JPWO2013031468A1 - 複素環式化合物及びその利用 - Google Patents

複素環式化合物及びその利用 Download PDF

Info

Publication number
JPWO2013031468A1
JPWO2013031468A1 JP2013531187A JP2013531187A JPWO2013031468A1 JP WO2013031468 A1 JPWO2013031468 A1 JP WO2013031468A1 JP 2013531187 A JP2013531187 A JP 2013531187A JP 2013531187 A JP2013531187 A JP 2013531187A JP WO2013031468 A1 JPWO2013031468 A1 JP WO2013031468A1
Authority
JP
Japan
Prior art keywords
organic
layer
thin film
substrate
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013531187A
Other languages
English (en)
Inventor
和男 瀧宮
和男 瀧宮
安達 千波矢
千波矢 安達
池田 征明
征明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nippon Kayaku Co Ltd
Original Assignee
Kyushu University NUC
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nippon Kayaku Co Ltd filed Critical Kyushu University NUC
Priority to JP2013531187A priority Critical patent/JPWO2013031468A1/ja
Publication of JPWO2013031468A1 publication Critical patent/JPWO2013031468A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

下記一般式(1)で表わされる化合物。(式中、Xは酸素原子を表し、Rは無置換のアリール基、又は少なくとも一種の置換基を有するアリール基を表す。)

Description

本発明は、新規な複素環式化合物及びその利用に関する。更に詳しくは、本発明は特定の複素環式有機化合物およびこれを利用した有機エレクトロニクスデバイスに関する。
近年、有機エレクトロニクスデバイスヘの関心が高まっている。その特徴としてはフレキシブルな構造をとり、大面積化が可能である事、更にはエレクトロニクスデバイス製造プロセスにおいて安価で高速の印刷方法を可能にすることが挙げられる。代表的なデバイスとしては有機EL素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子などが挙げられる。有機EL素子はフラットパネルディスプレイとして次世代ディスプレイ用途のメインターゲットとして期待され、携帯電話のディスプレイからTVなどへ応用され、更に高機能化を目指した開発が継続されている。有機太陽電池素子などはフレキシブルで安価なエネルギー源として、有機トランジスタ素子などはフレキシブルなディスプレイや安価なICへと研究開発がなされている。
これら有機エレクトロニクスデバイスの開発には、そのデバイスを構成する材料の開発が非常に重要である。そのため各分野において数多くの材料が検討されているが、十分な性能を有しているとは言えず、現在でも各種デバイスに有用な材料の開発が精力的に行われている。
その中で、アセン系有機半導体のペンタセンなどは有機トランジスタ材料として盛んに検討がなされている。複素環系のヘテロアセン系化合物においても、硫黄やセレン原子を含んだ材料を中心に検討がなされており、ベンゾジチオフェン系(DPh-BDT)、ナフトジチオフェン系(NDT)、ベンゾチエノベンゾチオフェン系(DPh-BTBT、AlkylBTBT)やジナフトジチオフェン(DNTT)系の材料など大気安定で高性能の材料が開発されている(特許文献1−5、非特許文献1−5)。
一方、酸素原子を含んだヘテロアセン系有機半導体材料については、その種類は非常に少なく、またその応用展開は依然として、なされていないのが現状である。
特開2005−154371号公報 WO2010−058692公報 WO2006−077888公報 WO2008−047896公報 WO2008−050726公報
J.Am.Chem.Soc.,2004,126,5084. J.Am.Chem.Soc.,2006,128,12604. J.Am.Chem.Soc.,2007,129,15732. J.Am.Chem.Soc.,2011,133,5024. J.Am.Chem.Soc.,2007,129,2224.
本発明の目的は、有機エレクトロニクスデバイスに使用することが可能な新規な複素環式化合物を提供することにある。さらに詳しくは有機EL素子、有機太陽電池素子、有機トランジスタ素子、有機半導体レーザー素子などの有機エレクトロニクスデバイスに応用可能な下記式(1)で表される複素環式化合物を提供することにある。
本発明者は、上記課題を解決すべく、新規な酸素系複素環誘導体を開発し、さらにその有機エレクトロニクスデバイスとしての可能性を検討し、本発明を完成するに至った。
即ち、本発明は、下記の通りである。
[1]下記一般式(1)で表わされる化合物。
Figure 2013031468

(式中、Xは酸素原子を表し、Rは無置換のアリール基、又は少なくとも一種の置換基を有するアリール基を表す。)
[2]Rが無置換のアリール基又は少なくとも一種のC1〜C3の低級アルキル基を置換基として有するアリール基である、前項[1]に記載の化合物。
[3]前記アリール基が芳香族炭化水素基である、前項[2]に記載の化合物。
[4]前記芳香族炭化水素基がフェニル基である、前項[3]に記載の化合物。
[5]前項[1]〜[4]のいずれか一項に記載の化合物を含む有機半導体材料。
[6]前項[5]に記載の有機半導体材料からなる薄膜。
[7]前項[5]に記載の有機半導体材料を含む有機エレクトロニクスデバイス。
[8]薄膜トランジスタ素子、光電変換素子、有機太陽電池、有機EL素子、有機発光トランジスタ素子、又は有機半導体レーザー素子である前項[7]に記載の有機エレクトロニクスデバイス。
[9]薄膜トランジスタ素子、光電変換素子、又は有機太陽電池である前項[8]に記載の有機エレクトロニクスデバイス。
本発明は新規な複素環式化合物に関するものであるが、当該化合物は良好な半導体特性を有するため、これを用いることにより有機エレクトロニクスデバイスを提供することが可能となり、フレキシブルな電子製品の提供も可能となる。
本発明の薄膜トランジスタの構造態様例を示す概略図である。 本発明の薄膜トランジスタの一態様例を製造する為の工程の概略図である。 光電変換素子及び太陽電池に使用される構造の概略図を示す。 SiO上に形成したDPh−NDF(化合物(1−1))の蒸着膜のインプレーン及びアウトプレーンのX線回折曲線を示す。 実施例1の有機トランジスタの伝達特性と出力特性を示す。 実施例2(DPh−NDF(化合物(1−1)))の有機太陽電池J−V特性を示す(比較例1:DPh−NDT)。
以下に本発明を詳細に説明する。
下記一般式(1)で表される化合物について説明する。
Figure 2013031468

上記化合物中のRは置換基を有してもよいアリール基を表す。アリール基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、ベンゾピレニル基などの芳香族炭化水素基や、ピリジル基、ピラジル基、ピリミジル基、キノリル基、イソキノリル基、ピロリル基、インドレニル基、イミダゾリル基、カルバゾリル基、チエニル基、フリル基、ピラニル基、ピリドニル基などの複素環基、ベンゾキノリル基、アントラキノリル基、ベンゾチエニル基、ベンゾフリル基のような縮合系複素環基が挙げられる。これらのうち好ましいものはフェニル基、ナフチル基、ピリジル基及びチエニル基であり、特にフェニル基が好ましい。
式中のRが有してもよい置換基の例としては、特に制限はないが、アリール基やハロゲン原子、アルキル基、シクロアルキル基などが挙げられる。アリール基としては前記と同様でよく、ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。アルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、n−ステアリル基等が挙げられる。また、環状のシクロヘキシル基、シクロペンチル基、アダマンチル基、ノルボルニル基等のシクロアルキル基が挙げられる。上記置換基の中でもC1〜C3の低級アルキル基が好ましい。
また、Rが有してもよい置換基の数に特に制限はなく、また化合物中で左右非対称の位置に置換基を有することもできるが、左右対称であることが好ましい。
上記化合物中のXは酸素原子を表わす。
式(1)で表わされる化合物は、例えば下記の反応工程で得られ、1,5−ジブロモ−2,6−ジヒドロキシナフタレンを出発原料とし、アシル化、更にパラジウム触媒などの存在下でアセチレン誘導体とし、前駆体のジエチニルナフタレン誘導体を得ることができる。この前駆体を炭酸セシウムで加水分解すると目的物の一般式(1)のナフトジフラン化合物が得られる。
Figure 2013031468
上記一般式(1)で表わされる複素環式化合物の精製方法は、特に限定されず、再結晶、カラムグロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また、必要に応じてこれらの方法を組み合わせて用いてもよい。
上記の一般式(1)のXが酸素原子で表わされる複素環式化合物の具体例を下記に示す。
Figure 2013031468
本発明の一般式(1)で表わされる複素環式化合物を含む有機半導体材料を用いて薄膜を作製することができる。該薄膜の膜厚は、その用途によって異なるが、通常0.1nm〜100μmであり、好ましくは0.5nm〜30μmであり、より好ましくは1nm〜20μmである。
薄膜の形成方法は、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法などや、溶液プロセスであるスピンコート法、ドロップキャスト法、ディップコート法、スプレー法、フレキソ印刷、樹脂凸版印刷などの凸版印刷法、オフセット印刷法、ドライオフセット印刷法、パッド印刷法、石版印刷法などの平板印刷法、グラビア印刷法などの凹版印刷法、シルクスクリーン印刷法、謄写版印刷法、リングラフ印刷法などの孔版印刷法、インクジェット印刷法、マイクロコンタクトプリント法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。
上記の中でも、真空プロセスである抵抗加熱蒸着法や溶液プロセスであるスピンコート法、ディップコート法、インクジェット法、スクリーン印刷、凸版印刷などが好ましい。
上記の一般式(1)で表わされる複素環式化合物をエレクトロニクス用途の材料として用いて、有機エレクトロニクスデバイスを作製することができる。有機エレクトロニクスデバイスとしては、例えば薄膜トランジスタや光電変換素子、有機太陽電池素子、有機EL素子、有機発光トランジスタ素子、有機半導体レーザー素子などが挙げられる。これらについて詳細に説明する。
まず薄膜トランジスタについて詳しく説明する。
薄膜トランジスタは、半導体に接して2つの電極(ソース電極及びドレイン電極)があり、その電極間に流れる電流を、ゲート電極と呼ばれるもう一つの電極に印加する電圧で制御するものである。
一般に、薄膜トランジスタ素子はゲート電極が絶縁膜で絶縁されている構造(Metal−InsuIator−Semiconductor MIS構造)がよく用いられる。絶縁膜に金属酸化膜を用いるものはMOS構造と呼ばれる。他には、ショットキー障壁を介してゲート電極が形成されている構造(すなわちMES構造)もあるが、有機半導体材料を用いた薄膜トランジスタの場合、MIS構造がよく用いられる。
以下、図を用いて有機系の薄膜トランジスタについてより詳細に説明するが、本発明はこれらの構造には限定されない。
図1に、薄膜トランジスタ(素子)のいくつかの態様例を示す。
図1における各態様例において、1がソース電極、2が半導体層、3がドレイン電極、4が絶縁体層、5がゲート電極、6が基板をそれぞれ表す。尚、各層や電極の配置は、素子の用途により適宜選択できる。A〜D、Fは基板と並行方向に電流が流れるので、横型トランジスタと呼ばれる。Aはボトムコンタクトボトムゲート構造、Bはトップコンタクトボトムゲート構造と呼ばれる。また、Cは半導体上にソース及びドレイン電極、絶縁体層を設け、さらにその上にゲート電極を形成しており、トップコンタクトトップゲート構造と呼ばれている。Dはトップ&ボトムコンタクト型トランジスタと呼ばれる構造である。Fはボトムコンタクトトップゲート構造である。Eは縦型の構造をもつトランジスタ、すなわち静電誘導トランジスタ(SIT)の模式図である。このSITは、電流の流れが平面状に広がるので一度に大量のキャリアが移動できる。またソース電極とドレイン電極が縦に配されているので電極間距離を小さくできるため応答が高速である。従って、大電流を流す、高速のスイッチングを行うなどの用途に好ましく適用できる。なお図1中のEには、基板を記載していないが、通常の場合、図1E中の1及び3で表されるソース又はドレイン電極の外側には基板が設けられる。
各態様例における各構成要素につき説明する。
基板6は、その上に形成される各層が剥離することなく保持できることが必要である。例えば樹脂板やフィルム、紙、ガラス、石英、セラミックなどの絶縁性材料;金属や合金などの導電性基板上にコーティング等により絶縁層を形成した物;樹脂と無機材料など各種組合せからなる材料;等が使用できる。使用できる樹脂フィルムの例としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリカーボネート、セルローストリアセテート、ポリエーテルイミドなどが挙げられる。樹脂フィルムや紙を用いると、素子に可撓性を持たせることができ、フレキシブルで、軽量となり、実用性が向上する。基板の厚さとしては、通常1μm〜10mmであり、好ましくは5μm〜5mmである。
ソース電極1、ドレイン電極3、ゲート電極5には導電性を有する材料が用いられる。例えば、白金、金、銀、アルミニウム、クロム、タングステン、タンタル、ニッケル、コバルト、銅、鉄、鉛、錫、チタン、インジウム、パラジウム、モリブデン、マグネシウム、カルシウム、バリウム、リチウム、カリウム、ナトリウム等の金属及びそれらを含む合金;InO、ZnO、SnO、ITO等の導電性酸化物;ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ビニレン、ポリジアセチレン等の導電性高分子化合物;シリコン、ゲルマニウム、ガリウム砒素等の半導体;カーボンブラック、フラーレン、カーボンナノチューブ、グラファイト等の炭素材料;等が使用できる。また、導電性高分子化合物や半導体にはドーピングが行われていてもよい。その際のドーパントとしては、例えば、塩酸、硫酸等の無機酸;スルホン酸等の酸性官能基を有する有機酸;PF、AsF、FeCl等のルイス酸;ヨウ素等のハロゲン原子;リチウム、ナトリウム、カリウム等の金属原子;等が挙げられる。ホウ素、リン、砒素などはシリコンなどの無機半導体用のドーパントとしても多用されている。
また、上記のドーパントにカーボンブラックや金属粒子などを分散した導電性の複合材料も用いられる。直接、半導体と接触するソース電極1およびドレイン電極3はコンタクト抵抗を低減するために適切な仕事関数を選択するか、表面処理などが大切になる。
またソースとドレイン電極間の距離(チャネル長)が素子の特性を決める重要なファクターとなる。該チャネル長は、通常0.1〜300μm、好ましくは0.5〜100μmである。チャネル長が短ければ取り出せる電流量は増えるが、逆にコンタクト抵抗の影響など短チャネル効果が発生し、制御が困難となるため、適正なチャネル長が必要である。ソースとドレイン電極間の幅(チャネル幅)は通常10〜10000μm、好ましくは100〜5000μmとなる。またこのチャネル幅は、電極の構造をくし型構造とすることなどにより、さらに長いチャネル幅を形成することが可能で、必要な電流量や素子の構造などにより、適切な長さにする必要がある。
ソース及びドレイン電極のそれぞれの構造(形)について説明する。ソースとドレイン電極の構造はそれぞれ同じであっても、異なっていてもよい。
ボトムコンタクト構造の場合は、一般的にはリソグラフィー法を用いて各電極を作製し、また各電極は直方体に形成するのが好ましい。半導体上に電極のあるトップコンタクト構造の場合はシャドウマスクなどを用いて蒸着することができ、インジェットなどの手法を用いて電極パターンを直接印刷形成することもできる。電極の長さは前記のチャネル幅と同じでよい。電極の幅には特に規定は無いが、電気的特性を安定化できる範囲で、素子の面積を小さくするためには短い方が好ましい。電極の幅は、通常0.1〜1000μmであり、好ましくは0.5〜100μmである。電極の厚さは、通常0.1〜1000nmであり、好ましくは1〜500nmであり、より好ましくは5〜200nmである。各電極1、3、5には配線が連結されているが、配線も電極とほぼ同様の材料により作製される。
絶縁体層4としては絶縁性を有する材料が用いられる。例えば、ポリパラキシリレン、ポリアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリビニルフェノール、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン、ポリスルホン、エポキシ樹脂、フェノール樹脂等のポリマー及びこれらを組み合わせた共重合体;二酸化珪素、酸化アルミニウム、酸化チタン、酸化タンタル等の金属酸化物;SrTiO、BaTiO等の強誘電性金属酸化物;窒化珪素、窒化アルミニウム等の窒化物、硫化物、フッ化物などの誘電体;あるいは、これら誘電体の粒子を分散させたポリマー;等が使用できる。絶縁体層4の膜厚は、材料によって異なるが、通常0.1nm〜100μm、好ましくは0.5nm〜50μm、より好ましくは1nm〜10μmである。
半導体層2の材料として、本発明の一般式(1)で表わされる複素環式化合物を用いることができる。それを先に示した方法を用いて、半導体層2を薄膜として形成する。薄膜トランジスタの特性を改善、及び他の特性を付与する等の目的のために、必要に応じて他の有機半導体材料や各種添加剤を混合してもよい。また半導体層2は複数の層から成ってもよい。
薄膜トランジスタにおいては、上記の一般式(1)で表わされる複素環式化合物の少なくとも1種の化合物を有機半導体材料として用いることができる。一般式(1)で表される複素環式化合物及びその化合物を含む組成物を用いて薄膜を形成し、成膜に溶剤を使用している場合は実質的に溶剤を蒸発させたのちに使用することが好ましい。後述するが蒸着方法で有機半導体層を形成する場合は上記一般式(1)で表される複数の複素環式化合物の混合物よりも、単一の化合物を有機半導体材料として用いることが特に好ましい。しかし、上記のようにトランジスタの特性を改善する目的等のために、ドーパント等の添加剤については、これを含有することを妨げない。溶液プロセスで半導体層を形成する場合はこれに限らない。
上記添加剤は、有機半導体材料の総量を1とした場合、通常0.01〜10重量%、好ましくは0.05〜5重量%、より好ましくは0.1〜3重量%の範囲で添加するのがよい。
また半導体層についても複数の層を形成していてもよいが、単層構造であることがより好ましい。半導体層2の膜厚は、必要な機能を失わない範囲で、薄いほど好ましい。A、B及びDに示すような横型の薄膜トランジスタにおいては、所定以上の膜厚があれば素子の特性は膜厚に依存しない一方、膜厚が厚くなると漏れ電流が増加してくることが多いためである。必要な機能を示すための半導体層の膜厚は、通常、1nm〜10μm、好ましくは5nm〜5μm、より好ましくは10nm〜3μmである。
本発明の薄膜トランジスタには、例えば基板層と絶縁膜層や絶縁膜層と半導体層の間や素子の外面に必要に応じて他の層を設けることができる。例えば、有機半導体層上に直接、又は他の層を介して、保護層を形成すると、湿度などの外気の影響を小さくすることができ、また、素子のON/OFF比を上げることができるなど、電気的特性を安定化できる利点もある。
保護層の材料としては特に限定されないが、例えば、エポキシ樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール、フッ素樹脂、ポリオレフィン等の各種樹脂からなる膜;酸化珪素、酸化アルミニウム、窒化珪素等の無機酸化膜;及び窒化膜等の誘電体からなる膜;等が好ましく用いられ、特に、酸素や水分の透過率や吸水率の小さな樹脂(ポリマー)が好ましい。有機ELディスプレイ用に開発されているガスバリア性保護材料も使用が可能である。保護層の膜厚は、その目的に応じて任意の膜厚を選択できるが、通常100nm〜1mmである。
また有機半導体層が積層される基板又は絶縁体層上などに予め表面改質や表面処理を行うことにより、薄膜トランジスタ素子としての特性を向上させることが可能である。例えば基板表面の親水性/疎水性の度合いを調整することにより、その上に成膜される膜の膜質を改良しうる。特に、有機半導体材料は分子の配向など膜の状態によって特性が大きく変わることがある。そのため、基板などへの表面処理によって、基板などとその後に成膜される有機半導体層との界面部分の分子配向が制御されること、また基板や絶縁体層上のトラップ部位が低減されることにより、キャリア移動度等の特性が改良されるものと考えられる。
トラップ部位とは、未処理の基板に存在する例えば水酸基のような官能基をさし、このような官能基が存在すると、電子が該官能基に引き寄せられ、この結果としてキャリア移動度が低下する。従って、トラップ部位を低減することもキャリア移動度等の特性改良には有効な場合が多い。
上記のような特性改良のための基板処理としては、例えば、ヘキサメチルジシラザン、オクチルトリクロロシラン、オクタデシルトリクロロシラン等による疎水化処理;塩酸や硫酸、酢酸等による酸処理;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等によるアルカリ処理;オゾン処理;フッ素化処理;酸素やアルゴン等のプラズマ処理;ラングミュア・ブロジェット膜の形成処理;その他の絶縁体や半導体の薄膜の形成処理;機械的処理;コロナ放電などの電気的処理;又繊維等を利用したラビング処理、等およびその組み合わせが挙げられる。
これらの態様において、例えば基板層と絶縁膜層や絶縁膜層と有機半導体層等の各層を設ける方法としては、例えば真空蒸着法、スパッタ法、塗布法、印刷法、ゾルゲル法等が適宜採用できる。
次に、本発明に係る薄膜トランジスタ素子の製造方法について、図1の態様例Bに示すトップコンタクトボトムゲート型薄膜トランジスタを例として、図2に基づき以下に説明する。この製造方法は前記した他の態様の薄膜トランジスタ等にも同様に適用しうるものである。
(薄膜トランジスタの基板及び基板処理について)
本発明の薄膜トランジスタは、基板6上に必要な各種の層や電極を設けることで作製される(図2(1)参照)。基板としては上記で説明したものが使用できる。この基板上に前述の表面処理などを行うことも可能である。基板6の厚みは、必要な機能を妨げない範囲で薄い方が好ましい。材料によっても異なるが、通常1μm〜10mmであり、好ましくは5μm〜5mmである。また、必要により、基板に電極の機能を持たせるようにしてもよい。
(ゲート電極の形成について)
基板6上にゲート電極5を形成する(図2(2)参照)。電極材料としては上記で説明したものが用いられる。電極膜を成膜する方法としては、各種の方法を用いることができ、例えば真空蒸着法、スパッタ法、塗布法、熱転写法、印刷法、ゾルゲル法等が採用される。成膜時又は成膜後、所望の形状になるよう必要に応じてパターニングを行うのが好ましい。パターニングの方法としても各種の方法を用いうるが、例えばフォトレジストのパターニングとエッチングを組み合わせたフォトリソグラフィー法等が挙げられる。又、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法、及びこれら手法を複数組み合わせた手法を利用し、パターニングすることも可能である。ゲート電極5の膜厚は、材料によっても異なるが、通常0.1nm〜10μmであり、好ましくは0.5nm〜5μmであり、より好ましくは1nm〜3μmである。また、ゲート電極と基板を兼ねる場合は上記の膜厚より大きくてもよい。
(絶縁体層の形成について)
ゲート電極5上に絶縁体層4を形成する(図2(3)参照)。絶縁体材料としては上記で説明したもの等が用いられる。絶縁体層4を形成するにあたっては各種の方法を用いることができる。例えばスピンコーティング、スプレーコーティング、ディップコーティング、キャスト、バーコート、ブレードコーティングなどの塗布法、スクリーン印刷、オフセット印刷、インクジェット等の印刷法、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、イオンプレーティング法、スパッタリング法、大気圧プラズマ法、CVD法などのドライプロセス法が挙げられる。その他、ゾルゲル法やアルミニウム上のアルマイト、シリコン上の二酸化シリコンのように金属上に酸化物膜を形成する方法等が採用される。尚、絶縁体層と半導体層が接する部分においては、両層の界面で半導体を構成する分子、例えば上記式(1)で表される複素環式化合物の分子を良好に配向させるために、絶縁体層に所定の表面処理を行うこともできる。表面処理の手法は、基板の表面処理と同様のものを用いることができる。絶縁体層4の膜厚は、その機能を損なわない範囲で薄い方が好ましい。通常0.1nm〜100μmであり、好ましくは0.5nm〜50μmであり、より好ましくは5nm〜10μmである。
(有機半導体層の形成について)
本発明の上記一般式(1)で表される複素環式化合物を含む有機半導体材料は、有機半導体層の形成に使用される(図2(4)参照)。有機半導体層を成膜するにあたっては、各種の方法を用いることができる。具体的にはスパッタリング法、CVD法、分子線エピタキシャル成長法、真空蒸着法等の真空プロセスでの形成方法;ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法等の塗布法、インクジェット法、スクリーン印刷法、オフセット印刷法、マイクロコンタクト印刷法などの溶液プロセスでの形成方法;が挙げられる。
なお、本願発明の上記一般式(1)で表される複素環式化合物を有機半導体材料として使用し、有機半導体層を形成する場合には、印刷などの溶液プロセスや真空プロセスによって成膜し、有機半導体層を形成する方法が挙げられる。
まず有機半導体材料を真空プロセスによって成膜し有機半導体層を得る方法について説明する。真空プロセスによる成膜方法としては、前記の有機半導体材料をルツボや金属のボート中で真空下、加熱し、蒸発した有機半導体材料を基板(基板、絶縁体層、ソース電極及びドレイン電極など)に付着(蒸着)させる方法、すなわち真空蒸着法が好ましく採用される。この際、真空度は、通常1.0×10−1Pa以下、好ましくは1.0×10−3Pa以下である。また、蒸着時の基板温度によって有機半導体膜、ひいては薄膜トランジスタの特性が変化する場合があるので、注意深く基板温度を選択するのが好ましい。蒸着時の基板温度は通常、0〜200℃であり、好ましくは5〜150℃であり、より好ましくは10〜120℃であり、さらに好ましくは15〜100℃であり、特に好ましくは20〜80℃である。
また、蒸着速度は、通常0.001nm/秒〜10nm/秒であり、好ましくは0.01nm/秒〜1nm/秒である。有機半導体材料から形成される有機半導体層の膜厚は、通常1nm〜10μm、好ましくは5nm〜5μmより好ましくは10nm〜3μmである。
尚、有機半導体層を形成するための有機半導体材料を加熱、蒸発させ基板に付着させる蒸着方法に代えて、その他の手法を用いてもよい。
次いで溶液プロセスによって成膜し有機半導体層を得る方法について説明する。本発明の一般式(1)で表わされる複素環式化合物を溶剤等に溶解し、さらに必要であれば添加剤などを添加した組成物を、基板(絶縁体層、ソース電極及びドレイン電極の露出部)に塗布する。塗布の方法としては、キャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。
更に、塗布方法に類似した方法として水面上に上記のインクを滴下することにより作製した有機半導体層の単分子膜を基板に移し積層するラングミュアプロジェクト法、液晶や融液状態の材料を2枚の基板で挟んで毛管現象で基板間に導入する方法等も採用できる。
製膜時における基板や組成物の温度などの環境も重要で、基板や組成物の温度によってトランジスタの特性が変化する場合があるので、注意深く基板及び組成物の温度を選択するのが好ましい。基板温度は通常、0〜200℃であり、好ましくは10〜120℃であり、より好ましくは15〜100℃である。用いる組成物中の溶剤などに大きく依存するため、注意が必要である。
この方法により作製される有機半導体層の膜厚は、機能を損なわない範囲で、薄い方が好ましい。膜厚が厚くなると漏れ電流が大きくなる懸念がある。有機半導体層の膜厚は、通常1nm〜10μm、好ましくは5nm〜5μm、より好ましくは10nm〜3μmである。
このように形成された有機半導体層(図2(4)参照)は、後処理によりさらに特性を改良することが可能である。例えば、熱処理により、成膜時に生じた膜中の歪みが緩和されること、ピンホール等が低減されること、膜中の配列・配向が制御できると考えられていること等の理由により、有機半導体特性の向上や安定化を図ることができる。本発明の薄膜トランジスタの作成時にはこの熱処理を行うことが特性の向上の為には効果的である。本熱処理は有機半導体層を形成した後に基板を加熱することによって行う。熱処理の温度は特に制限は無いが通常、室温から150℃程度で、好ましくは40〜120℃、さらに好ましくは45〜100℃である。この時の熱処理時間については特に制限は無いが通常10秒から24時間、好ましくは30秒から3時間程度である。その時の雰囲気は大気中でもよいが、窒素やアルゴンなどの不活性雰囲気下でもよい。
またその他の有機半導体層の後処理方法として、酸素や水素等の酸化性あるいは還元性の気体や、酸化性あるいは還元性の液体などと処理することにより、酸化あるいは還元による特性変化を誘起することもできる。これは例えば膜中のキャリア密度の増加あるいは減少の目的で利用することが多い。
また、ドーピングと呼ばれる手法において、微量の元素、原子団、分子、高分子を有機半導体層に加えることにより、有機半導体層特性を変化させることができる。例えば、酸素、水素、塩酸、硫酸、スルホン酸等の酸;PF、AsF、FeCl等のルイス酸;ヨウ素等のハロゲン原子;ナトリウム、カリウム等の金属原子;等をドーピングすることができる。これは、有機半導体層に対して、これらのガスを接触させたり、溶液に浸したり、電気化学的なドーピング処理をすることにより達成できる。これらのドーピングは有機半導体層の作製後でなくても、有機半導体化合物の合成時に添加したり、有機半導体素子作製用のインクを用いて有機半導体層を作製するプロセスでは、そのインクに添加したり薄膜を形成する工程段階などで添加することができる。また蒸着時に有機半導体層を形成する材料に、ドーピングに用いる材料を添加して共蒸着したり、有機半導体層を作製する時の周囲の雰囲気に混合したり(ドーピング材料を存在させた環境下で有機半導体層を作製する)、さらにはイオンを真空中で加速して膜に衝突させてドーピングすることも可能である。
これらのドーピングの効果は、キャリア密度の増加あるいは減少による電気伝導度の変化、キャリアの極性の変化(p型、n型)、フェルミ準位の変化等が挙げられる。
(ソース電極及びドレイン電極の形成)
ソース電極1及びドレイン電極3の形成方法等はゲート電極5の場合に準じて形成することができる(図2(5)参照)。また有機半導体層との接触抵抗を低減するために各種添加剤などを用いることが可能である。
(保護層について)
有機半導体層上に保護層7を形成すると、外気の影響を最小限にでき、また、有機薄膜トランジスタの電気的特性を安定化できるという利点がある(図2(6)参照)。保護層の材料としては前記のものが使用される。保護層7の膜厚は、その目的に応じて任意の膜厚を採用できるが、通常100nm〜1mmである。
保護層を成膜するにあたっては各種の方法を採用しうるが、保護層が樹脂からなる場合は、例えば、樹脂溶液を塗布後、乾燥させて樹脂膜とする方法;樹脂モノマーを塗布あるいは蒸着したのち重合する方法;などが挙げられる。成膜後に架橋処理を行ってもよい。保護層が無機物からなる場合は、例えば、スパッタリング法、蒸着法等の真空プロセスでの形成方法や、ゾルゲル法等の溶液プロセスでの形成方法も用いることができる。
薄膜トランジスタにおいては有機半導体層上の他、各層の間にも必要に応じて保護層を設けることができる。それらの層は薄膜トランジスタの電気的特性の安定化に役立つ場合がある。
上記一般式(1)で表される複素環式化合物を有機半導体材料として用いているため、比較的低温プロセスでの製造が可能である。従って、高温にさらされる条件下では使用できなかったプラスチック板、プラスチックフィルム等フレキシブルな材質も基板として用いることができる。その結果、軽量で柔軟性に優れた壊れにくい素子の製造が可能になり、ディスプレイのアクティブマトリクスのスイッチング素子等として利用することができる。
薄膜トランジスタは、メモリー回路素子、信号ドライバー回路素子、信号処理回路素子などのデジタル素子やアナログ素子としても利用できる。さらにこれらを組み合わせることによりICカードやICタグの作製が可能となる。更に、薄膜トランジスタは化学物質等の外部刺激によりその特性に変化を起こすことができるので、FETセンサーとしての利用も可能である。
次に有機EL素子について説明する。
有機EL素子は固体で自己発光型の大面積カラー表示や照明などの用途に利用できることが注目され、数多くの開発がなされている。その構成は、陰極と陽極からなる対向電極の間に、発光層及び電荷輸送層の2層を有する構造のもの;対向電極の間に積層された電子輸送層、発光層及び正孔輸送層の3層を有する構造のもの;及び3層以上の層を有するもの;等が知られており、また発光層単層であるもの等が知られている。
ここで正孔輸送層は、正孔を陽極から注入させ、発光層への正孔を輸送し、発光層へ正孔の注入を容易にする機能と電子をブロックする機能とを有する。また、電子輸送層は、電子を陰極から注入させ発光層へ電子を輸送し、発光層へ電子の注入を容易にする機能と正孔をブロックする機能を有する。
さらに発光層においてはそれぞれ注入された電子と正孔が再結合することにより励起子が生じ、その励起子が放射失活する過程で放射されるエネルギーが発光として検出される。以下に有機EL素子の好ましい態様を記載する。
有機EL素子は陽極と陰極との電極間に、1層または複数層の有機薄膜が形成された、電気エネルギーにより発光する素子である。
有機EL素子において使用されうる陽極は、正孔を、正孔注入層、正孔輸送層、発光層に注入する機能を有する電極である。一般的に仕事関数が4.5eV以上の金属酸化物や金属、合金、導電性材料などが適している。具体的には、特に限定されるものでないが、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル、タングステンなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーや炭素が挙げられる。それらの中でも、ITOやNESAを用いることが好ましい。
陽極は、必要であれば、複数の材料を用いても、また2層以上で構成されていてもよい。陽極の抵抗は素子の発光に十分な電流が供給できるものであれば限定されないが、素子の消費電力の観点からは低抵抗であることが好ましい。例えばシート抵抗値が300Ω/□以下のITO基板であれば素子電極として機能するが、数Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが望ましい。ITOの厚みは抵抗値に合わせて任意に選択することができるが、通常5〜500nm、好ましくは10〜300nmの間で用いられる。ITOなどの膜形成方法としては、蒸着法、電子線ビーム法、スパッタリング法、化学反応法、塗布法などが挙げられる。
有機EL素子において使用されうる陰極は、電子を電子注入層、電子輸送層、発光層に注入する機能を有する電極である。一般的に仕事関数の小さい(おおよそ4eV以下である)金属や合金が適している。具体的には、特に限定されないが、白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムが挙げられる。電子注入効率を上げて素子特性を向上させるためにはリチウム、ナトリウム、カリウム、カルシウム、マグネシウムが好ましい。合金としては、これら低仕事関数の金属を含むアルミニウムもしくは銀等の金属との合金又はこれらを積層した構造の電極等が使用できる。積層構造の電極にはフッ化リチウムのような無機塩の使用も可能である。また、陽極側でなく陰極側へ発光を取り出す場合は、低温で製膜可能な透明電極としてもよい。膜形成方法としては、蒸着法、電子線ビーム法、スパッタリング法、化学反応法、塗布法などが挙げられるが、特に制限されるものではない。陰極の抵抗は素子の発光に十分な電流が供給できるものであれば限定されないが、素子の消費電力の観点からは低抵抗であることが好ましく、数100〜数Ω/□程度が好ましい。膜厚は通常5〜500nm、好ましくは10〜300nmの範囲で用いられる。
更に封止、保護のために、酸化チタン、窒化ケイ素、酸化珪素、窒化酸化ケイ素、酸化ゲルマニウムなどの酸化物、窒化物、又はそれらの混合物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子、フッ素系高分子などで陰極を保護し、酸化バリウム、五酸化リン、酸化カルシウム等の脱水剤と共に封止することができる。
また発光を取り出すために、一般的には素子の発光波長領域で十分に透明性を有する基板上に電極を作製することが好ましい。透明の基板としてはガラス基板やポリマー基板が挙げられる。ガラス基板はソーダライムガラス、無アルカリガラス、石英などが用いられ、機械的・熱的強度を保つのに十分な厚みがあればよく、0.5mm以上の厚みが好ましい。ガラスの材質については、ガラスからの溶出イオンが少ない方がよく、無アルカリガラスの方が好ましい。このようなものとして、SiOなどのバリアコートを施したソーダライムガラスが市販されているのでこれを使用することもできる。またガラス以外のポリマーでできた基板としては、ポリカーボネート、ポリプロピレン、ポリエーテルサルホン、ポリエチレンテレフタレート、アクリル基板などが挙げられる。
有機EL素子の有機薄膜は、陽極と陰極の電極間に、1層又は複数の層で形成されている。その有機薄膜に上記一般式(1)で表される化合物を含有させることにより、電気エネルギーにより発光する素子が得られる。
有機薄膜を形成する1層又は複数の層の「層」とは、正孔輸送層、電子輸送層、正孔輸送性発光層、電子輸送性発光層、正孔阻止層、電子阻止層、正孔注入層、電子注入層、発光層、又は下記構成例9)に示すように、これらの層が有する機能を併せ持つ単一の層を意味する。本発明における有機薄膜を形成する層の構成としては、以下の構成例1)から9)が挙げられ、いずれの構成であってもよい。
構成例
1)正孔輸送層/電子輸送性発光層。
2)正孔輸送層/発光層/電子輸送層。
3)正孔輸送性発光層/電子輸送層。
4)正孔輸送層/発光層/正孔阻止層。
5)正孔輸送層/発光層/正孔阻止層/電子輸送層。
6)正孔輸送性発光層/正孔阻止層/電子輸送層。
7)前記1)から6)の組み合わせのそれぞれにおいて、正孔輸送層もしくは正孔輸送性発光層の前に正孔注入層を更にもう一層付与した構成。
8)前記1)から7)の組み合わせのそれぞれにおいて、電子輸送層もしくは電子輸送性発光層の前に電子注入層を更にもう一層付与した構成。
9)前記1)から8)の組み合わせにおいて使用する材料をそれぞれ混合し、この混合した材料を含有する一層のみを有する構成。
なお、前記9)は、一般にバイポーラー性の発光材料と言われる材料で形成される単一の層;又は、発光材料と正孔輸送材料又は電子輸送材料を含む層を一層設けるだけでもよい。一般的に多層構造とすることで、効率良く電荷、すなわち正孔及び/又は電子を輸送し、これらの電荷を再結合させることができる。また電荷のクエンチングなどが抑えられることにより、素子の安定性の低下を防ぎ、発光の効率を向上させることができる。
正孔注入層及び輸送層は、正孔輸送材料を単独で、又は二種類以上の該材料の混合物を積層することにより形成される。正孔輸送材料としては、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどのトリフェニルアミン類、ビス(N−アリルカルバゾール)、ビス(N−アルキルカルバゾール)類、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、トリアゾール誘導体、オキサジアゾール誘導体やポルフィリン誘導体に代表される複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが好ましく使用できる。素子作製に必要な薄膜を形成し、電極から正孔が注入できて、さらに正孔を輸送できる物質であれば特に限定されるものではない。正孔注入性を向上するための、正孔輸送層と陽極の間に設ける正孔注入層としては、フタロシアニン誘導体、m−MTDATA等のスターバーストアミン類、高分子系ではPEDOT等のポリチオフェン、ポリビニルカルバゾール誘導体等を使用して作製されたものが挙げられる。
電子輸送材料としては、電界を与えられた電極間において負極からの電子を効率良く輸送することが必要である。電子輸送材料は、電子注入効率が高く、注入された電子を効率良く輸送することが好ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、トリス(8−キノリノラト)アルミニウム錯体に代表されるキノリノール誘導体金属錯体、トロボロン金属錯体、ペリレン誘導体、ペリノン誘導体、ナフタルイミド誘導体、ナフタル酸誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、ベンゾオキサゾール誘導体、キノキサリン誘導体などが挙げられるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層又は混合して使用しても構わない。電子注入性を向上するための、電子輸送層と陰極の間に設ける電子注入層としては、セシウム、リチウム、ストロンチウムなどの金属やフッ化リチウムなどが挙げられる。
正孔阻止層は正孔阻止性物質単独又は二種類以上の物質を積層、混合することにより形成される。正孔阻止性物質としては、バソフェナントロリン、バソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体などが好ましい。正孔阻止性物質は、正孔が陰極側から素子外部に流れ出てしまい発光効率が低下するのを阻止することができる化合物であれば特に限定されるものではない。
発光層とは、発光する有機薄膜の意味であり、例えば強い発光性を有する正孔輸送層、電子輸送層又はバイポーラー輸送層であると言うことができる。発光層は、発光材料(ホスト材料、ドーパント材料など)により形成されていればよく、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の材料の組み合わせであってもよい。
ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパント材料は積層されていても、分散されていても、いずれであってもよい。発光層として例えば前述の正孔輸送層や電子輸送層が挙げられる。発光層に使用される材料としては、カルバゾール誘導体、アントラセン誘導体、ナフタレン誘導体、フェナントレン誘導体、フェニルブタジエン誘導体、スチリル誘導体、ピレン誘導体、ペリレン誘導体、キノリン誘導体、テトラセン誘導体、ペリレン誘導体、キナクリドン誘導体、クマリン誘導体ポルフィリン誘導体や燐光性金属錯体(Ir錯体、Pt錯体、Eu錯体など)などが挙げられる。
有機EL素子の有機薄膜の形成方法は、一般的に、真空プロセスである、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、さらにはこれらの手法を複数組み合わせた方法が挙げられる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、0.5〜5000nmの間から選ばれる。好ましくは1〜1000nm、より好ましくは5〜500nmである。
本発明における有機EL素子が有する有機薄膜のうち、陽極と陰極の電極間に存在する、発光層、正孔輸送層、電子輸送層などの薄膜の1層又は複数層に上記一般式(1)で表される複素環式化合物を含有させることにより、低電気エネルギーでも効率良く発光する素子が得られる。
上記一般式(1)で表される複素環式化合物を含む層を、陽極と陰極との電極間に1層または複数層形成することにより得ることができる。特に上記の一般式(1)で表わされる複素環式化合物を使用する部位に制限は無いが、正孔輸送層や発光層における利用、ドーパント材料と組み合わせたホスト材料として好適に使用できる。
上記一般式(1)で表される複素環式化合物は正孔輸送層や発光層として好適に用いることができる。例えば前述した電子輸送材料又は正孔輸送材料、発光材料などと組み合わせて使用することや混合して使用することができる。
上記式(1)で表される複素環式化合物をドーパント材料と組み合わせたホスト材料として用いるときの、ドーパント材料の具体例としてはビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのペリレン誘導体、ペリノン誘導体、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピラン(DCM)やその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、オキサジン化合物、スクアリリウム化合物、ビオラントロン化合物、ナイルレッド、5−シアノピロメテン−BF錯体等のピロメテン誘導体、さらに燐光材料としてアセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体や、Ir錯体、Ru錯体、Pt錯体、Os錯体などのポルフィリン、オルトメタル金属錯体などを用いることができるが特にこれらに限定されるものではない。また2種類のドーパント材料を混合する場合はルブレンのようなアシストドーパントを用いてホスト色素からのエネルギーを効率良く移動して色純度の向上した発光を得ることも可能である。いずれの場合も高輝度特性を得るためには、蛍光量子収率が高いものをドーピングすることが好ましい。
用いるドーパント材料の量は、多すぎると濃度消光現象が起きるため、通常ホスト材料に対して30質量%以下で用いる。好ましくは20質量%以下であり、更に好ましくは10質量%以下である。発光層におけるドーパント材料をホスト材料にドーピングする方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。また、ホスト材料にサンドイッチ状に挟んで使用することも可能である。この場合、一層又は二層以上のドーパント層として、ホスト材料と積層してもよい。
これらのドーパント層は単独で各層を形成することもできるし、それらを混合して使用してもよい。また、ドーパント材料を、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリスチレンスルホン酸、ポリ(N−ビニルカルバゾール)、ポリ(メチル)(メタ)アタリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂に溶解又は分散させて用いることも可能である。
有機EL素子はフラットパネルディスプレイとして好適に使用することができる。またフラットバックライトとしても用いることができ、この場合、有色光を発するものでも白色光を発するものでもいずれでも使用できる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ機器、自動車パネル、表示板、標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のための従来のバックライトは蛍光灯や導光板からなっているため薄型化が困難であったが、本発明の発光素子を用いたバックライトは、薄型、軽量が特徴であるため上記問題点は解消される。同様に照明にも有用に用いることができる。
本発明の一般式(1)で表わされる複素環式化合物を用いると、発光効率が高く、寿命が長い有機EL表示装置を得る事が出来る。さらに本発明の薄膜トランジスタ素子を組み合わせることで印加電圧のオンオフ現象を電気的に高精度に制御した有機EL表示装置を低コストで供給することが可能となる。
(有機発光トランジスタについて)
次に有機発光トランジスタを説明する。上記の一般式(1)で表わされる複素環式化合物は、有機発光トランジスタにも用いることができる。有機トランジスタと有機エレクトロルミネッセンス素子を融合した発光トランジスタは、ディスプレイにおける駆動回路と発光部分が一体化した構造をもち、駆動トランジスタ回路の占有面積を低減することができ、表示部の開口率を挙げることができる。つまり部品点数の低減が可能で作製プロセスが単純になることで、さらにコストの安いディスプレイが得られることになる。原理的には有機トランジスタのソース及びドレイン電極から、それぞれ電子・正孔を有機発光材料中に同時に注入し、再結合させることにより発光させる。発光量の調整はゲート電極からの電界によって制御することになる。
その構造は有機トランジスタの項で述べたものと同様でよく、有機トランジスタ用半導体層の構成に代わり発光トランジスタ材料を用いることができる。半導体化合物の特性により適宜使用する材料やプロセスを選択することができ、光を外部に取り出す為の構成が望ましい。通常の有機トランジスタでは電子又は正孔の片方だけを注入するのみで良いが、本発光トランジスタの場合は半導体層中での電子と正孔の結合により発光する為、電極から効果的な電荷の注入・結合・発光を促す構造であることが好ましい。
(光電変換素子について)
本発明の一般式(1)で表わされる複素環式化合物の半導体特性を利用することにより、有機光電変換素子としての利用が可能となる。光電変換素子としては、固体撮像素子であるイメージセンサとして、動画や静止画等の映像信号をデジタル信号へ変換する機能を有する電荷結合素子(CCD)等が挙げられ、より安価で、大面積化加工性や、有機物固有のフレキシブル機能性、等を活かす事により有機光電変換素子としての利用も期待される。
(有機太陽電池素子について)
本発明の一般式(1)で表わされる複素環式化合物を用いて、フレキシブルで低コストの、有機太陽電池素子を簡便に作製することができる。すなわち、有機太陽電池素子は、色素増感太陽電池と同様に電解液を用いないため柔軟性や寿命向上の点で有利であることが特長である、従来は導電性ポリマーやフラーレンなどを組み合わせた有機薄膜半導体を用いる太陽電池の開発が主流であったが、発電変換効率が問題となっている。
一般に有機太陽電池素子の構成はシリコン系の太陽電池と同様に、発電を行う層(発電層)を陽極と陰極とではさみ、光を吸収することで発生した正孔と電子を各電極で受け取ることで太陽電池として機能する。その発電層はP型のドナー材料とN型のアクセプター材料およびバッファー層などのその他の材料で構成されおり、その材料に有機材料が用いられているものを有機太陽電池という。
構造としては、ショットキー接合、ヘテロ接合、バルクヘテロ接合、ナノ構造接合、ハイブリッドなどが挙げられ、各材料が効率的に入射光を吸収し、電荷を発生させ、発生した電荷(正孔と電子)を分離・輸送・収集することで太陽電池として機能する。なお、一般的な太陽電池の構造である、ヘテロ接合素子の一例の構造を図3に示した。
次に有機太陽電池素子における構成要素について説明する。
有機太陽電池素子における陽極及び陰極としては、先に述べた有機EL素子と同様である。光を効率的に取り込む必要があるため、発電層の吸収波長領域で透明性を有する電極とすることが望ましい。また良好な太陽電池特性を有するためにはシート抵抗が20Ω/□以下であることが好ましい。
発電層は、少なくとも本発明の一般式(1)で表される化合物を含有する有機薄膜の1層又は複数層から形成されている。有機太陽電池素子は先に示した構造をとることが可能であるが、基本的にP型のドナー材料とN型のアクセプター材料およびバッファー層で構成されている。
P型のドナー材料としては、基本的に有機EL素子の項で述べた正孔注入及び正孔輸送層と同様に正孔を輸送できる化合物や、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体、ポリアニリン誘導体等のπ共役型ポリマー、カルバゾールやその他複素環側鎖にもつポリマーが挙げられる。また、ペンタセン誘導体、ルブレン誘導体、ポルフィリン誘導体、フタロシアニン誘導体、インジゴ誘導体、キナクリドン誘導体、メロシアニン誘導体、シアニン誘導体、スクアリウム誘導体、ベンゾキノン誘導体などの低分子化合物も挙げられる。
N型のアクセプター層としては、基本的に有機EL素子の項で述べた電子輸送層と同様に電子を輸送できる化合物やピリジンおよびその誘導体を骨格にもつオリゴマーやポリマー、キノリンおよびその誘導体を骨格にもつオリゴマーやポリマー、ベンゾフェナンスロリン類およびその誘導体を持つポリマー、シアノポリフェニレンビニレン誘導体(CN−PPVなど)などの高分子材料や、フッ素化フタロシアニン誘導体、ペリレン誘導体、ナフタレン誘導体、バソキュプロイン誘導体、C60やC70、PCBMなどのフラーレン誘導体、などの低分子材料が挙げられる。
それぞれ光を効率的に吸収し、電荷を発生させることが好ましく、使用する材料の吸光係数が高い物が好ましい。
本発明の一般式(1)の化合物は、特にP型のドナー材料として好適に用いることが出来る。有機太陽電池の発電層用の薄膜の形成方法は先述の有機EL素子の項で述べた方法と同様でよい。薄膜の膜厚などは太陽電池の構成によっても異なるが、光を十分に吸収するため及び短絡を防ぐためには厚いほうが良いが、発生した電荷を輸送する距離は短い方が良いために薄い方が適している。一般的には発電層として10〜5000nm程度が好ましい。
(有機半導体レーザー素子について)
本発明の式(1)で表わされる複素環式化合物は有機半導体特性を有する化合物である事から、有機半導体レーザー素子としての利用が期待される。
すなわち、本発明の一般式(1)で表わされる複素環式化合物を含有する有機半導体素子に共振器構造を組み込み、効率的にキャリアを注入して励起状態の密度を十分に高めることが出来れば、光が増幅されレーザー発振に至る事が期待される。従来、光励起によるレーザー発振が観測されるのみで、電気励起によるレーザー発振に必要とされる、高密度のキャリアを有機半導体素子に注入し、高密度の励起状態を発生させるのは非常に困難と提唱されているが、本発明の式(1)で表わされる複素環式化合物を含有する有機半導体素子を用いることで、高効率な発光(電界発光)が起こる可能性が期待される。
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。実施例中、部は特に指定しない限り質量部を、また%は質量%を、(化合物No.)は上記の具体例に記載の化合物にそれぞれ対応する。また反応温度は、特に断りのない限り反応系内の内温を記載した。
合成例にて得られた各種の化合物は、必要に応じてMS(質量分析スペクトル)、NMR、元素分析、極大吸収(λmax)、及びmp(融点)の各種の測定を行うことによりその構造式を決定した。測定機器は以下の通りである。
MSスペクトル:ShimadzuQP−5050A
吸収スペクトル:ShimadzuUV−3150
合成例1 2,6−ジアセトキシ−3,7−ジブロモナフタレンの合成
室温、窒素雰囲気下、塩化メチレン(300mL)中で2,6−ジブロモ−3,7−ジヒドロキシナフタレン(31.8g,0.10mol)とピリジン(20mL,0.21mol)を混合し、そこへ無水酢酸(50mL,0.60mol)を加えた。室温でそのまま15時間攪拌した後、ここに希塩酸(1M,100mL)を加えた。得られた混合物を分液し、水層を塩化メチレン(100mL×2)で抽出し、有機層を無水硫酸マグネシウム(MgSO)で乾燥し、減圧濃縮した。得られた残渣を塩化メチレンでシリカゲルカラムクロマトグラフィー(Rf=0.5)で精製することにより、白色固体の2,6−ジアセトキシ−3,7−ジブロモナフタレン(39.2g、収率97%)を得た。
Mp266.5-267.1℃;1H-NMR(400MHz,CDCl3)2.41(s,6H),7.53(s,2H),8.07(s,2H);13C-NMR(100MHz,CDCl3)177.1,145.1,130.9,118.9,115.8,19.8;EIMS(70eV)m/z=400(M+);IR(KBr)=1747cm-1(C=O);Anal.Calcd for C14H10Br2O4:C,41.84;H,2.51.Found:C,42.14%;H,2.41%.
合成例2 2,6−ジアセトキシ−3,7−ビス(フェニルエチニル)ナフタレンの合成
窒素雰囲気下、ジメチルアセトアミド(50mL)中に2,6−ジアセトキシ−3,7−ジブロモナフタレン(2.0g,5.0mmol)とジイソプロピルアミン(50mL)を加えて均一に攪拌し、Pd(PPhCl(350mg,0.028mmol,10mol%)、CuI(190mg,0.056mmol,20mol%)、及びエチニルベンゼン(2.6g,25.0mmol)を加え、60℃で24時間攪拌した。その後、水(1mL)と希塩酸(1M,100mL)を順次に加えた。得られた混合物をクロロホルム(100mL×2)で抽出し、有機層を無水硫酸マグネシウム(MgSO)で乾燥、減圧濃縮した。得られた残渣を塩化メチレンとヘキサン(容量比1:1)の混合液でシリカゲルカラムクロマトグラフィーにより精製し、さらにクロロホルム−酢酸エチルで再結晶し、白色固体の2,6−ジアセトキシ−3,7−ビス(フェニルエチニル)ナフタレン(1.44g、収率65%)を得た。
Mp250.1-250.6℃;1H-NMR(400MHz,CDCl3)2.43(s,6H),7.37-7.40(m,6H),7.52-7.55(m,4H),7.56(s,2H),8.03(s,2H);13C-NMR(100MHz,CDCl3)147.6,131.6,130.6,130.0,127.8,127.4,118.3,117.0,84.1,83.4,76.3,19.9;EIMS(70eV)m/z=444(M+),IR(KBr)=1768 (C=O);Anal.Calcd for C30H20O4:C,81.07%;H,4.54%.Found:C,65.91%;H,6.73%.
合成例3 2,7−ジフェニルナフト[2,3−b:6,7−b’]ジフラン(化合物(1−1)、DPh−NDF)の合成
窒素雰囲気下、N,N−ジメチルアセトアミド(10mL)と水(2mL)の混合溶液中に2,6−ジアセトキシ−3,7−ビス(フェニルエチニル)ナフタレン(0.3g,0.675mmol)を加え、さらにCsCO(2.01g,6.75mmol)を加え、80℃で24時間攪拌した。その後、水(20mL)を加えて希釈した。得られた沈殿物を濾別し、水、メタノール、クロロホルムで洗浄し、固形分を風乾した。風乾した固形物を真空昇華精製し、黄色固体の2,7−ジフェニルナフト[2,3−b:6,7−b’]ジフラン化合物(1−1)を(157mg、収率65%)得た。
Mp241.5-242.3℃;EIMS(70eV)m/z=360(M+);Anal.Calcd for C26H16O2:C,86.65%;H,4.47%.Found:C,86.54%;H,4.23%.λmax:412,440nm(film)
実施例1 化合物(1−1)(DPh-NDF)を用いた電界効果トランジスタの作製
オクチルトリクロロシラン処理を行った200nmのSiO熱酸化膜付きnドープシリコンウェハー(面抵抗0.02Ω・cm以下)を真空蒸着装置内に設置し、装置内の真空度が1.0×10−3Pa以下になるまで排気した。抵抗加熱蒸着法によって、この電極に基板温度約100℃の条件下、化合物(1−1)を1〜2Å/secの蒸着速度で50nmの厚さに蒸着し、半導体層(2)を形成した。次いでこの基板に電極作製用シャドウマスクを取り付け、真空蒸着装置内に設置し、装置内の真空度が1.0×10−4Pa以下になるまで排気し、抵抗加熱蒸着法によって、金の電極、すなわちソース電極(1)及びドレイン電極(3)を40nmの厚さに蒸着し、TC(トップコンタクト)型である本発明の電界効果トランジスタ(チャネル長50μm、チャネル幅1.5mm)を得た。
なお、本実施例における電界効果トランジスタにおいては、熱酸化膜付きnドープシリコンウェハーにおける熱酸化膜が絶縁層(4)の機能を有し、nドープシリコンウェハーが基板(6)及びゲート電極(5)の機能を兼ね備えている(図1−B参照)。得られた電界効果トランジスタをプローバー内に設置し半導体パラメーターアナライザー4200SCS(ケースレー社製)を用いて半導体特性を測定した。半導体特性はドレイン電圧を−60Vとし、ゲート電圧を60Vから−60Vまでで走査し、ドレイン電流−ゲート電圧(トランスファー)特性を測定した。得られた電圧電流曲線より、本素子のキャリア移動度は0.63cm/Vsであり、閾値電圧は−3V、Ion/Ioffは10であった。
実施例2 化合物(1−1)(DPh-NDF)を用いた有機太陽電池の作製(1)
よく洗浄をした、ITO基板(15Ω/cm以下)を真空蒸着装置内に設置し、装置内の真空度が1.0×10−3Pa以下になるまで排気した。抵抗加熱蒸着法によって、この電極に化合物(1−1)を1〜2Å/secの蒸着速度で50nmの厚さに、次いで、C60を50nm、BCPを10nm蒸着し、有機半導体層を形成した。次いでこの基板に電極作成用シャドウマスクを取り付け、真空蒸着装置内に設置し、装置内の真空度が1.0×10−4Pa以下になるまで排気し、抵抗加熱蒸着法によって、LiFおよびAl電極を50nmの厚さに蒸着し本発明の有機太陽電池を得た(図3参照)。図3中、陽極はITO基板、P型層は化合物(1−1)、N型層はC60、バッファー層はBCP、陰極はLiF及びAl電極であった。
この有機太陽電池素子にAM1.5フィルターを通してソーラーシミュレーターにて疑似太陽光(100mW/cm)を照射し、変換効率1.3%(短絡電流2.98mA/cm、開放電圧0.69V、フィルファクター0.64)の光電変換特性を得た(図6参照)。
比較例1 DPh−NDTを用いた有機太陽電池の作製
前記の実施例2において、化合物(1−1)の代わりにDPh−NDT(ジフェニルナフトジチオフェン)を用いて、同操作にて光電変換特性を測定したところ、変換効率1.0%(短絡電流3.16mA/cm、開放電圧0.52V、フィルファクター0.60)の値を示した(図6参照)。これにより、化合物(1−1)の方が優れていることがわかった。
実施例3 化合物(1−1)(DPh-NDF)を用いた有機太陽電池の作製(2)
実施例2のC60の代わりにC70を用い、その他は実施例2と同様に太陽電池素子を作製した。変換効率2.0%(短絡電流4.59mA/cm、開放電圧0.69V、フィルファクター0.63)の光電変換特性を得た。
上記の実施例からも明らかなように、本発明の一般式(1)で表わされる複素環式化合物は、有機薄膜トランジスタや有機太陽電池素子として優れた特性を示しており、有機エレクトロニクスデバイスとして高い汎用性を有した非常に有用な化合物であると言える。
符号の説明
図1〜図2において同じ名称には同じ番号を付すものとする。
1 ソース電極
2 半導体層
3 ドレイン電極
4 絶縁体層
5 ゲート電極
6 基板
7 保護層

Claims (9)

  1. 下記一般式(1)で表わされる化合物。
    Figure 2013031468

    (式中、Xは酸素原子を表し、Rは無置換のアリール基、又は少なくとも一種の置換基を有するアリール基を表す。)
  2. Rが無置換のアリール基又は少なくとも一種のC1〜C3の低級アルキル基を置換基として有するアリール基である、請求項1に記載の化合物。
  3. 前記アリール基が芳香族炭化水素基である、請求項2に記載の化合物。
  4. 前記芳香族炭化水素基がフェニル基である、請求項3に記載の化合物。
  5. 請求項1〜4のいずれか一項に記載の化合物を含む有機半導体材料。
  6. 請求項5に記載の有機半導体材料からなる薄膜。
  7. 請求項5に記載の有機半導体材料を含む有機エレクトロニクスデバイス。
  8. 薄膜トランジスタ素子、光電変換素子、有機太陽電池、有機EL素子、有機発光トランジスタ素子、又は有機半導体レーザー素子である請求項7に記載の有機エレクトロニクスデバイス。
  9. 薄膜トランジスタ素子、光電変換素子、又は有機太陽電池である請求項8に記載の有機エレクトロニクスデバイス。
JP2013531187A 2011-09-02 2012-08-02 複素環式化合物及びその利用 Pending JPWO2013031468A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531187A JPWO2013031468A1 (ja) 2011-09-02 2012-08-02 複素環式化合物及びその利用

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011191705 2011-09-02
JP2011191705 2011-09-02
JP2013531187A JPWO2013031468A1 (ja) 2011-09-02 2012-08-02 複素環式化合物及びその利用

Publications (1)

Publication Number Publication Date
JPWO2013031468A1 true JPWO2013031468A1 (ja) 2015-03-23

Family

ID=47755970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013531187A Pending JPWO2013031468A1 (ja) 2011-09-02 2012-08-02 複素環式化合物及びその利用

Country Status (2)

Country Link
JP (1) JPWO2013031468A1 (ja)
WO (1) WO2013031468A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159584A (ja) * 2012-02-07 2013-08-19 Univ Of Tokyo 電子材料およびこれを用いた電子素子
JP6465978B2 (ja) * 2015-08-04 2019-02-06 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
JP6821709B2 (ja) * 2016-06-03 2021-01-27 エルジー・ケム・リミテッド 電気活性化合物
KR102631401B1 (ko) 2018-08-28 2024-01-29 삼성전자주식회사 화합물, 박막 트랜지스터 및 전자 소자
WO2023085188A1 (ja) * 2021-11-10 2023-05-19 ソニーセミコンダクタソリューションズ株式会社 有機半導体膜および光電変換素子ならびに撮像装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216814A (ja) * 2005-02-04 2006-08-17 Konica Minolta Holdings Inc 有機半導体材料、有機半導体薄膜、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2010018529A (ja) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd ベンゾジフラン化合物及び有機半導体デバイス
WO2010058692A1 (ja) * 2008-11-21 2010-05-27 国立大学法人広島大学 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス
WO2011078246A1 (ja) * 2009-12-25 2011-06-30 住友化学株式会社 高分子化合物、これを含む薄膜及びインク組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115200B2 (en) * 2007-12-13 2012-02-14 E.I. Du Pont De Nemours And Company Electroactive materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216814A (ja) * 2005-02-04 2006-08-17 Konica Minolta Holdings Inc 有機半導体材料、有機半導体薄膜、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2010018529A (ja) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd ベンゾジフラン化合物及び有機半導体デバイス
WO2010058692A1 (ja) * 2008-11-21 2010-05-27 国立大学法人広島大学 新規化合物及びその製造方法、並びに有機半導体材料及び有機半導体デバイス
WO2011078246A1 (ja) * 2009-12-25 2011-06-30 住友化学株式会社 高分子化合物、これを含む薄膜及びインク組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016004108; J. Am. Chem. Soc. 133, 2011, 5024-5035 *
JPN6016004110; J. Am. Chem. Soc. 133, 2011, 6852-6860 *

Also Published As

Publication number Publication date
WO2013031468A1 (ja) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5622585B2 (ja) 新規な複素環式化合物及びその利用
JP6208133B2 (ja) 複素環化合物及びその利用
JP6465350B2 (ja) 新規な有機化合物およびその利用
WO2014061745A1 (ja) 新規縮合多環芳香族化合物及びその用途
JP6436590B2 (ja) 新規な有機多環芳香族化合物、およびその利用
WO2012115218A1 (ja) ジアントラ[2,3-b:2',3'-f]チエノ[3,2-b]チオフェンの製造方法並びにその用途
WO2013031468A1 (ja) 複素環式化合物及びその利用
JP6478278B2 (ja) 有機多環芳香族化合物、およびその利用
JP6425646B2 (ja) 新規縮合多環芳香族化合物及びその用途
JP5600267B2 (ja) 新規な化合物及びその利用
JP2018076241A (ja) 縮合多環化合物及びその利用
WO2012165612A1 (ja) 有機半導体材料及び有機エレクトロニクスデバイス
JP6572473B2 (ja) 有機化合物及びその用途
JP6497560B2 (ja) 新規縮合多環芳香族化合物及びその用途
JP6592863B2 (ja) 有機化合物及びその用途
JP6478279B2 (ja) 有機多環芳香族化合物、およびその利用
JP6478277B2 (ja) 有機多環芳香族化合物、およびその利用
JP2017132697A (ja) 有機化合物及びその利用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160913