説明する。一般式(3)で表される化合物を合成する場合、ジヒドロキシナフタレンとしては2,6-ジヒドロキシナフタレンが用いられる。ハロゲン化剤としては、塩素等の塩素化剤を用いるとよい。2,6-ジヒドロキシナフタレンと塩素化剤とを反応させることで、一段階で1,5-ジクロロ-2,6-ジヒドロキシナフタレンが得られる。この1,5-ジクロロ-2,6-ジヒドロキシナフタレンを用い、上述した無水トリフルオロメタンスルフォン酸との反応、末端アセチレン化合物との反応及び硫化物塩又はセレン化物塩との反応が行われる。これらの各工程を経ることで、一般式(3)で表される化合物を選択的に得ることができる。
 続いて、上記一般式(4)で表される化合物の製造方法について具体的に説明する。一般式(4)で表される化合物を合成する場合、ジヒドロキシナフタレンとしては1,5-ジヒドロキシナフタレンが用いられる。ハロゲン化剤としては、臭素等の臭素化剤を用いるとよい。1,5-ジヒドロキシナフタレンと臭素化剤とを反応させることで、一段階で2,6-ジブロモ-1,5-ジヒドロキシナフタレンが得られる。この2,6-ジブロモ-1,5-ジヒドロキシナフタレンを用い、上述した無水トリフルオロメタンスルフォン酸との反応、末端アセチレン化合物との反応及び硫化物塩又はセレン化物塩との反応が行われる。これらの各工程を経ることで、一般式(4)で表される化合物を選択的に得ることができる。
 続いて、上記一般式(5)から一般式(8)で表される化合物の製造方法について説明する。
 本発明に係る上記一般式(5)から一般式(8)で表される化合物の製造方法では、例えば上述の方法により得られた一般式(1)から一般式(4)で表される化合物であってRが水素原子である化合物に、ハロゲン化剤が添加される。具体的方法としては、まず一般式(1)から一般式(4)で表される化合物であってRが水素原子である化合物が、テトラヒドロフラン(THF)等の溶媒に溶解される。ここに例えばn-BuLi(ノルマルブチルリチウム)を添加し、さらにジブロモテトラクロロエタン等のハロゲン化剤をTHFに溶解した溶液を滴下することで、目的物が得られる。
 本製造方法においては、上記一般式(1)から一般式(4)で表される化合物であってRが水素原子である化合物にn-BuLiを添加することで、硫黄又はセレンの隣接炭素に結合している水素が引き抜かれ、リチウム塩が生成する。このリチウム塩とハロゲン化剤が反応することにより、基質はハロゲン化される。次に、例えば析出した固体を濾過等により分離することで、一般式(5)から一般式(8)で表される化合物が得られる。
 本製造方法では、ハロゲン化剤として、臭素化剤或いはヨウ素化剤を用いることができる。臭素化剤としては、ジブロモテトラクロロエタン、臭素、過臭化ピリジニウムハイドロブロミド、テトラアルキルアンモニウムトリブロミド等、ヨウ素化剤としては、ヨウ素、ジヨードエタン、ヨウ化パーフルオロヘキシル、テトラアルキルアンモニウムトリヨージド等を好適に使用することができる。
 n-BuLiは、一般式(1)から一般式(4)においてRが水素原子である化合物に対して、少なくとも2当量以上添加するとよい。これは、一般式(1)から一般式(4)で表される化合物に含まれる水素原子のうちの2つを引き抜くことにより、目的とする化合物が効率よく得られるためである。置換したい部位以外の部位との反応が遅く副反応のおそれが小さい場合、又は一般式(1)から一般式(4)で表される化合物の溶媒に対する溶解性が低く反応が進行しにくい場合には、さらに過剰のn-BuLiを加えてもよい。
 ハロゲン化剤は、添加したn-BuLi以上のモル比で加えるとよい。これらの配合比として、例えば、一般式(1)から一般式(4)で表される化合物1モルに対し、n-BuLiを3~5モル程度、ハロゲン化剤を10モル程度添加すればよい。
 反応時間は、30分~1時間程度でよく、30分未満であってもn-BuLiによる水素の引き抜き反応が完結する時間であればこれよりも短くて構わない。
 なお、本製造方法においてはn-BuLiを用いたハロゲン・リチウム交換反応によるハロゲン化の例を示したが、ハロゲン化の方法はこれに限定されない。他のプロトン引き抜き剤を用いる方法等、公知の方法を適用することができる。
(有機半導体材料)
 次に、本発明に係る有機半導体材料の実施形態について説明する。本発明に係る有機半導体材料は、上述した一般式(1)、一般式(2)、一般式(3)、又は一般式(4)で表される化合物を1種以上含むことを特徴とする。
 一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表される化合物は、ナフタレン-チオフェン骨格又はナフタレン-セレノフェン骨格を有する。この化合物は、π軌道の相互作用により各分子内に共役系を有し、さらに各分子のチオフェン環又はセレノフェン環に含まれる硫黄原子又はセレン原子を介した強い分子間相互作用を示す。このため、効果的なキャリアの移動が可能である。この結果、本発明に係る化合物は良好な電界移動度を有するので、有機半導体材料として利用できる。
 有機半導体材料は、一般式(1)から一般式(4)で表される化合物のうち1種のみを含んでいてもよく、又はこれらの化合物を2種以上含んでいてもよい。また、一般式(1)から一般式(4)で表される化合物の特性を阻害しない限り、他の物質を含んでいてもよい。また、既知の手法により不純物をドープして電界移動度を調整したものであってもよい。
(有機半導体デバイス)
 次に、本発明に係る有機半導体デバイスの実施形態について説明する。本発明に係る有機半導体デバイスは、上述した一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表される化合物を少なくとも1種以上含む有機半導体材料が用いられていることを特徴とする。このような有機半導体デバイスとして、例えば、有機半導体層を有する薄膜トランジスタや、有機キャリア輸送層若しくは発光層又はその両方を有する発光デバイスが挙げられる。
 本発明に係る有機半導体デバイスには、上述した本発明に係る有機半導体材料を使用する以外は、既知の材料及び構造を採用することができ、特に制限されない。
 有機半導体デバイスの製造方法は特に限定されず、従来公知の種々の製造方法を用いることができる。なお、有機半導体材料は溶解性がやや低いため、塗布法を用いることが困難な場合、真空蒸着法等によって製造することが好ましい。
 本発明に係る有機半導体デバイスでは、シリコンの代わりに本発明に係る有機半導体材料が用いられるため、シリコンを用いる場合に必須となるコストを要する製造プロセスを必要としない。このため、半導体デバイスを安価に製造することができる。
 また、有機半導体材料を用いることから、シリコンを用いたデバイスに比べ、機械的フレキシビリティに優れ、軽量である。これにより、軽量ディスプレイやスマートタグ等への応用も可能である。
 以下、本発明に係る化合物及びその製造方法について、実施例を示してより具体的に説明する。
 一般式(1)で表される直線状の骨格を有する化合物の合成について説明する。なお、化合物の構造は、1H NMR(H核磁気共鳴スペクトル)、EIMS(質量分析スペクトル)により決定した。各スペクトルの測定に使用した機器は以下の通りである。
1H-NMR:JEOL Lambda 400 spectrometer
   :JEOL EX-270 spectrometer
EIMS :Shimadzu QP-5050A
 なお、これらの機器は後述の他の実施例においても同様に使用した。
 ナフト[2,3-b:6,7-b’]ジチオフェンの合成について、段階的に説明する。
(1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレンの合成)
 2,6-ジヒドロキシナフタレン(2g,12.5mol)を酢酸(60ml)に溶解した。ここでは酢酸は溶媒として用いた。この溶液に臭素(2.6ml,50.7mol)を滴下し、還流温度下(120℃~125℃)で反応させた。
 発明を実施するための形態において述べたように、この段階では、2,6-ジヒドロキシナフタレンに含まれる水素原子のうち、反応性の高い1位及び5位の水素原子が臭素原子によって置換され、1,5-ジブロモ-2,6-ジヒドロキシナフタレンが生成されるにとどまる。最終的に直線状の骨格を有するナフトジチオフェンを得るためには、さらに3位及び7位の水素原子を臭素によって置換する必要がある。
 続いて、この反応液に更に臭素(2.6ml)の滴下を計5回と、触媒として鉄粉(50mg,1.3mol)の添加とを行い、76時間反応させた。
 次に、この反応液を室温まで冷却し、純水(50ml)を加えた。析出した固体を濾別して採取した。この固体をアセトンで洗浄し、減圧下で乾燥させて、粗生成物を得た。
 得られた粗生成物を1,4-ジオキサンを溶媒に用いて再結晶し、精製した。無色針状結晶の1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレン(3.0g,収率51%)が得られた。
 上記のように、臭素を複数回滴下すること及び触媒として鉄粉を添加することにより、1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレンを高い収率で合成することができた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000015
 得られた1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270MHz, CDCl3)δ 6.18 (s, 2H, OH), 8.31 (s, 2H, ArH); EIMS (70 eV) m/z = 476 (M+)
(3,7-ジブロモ-2,6-ジヒドロキシナフタレンの合成)
 1,3,5,7-テトラブロモ-2,6-ジヒドロキシナフタレン(1.0g,2.1mmol)を酢酸(20ml)に溶解した。ここに華状錫(フレーク状のスズ)(499mg,4.2mmol)を加えた後、還流温度下で62時間攪拌し、反応させた。
 反応液を室温まで冷却し、純水(20ml)を加えた。析出した固体を濾別して採取した。この固体を減圧下で乾燥させることにより、白色固体の3,7-ジブロモ-2,6-ジヒドロキシナフタレン(530mg,79%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000016
 得られた3,7-ジブロモ-2,6-ジヒドロキシナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 5.58 (s, 2H, OH), 7.25 (s, 2H, ArH), 7.89 (s, 2H, ArH); EIMS (70 eV) m/z = 318 (M+)
(3,7-ジブロモ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレンの合成)
 窒素雰囲気下、3,7-ジブロモ-2,6-ジヒドロキシナフタレン(636mg,2.0mmol)及びピリジン(1.0ml,12mmol)を塩化メチレン(20ml)に溶解した。
 この溶液に、無水トリフルオロメタンスルフォン酸(0.7ml,4.4mmol)を氷浴下でゆっくり加えた。これを室温で15時間半攪拌した後、純水(10ml)及び1N塩酸(10ml)を加えた。
 次に、この反応溶液を塩化メチレン(20ml)で抽出した。この抽出は同様の手順で3回行った。その後、有機相を飽和食塩水(20ml)で洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれる水を除いた後、溶媒を減圧下で留去して、粗生成物を得た。この粗生成物を、塩化メチレンを移動相とするシリカゲルカラムクロマトグラフィー(目的物のRf=0.95。なお、以下特に断りのない限り、Rfは各シリカゲルカラムクロマトグラフィーの条件における目的物のRf値を表す。)で分離精製することにより、白色固体の3,7-ジブロモ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレン(970mg,収率84%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000017
 得られた3,7-ジブロモ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.14 (s, 2H, ArH), 8.25 (s, 2H, ArH); EIMS (70 eV) m/z = 582 (M+)
(2,6-ジブロモ-3,7-ビス(トリメチルシリルエチニル)ナフタレンの合成)
 窒素雰囲気下、3,7-ジブロモ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレン(582mg,1.0mmol)をDMF(7ml)及びジイソプロピルアミン(7ml)に溶解させた。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(70mg,0.05mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬としてトリメチルシリルアセチレン(0.28ml,2.0mmol)を加えた。これを室温で11時間攪拌した後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を、塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれる水を除いた後、溶媒を減圧下で留去して、粗生成物を得た。この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.2)で分離精製することにより、白色固体の2,6-ジブロモ-3,7-ビス(トリメチルシリルエチニル)ナフタレン(162mg,収率34%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000018
 得られた2,6-ジブロモ-3,7-ビス(トリメチルシリルエチニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.29 (s, 18H, TMS), 7.87 (s, 2H, ArH), 7.97 (s, 2H, ArH); EIMS (70 eV) m/z = 478 (M+)
(ナフト[2,3-b:6,7-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(101mg,0.42mmolmmol)をN-メチル-2-ピロリドン(NMP)(3ml)に懸濁させ、15分間攪拌した。
 この懸濁液に2,6-ジブロモ-3,7-ビス(トリメチルシリルエチニル)ナフタレン(50mg,0.1mmol)を加え、190℃で10時間攪拌した。
 次に、これを室温まで冷却した後、飽和塩化アンモニウム水溶液(20ml)に注いだ。析出した固体を濾別して採取した。
 この固体を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.95)で分離精製することにより、橙色固体のナフト[2,3-b:6,7-b’]ジチオフェン(26mg,収率100%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000019
 得られたナフト[2,3-b:6,7-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.43 (d, 2H, J = 5.8 Hz, ArH), 7.51 (d, 2H, J = 5.8 Hz, ArH), 8.41 (s, 2H, ArH), 8.52 (s, 2H, ArH); EIMS (70 eV) m/z = 240 (M+); mp >300 ℃ 
 次に、2,7-ジフェニルナフト[2,3-b:6,7-b’]ジチオフェンの合成について、段階的に説明する。
(2,6-ジブロモ-3,7-ビス(フェニルエチニル)ナフタレンの合成)
 前述の方法により合成した3,7-ジブロモ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレンを用いて、2,6-ジブロモ-3,7-ビス(フェニルエチニル)ナフタレンを以下の手順により合成した。
 窒素雰囲気下、3,7-ジブロモ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレン(582mg,1.0mmol)をDMF(7ml)及びジイソプロピルアミン(7ml)に溶解した。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(70mg,0.05mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬としてフェニルアセチレン(0.22ml,2.0mmol)を加え、室温で11時間攪拌して反応させた。その後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を、塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれる水を除いた後、溶媒を減圧下で留去して、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.1)で分離精製することにより、白色固体の2,6-ジブロモ-3,7-ビス(フェニルエチニル)ナフタレン(397mg,収率82%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000020
 得られた2,6-ジブロモ-3,7-ビス(フェニルエチニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 7.39-7.41 (m, 6H, ArH), 7.62-7.64 (m, 4H, ArH) 7.97 (s, 2H, ArH), 8.07 (s, 2H, ArH); EIMS (70 eV) m/z = 486 (M+)
(2,7-ジフェニルナフト[2,3-b:6,7-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(202mg,0.42mmol)をNMP(3ml)に懸濁させ、15分間攪拌した。
 この懸濁液に、先に得た2,6-ジブロモ-3,7-ビス(フェニルエチニル)ナフタレン(100mg,0.2mmol)を加え、190℃で10時間攪拌した。
 この反応液を室温まで冷却した後、飽和塩化アンモニウム水溶液(20ml)に注いだ。析出した黄色固体(75mg,収率96%)を濾別して採取した。
 この黄色固体を昇華精製することにより、2,7-ジフェニルナフト[2,3-b:6,7-b’]ジチオフェン(25mg,収率32%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000021
 得られた2,7-ジフェニルナフト[2,3-b:6,7-b’]ジチオフェンのスペクトルデータを以下に示す。なお、2,7-ジフェニルナフト[2,3-b:6,7-b’]ジチオフェンは難溶性であったため、1H-NMR測定は行えなかった。
EIMS (70 eV) m/z = 392 (M+)
 続いて、2,7-ジオクチルナフト[2,3-b:6,7-b’]ジチオフェンの合成について、段階的に説明する。
(2,6-ジブロモ-3,7-ジ(デシン-1-イル)ナフタレンの合成)
 前述の方法により合成した2,6-ジブロモ-3,7-ビス(トリフルオロメタンスルフォニル)ナフタレンを用いて、2,6-ジブロモ-3,7-ジ(デシン-1-イル)ナフタレンを以下の手順により合成した。
 窒素雰囲気下、2,6-ジブロモ-3,7-ビス(トリフルオロメタンスルフォニル)ナフタレン(493mg,1.0mmol)をDMF(10ml)及びジイソプロピルアミン(0.42ml,3.0mmol)に溶解した。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(70mg,0.1mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬として1-デシン(0.54ml,3.0mmol)を加え、室温で27時間攪拌して反応させた。その後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を、塩化メチレン(10ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(10ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれている水を除いた後、溶媒を減圧下で留去して、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.3)で分離精製することにより、白色固体の2,6-ジブロモ-3,7-ジ(デシン-1-イル)ナフタレン(488mg,収率87%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000022
 得られた2,6-ジブロモ-3,7-ジ(デシン-1-イル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.89 (t, 6H, J = 7.02 Hz, CH2), 1.27-1.37 (m, 20H, CH2), 1.61-1.72 (m, 4H, CH2), 2.51 (t, 4H, J = 6.62 Hz, CH2) 7.79 (s, 2H, ArH), 7.95 (s, 2H, ArH); EIMS (70 eV) m/z = 558 (M+)
(2,7-ジオクチルナフト[2,3-b:6,7-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(346mg,1.44mmol)をNMP(12ml)に懸濁させ、15分間攪拌した。
 この懸濁液に、得られた2,6-ジブロモ-3,7-ジ(デシン-1-イル)ナフタレン(200mg,0.36mmol)を加え、190℃で9時間攪拌した。
 この反応液を室温まで冷却した後、飽和塩化アンモニウム水溶液(30ml)に注いだ。析出した固体を濾別して採取した。
 この固体を、塩化メチレンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.95)及びクロロホルムを溶媒に用いた再結晶によって分離精製することにより、黄色針状結晶の2,7-ジオクチルナフト[2,3-b:6,7-b’]ジチオフェン(130mg,収率78%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000023
 得られた2,7-ジオクチルナフト[2,3-b:6,7-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 0.89 (t, 6H, J = 7.4 Hz, CH2), 1.28-1.50 (m, 20H, CH2), 1.75-1.83 (m, 4H, CH2), 2.92 (t, 4H, J = 7.4 Hz, CH2), 7.06 (s, 2H, ArH), 8.16 (s, 2H, ArH), 8.32 (s, 2H, ArH); EIMS (70 eV) m/z = 464 (M+) ; mp 269-271 °C
 続いて、一般式(2)で表される化合物の合成例を実施例に基づいて具体的に説明する。
 まず、2,7-ジフェニルナフト[2,3-b:7,6-b’]ジチオフェンの合成について、以下に段階的に説明する。
(1,3,6-トリブロモ-2,7-ジヒドロキシナフタレンの合成)
 窒素雰囲気下、2,7-ジヒドロキシナフタレン(5g,31mmol)を酢酸(150ml)に溶解した。なお、ここでは酢酸は溶媒として用いた。
 この溶液に臭素(5.3ml,103mmol)を滴下し、還流温度下で41時間反応させた。
 この反応液を室温まで冷却した後、純水(50ml)を加えた。析出した固体を濾別して採取した。この固体を純水で洗浄し、減圧下で乾燥させることにより、白色固体の1,3,6-トリブロモ-2,7-ジヒドロキシナフタレン(10g,収率83%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000024
 得られた1,3,6-トリブロモ-2,7-ジヒドロキシナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 5.88 (s, 1H, OH), 6.24 (s, 1H, OH), 7.60 (s, 1H, ArH), 7.88 (s, 1H, ArH), 7.89 (s, 1H, ArH); EIMS (70 eV) m/z = 396 (M+)
(3,6-ジブロモ-2,7-ジヒドロキシナフタレンの合成)
 1,3,6-トリブロモ-2,7-ジヒドロキシナフタレン(5.0g,12.6mmol)を酢酸(20ml)に溶解した。この溶液に華状錫(フレーク状のスズ)(1.6g,12.6mmol)を加えた後、還流温度下で120時間攪拌した。
 この反応液を室温まで冷却した後、純水(100ml)を加えた。析出した固体を濾別して採取した。この固体を減圧下で乾燥することにより、白色固体の3,6-ジブロモ-2,7-ジヒドロキシナフタレン(3.4g,収率85%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000025
 得られた3,6-ジブロモ-2,7-ジヒドロキシナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 5.67 (s, 2H, OH), 7.24 (s, 2H, ArH), 7.87 (s, 2H, ArH); EIMS (70 eV) m/z = 318 (M+)
(3,6-ジブロモ-2,7-ビス(トリフルオロメタンスルフォニル)ナフタレンの合成)
 得られた3,6-ジブロモ-2,7-ジヒドロキシナフタレン(3.0g,9.4mmol)を、窒素雰囲気下でピリジン(4.5ml,56mmol)及び塩化メチレン(90ml)に溶解した。
 この溶液に、無水トリフルオロメタンスルフォン酸(3.3ml,21mmol)を氷浴下でゆっくり加えた。室温で4時間半攪拌した後、純水(10ml)及び1N塩酸(10ml)を加えて反応を停止させた。
 次にこの反応液を塩化メチレン(20ml)を用いて抽出した。なお、この抽出は同様の手順で3回行った。その後、有機相を飽和食塩水(20ml)で洗浄した。この洗浄は同様の手順で3回行った。
 次に、無水硫酸マグネシウムを用いて有機相に含まれる水を除いた後、溶媒を減圧下で留去して粗生成物を得た。この粗生成物を、塩化メチレンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.95)で分離精製することにより、白色固体の3,6-ジブロモ-2,7-ビス(トリフルオロメタンスルフォニル)ナフタレン(3.3g,収率60%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000026
 得られた3,6-ジブロモ-2,7-ビス(トリフルオロメタンスルフォニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 7.86 (s, 2H, ArH), 8.19 (s, 2H, ArH); EIMS (70 eV) m/z = 582 (M+)
(3,6-ジブロモ-2,7-ビス(フェニルエチニル)ナフタレンの合成)
 窒素雰囲気下、3,6-ジブロモ-2,7-ビス(トリフルオロメタンスルフォニル)ナフタレン(582mg,1.0mmol)をDMF(7ml)及びジイソプロピルアミン(7ml)に溶解した。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(70mg,0.05mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬としてフェニルアセチレン(0.22ml,2.0mmol)を加えた。室温で11時間攪拌して反応させた後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 次に、この反応液を塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれる水分を除いた後、溶媒を減圧下で留去して、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.1)で分離精製することにより、白色固体の3,6-ジブロモ-2,7-ビス(フェニルエチニル)ナフタレン(243mg,収率50%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000027
 得られた3,6-ジブロモ-2,7-ビス(フェニルエチニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.38-7.42 (m, 6H, ArH), 7.62-7.65 (m, 4H, ArH), 8.01 (s, 2H, ArH), 8.03 (s, 2H, ArH); EIMS (70 eV) m/z = 486 (M+)
(2,7-ジフェニルナフト[2,3-b:7,6-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(404mg,1.68mmol)をNMP(12ml)に懸濁させ、15分間攪拌した。
 この懸濁液に3,6-ジブロモ-2,7-ビス(フェニルエチニル)ナフタレン(200mg,0.4mmol)を加え、190℃で14時間攪拌した。
 この反応液を室温まで冷却した後、飽和塩化アンモニウム水溶液(20ml)に注いだ。析出した固体を濾別して採取した。
 この固体を純水、エタノール、ヘキサン、塩化メチレン、熱クロロホルムで洗浄することにより、2,7-ジフェニルナフト[2,3-b:7,6-b’]ジチオフェン(73mg,収率45%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000028
 得られた2,7-ジフェニルナフト[2,3-b:7,6-b’]ジチオフェンのスペクトルデータを以下に示す。なお、2,7-ジフェニルナフト[2,3-b:7,6-b’]ジチオフェンは難溶性のため、NMR測定はできなかった。
EIMS (70 eV) m/z = 392 (M+)
 続いて、2,7-ジオクチルナフト[2,3-b:7,6-b’]ジチオフェンの合成について、以下に段階的に説明する。
(3,6-ジブロモ-2,7-ジ(デシン-1-イル)ナフタレンの合成)
 前述のように合成した3,6-ジブロモ-2,7-ビス(トリフルオロメタンスルフォニル)ナフタレンを用いて、3,6-ジブロモ-2,7-ジ(デシン-1-イル)ナフタレンを以下の手順により合成した。
 窒素雰囲気下、3,6-ジブロモ-2,7-ビス(トリフルオロメタンスルフォニル)ナフタレン(582mg,1.0mmol)をDMF(7ml)及びジイソプロピルアミン(7ml)に溶解した。この溶液を30分間脱気した。
 この溶液に触媒としてPd(PPhCl(70mg,0.05mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬として1-デシン(0.36ml,2.0mmol)を加えた。室温で11時間攪拌して反応させた後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれる水を除いた後、溶媒を減圧下で留去して、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.3)で分離精製することにより、白色固体の3,6-ジブロモ-2,7-ジ(デシン-1-イル)ナフタレン(444mg,収率80%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000029
 得られた3,6-ジブロモ-2,7-ジ(デシン-1-イル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.89 (t, 6H, J = 6.8 Hz, CH2), 1.27-1.72 (m, 24H, CH2), 2.50 (t, 4H, J = 6.9 Hz, CH2) 7.81 (s, 2H, ArH), 7.93 (s, 2H, ArH), EIMS (70 eV) m/z = 558 (M+)
(2,7-ジオクチルナフト[2,3-b:7,6-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(346mg,1.44mmol)をNMP(12ml)に懸濁させ、15分間攪拌した。
 この懸濁液に3,6-ジブロモ-2,7-ジ(デシン-1-イル)ナフタレン(200mg,0.36mmol)を加え、190℃で12時間攪拌した。次にこの反応液を室温まで冷却した後、飽和塩化アンモニウム水溶液(30ml)に注いだ。析出した固体を濾別して採取した。
 この固体を純水、エタノールで洗浄することにより、淡黄色固体の2,7-ジオクチルナフト[2,3-b:7,6-b’]ジチオフェン(168mg,収率100%)が得られた。
 上記反応の反応式は以下の通りである。
 得られた2,7-ジオクチルナフト[2,3-b:7,6-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 0.88 (t, 6H, J = 7.0 Hz, CH3), 1.28-1.81 (m, 24H, CH2), 2.92 (t, 4H, J = 7.3 Hz, CH2), 7.05 (s, 2H, ArH), 8.21 (s, 2H, ArH), 8.26 (s, 2H, ArH); EIMS (70 eV) m/z = 464 (M+)
 続いて、ナフト[2,3-b:7,6-b’]ジチオフェンの合成について、以下に段階的に説明する。
(3,6-ジブロモ-2,7-ビス(トリメチルシリルエチニル)ナフタレンの合成)
 前述のように合成した3,6-ジブロモ-2,7-ビス(トリフルオロメタンスルフォニル)ナフタレンを用いて、3,6-ジブロモ-2,7-ビス(トリメチルシリルエチニル)ナフタレンを以下の手順により合成した。
 窒素雰囲気下、3,6-ジブロモ-2,7-ビス(トリフルオロメタンスルフォニル)ナフタレン(582mg,1.0mmol)をDMF(7ml)及びジイソプロピルアミンアミン(7ml)に溶解した。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(70mg,0.05mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬としてトリメチルシリルアセチレン(0.22ml,2.0mmol)を加えた。室温で11時間攪拌して反応させた後、純水(1ml)、ヘキサン(20ml)を加えた。次に不溶性固体を濾別して除去した。この際、濾過助剤としてハイフロスーパーセル(登録商標)を用いた。
 この濾液を、ヘキサン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれている水を除いた後、溶媒を減圧下で留去することにより、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.2)で分離精製することにより、白色固体の3,6-ジブロモ-2,7-ビス(トリメチルシリルエチニル)ナフタレン(92mg,収率19%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000031
 得られた3,6-ジブロモ-2,7-ビス(トリメチルシリルエチニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.30 (s, 18H, TMS), 7.90 (s, 2H, ArH), 7.95 (s, 2H, ArH); EIMS (70 eV) m/z = 478 (M+)
(ナフト[2,3-b:7,6-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(101mg,0.42mmol)をNMP(3ml)に懸濁させ、15分間攪拌した。
 この懸濁液に3,6-ジブロモ-2,7-ビス(トリメチルシリルエチニル)ナフタレン(50mg,0.10mmol)を加え、190℃で12時間攪拌した。これを室温まで冷却した後、飽和塩化アンモニウム水溶液(20ml)に注いだ。析出した固体を濾別して採取した。
 この固体を純水、エタノール、ヘキサンで洗浄することにより、黄色固体のナフト[2,3-b:7,6-b’]ジチオフェン(73mg,収率45%)を得た。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000032
 得られたナフト[2,3-b:7,6-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.43 (d, 2H, J = 5.5 Hz, ArH), 7.50 (d, 2H, J = 5.5 Hz ArH), 8.45 (s, 2H, ArH), 8.47 (s, 2H, ArH); EIMS (70 eV) m/z = 240 (M+
 続いて、一般式(3)で表される化合物の合成例を実施例に基づいて具体的に記す。
 まず、ナフト[1,2-b:5,6-b’]ジチオフェンの合成について、以下に段階的に説明する。
(1,5-ジクロロ-2,6-ジヒドロキシナフタレンの合成)
 窒素雰囲気下、2,6-ジヒドロキシナフタレン(3.0g,18.7mmol)を酢酸(90ml)に溶解した。なお、ここでは酢酸は溶媒として用いた。
 この溶液に塩化スルフリル(3.0ml,37.5mmol)を滴下し、室温で5時間攪拌した。次に、反応液に純水(50ml)を加えた。析出した固体を濾別して採取した。この固体を減圧下で乾燥させることにより、白色固体の1,5-ジクロロ-2,6-ジヒドロキシナフタレン(3.3g,収率78%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000033
 得られた1,5-ジクロロ-2,6-ジヒドロキシナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 5.79 (s, 2H, OH), 7.35 (d, 2H, J = 8.9 Hz, ArH), 7.96 (d, 2H, J = 8.9 Hz, ArH); EIMS (70 eV) m/z = 228 (M+)
(1,5-ジクロロ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレンの合成)
 窒素雰囲気下、1,5-ジクロロ-2,6-ジヒドロキシナフタレン(2.3g,10mmol)及びピリジン(4.8ml,60mmol)を塩化メチレン(100ml)に溶解した。なお、ピリジンは不要物を除去するための添加剤として、塩化メチレンは溶媒としてそれぞれ用いた。
 この溶液に無水トリフルオロメタンスルフォン酸(3.6ml,22mmol)を氷浴下でゆっくり加えた。これを室温で18時間攪拌した後、純水(10ml)及び1N塩酸(10ml)を加え、反応を停止させた。
 次に、この反応液を塩化メチレン(20ml)で抽出した。なお、この抽出は同様の手法で計3回行った。抽出後、有機相を飽和食塩水(20ml)で洗浄した。なお、この洗浄は同様に計3回行った。
 無水硫酸マグネシウムを用いて有機層に含まれている水を除いた後、溶媒を減圧下で留去することによって、粗生成物を得た。
 この粗生成物を、塩化メチレンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.95)で分離精製することにより、白色固体の1,5-ジクロロ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレン(4.9g,収率99%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000034
 得られた1,5-ジクロロ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.68 (d, 2H, J = 9.3 Hz, ArH), 8.40 (d, 2H, J = 9.3 Hz, ArH); EIMS (70 eV) m/z = 492 (M+)
(1,5-ジクロロ-2,6-ビス(トリメチルシリルエチニル)ナフタレンの合成)
 窒素雰囲気下、1,5-ジクロロ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレン(247mg,0.5mmol)及びトリエチルアミン(0.21ml,1.5mmol)をDMF(5ml)に溶解した。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(35mg,0.05mmol,10mol%)及びCuI(19mg,0.1mmol,20mol%)、試薬としてトリメチルシリルアセチレン(0.21ml,15mmol)を加えた。これを室温で17時間30分攪拌した後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を、塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれている水を除いた後、溶媒を減圧下で留去して、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.2)で分離精製することにより、白色固体の1,5-ジクロロ-2,6-ビス(トリメチルシリルエチニル)ナフタレン(89mg,46%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000035
 得られた1,5-ジクロロ-2,6-ビス(トリメチルシリルエチニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.31 (s, 18H, TMS), 7.61 (d, 2H, J = 8.8 Hz, ArH), 8.12 (d, 2H, J = 8.8 Hz, ArH); EIMS (70 eV) m/z = 388 (M+)
(ナフト[1,2-b:5,6-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(615mg,2.56mmol)をNMP(15ml)に懸濁させ、15分間攪拌した。
 この懸濁液に1,5-ジクロロ-2,6-ビス(トリメチルシリルエチニル)ナフタレン(250mg,0.64mmol)を加え、190℃で12時間攪拌した。これを室温まで冷却した後、飽和塩化アンモニウム水溶液(50ml)に注いだ。析出した固体を濾別して採取した。
 この固体を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.2)で分離精製することにより、白色固体のナフト[1,2-b:5,6-b’]ジチオフェン(139mg,90%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000036
 得られたナフト[1,2-b:5,6-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.50 (d, 2H, J = 5.3 Hz, ArH), 7.54 (d, 2H, J = 5.3 Hz, ArH), 7.95 (d, 2H, J = 8.6 Hz, ArH), 8.07 (d, 2H, J = 8.6 Hz, ArH); EIMS (70 eV) m/z = 240 (M+); mp 150.4-150.8 ℃
 続いて、2,7-ジフェニルナフト[1,2-b:5,6-b’]ジチオフェンの合成について段階的に説明する。
(1,5-ジクロロ-2,6-ビス(フェニルエチニル)ナフタレンの合成)
 前述のように合成した1,5-ジクロロ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレンを用いて、1,5-ジクロロ-2,6-ビス(フェニルエチニル)ナフタレンを以下の手順により合成した。
 窒素雰囲気下、1,5-ジクロロ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレン(493mg,1.0mmol)及びトリエチルアミン(0.42mg,3.0mmol)をDMF(10ml)に溶解した。この溶液を30分間脱気した。
 この溶液に触媒としてPd(PPhCl(70mg,0.1mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬としてフェニルアセチレン(0.33ml,3.0mmol)を加えた。これを室温で27時間攪拌して反応させた後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応溶液を、塩化メチレン(10ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(10ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれている水分を除いた後、溶媒を減圧下で留去することにより、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.2)で分離精製し、さらにヘキサンで洗浄することにより、淡黄色固体の1,5-ジクロロ-2,6-ビス(フェニルエチニル)ナフタレン(180mg,収率45%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000037
 得られた1,5-ジクロロ-2,6-ビス(フェニルエチニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.39-7.42 (m, 6H, ArH), 7.63-7.67 (m, 4H, ArH), 7.74 (d, 2H, J = 8.6 Hz, ArH), 8.25 (d, 2H, J = 8.6 Hz, ArH); EIMS (70 eV) m/z = 396 (M+)
(2,7-ジフェニルナフト[1,2-b:5,6-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(608mg,2.53mmol)をNMP(15ml)に懸濁させ、15分間攪拌した。
 この懸濁液に、1,5-ジクロロ-2,6-ビス(フェニルエチニル)ナフタレン(250mg,0.63mmol)を加え、190℃で12時間攪拌した。この反応液を室温まで冷却した後、飽和塩化アンモニウム水溶液(50ml)に注いだ。析出した固体を濾別して採取した。
 この固体を昇華精製することにより、2,7-ジフェニルナフト[1,2-b:5,6-b’]ジチオフェン(147mg,60%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000038
 得られた2,7-ジフェニルナフト[1,2-b:5,6-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.34-7.40 (m, 2H, ArH), 7.45-7.57 (m, 4H, ArH), 7.71 (s, 2H, ArH), 7.79-7.82 (m, 4H, ArH), 7.91 (d, 2H, J = 8.6 Hz, ArH), 8.05 (d, 2H, J = 8.6 Hz, ArH); EIMS (70 eV) m/z = 392 (M+); mp > 300 ℃
 続いて、2,7-ジオクチルナフト[1,2-b:5,6-b’]ジチオフェンの合成について、段階的に説明する。
(1,5-ジクロロ-2,6-ジ(デシン-1-イル)ナフタレンの合成)
 前述のように合成した1,5-ジクロロ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレンを用いて、1,5-ジクロロ-2,6-ジ(デシン-1-イル)ナフタレンを以下の手順により合成した。
 窒素雰囲気下、1,5-ジクロロ-2,6-ビス(トリフルオロメタンスルフォニル)ナフタレン(493mg,1.0mmol)及びトリエチルアミン(0.42mg,3.0mmol)をDMF(10ml)に溶解した。この溶液を30分間脱気した。
 この溶液に触媒としてPd(PPhCl(70mg,0.1mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬として1-デシン(0.54ml,3.0mmol)を加えた。これを室温で27時間攪拌して反応させた後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を、塩化メチレン(10ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(10ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれている水を除いた後、溶媒を減圧下で留去することにより、粗生成物を得た。
 得られた粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.3)で分離精製することにより、白色固体の1,5-ジクロロ-2,6-ジ(デシン-1-イル)ナフタレン(408mg,収率87%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000039
 得られた1,5-ジクロロ-2,6-ジ(デシン-1-イル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.89 (t, 6H, J = 7.0 Hz, CH3), 1.23-1.71 (m, 24H, CH2), 2.53 (t, 4H, J = 7.0 Hz, CH2), 7.56 (d, 2H, J = 8.5 Hz, ArH), 8.13 (d, 2H, J = 8.5 Hz, ArH); EIMS (70 eV) m/z = 468 (M+)
(2,7-ジオクチルナフト[1,2-b:5,6-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(204mg,0.85mmol)をNMP(5ml)に懸濁させ、15分間攪拌した。
 この懸濁液に1,5-ジクロロ-2,6-ジ(デシン-1-イル)ナフタレン(100mg,0.21mmol)を加え、190℃で13時間攪拌した。これを室温まで冷却した後、飽和塩化アンモニウム水溶液(30ml)に注いだ。析出した固体を濾別して採取した。
 この固体をヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.5)で分離精製することにより、白色固体の2,7-ジオクチルナフト[1,2-b:5,6-b’]ジチオフェン(147mg,60%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000040
 得られた2,7-ジオクチルナフト[1,2-b:5,6-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.88 (t, 6H, J = 6.8 Hz, CH3), 1.21-1.83 (m, 24H, CH2), 2.97 (t, 4H, J = 7.4 Hz, CH2), 7.14 (s, 2H, ArH), 7.77 (d, 2H, J = 8.6 Hz, ArH), 7.91 (d, 2H, J = 8.6 Hz, ArH); EIMS (70 eV) m/z = 464 (M+); mp 92-93 ℃
(ナフト[1,2-b:5,6-b’]ジセレノフェンの合成)
 窒素雰囲気下、セレン(72mg,0.91mmol)をエタノール(3ml)に懸濁させ、さらに水素化ホウ素ナトリウム(34mg,0.91mmol)を氷浴下で加えて、40分攪拌した。
 この懸濁液にNMP(10ml)と前述のように合成した1,5-ジクロロ-2,6-ビス(トリメチルシリルエチニル)ナフタレン(100mg,0.26mmol)とを加え、190℃で12時間攪拌した。
 この反応液を室温まで冷却した後、飽和塩化アンモニウム水溶液(50ml)に注いだ。析出した固体を濾別して採取した。この固体を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.2)で分離精製することにより、白色固体のナフト[1,2-b:5,6-b’]ジセレノフェン(70mg,収率81%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000041
 得られたナフト[1,2-b:5,6-b’]ジセレノフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.73 (d, 2H, J = 5.8 Hz, ArH), 7.92 (s, 4H, ArH), 8.08 (d, 2H, J = 5.9 Hz, ArH); 13C-NMR (100 MHz, CDCl3) δ 123.56, 124.40, 128.37, 128.39, 129.22, 139.95, 142.23; EIMS (70 eV) m/z = 336 (M+)
(2,7-ジフェニルナフト[1,2-b:5,6-b’]ジセレノフェンの合成)
 窒素雰囲気下、セレン(141mg,1.8mmol)をエタノール(4ml)に懸濁させ、次に水素化ホウ素ナトリウム(68mg,1.8mmol)を氷浴下で加えて、40分間攪拌した。
 この懸濁液に、NMP(20ml)と前述のように合成した1,5-ジクロロ-2,6-ビス(フェニルエチニル)ナフタレン(200mg,0.5mmol)とを加え、190度で12時間攪拌した。この反応液を室温まで冷却した後、飽和塩化アンモニウム水溶液(50mL)に注いだ。析出した固体を濾別して採取した。
 この固体を温度勾配熱昇華法で精製することにより、淡黄色固体の2,7-ジフェニルナフト[1,2-b:5,6-b’]ジセレノフェン(66mg,収率27%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000042
 得られた2,7-ジフェニルナフト[1,2-b:5,6-b’]ジセレノフェンのスペクトルデータを以下に示す。なお、2,7-ジフェニルナフト[1,2-b:5,6-b’]ジセレノフェンは難溶性であったため、1H-NMR測定は行えなかった。
EIMS (70 eV) m/z = 488 (M+)
 続いて、一般式(4)で表される化合物の合成例を具体的に記す。
 まず、ナフト[2,1-b:6,5-b’]ジチオフェンの合成について、以下に段階的に説明する。
(2,6-ジブロモ-1,5-ジヒドロキシナフタレンの合成)
 窒素雰囲気下、1,5-ジヒドロキシナフタレン(5.0g,31mmol)と少量のヨウ素を酢酸(150ml)に溶解した。この溶液を80℃まで加熱した。なお、ここでは酢酸は溶媒として用いた。
 この溶液に臭素(3.2ml,62.4mmol)を滴下し、還流温度下で12時間反応させた。この反応液を室温まで冷却し、純水(50ml)を加えた。析出した固体を濾別して採取した。この固体を純水で洗浄した後、減圧下で乾燥させることにより、白色固体の2,6-ジブロモ-1,5-ジヒドロキシナフタレン(8.2g,収率83%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000043
 得られた2,6-ジブロモ-1,5-ジヒドロキシナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 5.99 (s, 2H, OH), 7.39 (d, 2H, J = 9.4 Hz, ArH), 7.70 (d, 2H, J = 9.4 Hz, ArH); EIMS (70 eV) m/z = 318 (M+)
(2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルフォニル)ナフタレンの合成)
 窒素雰囲気下、2,6-ジブロモ-1,5-ジヒドロキシナフタレン(3.0g,9.4mmol)及びピリジン(4.5ml,56mmol)を塩化メチレン(90ml)に溶解した。ここでは、ピリジンは不要物を除去するための添加剤として、塩化メチレンは溶媒としてそれぞれ用いた。
 この溶液に、無水トリフルオロメタンスルフォン酸(3.3ml,21mmol)を氷浴下でゆっくり加えた。これを室温で4時間30分攪拌した後、純水(10ml)及び1N塩酸(10ml)を加え、反応を停止させた。
 この反応液を、塩化メチレン(20ml)を用いて抽出した。なお、この抽出は同様の手法で計3回行った。抽出後、有機相を飽和食塩水(20ml)で洗浄した。なお、この洗浄は同様の手法で計3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれる水を除いた後、溶媒を減圧下で留去することにより、粗生成物を得た。
 この粗生成物を、塩化メチレンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.95)で分離精製することにより、白色固体の2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルフォニル)ナフタレン(3.2g,収率58%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000044
 得られた2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルフォニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.89 (d, 2H, J = 9.2 Hz, ArH), 8.03 (d, 2H, J = 9.2 Hz, ArH); EIMS (70 eV) m/z = 582 (M+)
(2,6-ジブロモ-1,5-ビス(トリメチルシリルエチニル)ナフタレンの合成)
 窒素雰囲気下、2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルフォニル)ナフタレン(582mg,1.0mmol)をDMF(7ml)及びジイソプロピルアミン(7ml)に溶解した。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(70mg,0.05mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬としてトリメチルシリルアセチレン(0.28ml,2.0mmol)を加えた。これを室温で11時間攪拌した後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれる水を除いた後、溶媒を減圧下で留去することによって、粗生成物を得た。
 得られた粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.2)で分離精製することにより、白色固体の2,6-ジブロモ-1,5-ビス(トリメチルシリルエチニル)ナフタレン(234mg,収率49%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000045
 得られた2,6-ジブロモ-1,5-ビス(トリメチルシリルエチニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.29 (s, 18H, TMS), 7.71 (d, 2H, J = 8.8 Hz, ArH), 8.14 (d, 2H, J = 8.8 Hz, ArH); EIMS (70 eV) m/z = 478 (M+)
(ナフト[2,1-b:6,5-b’]ジチオフェンの合成)
 窒素雰囲気下で、NaS・9HO(202mg,0.84mmol)をNMP(6ml)に懸濁させ、15分間攪拌した。
 この懸濁液に2,6-ジブロモ-1,5-ビス(トリメチルシリルエチニル)ナフタレン(100mg,0.2mmol)を加え、190℃で14時間攪拌した。これを室温まで冷却した後、飽和塩化アンモニウム水溶液(20ml)に注いだ。析出した固体を濾別して採取した。ナフト[2,1-b:6,5-b’]ジチオフェン(62mg)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000046
 得られたナフト[2,1-b:6,5-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.43 (d, 2H, J = 5.4 Hz, ArH), 8.05 (d, 2H, J = 5.5 Hz ArH), 8.05 (d, 2H, J = 8.9 Hz, ArH), 8.30 (d, 2H, J = 8.9 Hz, ArH); EIMS (70 eV) m/z = 240 (M+)
 続いて、2,7-ジフェニルナフト[2,1-b:6,5-b’]ジチオフェンの合成について、段階的に説明する。
(2,6-ジブロモ-1,5-ビス(フェニルエチニル)ナフタレンの合成)
 前述のように合成した2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルフォニル)ナフタレンを用いて、2,6-ジブロモ-1,5-ビス(フェニルエチニル)ナフタレンを以下の手順により合成した。
 窒素雰囲気下、2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルフォニル)ナフタレン(582mg,1.0mmol)を、DMF(7ml)及びジイソプロピルアミン(7ml)に溶解した。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(70mg,0.05mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬としてフェニルアセチレン(0.22ml,2.0mmol)を加えた。これを室温で11時間攪拌して反応させた後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれている水分を除いた後、溶媒を減圧下で留去することにより、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.1)で分離精製することにより、白色固体の2,6-ジブロモ-1,5-ビス(フェニルエチニル)ナフタレン(437mg,収率90%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000047
 得られた2,6-ジブロモ-1,5-ビス(フェニルエチニル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.42-7.44 (m, 6H, ArH), 7.69-7.72 (m, 4H, ArH), 7.79(d, 2H, J = 8.9 Hz, ArH), 8.27 (d, 2H, J = 8.9 Hz, ArH); EIMS (70 eV) m/z = 486 (M+)
(2,7-ジフェニルナフト[2,1-b:6,5-b’]ジチオフェンの合成)
 窒素雰囲気下で、NaS・9HO(404mg,1.68mmol)をNMP(12ml)に懸濁させ、15分間攪拌した。
 この懸濁液に、2,6-ジブロモ-1,5-ビス(フェニルエチニル)ナフタレン(200mg,0.4mmol)を加え、190℃で14時間攪拌した。これを室温まで冷却した後、飽和塩化アンモニウム水溶液(20ml)に注いだ。析出した固体を濾別して採取することにより、2,7-ジフェニルナフト[2,1-b:6,5-b’]ジチオフェン(192mg)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000048
 得られた2,7-ジフェニルナフト[2,1-b:6,5-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 7.39-7.40 (m, 2H, ArH), 7.47-7.51 (m, 4H, ArH), 7.82-7.84 (m, 4H, ArH), 8.01 (d, 2H, J = 8.6 Hz, ArH), 7.71 (s, 2H, ArH), 8.05 (d, 2H, J = 8.6 Hz, ArH); EIMS (70 eV) m/z = 392 (M+)
 続いて、2,7-ジオクチルナフト[2,1-b:6,5-b’]ジチオフェンの合成について、段階的に説明する。
(2,6-ジブロモ-1,5-ジ(デシン-1-イル)ナフタレンの合成)
 前述のように合成した2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルフォニル)ナフタレンを用いて、2,6-ジブロモ-1,5-ジ(デシン-1-イル)ナフタレンを以下の手順により合成した。
 窒素雰囲気下、2,6-ジブロモ-1,5-ビス(トリフルオロメタンスルフォニル)ナフタレン(582mg,1.0mmol)をDMF(7ml)及びジイソプロピルアミン(7ml)に溶解した。この溶液を30分間脱気した。
 この溶液に、触媒としてPd(PPhCl(70mg,0.05mmol,10mol%)及びCuI(38mg,0.1mmol,20mol%)、試薬として1-デシン(0.36ml,2.0mmol)を加えた。これを室温で11時間攪拌して反応させた後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。
 この反応液を塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれている水を除いた後、溶媒を減圧下で留去することによって、粗生成物を得た。
 この粗生成物を、ヘキサンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.2)で分離精製することにより、白色固体の2,6-ジブロモ-1,5-ジ(デシン-1-イル)ナフタレン(340mg,収率61%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000049
 得られた2,6-ジブロモ-1,5-ジ(デシン-1-イル)ナフタレンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 0.89 (t, 6H, J = 7.0 Hz, CH3), 1.26-1.70 (m, 24H, CH2), 2.62 (t, 4H, J = 7.3 Hz, CH2), 7.68 (d, 2H, J = 9.4 Hz, ArH), 8.10 (d, 2H, J = 9.4 Hz, ArH); EIMS (70 eV) m/z = 558 (M+
(2,7-ジオクチルナフト[2,1-b:6,5-b’]ジチオフェンの合成)
 窒素雰囲気下、NaS・9HO(404mg,1.68mmol)をNMP(12ml)に懸濁させ、15分間攪拌した。
 この懸濁液に、2,6-ジブロモ-1,5-ジ(デシン-1-イル)ナフタレン(200mg,0.4mmol)を加え、190℃で14時間攪拌した。これを室温まで冷却した後、飽和塩化アンモニウム水溶液(20ml)に注いだ。析出した固体を濾別して採取することにより、2,7-ジオクチルナフト[2,1-b:6,5-b’]ジチオフェン(200mg,収率100%)を得た。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000050
 得られた2,7-ジオクチルナフト[2,1-b:6,5-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 0.88 (t, 6H, J = 7.0 Hz, CH3), 1.26-1.70 (m, 24H, CH2), 3.02 (t, 4H, J = 7.3 Hz, CH2), 7.68 (s, 2H, ArH), 7.89 (d, 2H, J = 8.8 Hz, ArH), 8.12 (d, 2H, J = 8.8 Hz, ArH); EIMS (70 eV) m/z = 464 (M+)
 続いて、一般式(5)で表される化合物の合成例を実施例に基づいて具体的に示す。
(2,7-ジブロモナフト[2,3-b:6,7-b’]ジチオフェンの合成)
 窒素雰囲気下、実施例1で合成したナフト[2,3-b:6,7-b’]ジチオフェン(50mg,0.21mmol)をTHF(10ml)に懸濁させた。この懸濁液を-78℃に冷却し、n-BuLi(0.4ml,0.63mmol,1.59M)を加えた。これを30分間攪拌した後、1,2-ジブロモ-1,1,2,2-テトラクロロエタン(150mg,0.46mmol)のTHF(3mL)溶液を滴下した。
 次にこの反応液を室温まで昇温させて16時間攪拌した後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。析出した固体を濾別して採取することにより、2,7-ジブロモナフト[2,3-b:6,7-b’]ジチオフェン(15mg,収率18%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000051
 得られた2,7-ジブロモナフト[2,3-b:6,7-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (400 MHz, CDCl3) δ 7.43 (s, 2H, ArH), 8.22 (s, 2H, ArH), 8.31 (s, 2H, ArH); 
EIMS (70 eV) m/z = 398 (M+)
 続いて、一般式(7)で表される化合物の合成について、実施例に基づいて具体的に説明する。
(2,7-ジブロモナフト[1,2-b:5,6-b’]ジチオフェンの合成)
 窒素雰囲気下、実施例7で合成したナフト[1,2-b:5,6-b’]ジチオフェン(50mg,0.21mmol)をTHF(5ml)に溶解した。この溶液を-78℃に冷却し、n-BuLi(0.4ml,0.63mmol,1.59M)を加えた。これを30分間攪拌した後、1,2-ジブロモ-1,1,2,2,-テトラクロロエタン(651mg,2mmol)のTHF(3mL)溶液を滴下した。
 この反応液を室温まで昇温して16時間攪拌した後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。この反応液を塩化メチレン(5ml)を用いて抽出した。この抽出は同様の手順で3回行った。抽出後、飽和食塩水(5ml)を用い、有機相を洗浄した。この洗浄は同様の手順で3回行った。
 無水硫酸マグネシウムを用いて有機相に含まれる水を除いた後、溶媒を減圧下で留去することにより、粗生成物を得た。得られた粗生成物を、塩化メチレンを移動相とするシリカゲルカラムクロマトグラフィー(Rf=0.95)で分離精製することにより、白色固体の2,7-ジブロモナフト[1,2-b:5,6-b’]ジチオフェン(68mg,収率81%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000052
 得られた2,7-ジブロモナフト[1,2-b:5,6-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.48 (s, 2H, ArH), 7.80 (d, 2H, J = 8.5 Hz, ArH), 7.87 (d, 2H, J = 8.5 Hz, ArH); EIMS (70 eV) m/z = 398 (M+)
(2,7-ジヨードナフト[1,2-b:5,6-b’]ジチオフェンの合成)
 窒素雰囲気下、実施例7で合成したナフト[1,2-b:5,6-b’]ジチオフェン(50mg,0.21mmol)をTHF(5ml)に溶解した。この溶液を-78℃に冷却し、n-BuLi(0.4ml,0.63mmol,1.59M)を加えた。これを30分間攪拌した後、ヨウ素(117mg,0.46mmol)のTHF(3mL)溶液を滴下した。
 この反応液を室温まで昇温し、10時間攪拌した後、純水(1ml)及び1N塩酸(1ml)を加えて反応を停止させた。析出した固体を濾別して採取することにより、白色固体の2,7-ジヨードナフト[1,2-b:5,6-b’]ジチオフェン(82mg,収率80%)が得られた。
 上記反応の反応式は以下の通りである。
Figure JPOXMLDOC01-appb-C000053
 得られた2,7-ジヨードナフト[1,2-b:5,6-b’]ジチオフェンの各種スペクトルデータを以下に示す。
1H-NMR (270 MHz, CDCl3) δ 7.68 (s, 2H, ArH), 7.82 (d, 2H, J = 8.8 Hz, ArH), 7.86 (d, 2H, J = 8.8 Hz, ArH); EIMS (70 eV) m/z = 492 (M+)
(FET特性)
 実施例2で合成した2,7-ジフェニルナフト[2,3-b:6,7-b’]ジチオフェン(以下、化合物A)、実施例3で合成した2,7-ジオクチルナフト[2,3-b:6,7-b’]ジチオフェン(以下、化合物B)、実施例8で合成した2,7-ジフェニルナフト[1,2-b:5,6-b’]ジチオフェン(以下、化合物C)、実施例11で合成した2,7-ジフェニルナフト[1,2-b:5,6-b’]ジセレノフェン(以下、化合物D)を用いてそれぞれFET素子を作製し、そのFET特性を検証した。
 化合物Aを用いたFET素子は以下のようにして作製した。まず、SiO基板を面積1cm×1cmの大きさに切り出した。このSiO基板の裏面をフッ化水素酸で処理し、空気中で酸化されたシリカを取り除いた。次にSiO基板にAuを真空蒸着してゲート電極を形成した。このSiO基板表面上に、真空蒸着法で化合物Aの有機薄膜を形成した。なお、SiO基板は、オクチルトリクロロシランで表面処理を施して用いた。
 形成された化合物Aの有機薄膜上にシャドウマスクを用いてAuを真空蒸着し、ソース電極とドレイン電極とを形成した。
 作製したFET素子の概略構成を図1(図1(A)はFET素子の断面図、図1(B)はFET素子の平面図)に示す。作製したFET素子はトップコンタクト型である。そのチャネル長は50μm、チャネル幅は1.5mmである。
 上記と同様にして、化合物Cを用いたFET素子、及び、化合物Dを用いたFET素子をそれぞれ作製した。
 また、化合物Bを用いたFET素子は以下のようにして作製した。まず、SiO基板を面積1cm×1cmの大きさに切り出した。このSiO基板の裏面をフッ化水素酸で処理し、空気中で酸化されたシリカを取り除いた。次にSiO基板にAuを真空蒸着してゲート電極を形成した。このSiO基板表面上に、スピンコート法(有機薄膜作製条件:3000rpm,30sec)により化合物Bの有機薄膜を形成した。なおこの際、化合物Bはクロロホルム溶液(濃度0.4wt%)として用いた。
 形成された化合物Bの有機薄膜上にシャドウマスクを用いてAuを真空蒸着し、ソース電極とドレイン電極とを形成した。なお、このFET素子の構造等については、上記他のFET素子と同様である。
 FET素子の性能は、ゲート電極に電位をかけた状態でソース電極とドレイン電極との間に電位をかけた場合に流れる電流量に依存する。この電流値を測定することでFET素子の特性である電界移動度を決めることができる。電界移動度は、絶縁体としてのSiOにゲート電圧を印加した結果、有機半導体層中に生じるキャリア種の電気的特性を表現する式(a)から求めることができる。
  Id=WμCo(Vg-Vt)/2L …(a)
 式(a)において、Idは飽和したソース-ドレイン電流値、Wはチャネル幅、Coはゲート電気容量、Vgはゲート電圧、Vtは閾値電圧、Lはチャネル長をそれぞれ表す。μは、測定により決定されるFET素子の電界移動度(cm/Vs)を表す。Coは用いたSiO絶縁膜の誘電率によって決まる。W及びLはFET素子の素子構造によって決まる。Id及びVgはFET素子の電流値の測定時に決まる。VtはId、Vgから求めることができる。式(a)に各値を代入することで、それぞれのゲート電位での電界移動度を算出することができる。なお閾値電圧[Vt]は、-Idの平方根をY軸に、VgをX軸に取ってプロットした際に、カーブが立ち上がる値をVg値として求めた。
 それぞれのFET素子について、p型FET特性を調べるために、負のゲート電圧をかけ、大気中にて駆動させて評価した。
 図2は、化合物Aを用いて作製されたFET素子のFET特性を示す図である。図3は、化合物Bを用いて作製されたFET素子のFET特性を示す図である。図4は、化合物Cを用いて作製されたFET素子のFET特性を示す図である。また、図5は、化合物Dを用いて作製されたFET素子のFET特性を示す図である。
 ここで、図2(A)、図3(A)、図4(A)及び図5(A)は、それぞれのFET素子のVg-Id曲線である。また、図2(B)、図3(B)、図4(B)及び図5(B)は、それぞれのFET素子のVd-Id曲線である。
 Vg-Id曲線は、アウトプット特性において、電流(Id)が飽和電流になる値になるようソース-ドレイン間の電圧(Vd)を固定した時の、ゲート電圧(Vg)と電流(Id)との関係を表す。すなわち、Vg-Id曲線は、当該FET素子のトランスファー特性(伝達特性)を示している。当該Vg-Id曲線において、off状態からon状態への立ち上がりが急なほど、スイッチング特性が良好であることを示しており、トランジスタ特性は優れていると言える。また、off電流が低ければ低いほど、on電流が高ければ高いほどon/off比が大きく、良好なトランジスタであるといえる。
 一方、Vd-Id曲線は、ゲート電圧(Vg)を段階的に変化させた時の、ソース-ドレイン間の電圧(Vd)と電流(Id)との関係を表す。すなわち、Vd-Id曲線は、当該FET素子のアウトプット特性(出力特性)を示している。当該FET素子においていずれのゲート電圧(Vg)においても、ソース-ドレイン間の電圧(Vd)が高い領域で電流(Id)が飽和すること(飽和電流)及びソース-ドレイン間の電圧(Vd)が低い領域で電流(Id)が直線的に立ち上がっていることを示していれば、そのFET素子は良好なアウトプット特性を有しており、高性能であるといえる。
 図2(A)、図3(A)、図4(A)及び図5(A)をみると、ゲート電圧(Vg)の印加により、いずれも電流(Id)が急峻に立ち上がっている。このことは、本発明に係るFET素子のスイッチング特性が良好であることを示している。また、図2(B)、図3(B)、図4(B)及び図5(B)をみると、ソース-ドレイン間の電圧(Vd)が低い領域では、Vd-Id曲線はいずれもほぼ直線状に立ち上がっており、また、ソース-ドレイン間の電圧(Vd)の高い領域ではドレイン電流が一定となっており、飽和電流が観測されている。このことは、本発明に係るFET素子は良好なアウトプット特性を有する高性能なFET素子であることを示している。
 次に、先に述べた方法に基づき各FET素子の電界移動度を求めた。また、それぞれのVg-Id曲線において、Vgが0~-10V程度と小さいときをoff状態とし、Vgが-60Vのときをon状態として、off状態及びon状態それぞれにおけるIdの値の比をon/off比として求めた。結果は以下の通りであった。化合物Aを用いたFET素子では、電界移動度:0.7cm/Vs、on/off比:10であった。化合物Cを用いたFET素子では、電界移動度:0.2cm/Vs、on/off比:10であった。また、化合物Dを用いたFET素子では、電界移動度:0.2cm/Vs、on/off比:10であった。このように、化合物A、化合物C、化合物Dを用いたFET素子はいずれも良好な測定結果を示した。
 また、化合物Bを用い、塗布法(スピンコート法)により製造したFET素子の電界移動度は10-3cm/Vs台、また、on/off比は10と、化合物A、化合物C、及び化合物Dを用いたFET素子に比べるとやや劣る結果となった。しかし、このFET素子もFET特性を備えていることから、本発明に係るFET素子の製造方法としては、塗布法も利用可能であることがわかる。
 このように、本実施例で合成した化合物A、化合物B、化合物C、及び化合物Dを用いたFET素子はp型トランジスタとして使用することができる。
 本出願は、2008年11月21日に出願された日本国特許出願2008-298830号及び2009年3月27日に出願された日本国特許出願2009-080527号に基づく。本明細書中に日本国特許出願2008-298830号及び2009-080527号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明に係る化合物は、π軌道の相互作用により各分子内に共役系を有し、さらに各分子内のチオフェン環又はセレノフェン環に含まれる硫黄原子又はセレン原子を介した強い分子間相互作用を示す。このため、本発明に係る化合物は、効果的なキャリアの移動が可能である。これらの化合物は良好な電界移動度を有するので、有機半導体材料として利用でき、さらにこれを用いた有機半導体デバイスを構成することができる。

Claims (16)

  1.  下記一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001

    (上記式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子、アルキル基又はフェニル基を表す。)
  2.  下記一般式(5)、一般式(6)、一般式(7)又は一般式(8)で表される化合物。
    Figure JPOXMLDOC01-appb-C000002

    (上記式中、Zは硫黄原子又はセレン原子を表し、Xはハロゲン原子を表す。)
  3.  ジハロゲノジヒドロキシナフタレンと無水トリフルオロメタンスルフォン酸とを反応させてジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンを得る工程と、
     前記ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンと末端アセチレン化合物とを反応させてジハロゲノ-ジエチニルナフタレン誘導体を得る工程と、
     前記ジハロゲノ-ジエチニルナフタレン誘導体と、硫化物塩又はセレン化物塩と、を反応させる工程と、
     を含む、下記一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    (上記式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子、アルキル基又はフェニル基を表す。)
  4.  ジヒドロキシナフタレンとハロゲン化剤とを反応させて前記ジハロゲノジヒドロキシナフタレンを得る工程を更に含む、
     ことを特徴とする請求項3に記載の化合物の製造方法。
  5.  前記ジヒドロキシナフタレンは2,6-ジヒドロキシナフタレンであり、
     得られる化合物は前記一般式(1)又は前記一般式(3)で表される化合物である、
     ことを特徴とする請求項4に記載の化合物の製造方法。
  6.  前記ジヒドロキシナフタレンは2,7-ジヒドロキシナフタレンであり、
     得られる化合物は前記一般式(2)で表される化合物である、
     ことを特徴とする請求項4に記載の化合物の製造方法。
  7.  前記ジヒドロキシナフタレンは1,5-ジヒドロキシナフタレンであり、
     得られる化合物は前記一般式(4)で表される化合物である、
     ことを特徴とする請求項4に記載の化合物の製造方法。
  8.  前記ハロゲン化剤は臭素化剤又は塩素化剤である、
     ことを特徴とする請求項4に記載の化合物の製造方法。
  9.  前記ハロゲン化剤は臭素化剤であり、
     前記ジヒドロキシナフタレンの臭素化を促進する触媒を添加する工程を更に含み、
     前記臭素化剤を添加する工程は2回以上行われる、
     ことを特徴とする請求項8に記載の化合物の製造方法。
  10.  前記末端アセチレン化合物は、トリメチルシリルアセチレン、フェニルアセチレン又は1-デシンのいずれかである、
     ことを特徴とする請求項3に記載の化合物の製造方法。
  11.  前記ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンと前記末端アセチレン化合物との反応は、前記ジハロゲノ-ビス(トリフルオロメタンスルフォニル)ナフタレンを溶解可能な極性溶媒中で行われる、
     ことを特徴とする請求項3に記載の化合物の製造方法。
  12.  前記極性溶媒は非プロトン性極性溶媒である、
     ことを特徴とする請求項11に記載の化合物の製造方法。
  13.  前記非プロトン性極性溶媒はジメチルホルムアミドである、
     ことを特徴とする請求項12に記載の化合物の製造方法。
  14.  下記一般式(1)、一般式(2)、一般式(3)又は一般式(4)
    Figure JPOXMLDOC01-appb-C000004

    (上記式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子を表す。)
     で表される化合物にハロゲン化剤を添加する工程を含むことを特徴とする、下記一般式(5)、一般式(6)、一般式(7)又は一般式(8)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005

    (上記式中、Zは硫黄原子又はセレン原子を表し、Xはハロゲン原子を表す。)
  15.  下記一般式(1)、一般式(2)、一般式(3)又は一般式(4)で表される化合物を1種以上含むことを特徴とする有機半導体材料。
    Figure JPOXMLDOC01-appb-C000006

    (上記式中、Zは硫黄原子又はセレン原子を表し、Rは水素原子、アルキル基又はフェニル基を表す。)
  16.  請求項15に記載の有機半導体材料を含むことを特徴とする有機半導体デバイス。
PCT/JP2009/068660 2008-11-21 2009-10-30 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス WO2010058692A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/130,551 US20110224445A1 (en) 2008-11-21 2009-10-30 Novel Compound, Method of Producing the Compound, Organic Semiconductor Material and Organic Semiconductor Device
EP09827473.1A EP2368892B1 (en) 2008-11-21 2009-10-30 Novel compound, process for producing the compound, organic semiconductor material, and organic semiconductor device
KR1020117011371A KR101399770B1 (ko) 2008-11-21 2009-10-30 신규 화합물 및 그 제조 방법, 그리고 유기 반도체 재료 및 유기 반도체 디바이스
CN200980146474.4A CN102224157B (zh) 2008-11-21 2009-10-30 化合物及其制备方法、有机半导体材料和有机半导体装置
US14/062,545 US8816100B2 (en) 2008-11-21 2013-10-24 Compound, method of producing the compound, organic semiconductor material and organic semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-298830 2008-11-21
JP2008298830 2008-11-21
JP2009080527A JP5544650B2 (ja) 2008-11-21 2009-03-27 新規化合物の製造方法
JP2009-080527 2009-03-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/130,551 A-371-Of-International US20110224445A1 (en) 2008-11-21 2009-10-30 Novel Compound, Method of Producing the Compound, Organic Semiconductor Material and Organic Semiconductor Device
US14/062,545 Division US8816100B2 (en) 2008-11-21 2013-10-24 Compound, method of producing the compound, organic semiconductor material and organic semiconductor device

Publications (1)

Publication Number Publication Date
WO2010058692A1 true WO2010058692A1 (ja) 2010-05-27

Family

ID=42198131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068660 WO2010058692A1 (ja) 2008-11-21 2009-10-30 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス

Country Status (6)

Country Link
US (2) US20110224445A1 (ja)
EP (1) EP2368892B1 (ja)
JP (1) JP5544650B2 (ja)
KR (1) KR101399770B1 (ja)
CN (1) CN102224157B (ja)
WO (1) WO2010058692A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078246A1 (ja) * 2009-12-25 2011-06-30 住友化学株式会社 高分子化合物、これを含む薄膜及びインク組成物
WO2011078248A1 (ja) * 2009-12-25 2011-06-30 住友化学株式会社 高分子化合物、これを含む薄膜及びインク組成物
WO2012118174A1 (ja) * 2011-03-02 2012-09-07 国立大学法人九州大学 有機電界効果トランジスタ及び有機半導体材料
WO2012129511A2 (en) * 2011-03-24 2012-09-27 Northwestern University Semiconducting compounds and devices incorporating same
WO2012148185A2 (ko) 2011-04-27 2012-11-01 한국화학연구원 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 디바이스
WO2013031468A1 (ja) * 2011-09-02 2013-03-07 国立大学法人九州大学 複素環式化合物及びその利用
WO2014024769A1 (ja) * 2012-08-09 2014-02-13 国立大学法人広島大学 anti-アントラジカルコゲノフェンの合成方法
WO2014027581A1 (ja) 2012-08-14 2014-02-20 国立大学法人九州大学 複素環化合物及びその利用
KR20140136893A (ko) 2013-05-21 2014-12-01 한국화학연구원 비대칭 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 장치
KR20140136892A (ko) 2013-05-21 2014-12-01 한국화학연구원 단분자 비대칭 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 장치
WO2015087875A1 (ja) * 2013-12-10 2015-06-18 日本化薬株式会社 新規縮合多環芳香族化合物及びその用途
CN104797583A (zh) * 2012-03-29 2015-07-22 康宁公司 新型融合萘杂环化合物及其方法与用途
JP2015199716A (ja) * 2014-03-31 2015-11-12 日本化薬株式会社 多環縮環化合物、有機半導体材料、有機半導体デバイス及び有機トランジスタ
US9260451B2 (en) 2012-08-24 2016-02-16 Nippon Kayaku Kabushiki Kaisha Method for producing aromatic compound
KR20160089859A (ko) 2015-01-20 2016-07-28 한국화학연구원 신규한 유기반도체 화합물 및 이를 이용한 유기 전자 소자
JPWO2014133100A1 (ja) * 2013-02-28 2017-02-02 日本化薬株式会社 新規縮合多環芳香族化合物及びその用途
KR101702306B1 (ko) 2016-06-17 2017-02-03 한국화학연구원 신규한 유기반도체 화합물 및 이를 이용한 유기 전자 소자
KR20180043189A (ko) 2015-08-28 2018-04-27 디아이씨 가부시끼가이샤 유기 화합물, 그 제조법, 그것을 함유하는 유기 반도체 재료 및 그것을 함유하는 유기 트랜지스터
KR20190102622A (ko) 2018-02-26 2019-09-04 한국화학연구원 신규한 화합물, 이의 제조방법 및 이를 이용하는 유기 전자 소자
JP2021500757A (ja) * 2017-10-23 2021-01-07 ソニー株式会社 有機フォトダイオードにおける有機光電変換層のためのp活性材料
JP2021073189A (ja) * 2016-06-03 2021-05-13 エルジー・ケム・リミテッド 電気活性化合物

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159584A (ja) * 2012-02-07 2013-08-19 Univ Of Tokyo 電子材料およびこれを用いた電子素子
JP5923823B2 (ja) * 2012-02-16 2016-05-25 国立大学法人広島大学 アセンジカルコゲノフェン誘導体用中間体及びその合成方法
CN103664995B (zh) * 2012-08-31 2016-10-19 昆山维信诺显示技术有限公司 萘并二噻吩类衍生物有机电致发光材料及其应用
TWI642673B (zh) * 2014-04-02 2018-12-01 國立交通大學 雜環化合物及其合成方法
KR102378363B1 (ko) * 2014-12-31 2022-03-25 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
EP3050887B1 (en) 2015-01-29 2017-06-28 Samsung Electronics Co., Ltd. Fused polycyclic heteroaromatic compound, organic thin film including compound and electronic device including organic thin film
JP6651606B2 (ja) * 2016-03-16 2020-02-19 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
US10418567B2 (en) * 2016-12-22 2019-09-17 Feng-wen Yen Organic compound for organic EL device and using the same
WO2018207420A1 (ja) * 2017-05-08 2018-11-15 ソニー株式会社 有機光電変換素子
EP3434679B1 (en) 2017-07-28 2020-04-15 Samsung Electronics Co., Ltd. Organic compound, organic thin film, and electronic device
KR102464890B1 (ko) 2017-10-18 2022-11-07 삼성전자주식회사 축합다환 헤테로방향족 화합물, 유기 박막 및 전자 소자
KR102631401B1 (ko) * 2018-08-28 2024-01-29 삼성전자주식회사 화합물, 박막 트랜지스터 및 전자 소자
KR20200061888A (ko) 2018-11-26 2020-06-03 삼성전자주식회사 화합물, 유기 박막, 박막 트랜지스터 및 전자 소자
CN110343235A (zh) * 2019-06-27 2019-10-18 北京航空航天大学 一种萘并二噻吩共轭聚合物及其制备方法与应用
US10978125B1 (en) * 2020-04-21 2021-04-13 Namlab Ggmbh Transistor with adjustable rectifying transfer characteristic
CN111333608B (zh) * 2020-04-26 2022-11-22 西南林业大学 一种多取代萘并[1,8-bc]噻吩类化合物的制备方法
CN112961326A (zh) * 2021-02-03 2021-06-15 北京航空航天大学 一种萘并二呋喃共轭聚合物及其制备方法与应用
CN115594827A (zh) * 2022-10-09 2023-01-13 湘潭大学(Cn) 一种含二氟取代引达省酮的n-型聚合物半导体材料及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195790A (ja) * 1997-10-16 1999-07-21 Lucent Technol Inc 薄膜トランジスタ及び薄膜トランジスタ用半導体材料
JP2005206750A (ja) * 2004-01-26 2005-08-04 Konica Minolta Holdings Inc 有機半導体材料、有機トランジスタ、電界効果トランジスタ、スイッチング素子及び5員複素環化合物
WO2006077888A1 (ja) * 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
JP2007067262A (ja) * 2005-09-01 2007-03-15 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
WO2007105386A1 (ja) * 2006-03-10 2007-09-20 Osaka University 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
JP2008147256A (ja) * 2006-12-06 2008-06-26 Hiroshima Univ 電界効果トランジスタ
JP2008258592A (ja) * 2007-03-09 2008-10-23 Hiroshima Univ 電界効果トランジスタ
JP2008298830A (ja) 2007-05-29 2008-12-11 Denso Corp 表示板の製造方法
JP2009080527A (ja) 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd 自律移動装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4024206A1 (de) 1990-07-31 1992-02-06 Basf Ag 2,2'-thienyl-benzothiophene, ihre herstellung und ihre verwendung zur bekaempfung von schaedlingen
JP5164134B2 (ja) * 2006-03-10 2013-03-13 住友化学株式会社 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
JP5284677B2 (ja) * 2008-04-25 2013-09-11 山本化成株式会社 有機トランジスタ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195790A (ja) * 1997-10-16 1999-07-21 Lucent Technol Inc 薄膜トランジスタ及び薄膜トランジスタ用半導体材料
JP2005206750A (ja) * 2004-01-26 2005-08-04 Konica Minolta Holdings Inc 有機半導体材料、有機トランジスタ、電界効果トランジスタ、スイッチング素子及び5員複素環化合物
WO2006077888A1 (ja) * 2005-01-19 2006-07-27 National University Of Corporation Hiroshima University 新規な縮合多環芳香族化合物およびその利用
JP2007067262A (ja) * 2005-09-01 2007-03-15 Konica Minolta Holdings Inc 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
WO2007105386A1 (ja) * 2006-03-10 2007-09-20 Osaka University 縮合環化合物及びその製造方法、重合体、これらを含む有機薄膜、並びに、これを備える有機薄膜素子及び有機薄膜トランジスタ
JP2008147256A (ja) * 2006-12-06 2008-06-26 Hiroshima Univ 電界効果トランジスタ
JP2008258592A (ja) * 2007-03-09 2008-10-23 Hiroshima Univ 電界効果トランジスタ
JP2008298830A (ja) 2007-05-29 2008-12-11 Denso Corp 表示板の製造方法
JP2009080527A (ja) 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd 自律移動装置

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 46, Columbus, Ohio, US; abstract no. 4525B-G *
CHEMICAL ABSTRACTS, vol. 55, Columbus, Ohio, US; abstract no. 2348H-I *
COROPCEANU, V. ET AL.: "Vibronic coupling in organic semiconductors. The case of fused polycyclic benzene-thiophene structures", CHEMISTRY--A EUROPEAN JOURNAL, vol. 12, no. 7, 2006, pages 2073 - 2080 *
DESAI, H.S. ET AL.: "Thiophenes and thiapyrans. XXV. Condensed thiophenes and thiapyrans from 1, 5-, 1, 4-, and 1, 3-dimercaptonaphthalenes", JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, vol. 20B, no. 22-30, 1961, COLUMBUS, OH, USA, pages 20B, 22 - 30 *
See also references of EP2368892A4
SHUNTARO MATAKA, KAZUFUMI TAKAHASHI, YOUJI IKEZAKI, TAIZO HATTA, AKIYOSHI TORII, MASASHI TASHIRO: "Reaction of Tetrasulfur Tetranitride with Naphthalenols and Related Compounds", BULL. CHEM. SOC. JPN., vol. 64, pages 68 - 73
TILAK, B.D.: "Synthesis of thiophenes and thiapyrans. IV. Thiophenes and thiapyrans from naphthalenethiols", PROCEEDINGS - INDIAN ACADEMY OF SCIENCES, SECTION A, vol. 33A, 1951, COLUMBUS, OH, USA, pages 71 - 7 *
UMEDA, R. ET AL.: "Formation of naphthodithiophene isomers by flash vacuum pyrolysis of 1,6-di(2-thienyl)- and 1,6-di(3-thienyl)-1,5- hexadien-3-ynes", COMPTES RENDUS CHIMIE, vol. 12, no. 3-4, 2009, pages 378 - 384 *
VEACESLAV COROPCEANU, OHYUN KWON, BRIGITTE WEX, BILAL R. KAAFARANI, NADINE E. GRUHN, JASON C. DURIVAGE, DOUGLAS C. NECKERS, JEAN-L: "Vibronic Coupling in Organic Semiconductors: The Case of Fused Polycyclic Benzene-Thiophene Structures", CHEM. EUR., vol. 12, 2006, pages 2073 - 2080

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078248A1 (ja) * 2009-12-25 2011-06-30 住友化学株式会社 高分子化合物、これを含む薄膜及びインク組成物
WO2011078246A1 (ja) * 2009-12-25 2011-06-30 住友化学株式会社 高分子化合物、これを含む薄膜及びインク組成物
US8921836B2 (en) 2009-12-25 2014-12-30 Sumitomo Chemical Company, Limited Polymer compound, and thin film and ink composition each containing same
WO2012118174A1 (ja) * 2011-03-02 2012-09-07 国立大学法人九州大学 有機電界効果トランジスタ及び有機半導体材料
JP5840197B2 (ja) * 2011-03-02 2016-01-06 日本化薬株式会社 有機電界効果トランジスタ及び有機半導体材料
JPWO2012118174A1 (ja) * 2011-03-02 2014-07-07 国立大学法人九州大学 有機電界効果トランジスタ及び有機半導体材料
US9240556B2 (en) 2011-03-24 2016-01-19 Northwestern University Semiconducting compounds and devices incorporating same
WO2012129511A2 (en) * 2011-03-24 2012-09-27 Northwestern University Semiconducting compounds and devices incorporating same
WO2012129511A3 (en) * 2011-03-24 2013-01-24 Northwestern University Semiconducting compounds and devices incorporating same
US8754188B2 (en) 2011-03-24 2014-06-17 Northwestern University Semiconducting compounds and devices incorporating same
WO2012148185A2 (ko) 2011-04-27 2012-11-01 한국화학연구원 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 디바이스
CN103502251A (zh) * 2011-04-27 2014-01-08 韩国化学研究院 有机半导体化合物及其制备方法和使用其的有机半导体器件
US9236573B2 (en) 2011-04-27 2016-01-12 Korea Research Institute Of Chemical Technology Organic semiconductor compound, method for preparing same, and organic semiconductor device employing same
WO2012148185A3 (ko) * 2011-04-27 2013-03-21 한국화학연구원 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 디바이스
WO2013031468A1 (ja) * 2011-09-02 2013-03-07 国立大学法人九州大学 複素環式化合物及びその利用
JPWO2013031468A1 (ja) * 2011-09-02 2015-03-23 国立大学法人九州大学 複素環式化合物及びその利用
CN104797583A (zh) * 2012-03-29 2015-07-22 康宁公司 新型融合萘杂环化合物及其方法与用途
JP2014034557A (ja) * 2012-08-09 2014-02-24 Hiroshima Univ anti−アントラジカルコゲノフェンの合成方法
WO2014024769A1 (ja) * 2012-08-09 2014-02-13 国立大学法人広島大学 anti-アントラジカルコゲノフェンの合成方法
KR20150042257A (ko) 2012-08-14 2015-04-20 고쿠리쓰다이가쿠호진 규슈다이가쿠 헤테로시클릭 화합물 및 이의 용도
WO2014027581A1 (ja) 2012-08-14 2014-02-20 国立大学法人九州大学 複素環化合物及びその利用
US9187493B2 (en) 2012-08-14 2015-11-17 Nippon Kayaku Kabushiki Kaisha Heterocyclic compound and use thereof
US9260451B2 (en) 2012-08-24 2016-02-16 Nippon Kayaku Kabushiki Kaisha Method for producing aromatic compound
JPWO2014133100A1 (ja) * 2013-02-28 2017-02-02 日本化薬株式会社 新規縮合多環芳香族化合物及びその用途
KR20140136893A (ko) 2013-05-21 2014-12-01 한국화학연구원 비대칭 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 장치
KR20140136892A (ko) 2013-05-21 2014-12-01 한국화학연구원 단분자 비대칭 유기 반도체 화합물, 이의 제조방법 및 이를 채용한 유기 반도체 장치
JPWO2015087875A1 (ja) * 2013-12-10 2017-03-16 日本化薬株式会社 新規縮合多環芳香族化合物及びその用途
WO2015087875A1 (ja) * 2013-12-10 2015-06-18 日本化薬株式会社 新規縮合多環芳香族化合物及びその用途
JP2015199716A (ja) * 2014-03-31 2015-11-12 日本化薬株式会社 多環縮環化合物、有機半導体材料、有機半導体デバイス及び有機トランジスタ
KR20160089859A (ko) 2015-01-20 2016-07-28 한국화학연구원 신규한 유기반도체 화합물 및 이를 이용한 유기 전자 소자
KR20180043189A (ko) 2015-08-28 2018-04-27 디아이씨 가부시끼가이샤 유기 화합물, 그 제조법, 그것을 함유하는 유기 반도체 재료 및 그것을 함유하는 유기 트랜지스터
US10516115B2 (en) 2015-08-28 2019-12-24 Dic Corporation Organic compound, method for preparing same, organic semiconductor material containing same, and organic transistor containing same
JP2021073189A (ja) * 2016-06-03 2021-05-13 エルジー・ケム・リミテッド 電気活性化合物
JP7270934B2 (ja) 2016-06-03 2023-05-11 エルジー・ケム・リミテッド 電気活性化合物
KR101702306B1 (ko) 2016-06-17 2017-02-03 한국화학연구원 신규한 유기반도체 화합물 및 이를 이용한 유기 전자 소자
JP2021500757A (ja) * 2017-10-23 2021-01-07 ソニー株式会社 有機フォトダイオードにおける有機光電変換層のためのp活性材料
JP7006798B2 (ja) 2017-10-23 2022-01-24 ソニーグループ株式会社 有機フォトダイオードにおける有機光電変換層のためのp活性材料
US11770974B2 (en) 2017-10-23 2023-09-26 Sony Corporation P active materials for organic photoelectric conversion layers in organic photodiodes
KR20190102622A (ko) 2018-02-26 2019-09-04 한국화학연구원 신규한 화합물, 이의 제조방법 및 이를 이용하는 유기 전자 소자

Also Published As

Publication number Publication date
EP2368892A4 (en) 2011-12-14
US8816100B2 (en) 2014-08-26
CN102224157A (zh) 2011-10-19
JP5544650B2 (ja) 2014-07-09
US20110224445A1 (en) 2011-09-15
US20140051865A1 (en) 2014-02-20
CN102224157B (zh) 2014-10-22
EP2368892A1 (en) 2011-09-28
KR101399770B1 (ko) 2014-05-27
JP2010150229A (ja) 2010-07-08
KR20110075024A (ko) 2011-07-05
EP2368892B1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5544650B2 (ja) 新規化合物の製造方法
KR101177970B1 (ko) 신규한 축합다환방향족 화합물 및 그의 제조 방법과 그의 용도
JP5562652B2 (ja) シリルエチニル化されたヘテロアセン類およびそれで作製された電子装置
JP6080870B2 (ja) 溶液プロセス用有機半導体材料及び有機半導体デバイス
WO2006077888A1 (ja) 新規な縮合多環芳香族化合物およびその利用
TWI549327B (zh) 有機場效電晶體及有機半導體材料
KR101348436B1 (ko) 테트라티아풀바렌 유도체, 유기막 및 유기 트랜지스터
JP5438363B2 (ja) バンドギャップが広いことを特徴とする有機半導体材料
JP5765559B2 (ja) 置換基脱離化合物とそれから得られる有機半導体材料、それを用いた有機電子デバイス、有機薄膜トランジスタおよびディスプレイ装置
JP2011032268A (ja) 置換ベンゾカルコゲノアセン化合物、該化合物を含有する薄膜及び該薄膜を含有する有機半導体デバイス
WO2013021953A1 (ja) 縮合多環芳香族化合物、芳香族重合体、及び芳香族化合物の合成方法
JP4139902B2 (ja) ヘテロアセン化合物及びその製造方法
JP2012216669A (ja) 芳香環を有するπ電子共役系化合物を含有する膜状体の製法、及び該π電子共役系化合物の製法
JP7109208B2 (ja) ジイミダゾロベンゾジチオフェン化合物、その製造方法及びトランジスタ素子
JP5650107B2 (ja) チエノピラジン化合物、およびそれを含有した電界効果トランジスタ
JP5888815B2 (ja) anti−アントラジカルコゲノフェンの合成方法
JP6143257B2 (ja) 有機半導体材料及びそれを用いた有機半導体デバイス
JP7133750B2 (ja) 含ヨウ素縮合環化合物、及び含ヨウ素縮合環化合物を用いた有機電子材料
WO2020241582A1 (ja) 有機トランジスタ材料及び有機トランジスタ
CN109912630B (zh) 硒吩衍生物及其制备方法和在作为有机半导体材料方面的应用
JP2023121895A (ja) 縮環カルコゲナジアゾール化合物、その製造法及び有機トランジスタ素子
JP2013026448A (ja) 薄膜トランジスタ及びそれを用いた電子デバイス
JP2014196290A (ja) 新規複素環化合物及びそれを含む有機薄膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146474.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117011371

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13130551

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009827473

Country of ref document: EP