WO2020241582A1 - 有機トランジスタ材料及び有機トランジスタ - Google Patents

有機トランジスタ材料及び有機トランジスタ Download PDF

Info

Publication number
WO2020241582A1
WO2020241582A1 PCT/JP2020/020575 JP2020020575W WO2020241582A1 WO 2020241582 A1 WO2020241582 A1 WO 2020241582A1 JP 2020020575 W JP2020020575 W JP 2020020575W WO 2020241582 A1 WO2020241582 A1 WO 2020241582A1
Authority
WO
WIPO (PCT)
Prior art keywords
skeleton
organic transistor
group
transistor material
compound
Prior art date
Application number
PCT/JP2020/020575
Other languages
English (en)
French (fr)
Inventor
晃 本間
裕之 大槻
雅宣 筒井
一男 岡本
Original Assignee
オルガノサイエンス株式会社
ウシオケミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノサイエンス株式会社, ウシオケミックス株式会社 filed Critical オルガノサイエンス株式会社
Priority to US17/612,127 priority Critical patent/US20220223792A1/en
Priority to JP2021522758A priority patent/JP7521742B2/ja
Publication of WO2020241582A1 publication Critical patent/WO2020241582A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/486Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising two or more active layers, e.g. forming pn heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to an organic transistor material having high carrier mobility and high thermal stability, and an organic transistor using the same.
  • Organic transistors using an organic transistor material for the active layer can be manufactured at a lower cost than inorganic transistors such as silicon because not only dry processes such as vapor phase growth but also wet processes such as printing methods can be used. Is possible. Further, by manufacturing an organic transistor on a plastic substrate, it is possible to obtain a flexible product that is difficult to obtain with an inorganic transistor. Therefore, it is expected that organic transistors will be applied to display devices using liquid crystals, display devices using organic EL, and the like.
  • Non-Patent Document 1 Research and development has been carried out for the purpose of improving carrier mobility and stability at high temperatures, and some organic transistor materials have a polyacene skeleton such as pentacene, and some have a dibenzoanthracene skeleton or chrysene skeleton. There is (Patent Document 1). Further, some have a thienothiophene skeleton (Patent Document 2). In addition, some have a cyclohexyl group as a substituent (Non-Patent Document 1).
  • an object of the present invention is to provide a novel organic transistor material and an organic transistor having high carrier mobility and excellent thermal stability.
  • the organic transistor material of the present invention is an organic transistor material having a trans-1,4-cyclohexane structure composed of a compound represented by the following general formula (1).
  • X is a skeleton in which a plurality of phenylene groups or naphthylene groups are directly linked or via a vinyl group, a condensed polycyclic hydrocarbon skeleton, or a heterocyclic compound skeleton.
  • m, n, p and q are independently 0 or 1, respectively, and R1 and R2 are independently alkyl groups or haloalkyl groups having 1 to 15 carbon atoms, respectively.
  • X is one of the skeletons of the following formulas (2) to (45).
  • the organic transistor of the present invention uses the above-mentioned organic transistor material.
  • the organic transistor material of the present invention it is possible to provide a novel material having high carrier mobility and excellent stability.
  • the organic transistor material of the present invention is an organic transistor material having a trans-1,4-cyclohexane structure composed of a compound represented by the following general formula (1).
  • X is a skeleton in which a plurality of phenylene groups or naphthylene groups are directly linked or via a vinyl group, a condensed polycyclic hydrocarbon skeleton, or a heterocyclic compound skeleton.
  • m, n, p and q are independently 0 or 1, respectively, and R1 and R2 are independently alkyl groups or haloalkyl groups having 1 to 15 carbon atoms, respectively.
  • the organic transistor material of the present invention has a skeleton X used as an organic transistor material, which has a side chain of an alkyl group or a haloalkyl group in a cyclohexyl group which is a cycloalkyl group of a 6-membered ring (hereinafter, "alkyl” in the present specification. Since it is a derivative having a substituent (also referred to as “cyclohexyl group”), it has a higher carrier mobility than the conventional one, good thermal stability, and applicable solubility.
  • the alkyl group in the side chain of the alkylcyclohexyl group has 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
  • the alkyl group can have a linear structure, but may have a branch. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group and n-heptyl group.
  • Examples thereof include n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group and n-pentadecyl group.
  • an electron-donating alkyl group By using an electron-donating alkyl group, the solubility in an organic solvent can be improved, the molecular arrangement can be controlled, the wettability to a coated substrate can be controlled, and the maximum occupied orbital (HOMO) level can be raised. It can function as a p-type semiconductor.
  • the hydrogen atom of the alkyl group can be replaced with a halogen to form a haloalkyl group.
  • the halogen atom of the haloalkyl group is, for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the haloalkyl group one or more of these halogen atoms can be used, but it is preferable that the haloalkyl group contains at least a fluorine atom, and more preferably only a fluorine atom.
  • the halogen atom of the haloalkyl group may replace a part of the hydrogen atom of the alkyl group or may replace the whole hydrogen atom.
  • haloalkyl group examples include a fluoromethyl group, a 1-fluoromethyl group, a 2-fluoroethyl group, a 2-fluoroisobutyl group, a 1,2-difluoroethyl group, a difluoromethyl group, a trifluoromethyl group and a pentafluoroethyl group. , Perfluoroisopropyl group, perfluorobutyl group, perfluorocyclohexyl group and the like.
  • the molecular arrangement can be controlled, the wettability to the coated substrate can be controlled, the minimum unoccupied orbital (LUMO) level can be lowered, and the semiconductor can function as an n-type semiconductor.
  • LUMO minimum unoccupied orbital
  • the alkylcyclohexyl group may or may not have one phenyl group with the skeleton X.
  • the alkyl group or haloalkyl group of the alkylcyclohexyl group and the skeleton X or phenyl group are preferably arranged at positions 1 and 4 on the cyclohexane ring.
  • the transformer type is preferable to the cis type because it is superior in thermal stability as an organic transistor material.
  • the alkylcyclohexyl group may have at least one with respect to the skeleton X, and may have two. In the case of two, the alkyl group on the side chain of the first cyclohexyl group and the alkyl group on the side chain of the second alkylcyclohexyl group may have the same carbon number or different carbon atoms. May be good.
  • the second alkylcyclohexyl group has one phenyl group with the skeleton X both when it has a phenyl group between the first cyclohexyl group and the skeleton X and when it does not. It may or may not have a group.
  • the skeleton X is a skeleton used as an organic transistor material, and specifically, a skeleton in which a plurality of phenylene groups or naphthylene groups are directly linked or via a vinyl group, a condensed polycyclic hydrocarbon skeleton, or a heterocyclic compound. It is a skeleton.
  • These skeletons can more specifically exemplify the skeletons of the following formulas (2) to (45).
  • Heterocyclic compound skeleton [Fused heterocyclic compound skeleton containing one heterocycle containing a sulfur atom]
  • the skeleton X can be, for example, a chrysene skeleton, a benzothienobenzothiophene skeleton, a dibenzoanthracene skeleton, or a dinaphthothienothiophene skeleton among the above formulas (2) to (45).
  • the organic transistor material of the present invention can be more specifically exemplified by the following general formulas (A-1) to (A-7).
  • R1 and R2 are independently alkyl groups or haloalkyl groups having 1 to 15 carbon atoms, respectively.
  • R1 and R2 are independently alkyl groups having 1 to 10 carbon atoms.
  • the organic transistor material of the present invention is more specifically one of the following general formulas (B-1) to (B-7). It can be illustrated.
  • R1 and R2 are independently alkyl groups or haloalkyl groups having 1 to 15 carbon atoms, respectively.
  • R1 and R2 are independently alkyl groups having 1 to 10 carbon atoms.
  • the organic transistor material of the present invention can be used in known methods such as Suzuki coupling reaction using a transition metal, Sonogashira reaction using a copper catalyst, desilylation reaction, cyclization reaction using a transition metal, and transition. It can be synthesized by the Negishi coupling reaction using a metal.
  • the organic transistor of the present invention includes an organic semiconductor layer using the organic transistor material of the present invention.
  • the organic transistor structure can be a general structure, and can function as both a p-type semiconductor and an n-type semiconductor.
  • the compound of the present invention When the compound of the present invention is used for an organic transistor, purification such as removal of impurities is required for high purification.
  • the compound of the present invention can be used in a liquid chromatography method, a sublimation method, a zone melting method, or a gel. It can be purified by a permit chromatography method, a recrystallization method, or the like.
  • the compound of the present invention when used for an organic transistor, it is mainly used in the form of a thin film, and either a wet process or a dry process may be used as the thin film manufacturing method.
  • the compound of the present invention can be applied to a wet process having great industrial merit by dissolving it in an organic solvent or the like.
  • the organic solvent known ones such as dichloromethane, chloroform, chlorobenzene, dichlorobenzene, cyclohexanol, toluene, xylene, anisole, cyclohexanone, nitrobenzene, methylethylketone, diglime, tetrahydrofuran and the like can be used.
  • the temperature and pressure are not particularly limited, but the dissolution temperature is preferably in the range of 0 to 200 ° C, more preferably in the range of 10 to 150 ° C. Is.
  • the melting pressure is preferably in the range of 0.1 to 100 MPa, more preferably in the range of 0.1 to 10 MPa. It is also possible to use something like supercritical carbon dioxide instead of the organic solvent.
  • the wet process referred to here refers to a spin coating method, a dip coating method, a bar coating method, a spray coating method, an inkjet method, a screen printing method, a lithographic printing method, an intaglio printing method, a letterpress printing method, and the like. Method is available.
  • the dry process referred to here refers to a vacuum vapor deposition method, a sputtering method, a CVD method, a laser vapor deposition method, a molecular beam epitaxial growth method, a vapor phase transport growth method, and the like, and these known methods can be used.
  • Example 1 The following compound 3H-21DNTT was synthesized by the following operation 1-4.
  • Operation 2 The reaction formula of 21DNTT-OH is shown below.
  • 0.10 g (0.25 mmol) of the above "MeO-21DNTT” and 20 mL (200 v / w) of dehydrated dichloromethane were added to a 100 mL three-necked flask, and the mixture was cooled to -10 ° C.
  • 1.5 mL (1.5 mmol, 6 eq) of a 1 M BBr 3 dichloromethane solution was added dropwise and the mixture was stirred at 0 ° C. overnight.
  • Operation 3 In a nitrogen atmosphere, 75 mg (0.2 mmol) of the above "HO-21DNTT" and 20 mL (200 v / w) of dehydrated pyridine were added to a 100 mL three-necked flask and cooled to 0 ° C. 0.34 g (1.2 mmol, 6 eq) of trifluoromethanesulfonic anhydride was added dropwise and the mixture was stirred at 0 ° C. overnight.
  • Operation 4 In a nitrogen atmosphere, add 0.11 g (0.17 mmol) of the above "TfO-21DNTT", 6 mg (3 mol%) of Pd (dppf) Cl 2 and 10 mL (100 v / w) of toluene to a 50 mL three-necked flask, and add 0 ° C. In addition, 5 mL of a THF solution of Grignard reagent prepared from 0.10 g (0.51 mmol, 3 eq) of 1-bromo-4-propylcyclohexane was added dropwise to the mixture, and the mixture was stirred overnight at room temperature.
  • Grignard reagent prepared from 0.10 g (0.51 mmol, 3 eq) of 1-bromo-4-propylcyclohexane was added dropwise to the mixture, and the mixture was stirred overnight at room temperature.
  • Operation 5 Fabrication of organic transistor (vacuum deposition method) A thermal oxide film (SiO 2 ) having a thickness of 200 nm was formed, and 3H-21DNTT was vacuum-deposited at a substrate temperature of 60 ° C. on a silicon wafer treated with ODTS (octadecyltrichlorosilane) at 20 nm.
  • ODTS octadecyltrichlorosilane
  • a TOP contact type device was produced by depositing gold to be a drain electrode (channel length 50 ⁇ m, channel width 1.5 mm) at 40 nm by an electron beam method, and evaluated after heat treatment at 250 ° C. for 5 minutes.
  • FIG. 1 A schematic diagram of an organic transistor obtained by this vacuum deposition method is shown in FIG.
  • an insulating layer 3 made of a thermal oxide film is formed on a silicon substrate 2 that also serves as a gate electrode, and a self-assembled monolayer 4 (SAM) made of ODTS is formed on the insulating layer 3.
  • SAM self-assembled monolayer 4
  • a semiconductor layer 5 made of 3H-21DNT is formed on the self-assembled monolayer 4, and a source electrode 6 and a drain electrode 7 made of gold are formed on the semiconductor layer 5 at intervals. ..
  • Example 2 The following compound 3HP-28CR was synthesized by the following procedure.
  • An organic transistor was produced by a vapor deposition method using the obtained 5H-21DNTT, and the mobility was examined. As a result, it was 3.08 cm 2 / Vs. Further, the obtained target product had an intermediate phase (liquid crystal phase) at 242 to 288 ° C. when the temperature was raised.
  • an organic transistor was produced by a vacuum vapor deposition method under the same conditions except that the heat treatment temperature in step 5 of Example 1 was changed to 160 ° C. for 5 minutes.
  • the field-effect mobility, 1.27cm 2 V -1 s -1, On / Off current ratio was 10 8.
  • the obtained target product had an intermediate phase (liquid crystal phase) at 160 to 257 ° C. at the time of temperature rise.
  • 4H-BTBT The operation for the synthesis of 4H-BTBT is as follows: 2,7-ditrifurate- [1] benzothiophene [3,2-b] [1] benzothiophene, and toluene added to PdCl 2 (dppf) in a nitrogen atmosphere at 0 ° C.
  • the Grignard reagent prepared from 1-bromo-4-propylcyclohexane was added dropwise with the mixture, the temperature was raised to room temperature, and the mixture was stirred overnight.
  • the obtained crude product was purified by a silica gel-alumina column using toluene as a solvent, recrystallized from toluene, and the crystals were dried under reduced pressure to obtain the desired product, 4H-BTBT.
  • a thin film was prepared from the anisole solution at a substrate temperature of 45 ° C. by an edge casting method.
  • ⁇ Manufacturing of thin film field effect transistor> Using a mask designed to have a channel length of 100 ⁇ m on the thin film, gold with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane 2 nm as an acceptor. Deposition was performed using 30 nm as an electrode. As the insulating layer, a thermal oxide film (SiO 2 ) having a thickness of 200 nm was used. The transfer characteristics were measured using a 4200-SCS type semiconductor parameter analyzer manufactured by Keithley. The mobility was estimated from the obtained transfer characteristics. The estimated field effect mobility was 4.8 cm 2 / Vs. Further, the obtained target product had an intermediate phase (liquid crystal phase) at 77 to 239 ° C. when the temperature was raised and 72 to 225 ° C. when the temperature was lowered.
  • intermediate phase liquid crystal phase
  • Example 6 Using the "3H-21DNTT" synthesized in Example 1, a thin film was prepared from the 3-chlorothiophene solution at a substrate temperature of 40 ° C. by the edge casting method in the same manner as in Example 5, and estimated.
  • the field effect mobility was 8.8 cm 2 / Vs.
  • Example 7 ⁇ Manufacturing of thin film field effect transistor> Al was formed as a gate electrode on a glass substrate at 50 nm by vacuum deposition. Parylene C was formed on it as a gate insulating film at 480 nm. Using "5H-21DNT" synthesized in Example 3 on a substrate formed by forming Au as a source / drain electrode using 50 nm vacuum deposition, the substrate temperature is 65 ° C. from an o-dichlorobenzene solution by a drop cast method. A thin film was prepared. The transfer characteristics were measured using a 4200-SCS type semiconductor parameter analyzer manufactured by Keithley. The mobility was estimated from the obtained transfer characteristics. The estimated field effect mobility was 14.1 cm 2 / Vs.
  • Example 8 Using the "7H-21DNTT" synthesized in Example 4, a thin film was prepared from the 3-chlorothiophene solution at a substrate temperature of 40 ° C. by the edge casting method in the same manner as in Example 5, and estimated.
  • the field effect mobility was 4.4 cm 2 / Vs.
  • Example 10 The compound (a) of Example 9 was changed to the following compound (d) (manufactured by Aldrich), and the compound 3H-DBA shown below was synthesized by the same operation as in Example 9.
  • 1 1 H NMR 400 MHz, C 2 D 2 Cl 4 , ⁇ ppm); 9.11 (s, 2H), 8.79 (d, 2H), 7.96 (d, 2H), 7.75 (td, 4H) ), 7.63 (dd, 2H), 2.76 (tt, 2H), 2.11 (d, 4H), 1.99 (d, 4H), 1.67 (m, 4H), 1.46 (M, 4H), 1.33 (m, 4H), 1.19 (m, 4H), 0.99 (t, 6H) Using the obtained “3H-DBA", a thin film was prepared from a toluene solution at a substrate temperature of 60 ° C. by an edge casting method in the same manner as in Example 5, and the estimated field effect mobility was 8 cm. It was 2 / V
  • Example 11 The compound (a) of Example 9 was changed to the compound (e) shown below, and the compound 4H-DBA shown below was synthesized by the same procedure as in Example 9.
  • 1 1 H NMR 400 MHz, C 2 D 2 Cl 4 , ⁇ ppm); 9.10 (s, 2H), 8.79 (d, 2H), 7.96 (d, 2H), 7.75 (td, 4H) ), 7.63 (dd, 2H), 2.75 (tt, 2H), 2.09 (d, 4H), 1.98 (d, 4H), 1.67 (m, 4H), 1.31 -1.39 (m, 12H), 1.19 (m, 4H), 0.97 (t, 6H) Using the obtained "4H-DBA", a thin film was prepared from the anisole solution at a substrate temperature of 90 ° C.
  • the obtained target product had an intermediate phase (liquid crystal phase) at 254 to 341 ° C. when the temperature was raised and at 246 to 335 ° C. when the temperature was lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

下記一般式(1)で表される化合物からなるトランス-1,4-二置換シクロヘキサン構造を有することを特徴とする有機トランジスタ材料である。 ここに、一般式(1)中、 Xは、複数のフェニレン基又はナフチレン基が直接又はビニル基を介して連結した骨格、又は縮合多環式炭化水素骨格、複素環式化合物骨格であり、 m、n、p及びqはそれぞれ独立に0又は1であり、R1及びR2はそれぞれ独立に炭素数1~15のアルキル基又はハロアルキル基である。高いキャリア移動度や優れた熱安定性を有する。

Description

有機トランジスタ材料及び有機トランジスタ
 本発明は、高キャリア移動度で熱安定性が高い有機トランジスタ材料及びそれを用いた有機トランジスタに関する。
 活性層に有機トランジスタ材料を用いた有機トランジスタは、気相成長などのドライプロセスばかりでなく印刷法等のウェットプロセスを用いることができるので、シリコン等の無機トランジスタに比べて低コストで製造することが可能である。また、プラスチック基板に有機トランジスタを作製することで、無機トランジスタでは困難とされているフレキシブルな製品を得ることが可能である。このため、液晶を用いた表示装置や有機ELを用いた表示装置等に、有機トランジスタの適用が期待されている。
 有機トランジスタ材料は、キャリアの移動度や、高温における安定性等の改良を目的に研究開発が進められ、ペンタセン等のポリアセン骨格を有するものがあり、また、ジベンゾアントラセン骨格やクリセン骨格を有するものがある(特許文献1)。更に、チエノチオフェン骨格を有するものがある(特許文献2)。また、置換基に関してシクロヘキシル基を有するものがある(非特許文献1)。
特許第5460599号公報 特許第5314814号公報
 有機トランジスタ材料は、シリコンに比べてキャリアの移動度や、高温における安定性に今なお改良の余地がある。
 そこで、本発明は、高いキャリア移動度や優れた熱安定性を有する新規な有機トランジスタ材料及び有機トランジスタを提供することを目的とする。
 本発明者らは、上記課題を解決すべく有機トランジスタ材料を鋭意検討した結果、有機トランジスタに用いられる骨格に、アルキル基の側鎖を有するシクロヘキシル基の置換基を有する誘導体が、高いキャリア移動度や優れた熱安定性を有することを見出し、本発明に至った。
 本発明の有機トランジスタ材料は、下記一般式(1)で表される化合物からなるトランス-1,4-シクロヘキサン構造を有することを特徴とする有機トランジスタ材料である。
Figure JPOXMLDOC01-appb-I000032
ここに、一般式(1)中、
 Xは、複数のフェニレン基又はナフチレン基が直接又はビニル基を介して連結した骨格、縮合多環式炭化水素骨格、又は複素環式化合物骨格であり、
 m、n、p及びqはそれぞれ独立に0又は1であり、R1及びR2はそれぞれ独立に炭素数1~15のアルキル基又はハロアルキル基である。
 本発明の有機トランジスタ材料においては、前記Xが、以下の式(2)~(45)の骨格のいずれか一つであることが好ましい。
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038

Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000040
Figure JPOXMLDOC01-appb-I000041

Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000054
Figure JPOXMLDOC01-appb-I000055
Figure JPOXMLDOC01-appb-I000056
Figure JPOXMLDOC01-appb-I000057
Figure JPOXMLDOC01-appb-I000058
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
Figure JPOXMLDOC01-appb-I000062
 本発明の有機トランジスタは、上記の有機トランジスタ材料を用いたものである。
 本発明の有機トランジスタ材料によれば、高いキャリア移動度や優れた安定性を有する新規な材料を提供できる。
実施例で作成した有機トランジスタの模式図である。
 以下、本発明の有機トランジスタ材料を、より具体的に説明する。
 本発明の有機トランジスタ材料は、下記一般式(1)で表される化合物からなるトランス-1,4-シクロヘキサン構造を有することを特徴とする有機トランジスタ材料である。                                  
Figure JPOXMLDOC01-appb-I000063
ここに、一般式(1)中、
 Xは、複数のフェニレン基又はナフチレン基が直接又はビニル基を介して連結した骨格、縮合多環式炭化水素骨格、又は複素環式化合物骨格であり、
 m、n、p及びqはそれぞれ独立に0又は1であり、R1及びR2はそれぞれ独立に炭素数1~15のアルキル基又はハロアルキル基である。
 本発明の有機トランジスタ材料は、有機トランジスタ材料として用いられる骨格Xに、六員環のシクロアルキル基であるシクロヘキシル基にアルキル基又はハロアルキル基の側鎖を有するもの(以下、本明細書では「アルキルシクロヘキシル基」ともいう。)の置換基を有する誘導体であることにより、従来よりもキャリア移動度が高く、熱安定性が良好であり、また、塗布可能な溶解性を有している。
 アルキルシクロヘキシル基の側鎖のアルキル基の炭素数は1~15であり、好ましくは1~10である。アルキル基は直鎖構造とすることができるが、分岐があってもよい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基等が挙げられる。電子供与性のアルキル基を用いることにより、有機溶媒への溶解性を向上させたり、分子配列を制御したり、塗布基板へのぬれ性を制御したり、最高占有軌道(HOMO)レベルを上げてp型半導体として機能させることができる。
 また、アルキル基の水素原子がハロゲンに置換されたハロアルキル基とすることができる。ハロアルキル基のハロゲン原子は、例えばフッ素原子、塩素原子、臭素原子及びヨウ素原子である。ハロアルキル基としては、これらのハロゲン原子の一種又は二種以上を用いることができるが、少なくともフッ素原子を含むことが好ましく、フッ素原子のみであることがより好ましい。ハロアルキル基のハロゲン原子は、アルキル基の水素原子の一部を置換していてもよいし、全部を置換していてもよい。ハロアルキル基としては、例えば、フルオロメチル基、1-フルオロメチル基,2-フルオロエチル基、2-フルオロイソブチル基、1,2-ジフルオロエチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロイソプロピル基、パーフルオロブチル基、パーフルオロシクロヘキシル基等が挙げられる。電子受容性のハロアルキル基を用いることにより、分子配列を制御したり、塗布基板へのぬれ性を制御したり、最低非占有軌道(LUMO)レベルを下げ、n型半導体として機能させることができる。
 アルキルシクロヘキシル基は、骨格Xとの間に一個のフェニル基を有していてもよく、有していなくてもよい。
 アルキルシクロヘキシル基のアルキル基又はハロアルキル基と、骨格X又はフェニル基とは、シクロヘキサン環の1,4の位置に配置されることが好ましい。また、シス型よりもトランス型のほうが有機トランジスタ材料として熱安定性に優れるので好ましい。
 また、アルキルシクロヘキシル基は、骨格Xに対して少なくとも一個を有していればよく、二個であってもよい。二個である場合に、一個目のシクロヘキシル基の側鎖のアルキル基と、二個目のアルキルシクロヘキシル基の側鎖のアルキル基とは、炭素数が同じであってもよいし、異なっていてもよい。一個目のシクロヘキシル基と骨格Xとの間にフェニル基を有しているとき、及び、有していないときのいずれも、二個目のアルキルシクロヘキシル基は、骨格Xとの間に一個のフェニル基を有していてもよく、有していなくてもよい。
 骨格Xは、有機トランジスタ材料として用いられる骨格であり、具体的には複数のフェニレン基又はナフチレン基が直接又はビニル基を介して連結した骨格、又は縮合多環式炭化水素骨格、複素環式化合物骨格である。これらの骨格は、より具体的に次の式(2)~(45)の骨格を例示することができる。
〔複数のフェニレン基又はナフチレン基が直接又はビニル基を介して連結した骨格〕
(ジスチリルベンゼン骨格) 
Figure JPOXMLDOC01-appb-I000064
(ビナフチル骨格)
Figure JPOXMLDOC01-appb-I000065
(テルナフチル骨格)
Figure JPOXMLDOC01-appb-I000066
〔縮合多環式炭化水素骨格〕
〔4個の環を含有する縮合多環式炭化水素骨格〕
(クリセン骨格)
Figure JPOXMLDOC01-appb-I000067
Figure JPOXMLDOC01-appb-I000068
Figure JPOXMLDOC01-appb-I000069
(ピレン骨格)
Figure JPOXMLDOC01-appb-I000070
Figure JPOXMLDOC01-appb-I000071
Figure JPOXMLDOC01-appb-I000072
(テトラセン骨格)
Figure JPOXMLDOC01-appb-I000073
〔5個の環を含有する縮合多環式炭化水素骨格〕
(ピセン骨格)
Figure JPOXMLDOC01-appb-I000074
(ジベンゾアントラセン骨格)
Figure JPOXMLDOC01-appb-I000075
(ペンタセン骨格)
Figure JPOXMLDOC01-appb-I000076
〔6個の環を含有する縮合多環式炭化水素骨格〕
(ジベンゾクリセン骨格)
Figure JPOXMLDOC01-appb-I000077
〔複素環式化合物骨格〕
〔硫黄原子を含む複素環を1個含有する縮合複素環式化合物骨格〕
Figure JPOXMLDOC01-appb-I000078
〔硫黄原子を含む複素環を2個含有する縮合複素環式化合物骨格〕
(ベンゾチアノベンゾチオフェン骨格;BTBT骨格)
Figure JPOXMLDOC01-appb-I000079
Figure JPOXMLDOC01-appb-I000080
(ジナフトチエノチオフェン骨格;DNTT骨格)
Figure JPOXMLDOC01-appb-I000081
Figure JPOXMLDOC01-appb-I000082
Figure JPOXMLDOC01-appb-I000083
Figure JPOXMLDOC01-appb-I000084
Figure JPOXMLDOC01-appb-I000085
Figure JPOXMLDOC01-appb-I000086
Figure JPOXMLDOC01-appb-I000087
Figure JPOXMLDOC01-appb-I000088
Figure JPOXMLDOC01-appb-I000089
Figure JPOXMLDOC01-appb-I000090
〔硫黄原子を含む複素環を4個含有する縮合複素環式化合物骨格〕
(ジ(ベンゾチエノ)チエノチオフェン骨格)
Figure JPOXMLDOC01-appb-I000091
〔酸素原子を含む複素環を2個含有する縮合複素環式化合物骨格〕
Figure JPOXMLDOC01-appb-I000092
Figure JPOXMLDOC01-appb-I000093
 骨格Xは上記式(2)~(45)のなかでも、例えばクリセン骨格、ベンゾチエノベンゾチオフェン骨格、ジベンゾアントラセン骨格又はジナフトチエノチオフェン骨格とすることができる。
 骨格Xが、上記式(6)のクリセン骨格である場合において、本発明の有機トランジスタ材料は、より具体的に次の一般式(A-1)~(A-7)のものを例示できる。これらの一般式において、R1及びR2はそれぞれ独立して炭素数1~15のアルキル基又はハロアルキル基である。好ましくは、R1及びR2はそれぞれ独立して炭素数1~10のアルキル基である。
Figure JPOXMLDOC01-appb-I000094
 骨格Xが、上記式(29)のジナフトチエノチオフェン骨格である場合において、本発明の有機トランジスタ材料は、より具体的に次の一般式(B-1)~(B-7)のものを例示できる。これらの一般式において、R1及びR2はそれぞれ独立して炭素数1~15のアルキル基又はハロアルキル基である。好ましくは、R1及びR2はそれぞれ独立して炭素数1~10のアルキル基である。
Figure JPOXMLDOC01-appb-I000095
 本発明の有機トランジスタ材料は、公知の方法、例えば、遷移金属を用いた鈴木カップリング反応、銅触媒を用いた薗頭反応、及び、脱シリル化反応、遷移金属を用いた環化反応、遷移金属を用いた根岸カップリング反応により合成できる。
 本発明の有機トランジスタは、本発明の有機トランジスタ材料を用いた有機半導体層を備えるものである。有機トランジスタ構造は一般的な構造とすることができ、p型半導体としてもn型半導体としても機能させることができる。
 本発明の化合物を有機トランジスタに利用するに当たって、高純度化のために不純物の除去等の精製が必要になるが、本発明の化合物は、液体クロマトグラフィー法、昇華法、ゾーンメルティング法、ゲルパーミネーションクロマトグラフィー法、再結晶法などによって精製できる。
 また、本発明の化合物を有機トランジスタに利用するに当たって、主として薄膜の形態で用いられるが、その薄膜作製法として、ウェットプロセスとドライプロセスどちらを使用してもよい。本発明の化合物は、有機溶媒等への溶解させることにより、産業上メリットの大きいウェットプロセスに適応できる。
 ここで、有機溶媒としては、例えば、ジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン、シクロヘキサノール、トルエン、キシレン、アニソール、シクロヘキサノン、ニトロベンゼン、メチルエチルケトン、ジグライム、テトラヒドロフランなど、これまで公知のものが使用できる。また、本発明の化合物を有機溶媒等へ溶解させる場合、温度や圧力に特に制限は無いが、溶解させる温度に関しては、0~200℃の範囲が好ましく、さらに好ましくは、10~150℃の範囲である。また、溶解させる圧力に関しては、0.1~100MPaの範囲が好ましく、さらに好ましくは、0.1~10MPaの範囲である。また、有機溶媒の代わりに、超臨界二酸化炭素のようなものを用いることも可能である。
 ここで言うウェットプロセスとは、スピンコート法、ディップコート法、バーコート法、スプレーコート法、インクジェット法、スクリーン印刷法、平板印刷法、凹版印刷法、凸版印刷法などを示しており、これら公知の方法が利用できる。
 ここで言うドライプロセスとは、真空蒸着法、スパッタリング法、CVD法、レーザー蒸着法、分子線エピタキシャル成長法、気相輸送成長法などを示しており、これら公知の方法が利用できる。
 以下に本発明の有機トランジスタ材料を、実施例を用いて説明するが、本発明の有機トランジスタ材料は、実施例に限定されるものではない。
(実施例1)
 次に示す化合物3H-21DNTTを、以下の操作1-4により合成した。
Figure JPOXMLDOC01-appb-I000096
操作1:
 以下に記載の反応式によって、MeO-21DNTTを合成した。
Figure JPOXMLDOC01-appb-I000097
操作2:
 21DNTT-OHの反応式を以下に示す。
 窒素雰囲気中、100mLの三つ口フラスコに、上記「MeO-21DNTT」 0.10g(0.25mmol)、脱水ジクロロメタンを20mL(200v/w)加え、-10℃に冷却した。1M BBr3ジクロロメタン溶液1.5mL(1.5mmol、6eq)を滴下し、0℃で一晩撹拌した。原料消失後、水を10mL滴下してクエンチし、結晶をろ過し、メタノールで洗浄後、結晶を減圧乾燥させて、「HO-21DNTT」の淡黄色結晶を収率80%で得た。
Figure JPOXMLDOC01-appb-I000098
操作3:
 窒素雰囲気中、100mLの三つ口フラスコに、上記「HO-21DNTT」 75mg(0.2mmol)、脱水ピリジンを20mL(200v/w)加え、0℃に冷却した。トリフルオロメタンスルホン酸無水物0.34g(1.2mmol、6eq)を滴下し、0℃で一晩撹拌した。HPLCで原料消失を確認し、水を10mL滴下してクエンチし、結晶をろ過し、メタノールで洗浄後、結晶を減圧乾燥させて、「TfO-21DNTT」の淡黄色結晶を収率85%で得た。この反応式を以下に示す。
Figure JPOXMLDOC01-appb-I000099
操作4:
 窒素雰囲気中、50mLの三つ口フラスコに、上記「TfO-21DNTT」 0.11g(0.17mmol)、Pd(dppf)Cl2を6mg(3mol%)、トルエンを10mL(100v/w)加え、0℃で1-ブロモ-4-プロピルシクロヘキサン 0.10g(0.51mmol, 3eq)より調整したGrignard試薬のTHF溶液5mLを滴下後、室温で一晩撹拌した。HPLCで原料消失を確認し、室温に冷却後、メタノールを10mL滴下して、結晶をろ過し、アセトンで洗浄した。得られた粗体をクロロベンゼンを溶媒としたシリカゲル-アルミナカラムで精製し、クロロベンゼンで再結晶させ、結晶を減圧乾燥させて、目的物の「3H-21DNTT」の淡黄色結晶を収率50%で得た。
 得られた3H-21DNTTの核磁気共鳴(H NMR)及び飛行時間型高分解能質量分析(TOF HRMS)による物性データを以下に示す。
 1H NMR(400MHz,CCl,δppm);8.51(d,2H),8.05(d,2H),7.88(d,2H),7.87(d,2H),7.73(dd,2H),2.77(m,2H),1.97-2.12(m,8H),1.67(m,4H),1.43(m,6H),1.31(m,4H),1.20(m,4H),0.98(t,6H)
 TOF HRMS 589.2965 (calc for C4044 [M+H] 589.2954)
 また、高速液体クロマトグラフィー(HPLC)による純度は、99.973%(@254nm)であった。
 3H-21DNTTの反応式を以下に示す。
Figure JPOXMLDOC01-appb-I000100
操作5:有機トランジスタの作製(真空蒸着法)
 厚さ200nmの熱酸化膜(SiO)を形成し、ODTS(オクタデシルトリクロロシラン)処理したシリコンウェハ上に、基板温度60℃にて、3H-21DNTTを20nm真空蒸着し、その上から、ソース・ドレイン電極(チャンネル長50μm、チャンネル幅1.5mm)となる金を電子ビーム法にて40nm蒸着することで、TOPコンタクト型素子を作製し、250℃、5分間熱処理をした後に評価を行った。
 この真空蒸着法による有機トランジスタの模式図を図1に示す。図1の有機トランジスタ1は、ゲート電極を兼ねるシリコン基板2上に熱酸化膜による絶縁層3が形成され、この絶縁層3上にODTSによる自己組織化単分子層4(SAM)が形成され、この自己組織化単分子層4上に3H-21DNTTによる半導体層5が形成され、この半導体層5上に、金からなるソース電極6及びドレイン電極7が間隔を空けて形成されている構造である。
 有機トランジスタの評価の結果、真空中にて測定した電界効果移動度は、2.4cm-1-1、On/Off電流比は、10であった。また、融点は310℃であった。
(実施例2)
 次に示す化合物3HP-28CRを、以下の操作により合成した。
Figure JPOXMLDOC01-appb-I000101
 窒素雰囲気中、「TfO-28CR」、4-(4-プロピルシクロヘキシル)フェニルボロン酸、Pd(PPhに炭酸カリウムの水溶液及び4-MeTHPを加え、一晩加熱還流した。室温に冷却後、結晶をろ過し、得られた粗体を、クロロベンゼンを溶媒としたシリカゲル-アルミナカラム及びトルエン熱洗浄で精製し、結晶を減圧乾燥させて目的物の3HP-28CRを得た。得られた3HP-28CRの核磁気共鳴(H NMR)及び飛行時間型高分解能質量分析(TOF HRMS)による物性データを以下に示す。
 1H NMR(400MHz,CCl,δppm);8.85(dd,2H),8.78(dd,2H),8.21(s,2H),8.11(d,2H),8.03(dd,2H),7.77(d,4H),7.41(d,4H),2.62(m,2H),2.06(m,4H),1.97(m,4H),1.40-1.65(m,10H),1.33(m,4H),1.19(m,4H),0.99(t,6H)
 TOF HRMS(APPI) 629.4121 (calc for C4852 [M+H] 629.4142)
 HPLC純度は、100.00%(@254nm)であった。
 3HP-28CRの反応式を以下に示す。
Figure JPOXMLDOC01-appb-I000102
(実施例3)
 次に示す化合物5H-21DNTTを、以下の操作により合成した。
Figure JPOXMLDOC01-appb-I000103
 5H-21DNTTの合成の操作は、操作4の「1-ブロモ-4-プロピルシクロヘキサン」を「1-ブロモ-4-ペンチルシクロヘキサン」に代え、他は同様にして目的物の5H-21DNTTを得た。得られた5H-21DNTTの核磁気共鳴(H NMR)及び飛行時間型高分解能質量分析(TOF HRMS)による物性データを以下に示す。
 H NMR(400MHz,CCl,δppm);8.51(d,2H),8.05(d,2H),7.89(s,2H),7.87(d,2H),7.73(dd,2H),2.77(m,2H),1.98-2.12(m,8H),1.33-1.98(m,20H),1.22(m,4H),0.96(t,6H)
 TOF HRMS(APPI) 645.3575 (calc for C4452 [M+H] 645.3580)
 HPLC純度は、99.958%(@254nm)であった。
 得られた5H-21DNTTを用いて蒸着法により有機トランジスタを作製し、移動度を調べた結果、3.08cm/Vsであった。また、得られた目的物は、昇温時には、242~288℃において中間相(液晶相)を有していた。
(実施例4)
 次に示す化合物7H-21DNTTを、以下の操作により合成した。
Figure JPOXMLDOC01-appb-I000104
 7H-21DNTTの合成の操作は、操作4の「1-ブロモ-4-プロピルシクロヘキサン」を「1-ブロモ-4-ヘプチルシクロヘキサン」に代え、他は同様にして目的物の7H-21DNTTを得た。得られた5H-21DNTTの核磁気共鳴(H NMR)及び飛行時間型高分解能質量分析(TOF HRMS)による物性データを以下に示す。
 H NMR(400MHz,CDCl,δppm); 8.51(d,2H),8.05(d,2H),7.89(s,2H),7.87(d,2H),7.73(dd,2H),2.77(m,2H),1.98-2.12(m,8H),1.68(m,4H),1.30-1.45(m,26H),1.21(m,4H),0.95(t,6H)
 TOF HRMS(APPI)701.4096 (calc for C4860 [M+H] 701.4215)
 HPLC純度は、99.888%(@254nm)であった。
 得られた7H-21DNTTを用いて、実施例1の操作5の熱処理温度を160℃、5分に変えた以外は、同様の条件により、真空蒸着法により有機トランジスタを作製した。電界効果移動度は、1.27cm-1-1、On/Off電流比は、10であった。また、得られた目的物は、昇温時には、160~257℃において、中間相(液晶相)を有していた。
(実施例5)
 次に示す化合物4H-BTBTを、以下の操作により合成した。
Figure JPOXMLDOC01-appb-I000105
 4H-BTBTの合成の操作は、2,7-ジトリフラート-[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェンに、窒素雰囲気中でPdCl(dppf)にトルエンを加え、0℃で1-ブロモ-4-プロピルシクロヘキサンより調整したグリニャール試薬を滴下し、室温に昇温し一晩攪拌した。得られた粗体を、トルエンを溶媒としたシリカゲル-アルミナカラムで精製し、トルエンで再結晶させ、結晶を減圧乾燥させて目的物の4H-BTBTを得た。得られた4H-BTBTの核磁気共鳴(H NMR)及び飛行時間型高分解能質量分析(TOF HRMS)による物性データを以下に示す。
 1H NMR(400MHz,CDCl,δppm);7.76(d,2H),7.73(s,2H),7.30(dd,2H),2.62(m,2H),1.95(m,8H),1.49-1.59(m,4H),1.26-1.33(m,14H),1.10(m,4H),0.92(t,6H)
 TOF HRMS (APPI) 516.3116 (calc for C3444 [M+H] 516.2884)
 HPLC純度は、99.983%(@254nm)であった。
 4H-BTBTの反応式を以下に示す。
Figure JPOXMLDOC01-appb-I000106
 得られた4H-BTBTを用いて、アニソール溶液から基板温度45℃にて、エッジキャスト法により薄膜を作製した。
<薄膜電界効果トランジスタの作製>
 その薄膜上にチャンネル長が100μmとなるように設計されたマスクを用いて、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン2nmをアクセプターとして、金30nmを電極として蒸着した。絶縁層としては厚さ200nmの熱酸化膜(SiO)を用いた。ケースレー社製4200-SCS型半導体パラメーターアナライザーを用いて、伝達特性を測定した。得られた伝達特性から移動度を見積もった。見積もられた電界効果移動度は4.8cm/Vsであった。また、得られた目的物は、昇温時には、77~239℃において、降温時には、72~225℃において中間相(液晶相)を有していた。
(実施例6)
 実施例1で合成した「3H-21DNTT」を用いて、実施例5と同様の方法で、3-クロロチオフェン溶液から基板温度40℃にて、エッジキャスト法により薄膜を作製し、見積もられた電界効果移動度は8.8cm/Vsであった。
(実施例7)
<薄膜電界効果トランジスタの作製>
 ガラス基板上に、ゲート電極としてAlを50nm、真空蒸着を用いて形成した。その上にパリレンCを480nm、ゲート絶縁膜として形成した。ソースドレイン電極としてAuを50nm真空蒸着を用いて形成した基板上に、実施例3で合成した「5H-21DNTT」を用いて、o-ジクロロベンゼン溶液から基板温度65℃にて、ドロップキャスト法により薄膜を作製した。ケースレー社製4200-SCS型半導体パラメーターアナライザーを用いて、伝達特性を測定した。得られた伝達特性から移動度を見積もった。
 見積もられた電界効果移動度は14.1cm/Vsであった。
(実施例8)
 実施例4で合成した「7H-21DNTT」を用いて、実施例5と同様の方法で、3-クロロチオフェン溶液から基板温度40℃にて、エッジキャスト法により薄膜を作製し、 見積もられた電界効果移動度は4.4cm/Vsであった。
(実施例9)
 次に示す化合物2H-DBAを、以下の操作1-3により合成した。
Figure JPOXMLDOC01-appb-I000107
操作1:
 化合物(b)の反応式を以下に示す。
Figure JPOXMLDOC01-appb-I000108
 窒素雰囲気中、反応容器に化合物(a)(Aldrich社製)6.8g(29.5mmol)、ジブロモジヨードベンゼン(東京化成社製)5.7g(11.8mmol)、テトラキストリフェニルホスフィンパラジウム(0)0.68g(0.59mmol)、ジメトキシエタン500mlを入れ、炭酸ナトリウム6.2g(59.8mmol)の水溶液100mlを加えた。反応混合物を70℃にて12時間加熱還流した。反応混合物をろ過し、水、メタノールで洗浄し、化合物(b)を4.3g(収率60%)得た。
操作2:
 化合物(c)の反応式を以下に示す。
Figure JPOXMLDOC01-appb-I000109
 窒素雰囲気中、反応容器に化合物(b)4.3g(7.1mmol)、テトラキストリフェニルホスフィンパラジウム(0)0.82g(0.7mmol)、ヨウ化銅(I)0.27g(1.4mmol)、トリエチルアミン100mlを入れ、トリメチルシリルアセチレン1.5g(15.5mmol)を加えた。反応混合物を80℃にて14時間加熱還流した。反応混合物をろ過し、メタノール、ヘプタンで洗浄した。得られた粗体と炭酸カリウム2.6g(19.1mmol)を反応容器に入れ、メタノール、THF、水を加えた。室温で8時間攪拌した。反応混合物をろ過し、ろ液を食塩水にて洗浄し、溶媒を減圧留去した。得られた粗体をヘプタン:酢酸エチルを溶媒としたシリカゲル-アルミナカラムで精製し、化合物(c)を2.8g(収率81%)得た。
操作3:
 2H-DBAの反応式を以下に示す。
Figure JPOXMLDOC01-appb-I000110
 窒素雰囲気中、反応容器に化合物(c)2.8g(5.7mmol)、塩化白金0.08g(0.3mmol)を入れ、トルエン150mlを加えた。反応混合物を120℃にて24時間加熱還流した。反応混合物をろ過し、ジクロロメタンにて洗浄した。得られた粗体を昇華精製し、2H-DBAを1.0g(収率35%)得た。
 H NMR(400MHz,CCl,δppm);9.11(s,2H),8.79(d,2H),7.97(d,2H),7.75(td,4H),7.63(dd,2H),2.75(tt,2H),2.10(d,4H),1.99(d,4H),1.66(m,4H),1.35(m,6H),1.18(m,4H),0.99(t,6H)
 TOF HRMS (APPI+) 499.3370 (calc for C38H42 [M+H]+ 499.3359)
 得られた「2H-DBA」を用いて、実施例5と同様の方法で、トルエン溶液から基板温度70℃にて、エッジキャスト法により薄膜を作製し、見積もられた電界効果移動度は8.1cm/Vsであった。
(実施例10)
 実施例9の化合物(a)を、次に示す化合物(d)(Aldrich社製)に変更し、次に示す化合物3H-DBAを、実施例9と同様の操作により合成した。
Figure JPOXMLDOC01-appb-I000111
 H NMR(400MHz,CCl,δppm);9.11(s,2H),8.79(d,2H),7.96(d,2H),7.75(td,4H),7.63(dd,2H),2.76(tt,2H),2.11(d,4H),1.99(d,4H),1.67(m,4H),1.46(m,4H),1.33(m,4H),1.19(m,4H),0.99(t,6H)
 得られた「3H-DBA」を用いて、実施例5と同様の方法で、トルエン溶液から基板温度60℃にて、エッジキャスト法により薄膜を作製し、見積もられた電界効果移動度は8cm/Vsであった。
(実施例11)
 実施例9の化合物(a)を、次に示す化合物(e)に変更し、次に示す化合物4H-DBAを、実施例9と同様の操作により合成した。
Figure JPOXMLDOC01-appb-I000112
 H NMR(400MHz,CCl,δppm);9.10(s,2H),8.79(d,2H),7.96(d,2H),7.75(td,4H),7.63(dd,2H),2.75(tt,2H),2.09(d,4H),1.98(d,4H),1.67(m,4H),1.31-1.39(m,12H),1.19(m,4H),0.97(t,6H)
 得られた「4H-DBA」を用いて、実施例5と同様の方法で、アニソール溶液から基板温度90℃にて、エッジキャスト法により薄膜を作製し、見積もられた電界効果移動度は8.5cm/Vsであった。また、得られた目的物は、昇温時には、254~341℃において、降温時には、246~335℃において中間相(液晶相)を有していた。
1 有機トランジスタ
2 シリコン基板
3 絶縁層
4 自己組織化単分子層
5 半導体層
6 ソース電極
7 ドレイン電極

Claims (4)

  1.  下記一般式(1)で表される化合物からなるトランス-1,4-二置換シクロヘキサン構造を有することを特徴とする有機トランジスタ材料。
    Figure JPOXMLDOC01-appb-I000001
    ここに、一般式(1)中、
     Xは、複数のフェニレン基又はナフチレン基が直接又はビニル基を介して連結した骨格、縮合多環式炭化水素骨格、又は複素環式化合物骨格であり、
     m、n、p及びqはそれぞれ独立に0又は1であり、R1及びR2はそれぞれ独立に炭素数1~15のアルキル基又はハロアルキル基である。
  2.  前記Xが、以下の式(2)~(45)の骨格のいずれか一つである請求項1記載の有機トランジスタ材料。
    Figure JPOXMLDOC01-appb-I000002
    Figure JPOXMLDOC01-appb-I000003
    Figure JPOXMLDOC01-appb-I000004
    Figure JPOXMLDOC01-appb-I000005
    Figure JPOXMLDOC01-appb-I000006
    Figure JPOXMLDOC01-appb-I000007
    Figure JPOXMLDOC01-appb-I000008
    Figure JPOXMLDOC01-appb-I000009
    Figure JPOXMLDOC01-appb-I000010
    Figure JPOXMLDOC01-appb-I000011
    Figure JPOXMLDOC01-appb-I000012
    Figure JPOXMLDOC01-appb-I000013
    Figure JPOXMLDOC01-appb-I000014
    Figure JPOXMLDOC01-appb-I000015
    Figure JPOXMLDOC01-appb-I000016
    Figure JPOXMLDOC01-appb-I000017
    Figure JPOXMLDOC01-appb-I000018
    Figure JPOXMLDOC01-appb-I000019
    Figure JPOXMLDOC01-appb-I000020
    Figure JPOXMLDOC01-appb-I000021
    Figure JPOXMLDOC01-appb-I000022
    Figure JPOXMLDOC01-appb-I000023
    Figure JPOXMLDOC01-appb-I000024
    Figure JPOXMLDOC01-appb-I000025
    Figure JPOXMLDOC01-appb-I000026
    Figure JPOXMLDOC01-appb-I000027
    Figure JPOXMLDOC01-appb-I000028
    Figure JPOXMLDOC01-appb-I000029
    Figure JPOXMLDOC01-appb-I000030
    Figure JPOXMLDOC01-appb-I000031
  3.  前記Xが、クリセン骨格、ベンゾチエノベンゾチオフェン骨格、ベンゾアントラセン骨格及びジナフトチエノチオフェン骨格からなる群より選ばれる一種である請求項1又は2記載の有機トランジスタ材料。
  4.  請求項1~3のいずれか一項に記載の有機トランジスタ材料を用いた有機半導体層を備える有機トランジスタ。
PCT/JP2020/020575 2019-05-27 2020-05-25 有機トランジスタ材料及び有機トランジスタ WO2020241582A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/612,127 US20220223792A1 (en) 2019-05-27 2020-05-25 Organic transistor material and organic transistor
JP2021522758A JP7521742B2 (ja) 2019-05-27 2020-05-25 有機トランジスタ材料及び有機トランジスタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-098893 2019-05-27
JP2019098893 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020241582A1 true WO2020241582A1 (ja) 2020-12-03

Family

ID=73552629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020575 WO2020241582A1 (ja) 2019-05-27 2020-05-25 有機トランジスタ材料及び有機トランジスタ

Country Status (4)

Country Link
US (1) US20220223792A1 (ja)
JP (1) JP7521742B2 (ja)
TW (1) TWI836083B (ja)
WO (1) WO2020241582A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006830A1 (en) * 2008-07-09 2010-01-14 Samsung Electronics Co., Ltd. Organic semiconductor compound based on 2,7-bis-(vinyl)[1]benzothieno[3,2-b]benzothiophene, organic semiconductor thin film and transistor using the same and methods of forming the same
US20110180784A1 (en) * 2010-01-22 2011-07-28 Deepak Shukla Organic semiconducting compositions and n-type semiconductor devices
WO2012121393A1 (ja) * 2011-03-10 2012-09-13 国立大学法人東京工業大学 有機半導体材料
JP2014063969A (ja) * 2012-08-27 2014-04-10 Fujifilm Corp 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP2018182056A (ja) * 2017-04-12 2018-11-15 山本化成株式会社 有機トランジスタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558777B2 (ja) * 2014-12-05 2019-08-14 日本化薬株式会社 有機化合物及びその用途
CN106565428B (zh) * 2016-10-18 2019-11-26 北京大学深圳研究生院 一种并四苯有机半导体材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006830A1 (en) * 2008-07-09 2010-01-14 Samsung Electronics Co., Ltd. Organic semiconductor compound based on 2,7-bis-(vinyl)[1]benzothieno[3,2-b]benzothiophene, organic semiconductor thin film and transistor using the same and methods of forming the same
US20110180784A1 (en) * 2010-01-22 2011-07-28 Deepak Shukla Organic semiconducting compositions and n-type semiconductor devices
WO2012121393A1 (ja) * 2011-03-10 2012-09-13 国立大学法人東京工業大学 有機半導体材料
JP2014063969A (ja) * 2012-08-27 2014-04-10 Fujifilm Corp 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP2018182056A (ja) * 2017-04-12 2018-11-15 山本化成株式会社 有機トランジスタ

Also Published As

Publication number Publication date
US20220223792A1 (en) 2022-07-14
TW202105784A (zh) 2021-02-01
JP7521742B2 (ja) 2024-07-24
JPWO2020241582A1 (ja) 2020-12-03
TWI836083B (zh) 2024-03-21

Similar Documents

Publication Publication Date Title
JP5901732B2 (ja) 新規複素環式化合物及びその中間体の製造方法並びにその用途
JP6008158B2 (ja) カルコゲン含有有機化合物およびその用途
KR101429370B1 (ko) 유기 반도체 재료, 유기 반도체 박막 및 유기 박막 트랜지스터
EP2975017B1 (en) Leaving substituent-containing compound, organic semiconductor material, organic semiconductor film containing the material, organic electronic device containing the film, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound
JP5894263B2 (ja) 有機半導体材料
JP2007019086A (ja) 有機半導体材料、それを用いた半導体装置及び電界効果トランジスタ
Dai et al. Diacenopentalene dicarboximides as new n-type organic semiconductors for field-effect transistors
EP3228622A2 (en) Synthetic method of fused heteroaromatic compound and fused heteroaromatic compound, and intermediate thereof
KR20130021439A (ko) 치환기 이탈 화합물, 이로부터 형성되는 유기 반도체 재료, 이 유기 반도체 재료를 이용한 유기 전자 장치, 유기 박막 트랜지스터 및 표시 장치, 막형 제품의 제조 방법, pi-전자 공액 화합물 및 pi-전자 공액 화합물의 제조 방법
JP5664897B2 (ja) ベンゼン環を有するπ電子共役系化合物を含有する膜状体の製法、及び該π電子共役系化合物の製法。
WO2020241582A1 (ja) 有機トランジスタ材料及び有機トランジスタ
JP4826081B2 (ja) 有機半導体材料、それを用いた半導体装置及び電界効果トランジスタ
JP7290948B2 (ja) ペリレン誘導体化合物、該化合物を用いた有機半導体用組成物、該有機半導体用組成物を用いた有機薄膜トランジスタ
JP2013191821A (ja) 有機半導体デバイスとその製造方法、および化合物
JP6093493B2 (ja) クリセン化合物を使用した有機半導体デバイス。
JP6678515B2 (ja) 化合物、組成物、および有機半導体デバイス
KR101000784B1 (ko) 덴드론구조가 치환된 폴리아센계 유기 화합물 및 이를이용한 유기박막트랜지스터
JP6420143B2 (ja) 末端にチオフェンを有する屈曲型のチエノチオフェン骨格を特徴とする有機半導体材料。
JP7464397B2 (ja) ペリレン誘導体化合物、該化合物を用いた有機半導体用組成物、該有機半導体用組成物を用いた有機薄膜トランジスタ
JP2018145109A (ja) 多環芳香族化合物、多環芳香族化合物の多量体、それらの製造方法、およびそれらを含む有機半導体デバイス
WO2021054161A1 (ja) 縮合多環芳香族化合物
KR101280592B1 (ko) 비닐그룹을 갖는 안트라센 뼈대에 기초한 고성능 유기반도체 화합물 및 이를 이용한 유기 반도체 박막 및 유기박막 전자 소자
EP3318559B1 (en) Synthetic method of fused heteroaromatic compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814597

Country of ref document: EP

Kind code of ref document: A1