WO2023085188A1 - 有機半導体膜および光電変換素子ならびに撮像装置 - Google Patents

有機半導体膜および光電変換素子ならびに撮像装置 Download PDF

Info

Publication number
WO2023085188A1
WO2023085188A1 PCT/JP2022/041020 JP2022041020W WO2023085188A1 WO 2023085188 A1 WO2023085188 A1 WO 2023085188A1 JP 2022041020 W JP2022041020 W JP 2022041020W WO 2023085188 A1 WO2023085188 A1 WO 2023085188A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
organic semiconductor
peak
electrode
light
Prior art date
Application number
PCT/JP2022/041020
Other languages
English (en)
French (fr)
Inventor
英昭 茂木
一 小林
昌樹 村田
洋輔 須田
湧士郎 中込
知佳 椙村
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社, ソニーグループ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to KR1020247012846A priority Critical patent/KR20240101556A/ko
Priority to DE112022005367.4T priority patent/DE112022005367T5/de
Priority to JP2023559593A priority patent/JPWO2023085188A1/ja
Priority to CN202280069107.4A priority patent/CN118104415A/zh
Publication of WO2023085188A1 publication Critical patent/WO2023085188A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to, for example, an organic semiconductor film using an organic semiconductor material, a photoelectric conversion element having the same, and an imaging device.
  • Patent Document 1 discloses a method for manufacturing an organic photoelectric conversion element in which the orientation of a photoelectric conversion layer is controlled by controlling the substrate temperature to form a film.
  • photoelectric conversion elements using organic semiconductor films are required to have improved quantum efficiency and response speed.
  • An organic semiconductor film according to an embodiment of the present disclosure includes an organic semiconductor material having crystallinity, has carrier transport properties, and has three diffraction angles (2 ⁇ ) in the range of 15° or more and 30° or less in an XRD spectrum. It has a crystalline peak.
  • a photoelectric conversion element includes a first electrode, a second electrode arranged to face the first electrode, and a photoelectric conversion layer provided between the first electrode and the second electrode. , which has the organic photoelectric conversion film of one embodiment of the present disclosure as a photoelectric conversion layer.
  • An imaging device includes a plurality of pixels each provided with an imaging element having one or more photoelectric conversion units, and as the one or more photoelectric conversion units, It has a photoelectric conversion element.
  • the organic semiconductor film of one embodiment of the present disclosure, the photoelectric conversion element of one embodiment, and the imaging device of one embodiment include an organic semiconductor material having crystallinity, have carrier transport properties, and have a diffraction angle ( 2 ⁇ ) Three crystallinity peaks were provided in the range of 15° or more and 30° or less. This improves the carrier transportability in the thickness direction.
  • FIG. 1 is a cross-sectional schematic diagram showing the configuration of a photoelectric conversion element according to an embodiment of the present disclosure
  • FIG. 2 is an XRD spectrum diagram of the photoelectric conversion layer shown in FIG. 1.
  • FIG. 4 is a characteristic diagram showing the relationship between the intensity ratio between peak 1 and peak 2 and photoresponsivity.
  • FIG. 3 is a diagram showing an example of the relationship between XRD spectra and GIXD spectra;
  • FIG. 4 is a diagram showing another example of the relationship between XRD spectra and GIXD spectra; It is a figure explaining the subpeak in the XRD spectrum of the photoelectric converting layer shown in FIG. FIG.
  • FIG. 4 is a characteristic diagram showing the relationship between the intensity ratio between sub-peak and peak 1 and photoresponsivity. It is a cross-sectional schematic diagram showing an example of a configuration of an imaging device according to an embodiment of the present disclosure.
  • 9 is a schematic plan view showing an example of a pixel configuration of an imaging device having the imaging element shown in FIG. 8.
  • FIG. 9 is an equivalent circuit diagram of the imaging element shown in FIG. 8.
  • FIG. FIG. 9 is a schematic diagram showing the arrangement of transistors forming a lower electrode and a control section of the imaging device shown in FIG. 8; 9A and 9B are cross-sectional views for explaining a method of manufacturing the imaging device shown in FIG. 8;
  • FIG. 12B is a cross-sectional view showing a step following FIG. 12A;
  • FIG. 12B is a cross-sectional view showing a step following FIG. 12B;
  • FIG. 12C is a cross-sectional view showing a step following FIG. 12C;
  • FIG. 12C is a cross-sectional view showing a step following FIG. 12D;
  • FIG. 12D is a cross-sectional view showing a step following FIG. 12E;
  • FIG. 9 is a timing chart showing an operation example of the imaging element shown in FIG. 8; It is an example of an optical pulse response waveform of a general imaging device.
  • It is a cross-sectional schematic diagram showing an example of a configuration of an imaging device according to Modification 1 of the present disclosure.
  • It is a cross-sectional schematic diagram showing an example of a configuration of an imaging device according to Modification 2 of the present disclosure.
  • FIG. 12B is a cross-sectional view showing a step following FIG. 12B
  • FIG. 12C is a cross-sectional view showing a step following FIG. 12C
  • FIG. 12C
  • FIG. 12 is a schematic cross-sectional view showing an example of the configuration of an imaging device according to Modification 3 of the present disclosure
  • FIG. 17B is a schematic diagram showing a planar configuration of the imaging element shown in FIG. 17A
  • FIG. 12 is a schematic cross-sectional view showing an example of the configuration of an imaging device according to Modification 4 of the present disclosure
  • FIG. 18B is a schematic diagram showing a planar configuration of the imaging element shown in FIG. 18A.
  • FIG. 11 is a schematic cross-sectional view showing another example of the configuration of an imaging device of Modification 2 according to another Modification of the present disclosure
  • FIG. 11 is a schematic cross-sectional view showing another example of the configuration of an imaging device of Modification 3 according to another Modification of the present disclosure.
  • FIG. 20B is a schematic diagram showing a planar configuration of the imaging element shown in FIG. 20A.
  • FIG. 11 is a schematic cross-sectional view showing another example of the configuration of an imaging element of Modification 4 according to another Modification of the present disclosure;
  • FIG. 10B is a schematic diagram showing a planar configuration of the imaging device shown in FIG. 10A.
  • 9 is a block diagram showing the overall configuration of an imaging device including the imaging element shown in FIG. 8 and the like;
  • FIG. 23 is a block diagram showing an example of the configuration of an electronic device using the imaging device shown in FIG. 22;
  • FIG. 23 is a schematic diagram showing an example of the overall configuration of a photodetection system using the imaging device shown in FIG. 22;
  • FIG. 24B is a diagram showing an example of the circuit configuration of the photodetection system shown in FIG. 24A;
  • FIG. 1 is a diagram showing an example of a schematic configuration of an endoscopic surgery system;
  • FIG. 3 is a block diagram showing an example of functional configurations of a camera head and a CCU;
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system;
  • FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit; 1 is an XRD spectrum diagram of Experimental Example 1-1.
  • FIG. FIG. 4 is an XRD spectrum diagram of Experimental Example 1-2.
  • FIG. 3 is an XRD spectrum diagram of Experimental Example 1-3.
  • FIG. 4 is an XRD spectrum diagram of Experimental Example 1-4.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 2-1.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 2-2.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 2-3.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 3-1.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 3-2.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 3-3.
  • FIG. 4 is an XRD spectrum diagram of Experimental Example 4-1.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 4-2.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 4-3.
  • FIG. 4 is an XRD spectrum diagram of Experimental Example 4-4.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 4-5.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 4-6.
  • FIG. 10 is a characteristic diagram showing the relationship between the intensity ratio between sub-peak and peak 2 and IQE.
  • FIG. 5 is an XRD spectrum diagram of Experimental Example 5-1.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 5-2.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 5-3.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 5-4.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 5-5.
  • FIG. 10 is an XRD spectrum diagram of Experimental Example 5-6.
  • Embodiment (Example of a photoelectric conversion device and an imaging device having an organic semiconductor film having three crystallinity peaks in the diffraction angle (2 ⁇ ) range of 15° or more and 30° or less in the XRD spectrum) 1-1.
  • Modification 2-1 Modification 1 (Another example of the configuration of the imaging element) 2-2.
  • Modification 2 (Another example of the configuration of the imaging element) 2-3.
  • Modification 3 (Another example of the configuration of the imaging element) 2-4.
  • Modification 4 (Another example of the configuration of the imaging device) 2-5.
  • Modification 5 (Other Modifications of Imaging Device) 3.
  • FIG. 1 schematically illustrates an example of a cross-sectional configuration of a photoelectric conversion element (photoelectric conversion element 10) according to an embodiment of the present disclosure.
  • the photoelectric conversion element 10 is, for example, one pixel (unit It is used as an image sensor (image sensor 1A, see FIG. 8, for example) that constitutes the pixel P).
  • the photoelectric conversion element 10 has a configuration in which a lower electrode 11, a photoelectric conversion layer 12, and an upper electrode 13 are laminated in this order.
  • the photoelectric conversion layer 12 contains an organic semiconductor material having crystallinity, has carrier transportability, and has three crystallinity peaks in the diffraction angle (2 ⁇ ) range of 15° to 30° in the XRD spectrum.
  • the photoelectric conversion element 10 absorbs light corresponding to part or all of the wavelengths in a selective wavelength band (for example, the visible light region and the near-infrared region of 400 nm or more and less than 1300 nm) to generate excitons (electron-hole pairs ) is generated.
  • a selective wavelength band for example, the visible light region and the near-infrared region of 400 nm or more and less than 1300 nm
  • an imaging element for example, an imaging element 1A
  • electrons are read from the lower electrode 11 side as signal charges.
  • the configuration and materials of each part will be described, taking as an example the case where electrons are read out from the lower electrode 11 side as signal charges.
  • the lower electrode 11 (cathode) is made of, for example, a light-transmitting conductive film.
  • the lower electrode 11 preferably has a work function of 4.0 eV or more and 5.5 eV or less, and has a LUMO level deeper than the organic material forming the first layer 12A described later.
  • Examples of the constituent material of the lower electrode 11 include indium tin oxide (ITO), which is In 2 O 3 to which tin (Sn) is added as a dopant.
  • ITO indium tin oxide
  • Sn tin
  • the crystallinity of the ITO thin film may be highly crystalline or low (close to amorphous).
  • a tin oxide (SnO 2 )-based material to which a dopant is added for example, ATO to which Sb is added as a dopant, and FTO to which fluorine is added as a dopant can be used.
  • zinc oxide (ZnO) or a zinc oxide-based material to which a dopant is added may be used.
  • ZnO-based materials include aluminum zinc oxide (AZO) with aluminum (Al) added as a dopant, gallium zinc oxide (GZO) with gallium (Ga) added, and boron zinc oxide with boron (B) added. and indium zinc oxide (IZO) doped with indium (In).
  • zinc oxide (IGZO, In-GaZnO 4 ) added with indium and gallium may be used as dopants.
  • CuI, InSbO 4 , ZnMgO, CuInO 2 , MgIN 2 O 4 , CdO, ZnSnO 3 , TiO 2 or the like may be used as the constituent material of the lower electrode 11 , spinel oxide or YbFe 2 O may be used.
  • An oxide having a tetrastructure may also be used.
  • Metals or alloys can be used. Specifically, alkali metals (e.g., lithium (Li), sodium (Na) and potassium (K), etc.) and their fluorides or oxides, alkaline earth metals (e.g., magnesium (Mg) and calcium (Ca) etc.) and their fluorides or oxides.
  • Al aluminum
  • Al-Si-Cu alloy zinc (Zn), tin (Sn), thallium (Tl), Na-K alloy, Al-Li alloy, Mg-Ag alloy, In and ytterbium (Yb ) and other rare earth metals, or alloys thereof.
  • the materials constituting the lower electrode 11 include platinum (Pt), gold (Au), palladium (Pd), chromium (Cr), nickel (Ni), aluminum (Al), silver (Ag), tantalum (Ta ), tungsten (W), copper (Cu), titanium (Ti), indium (In), tin (Sn), iron (Fe), cobalt (Co) and molybdenum (Mo), or their metals Alloys containing elements, conductive particles made of these metals, conductive particles of alloys containing these metals, polysilicon containing impurities, carbon-based materials, oxide semiconductors, carbon nanotubes, graphene, etc. of conductive substances.
  • an organic material such as poly(3,4-ethylenedioxythiophene)/polystyrene sulfonic acid [PEDOT/PSS] can be used.
  • a paste or ink obtained by mixing the above materials with a binder (polymer) may be cured and used as an electrode.
  • the lower electrode 11 can be formed as a single layer film or a laminated film made of the above materials.
  • the film thickness of the lower electrode 11 in the stacking direction (hereinafter simply referred to as thickness) is, for example, 20 nm or more and 200 nm or less, preferably 30 nm or more and 150 nm or less.
  • the photoelectric conversion layer 12 corresponds to one specific example of the "organic photoelectric conversion film” and "photoelectric conversion layer” of the present disclosure.
  • the photoelectric conversion layer 12 converts light energy into electrical energy, and absorbs at least 60% or more of a predetermined wavelength that is included in at least the visible light region to the near-infrared region to separate charges.
  • the photoelectric conversion layer 12 absorbs light in a part or all of the visible light region and the near-infrared region of 400 nm or more and less than 1300 nm, for example.
  • the photoelectric conversion layer 12 includes, for example, two or more kinds of organic materials that function as a p-type semiconductor or an n-type semiconductor. joint surface).
  • the photoelectric conversion layer 12 has a laminated structure (p-type semiconductor layer/n-type semiconductor layer) of a layer made of a p-type semiconductor (p-type semiconductor layer) and a layer made of an n-type semiconductor (n-type semiconductor layer), , a stacked structure (p-type semiconductor layer/bulk heterolayer) of a p-type semiconductor layer and a mixed layer (bulk heterolayer) of a p-type semiconductor and an n-type semiconductor (bulk heterolayer), or a stacked structure of an n-type semiconductor layer and a bulk heterolayer ( n-type semiconductor layer/bulk hetero layer).
  • it may be formed only by a mixed layer (bulk hetero layer) of a p-type semiconductor and an n-type semiconductor.
  • a p-type semiconductor is a hole-transporting material that relatively functions as an electron donor
  • an n-type semiconductor is an electron-transporting material that relatively functions as an electron acceptor.
  • the photoelectric conversion layer 12 provides a field in which excitons (electron-hole pairs) generated when light is absorbed are separated into electrons and holes. Electrons and holes are separated at the interface (p/n interface) between the donor and the electron acceptor.
  • the photoelectric conversion layer 12 includes, in addition to the p-type semiconductor and the n-type semiconductor, an organic material that absorbs light in a predetermined wavelength band and transmits light in other wavelength bands, that is, a dye material.
  • an organic material that absorbs light in a predetermined wavelength band and transmits light in other wavelength bands that is, a dye material.
  • the photoelectric conversion layer 12 is formed using three kinds of organic materials, ie, a p-type semiconductor, an n-type semiconductor, and a dye material
  • the p-type semiconductor and the n-type semiconductor are materials having optical transparency in the visible light region.
  • the photoelectric conversion layer 12 selectively photoelectrically converts light in the wavelength band absorbed by the dye material.
  • the photoelectric conversion layer 12 of the present embodiment contains an organic semiconductor material having crystallinity, has a carrier transport property, and has a diffraction angle (2 ⁇ ) in the range of 15° or more and 30° or less in an X-ray diffraction (XRD) spectrum. It has three crystalline peaks.
  • the organic semiconductor material having crystallinity is preferably oriented horizontally with respect to the in-plane direction in the photoelectric conversion layer 12 . In other words, the crystalline organic semiconductor material is preferably oriented horizontally with respect to the electrode surface of the lower electrode 11 in the photoelectric conversion layer 12 .
  • the first crystallinity peak (peak 1) In the diffraction angle (2 ⁇ ) range of 15° or more and 30° or less, the first crystallinity peak (peak 1), the second crystallinity peak (peak 2), and the third crystallinity peak in order from the lowest angle side (Peak 3).
  • One of the three crystalline peaks has a higher intensity than the other peaks.
  • FIG. 4 shows an XRD spectrum (A) and a grazing angle X-ray diffraction (GIXD) spectrum (B) of a thin film containing an organic semiconductor material with a strong (110) orientation.
  • FIG. 5 shows an XRD spectrum (A) and a grazing angle X-ray diffraction (GIXD) spectrum (B) of a thin film containing an organic semiconductor material with a strong (020) orientation.
  • the packing In the (110) orientation, the packing is three-dimensionally conductive with respect to each crystal orientation, whereas in the (020) orientation, the packing is anisotropic, that is, the packing is highly conductive only in a specific orientation.
  • the first crystalline peak (peak 1) indicating the (110) orientation which is less likely to inhibit carrier transport, becomes the second crystalline peak indicating the (020) orientation. It preferably has a higher intensity than (Peak 2) and the third crystalline peak (Peak 3) exhibiting a (120) orientation.
  • FIG. 3 shows the relationship between the intensity ratio between peak 1 and peak 2 (peak 1/peak 2) and photoresponsivity. As can be seen from FIG. 3, the greater the intensity ratio between peak 1 and peak 2 (peak 1/peak 2), the better the photoresponsiveness.
  • the intensity ratio between peak 1 and peak 2 (peak 1/peak 2) is preferably greater than 2 in order to preferentially transport carriers in peak 1 indicating (110) orientation.
  • the intensities of peaks 1, 2 and 3 can be replaced with the areas of the peaks.
  • the peak area can be calculated by using Simpson's rule (formula (1) below) in the [a, b] interval.
  • the crystalline organic semiconductor material described above corresponds to one or both of the p-type semiconductor and the dye material.
  • the n-type semiconductor corresponds to the above-described crystalline organic semiconductor material.
  • the n-type semiconductor corresponds to one specific example of the "first organic semiconductor material” of the present disclosure.
  • a p-type semiconductor corresponds to a specific example of the "second organic semiconductor material” of the present disclosure.
  • the dye material corresponds to one specific example of the "third organic semiconductor material" of the present disclosure.
  • organic semiconductor material having crystallinity for example, it is preferable to have in-plane anisotropy and a ⁇ -conjugated plane in the molecule.
  • a compound having an aromatic skeleton and an aromatic substituent in the molecule is preferred.
  • aromatic substituents constituting organic semiconductor materials having crystallinity include biphenyl, triphenyl, terphenyl, stilbene, naphthyl, anthracenyl, and phenanthrenyl groups having 6 to 60 carbon atoms, for example.
  • the organic semiconductor material having crystallinity and electron transport properties has, for example, a LUMO (Lowest Unoccupied Molecular Orbital) level equivalent to that of the third organic semiconductor material. It is preferable to have levels.
  • the LUMO level of the first organic semiconductor material is preferably 4.0 eV or more and 5.0 eV or less.
  • Examples of such organic semiconductor materials include perylenetetracarboxylic acid diimide derivatives, naphthalenetetracarboxylic acid diimide derivatives, and fluoropentacene derivatives.
  • the organic semiconductor material (p-type semiconductor; second organic semiconductor material) having crystallinity and hole-transporting properties is, for example, the HOMO (Highest Occupied Molecular Orbital) level of the third organic semiconductor material. It preferably has a HOMO level.
  • the HOMO level of the second organic semiconductor material is preferably 5.0 eV or more and 6.0 eV or less.
  • the second organic semiconductor material preferably has a shallower HOMO level or LUMO level than the first organic semiconductor material. Examples of such organic semiconductor materials include compounds having a monocyclic or polycyclic heterocyclic aromatic skeleton.
  • coloring material having crystallinity examples include coloring materials having an absorption coefficient of 50000 cm ⁇ 1 or more for green light of 400 nm or more and 750 nm or less.
  • dye materials include subphthalocyanines and derivatives thereof.
  • the photoelectric conversion layer 12 is made of an organic semiconductor material that is transparent to visible light and has a carrier transport property that is paired with the organic semiconductor material having crystallinity. It is preferably configured to include
  • the material having an electron-transporting property includes, for example, fullerene C 60 , fullerene C 70 , Fullerenes typified by higher fullerenes such as fullerene C74 , endohedral fullerenes, and derivatives thereof are included.
  • fullerene is treated as an organic semiconductor.
  • FIG. 7 shows the relationship between the intensity ratio between the sub-peak and peak 1 and the photoresponsivity.
  • the intensity ratio is represented by the area ratio of the area sub -peak and the area peak 1 (area sub-peak /area peak 1 ).
  • the intensity ratio between sub-peak and peak 1 is smaller than 1.
  • the residual component (sub-peak) is defined as follows. Crystallinity can be evaluated by Out of Plane GIXD.
  • the background of the XRD spectrum is defined by a second-order exponential decrease function ExpDec2 (formula (2) below), and peak fitting is performed with a Pearson VII function (formula (3) below). Sub peaks are obtained by fitting residual components of peaks 1, 2, and 3 with a Pearson VII function (half width: 2 or more, center: 15° to 24°).
  • the subpeak intensity can be controlled by adjusting the composition ratio of the organic semiconductor material contained in the photoelectric conversion layer 12 . Specifically, by increasing the composition ratio of the hole transport material corresponding to the organic semiconductor material having crystallinity and the fullerene or its derivative (hole transport material/fullerene or its derivative) to greater than 1, the sub-peak and the intensity ratio of peak 1 can be less than one.
  • FIG. 45 shows the relationship between the intensity ratio between the sub-peak and peak 2 and the internal quantum efficiency (IQE).
  • the intensity ratio between the peak 2 and the sub-peak is represented by the ratio of the areas of the area sub-peak and the area peak 2 (area sub-peak /area peak 2 ).
  • peak 2 among the three peaks disappears. This is due to the perturbation of the orientation of the hole transport material by the fullerene C60 . Therefore, by calculating the intensity ratio between the sub-peak and peak 2, it is possible to evaluate both the influence of the cohesiveness of fullerene C60 and the influence of the orientation of the hole-transporting material in the organic semiconductor film.
  • Peak 2 has a strong ⁇ - ⁇ interaction with fullerene C60 .
  • ⁇ orbitals extend perpendicular to the molecular plane.
  • the ⁇ orbital of the hole-transporting material at peak 2 ((020) plane) has a large overlap with the ⁇ -orbital of fullerene C60 , and a strong ⁇ - ⁇ interaction acts between the hole-transporting material and fullerene C60 . .
  • This strong ⁇ - ⁇ interaction for example, promotes recombination of electrons and holes dissociated at the interface (p/n junction surface) between the p-type semiconductor and the n-type semiconductor in the photoelectric conversion layer 12, resulting in As a result, the IQE decreases. In other words, when peak 2 grows, the contact surface between the (020) plane of the hole transport material and fullerene C60 can be reduced, the interface that is prone to recombination can be reduced, and the IQE can be improved.
  • a p-type semiconductor for example, hole transport material
  • an n-type semiconductor for example, fullerene C 60
  • a dye material incident It absorbs light in a predetermined wavelength band of light, thereby generating excitons.
  • the excitons for example, diffuse in the photoelectric conversion layer 12 and dissociate into electrons and holes at the interface (p/n interface) between the hole-transporting material and the fullerene C60 .
  • excitons dissociate into electrons and holes at the interface of, for example, the dye material and fullerene C60 . Therefore, for photoelectric conversion, at least having many interfaces between the dye material and fullerene C60 (i.e., high compatibility) is required. Being able to do it is important.
  • the sub-peaks are believed to originate from aggregated components of fullerene C60 .
  • the dye material also aggregates, and excitons cannot diffuse from the dye material to the fullerene C60 , resulting in deactivation.
  • the fullerene C60 aggregates, the electron transport path in the photoelectric conversion layer 12 is interrupted, and the electrons are deactivated without being transported to the electrode. In other words, if the dye material and fullerene C60 are compatible, these problems can be eliminated and the IQE can be improved.
  • an IQE of 90% or more can be obtained by setting the intensity ratio of the sub-peaks to the intensity ratio of peak 2 to be less than 1.8.
  • the photoelectric conversion layer 12 has a thickness of, for example, 10 nm or more and 500 nm or less, preferably 100 nm or more and 400 nm or less.
  • the upper electrode 13 is made of, for example, a light-transmitting conductive film.
  • the constituent material of the upper electrode 13 include indium tin oxide (ITO), which is In 2 O 3 to which tin (Sn) is added as a dopant.
  • ITO indium tin oxide
  • the crystallinity of the ITO thin film may be highly crystalline or low (close to amorphous).
  • a tin oxide (SnO 2 )-based material to which a dopant is added for example, ATO to which Sb is added as a dopant, and FTO to which fluorine is added as a dopant can be used.
  • ZnO zinc oxide
  • ZnO-based materials include aluminum zinc oxide (AZO) with aluminum (Al) added as a dopant, gallium zinc oxide (GZO) with gallium (Ga) added, and boron zinc oxide with boron (B) added. and indium zinc oxide (IZO) doped with indium (In).
  • zinc oxide (IGZO, In--GaZnO 4 ) added with indium and gallium may be used as a dopant.
  • CuI, InSbO 4 , ZnMgO, CuInO 2 , MgIN 2 O 4 , CdO, ZnSnO 3 , TiO 2 or the like may be used as the constituent material of the lower electrode 11 , spinel oxide or YbFe 2 O may be used. An oxide having a tetrastructure may also be used.
  • the material constituting the upper electrode 13 includes metals such as Pt, Au, Pd, Cr, Ni, Al, Ag, Ta, W, Cu, Ti, In, Sn, Fe, Co and Mo, or alloys containing metal elements, or conductive particles made of these metals, conductive particles of alloys containing these metals, polysilicon containing impurities, carbon-based materials, oxide semiconductors, carbon nanotubes, Conductive substances such as graphene can be used.
  • organic materials (conductive polymers) such as PEDOT/PSS can be used as materials for forming the upper electrode 13 .
  • a paste or ink obtained by mixing the above materials with a binder (polymer) may be cured and used as an electrode.
  • the upper electrode 13 can be formed as a single layer film or a laminated film made of the above materials.
  • the thickness of the upper electrode 13 is, for example, 20 nm or more and 200 nm or less, preferably 30 nm or more and 150 nm or less.
  • a hole blocking layer or an undercoat layer may be provided between the lower electrode 11 and the photoelectric conversion layer 12 .
  • the hole blocking layer selectively transports electrons among charges generated in the photoelectric conversion layer 12 to the lower electrode 11 and inhibits injection of holes from the lower electrode 11 side.
  • the electron blocking layer selectively transports holes among charges generated in the photoelectric conversion layer 12 to the upper electrode 13 and inhibits injection of electrons from the upper electrode 13 side.
  • the work function adjusting layer has an electron affinity or work function greater than the work function of the upper electrode 13 .
  • the light incident on the photoelectric conversion element 10 is absorbed in the photoelectric conversion layer 12 .
  • the excitons (electron-hole pairs) generated by this are exciton-separated at the interface (p/n junction surface) between the p-type semiconductor and the n-type semiconductor constituting the photoelectric conversion layer 12, that is, the electrons and holes dissociate to
  • the carriers (electrons and holes) generated here are transported to different electrodes by diffusion due to the difference in carrier concentration and the internal electric field due to the difference in work function between the anode and the cathode, and are detected as photocurrent. For example, electrons separated at the p/n junction are extracted from the lower electrode 11 . Holes separated at the p/n junction are extracted from the upper electrode 13 .
  • the transport direction of electrons and holes can also be controlled by applying a potential between the lower electrode 11 and the upper electrode 13 .
  • FIG. 8 schematically shows an example of a cross-sectional configuration of an imaging device (imaging device 1A) using the photoelectric conversion device 10 described above.
  • FIG. 9 schematically shows an example of the planar configuration of the imaging element 1A shown in FIG. 8, and FIG. 8 shows a cross section taken along line II shown in FIG.
  • the imaging device 1A constitutes, for example, one pixel (unit pixel P) that is repeatedly arranged in an array in the pixel section 100A of the imaging device 100 shown in FIG.
  • a pixel unit 1a composed of four pixels arranged in two rows and two columns is a repeating unit, and is repeatedly arranged in an array in the row direction and the column direction. ing.
  • the imaging element 1A selectively detects light in mutually different wavelength bands and performs photoelectric conversion.
  • one photoelectric conversion unit formed using an organic material and two photoelectric conversion units ( The photoelectric conversion regions 32B and 32R) are vertically laminated, so-called vertical direction spectral type.
  • the photoelectric conversion element 10 described above can be used as a photoelectric conversion section that constitutes the imaging element 1A.
  • the photoelectric conversion unit has the same configuration as the photoelectric conversion element 10 described above, and is denoted by the same reference numeral 10. As shown in FIG.
  • the photoelectric conversion section 10 is provided on the back surface (first surface 30S1) side of the semiconductor substrate 30.
  • the photoelectric conversion regions 32B and 32R are embedded in the semiconductor substrate 30 and stacked in the thickness direction of the semiconductor substrate 30 .
  • the photoelectric conversion section 10 and the photoelectric conversion regions 32B and 32R selectively detect light in different wavelength bands and perform photoelectric conversion.
  • the photoelectric conversion unit 10 acquires a green (G) color signal.
  • the photoelectric conversion regions 32B and 32R acquire blue (B) and red (R) color signals, respectively, due to the difference in absorption coefficient.
  • the imaging device 1A can acquire a plurality of types of color signals in one pixel without using a color filter.
  • the semiconductor substrate 30 is composed of an n-type silicon (Si) substrate, for example, and has a p-well 31 in a predetermined region.
  • various floating diffusions (floating diffusion layers) FD eg, FD1, FD2, FD3
  • various transistors Tr eg, vertical transistors ( A transfer transistor Tr2, a transfer transistor Tr3, an amplifier transistor (modulation element) AMP and a reset transistor RST) are provided.
  • a multilayer wiring layer 40 is further provided on the second surface 30S2 of the semiconductor substrate 30 with the gate insulating layer 33 interposed therebetween.
  • the multilayer wiring layer 40 has, for example, a structure in which wiring layers 41 , 42 and 43 are laminated within an insulating layer 44 .
  • a peripheral circuit (not shown) including a logic circuit or the like is provided in the peripheral portion of the semiconductor substrate 30 .
  • a protective layer 51 is provided above the photoelectric conversion section 10 .
  • a wiring for electrically connecting the upper electrode 13 and the peripheral circuit section is provided around the light shielding film 53 and the pixel section 100A.
  • Optical members such as a planarizing layer (not shown) and an on-chip lens 52L are further provided above the protective layer 51 .
  • the first surface 30S1 side of the semiconductor substrate 30 is represented as the light incident surface S1
  • the second surface 30S2 side is represented as the wiring layer side S2.
  • the photoelectric conversion section 10 is formed by laminating a lower electrode 11, a photoelectric conversion layer 12, and an upper electrode 13 in this order.
  • the lower electrode 11 is composed of a plurality of electrodes (for example, two readout electrodes 11A and storage electrodes 11B).
  • the semiconductor layers 15 are laminated in this order.
  • the readout electrode 11A is electrically connected to the semiconductor layer 15 through an opening 14H provided in the insulating layer 14 .
  • the readout electrode 11A is for transferring charges generated in the photoelectric conversion layer 12 to the floating diffusion FD1. It is connected to the floating diffusion FD1 via the electrode 34, the connection portion 41A and the lower second contact 46.
  • the accumulation electrode 11B is for accumulating electrons among charges generated in the photoelectric conversion layer 12 in the semiconductor layer 15 as signal charges.
  • the storage electrode 11B is provided in a region facing the light receiving surfaces of the photoelectric conversion regions 32B and 32R formed in the semiconductor substrate 30 and covering these light receiving surfaces.
  • the storage electrode 11B is preferably larger than the readout electrode 11A, so that more charge can be stored.
  • the voltage application section 54 is connected to the storage electrode 11B via wiring such as the upper third contact 24C and the pad section 39C.
  • the insulating layer 14 is for electrically separating the storage electrode 11B and the semiconductor layer 15 from each other.
  • the insulating layer 14 is provided, for example, on the interlayer insulating layer 23 so as to cover the lower electrode 11 .
  • the insulating layer 14 is, for example, a single layer film made of one of silicon oxide (SiO x ), silicon nitride (SiN x ) and silicon oxynitride (SiO x N y ), or two of these. It is composed of a laminated film composed of the above.
  • the thickness of the insulating layer 14 is, for example, 20 nm or more and 500 nm or less.
  • the semiconductor layer 15 is for accumulating signal charges generated in the photoelectric conversion layer 12 .
  • the semiconductor layer 15 is preferably formed using a material having a higher charge mobility and a larger bandgap than the photoelectric conversion layer 12 .
  • the bandgap of the constituent material of the semiconductor layer 15 is preferably 3.0 eV or more.
  • oxide semiconductors such as IGZO and organic semiconductors.
  • organic semiconductors include transition metal dichalcogenides, silicon carbide, diamond, graphene, carbon nanotubes, condensed polycyclic hydrocarbon compounds and condensed heterocyclic compounds.
  • the thickness of the semiconductor layer 15 is, for example, 10 nm or more and 300 nm or less.
  • FIG. 3 shows an example in which the semiconductor layer 15, the photoelectric conversion layer 12, and the upper electrode 13 are provided as a continuous layer common to a plurality of pixels (unit pixel P, see FIG. 22), the present invention is not limited to this.
  • the semiconductor layer 15, the photoelectric conversion layer 12 and the upper electrode 13 may be formed separately for each unit pixel P, for example.
  • a layer having fixed charges (fixed charge layer) 21 , a dielectric layer 22 having insulating properties, and an interlayer insulating layer 23 are arranged as first layers of the semiconductor substrate 30 . They are provided in this order from the first surface 30S1 side.
  • the fixed charge layer 21 may be a film having positive fixed charges or a film having negative fixed charges.
  • a constituent material of the fixed charge layer 21 it is preferable to use a semiconductor or a conductive material having a wider bandgap than the semiconductor substrate 30 is used. Thereby, generation of dark current at the interface of the semiconductor substrate 30 can be suppressed.
  • constituent materials of the fixed charge layer 21 include hafnium oxide (HfO x ), aluminum oxide (AlO x ), zirconium oxide (ZrO x ), tantalum oxide (TaO x ), titanium oxide (TiO x ), lanthanum oxide ( LaO x ), praseodymium oxide (PrO x ), cerium oxide (CeO x ), neodymium oxide (NdO x ), promethium oxide (PmO x ), samarium oxide (SmO x ), europium oxide (EuO x ) , gadolinium oxide (GdO x ), terbium oxide (TbO x ), dysprosium oxide (DyO x ), holmium oxide (HoO x ), thulium oxide (TmO x ) , ytterbium oxide (YbO x ), lutetium oxide (LuO x
  • the dielectric layer 22 is for preventing light reflection caused by a refractive index difference between the semiconductor substrate 30 and the interlayer insulating layer 23 .
  • a material having a refractive index between that of the semiconductor substrate 30 and that of the interlayer insulating layer 23 is preferable.
  • constituent materials of the dielectric layer 22 include SiO x , TEOS, SiN x and SiO x N y .
  • the interlayer insulating layer 23 is composed of, for example, a single layer film made of one of SiO x , SiN x and SiO x N y or the like, or a laminated film made of two or more of these.
  • the photoelectric conversion regions 32B and 32R are composed of, for example, PIN (Positive Intrinsic Negative) type photodiodes, and each have a pn junction in a predetermined region of the semiconductor substrate 30.
  • the photoelectric conversion regions 32B and 32R make it possible to disperse the light in the vertical direction by utilizing the fact that the wavelength bands absorbed by the silicon substrate differ depending on the incident depth of the light.
  • the photoelectric conversion region 32B selectively detects blue light and accumulates signal charges corresponding to blue, and is formed to a depth that enables efficient photoelectric conversion of blue light.
  • the photoelectric conversion region 32R selectively detects red light and accumulates signal charges corresponding to red, and is formed to a depth that enables efficient photoelectric conversion of red light.
  • Blue (B) is a color corresponding to, for example, a wavelength band of 400 nm or more and less than 495 nm
  • red (R) is a color corresponding to, for example, a wavelength band of 620 nm or more and less than 750 nm.
  • Each of the photoelectric conversion regions 32B and 32R should be capable of detecting light in a part or all of the wavelength bands.
  • the photoelectric conversion region 32B and the photoelectric conversion region 32R each have, for example, a p+ region serving as a hole accumulation layer and an n region serving as an electron accumulation layer (p -np stacked structure).
  • the n region of the photoelectric conversion region 32B is connected to the vertical transistor Tr2.
  • the p+ region of the photoelectric conversion region 32B is bent along the vertical transistor Tr2 and connected to the p+ region of the photoelectric conversion region 32R.
  • the gate insulating layer 33 is composed of, for example, a single layer film made of one of SiO x , SiN x and SiO x N y or the like, or a laminated film made of two or more of these.
  • a through electrode 34 is provided between the first surface 30S1 and the second surface 30S2 of the semiconductor substrate 30 .
  • the through electrode 34 functions as a connector between the photoelectric conversion section 10 and the gate Gamp of the amplifier transistor AMP and the floating diffusion FD1, and also serves as a transmission path for charges generated in the photoelectric conversion section 10 .
  • a reset gate Grst of the reset transistor RST is arranged next to the floating diffusion FD1 (one source/drain region 36B of the reset transistor RST). As a result, the charges accumulated in the floating diffusion FD1 can be reset by the reset transistor RST.
  • the upper end of the through electrode 34 is connected to the readout electrode 11A via, for example, a pad portion 39A provided in the interlayer insulating layer 23, an upper first contact 24A, a pad electrode 38B and an upper second contact 24B.
  • a lower end of the through-electrode 34 is connected to a connecting portion 41A in the wiring layer 41, and the connecting portion 41A and the gate Gamp of the amplifier transistor AMP are connected via a lower first contact 45.
  • the connection portion 41A and the floating diffusion FD1 (region 36B) are connected via the lower second contact 46, for example.
  • Upper first contact 24A, upper second contact 24B, upper third contact 24C, pad portions 39A, 39B, 39C, wiring layers 41, 42, 43, lower first contact 45, lower second contact 46, and gate wiring layer 47 can be formed using, for example, doped silicon materials such as PDAS (Phosphorus Doped Amorphous Silicon), or metallic materials such as Al, W, Ti, Co, Hf and Ta.
  • doped silicon materials such as PDAS (Phosphorus Doped Amorphous Silicon)
  • metallic materials such as Al, W, Ti, Co, Hf and Ta.
  • the insulating layer 44 is composed of, for example, a single layer film made of one of SiO x , SiN x and SiO x N y or the like, or a laminated film made of two or more of these.
  • the protective layer 51 and the on-chip lens 52L are made of a light-transmissive material, such as a single-layer film made of one of SiO x , SiN x and SiO x N y , or a combination of these. It is composed of a laminated film consisting of two or more of them.
  • the thickness of the protective layer 51 is, for example, 100 nm or more and 30000 nm or less.
  • the light shielding film 53 is provided, for example, so as to cover at least the region of the readout electrode 21A that is in direct contact with the semiconductor layer 15 without covering the storage electrode 11B.
  • the light shielding film 53 can be formed using, for example, W, Al, an alloy of Al and Cu, or the like.
  • FIG. 10 is an equivalent circuit diagram of the imaging device 1A shown in FIG.
  • FIG. 11 schematically shows the arrangement of the transistors that constitute the lower electrode 11 and the control section of the imaging device 1A shown in FIG.
  • the reset transistor RST (reset transistor TR1rst) is for resetting the charge transferred from the photoelectric conversion section 10 to the floating diffusion FD1, and is composed of, for example, a MOS transistor.
  • the reset transistor TR1rst is composed of a reset gate Grst, a channel formation region 36A, and source/drain regions 36B and 36C.
  • the reset gate Grst is connected to the reset line RST1, and one source/drain region 36B of the reset transistor TR1rst also serves as the floating diffusion FD1.
  • the other source/drain region 36C forming the reset transistor TR1rst is connected to the power supply line VDD.
  • the amplifier transistor AMP is a modulation element that modulates the amount of charge generated in the photoelectric conversion section 10 into voltage, and is composed of, for example, a MOS transistor. Specifically, the amplifier transistor AMP is composed of a gate Gamp, a channel forming region 35A, and source/drain regions 35B and 35C.
  • the gate Gamp is connected to the readout electrode 11A and one of the source/drain regions 36B (floating diffusion FD1) of the reset transistor TR1rst via the lower first contact 45, the connecting portion 41A, the lower second contact 46, the through electrode 34, and the like. It is One source/drain region 35B shares a region with the other source/drain region 36C forming the reset transistor TR1rst, and is connected to the power supply line VDD.
  • the selection transistor SEL selection transistor TR1sel
  • the selection transistor SEL is composed of a gate Gsel, a channel forming region 34A, and source/drain regions 34B and 34C.
  • the gate Gsel is connected to the selection line SEL1.
  • One source/drain region 34B shares a region with the other source/drain region 35C forming the amplifier transistor AMP, and the other source/drain region 34C is connected to the signal line (data output line) VSL1. It is
  • the transfer transistor TR2 (transfer transistor TR2trs) is for transferring the signal charge corresponding to blue generated and accumulated in the photoelectric conversion region 32B to the floating diffusion FD2. Since the photoelectric conversion region 32B is formed deep from the second surface 30S2 of the semiconductor substrate 30, the transfer transistor TR2trs of the photoelectric conversion region 32B is preferably configured by a vertical transistor. The transfer transistor TR2trs is connected to the transfer gate line TG2. A floating diffusion FD2 is provided in a region 37C near the gate Gtrs2 of the transfer transistor TR2trs. The charge accumulated in the photoelectric conversion region 32B is read out to the floating diffusion FD2 through the transfer channel formed along the gate Gtrs2.
  • the transfer transistor TR3 (transfer transistor TR3trs) is for transferring the signal charge corresponding to red generated and accumulated in the photoelectric conversion region 32R to the floating diffusion FD3, and is composed of, for example, a MOS transistor.
  • the transfer transistor TR3trs is connected to the transfer gate line TG3.
  • a floating diffusion FD3 is provided in a region 38C near the gate Gtrs3 of the transfer transistor TR3trs. The charge accumulated in the photoelectric conversion region 32R is read out to the floating diffusion FD3 through the transfer channel formed along the gate Gtrs3.
  • a reset transistor TR2rst an amplifier transistor TR2amp, and a select transistor TR2sel, which constitute a control section of the photoelectric conversion region 32B, are provided. Furthermore, there are provided a reset transistor TR3rst, an amplifier transistor TR3amp, and a selection transistor TR3sel, which constitute a control section of the photoelectric conversion region 32R.
  • the reset transistor TR2rst is composed of a gate, a channel forming region and source/drain regions.
  • a gate of the reset transistor TR2rst is connected to the reset line RST2, and one source/drain region of the reset transistor TR2rst is connected to the power supply line VDD.
  • the other source/drain region of the reset transistor TR2rst also serves as the floating diffusion FD2.
  • the amplifier transistor TR2amp is composed of a gate, a channel forming region and source/drain regions.
  • a gate is connected to the other source/drain region (floating diffusion FD2) of the reset transistor TR2rst.
  • One source/drain region forming the amplifier transistor TR2amp shares a region with one source/drain region forming the reset transistor TR2rst, and is connected to the power supply line VDD.
  • the selection transistor TR2sel is composed of a gate, a channel forming region and source/drain regions.
  • the gate is connected to the selection line SEL2.
  • One source/drain region forming the select transistor TR2sel shares a region with the other source/drain region forming the amplifier transistor TR2amp.
  • the other source/drain region forming the select transistor TR2sel is connected to the signal line (data output line) VSL2.
  • the reset transistor TR3rst is composed of a gate, a channel forming region and source/drain regions.
  • a gate of the reset transistor TR3rst is connected to the reset line RST3, and one source/drain region forming the reset transistor TR3rst is connected to the power supply line VDD.
  • the other source/drain region forming the reset transistor TR3rst also serves as the floating diffusion FD3.
  • the amplifier transistor TR3amp is composed of a gate, a channel forming region and source/drain regions.
  • the gate is connected to the other source/drain region (floating diffusion FD3) forming the reset transistor TR3rst.
  • One source/drain region forming the amplifier transistor TR3amp shares a region with one source/drain region forming the reset transistor TR3rst, and is connected to the power supply line VDD.
  • the select transistor TR3sel is composed of a gate, a channel forming region and source/drain regions.
  • the gate is connected to the selection line SEL3.
  • One source/drain region forming the select transistor TR3sel shares a region with the other source/drain region forming the amplifier transistor TR3amp.
  • the other source/drain region forming the select transistor TR3sel is connected to the signal line (data output line) VSL3.
  • the reset lines RST1, RST2, and RST3, the selection lines SEL1, SEL2, and SEL3, and the transfer gate lines TG2 and TG3 are each connected to a vertical drive circuit forming a drive circuit.
  • the signal lines (data output lines) VSL1, VSL2 and VSL3 are connected to a column signal processing circuit 112 that constitutes a drive circuit.
  • the imaging device 1A of this embodiment can be manufactured, for example, as follows.
  • FIG. 12A to 12F show the manufacturing method of the imaging device 1A in order of steps.
  • a p-well 31 is formed in a semiconductor substrate 30, and in this p-well 31, for example, n-type photoelectric conversion regions 32B and 32R are formed.
  • a p+ region is formed near the first surface 30S1 of the semiconductor substrate 30 .
  • the transfer transistor Tr2, the transfer transistor Tr3, and the select transistor are formed on the second surface 30S2 of the semiconductor substrate 30, as shown in FIG. 12A.
  • a gate wiring layer 47 including gates of the transistor SEL, amplifier transistor AMP and reset transistor RST is formed on the second surface 30S2 of the semiconductor substrate 30, as shown in FIG. 12A.
  • a transfer transistor Tr2, a transfer transistor Tr3, a selection transistor SEL, an amplifier transistor AMP, and a reset transistor RST are formed.
  • a multi-layered wiring layer 40 composed of the wiring layers 41 to 43 including the lower first contact 45, the lower second contact 46 and the connecting portion 41A and the insulating layer 44 is formed on the second surface 30S2 of the semiconductor substrate 30, as shown in FIG. 12A, for example, after forming n+ regions to be the floating diffusions FD1 to FD3, the gate insulating layer 33, the transfer transistor Tr2, the transfer transistor Tr3, and the select transistor are formed on the second surface 30S2 of the semiconductor substrate 30, as shown in FIG. 12A, for example,
  • an SOI (Silicon on Insulator) substrate in which the semiconductor substrate 30, a buried oxide film (not shown), and a holding substrate (not shown) are laminated is used as the base of the semiconductor substrate 30, for example.
  • the buried oxide film and the holding substrate are bonded to the first surface 30S1 of the semiconductor substrate 30, although not shown in FIG. 12A. Annealing is performed after the ion implantation.
  • a support substrate (not shown) or another semiconductor substrate or the like is bonded onto the multilayer wiring layer 40 provided on the second surface 30S2 side of the semiconductor substrate 30 and turned upside down. Subsequently, the semiconductor substrate 30 is separated from the embedded oxide film of the SOI substrate and the holding substrate, and the first surface 30S1 of the semiconductor substrate 30 is exposed.
  • the above steps can be performed by techniques such as ion implantation and CVD (Chemical Vapor Deposition), which are used in ordinary CMOS processes.
  • the semiconductor substrate 30 is processed from the first surface 30S1 side by dry etching, for example, to form, for example, an annular opening 34H.
  • the depth of the opening 34H is such that it penetrates from the first surface 30S1 to the second surface 30S2 of the semiconductor substrate 30 and reaches, for example, the connecting portion 41A.
  • the negative fixed charge layer 21 and the dielectric layer 22 are sequentially formed on the first surface 30S1 of the semiconductor substrate 30 and the side surfaces of the openings 34H.
  • the fixed charge layer 21 can be formed, for example, by forming an HfOx film using an atomic layer deposition method (ALD method).
  • the dielectric layer 22 can be formed, for example, by depositing a SiOx film using a plasma CVD method.
  • a pad portion 39A is formed by laminating a barrier metal made of, for example, a laminated film of titanium and titanium nitride (Ti/TiN film) and a W film.
  • an interlayer insulating layer 23 is formed on the dielectric layer 22 and the pad portion 39A, and the surface of the interlayer insulating layer 23 is planarized using a CMP (Chemical Mechanical Polishing) method.
  • CMP Chemical Mechanical Polishing
  • the opening 23H1 is filled with a conductive material such as Al to form the upper first contact 24A.
  • a conductive material such as Al
  • a conductive film 11X is formed on the interlayer insulating layer 23 by, for example, sputtering, and then patterned by photolithography. Specifically, after forming a photoresist PR at a predetermined position of the conductive film 11X, the conductive film 11X is processed using dry etching or wet etching. After that, by removing the photoresist PR, the readout electrode 11A and the storage electrode 11B are formed as shown in FIG. 12E.
  • the insulating layer 14, the semiconductor layer 15, the photoelectric conversion layer 12 and the upper electrode 13 are formed in order.
  • the insulating layer 14 for example, after forming a SiOx film using the ALD method, the surface of the insulating layer 14 is planarized using the CMP method. After that, an opening 14H is formed on the readout electrode 11A using, for example, wet etching.
  • the semiconductor layer 15 can be formed using, for example, a sputtering method.
  • the photoelectric conversion layer 12 is formed using, for example, a vacuum deposition method.
  • the upper electrode 13 is formed using, for example, a sputtering method, similarly to the lower electrode 11 .
  • the protective layer 51, the light shielding film 53 and the on-chip lens 52L are arranged. As described above, the imaging device 1A shown in FIG. 8 is completed.
  • each layer is continuously formed in a vacuum process (in a continuous vacuum process). ) should be formed.
  • Organic layers such as the hole blocking layer, the photoelectric conversion layer 12 and the electron blocking layer, and conductive films such as the lower electrode 11 and the upper electrode 13 can be formed using a dry film formation method or a wet film formation method. .
  • the dry film forming method in addition to the vacuum deposition method using resistance heating or high frequency heating, the electron beam (EB) deposition method, various sputtering methods (magnetron sputtering method, RF-DC coupled bias sputtering method, ECR sputtering method) , facing target sputtering method, high frequency sputtering method), ion plating method, laser abrasion method, molecular beam epitaxy method and laser transfer method.
  • dry film formation methods include chemical vapor deposition methods such as plasma CVD, thermal CVD, MOCVD, and optical CVD.
  • Wet film-forming methods include spin coating, inkjet, spray coating, stamping, microcontact printing, flexographic printing, offset printing, gravure printing, and dipping.
  • etching in addition to photolithography, chemical etching such as shadow mask and laser transfer, physical etching using ultraviolet rays, laser, etc. can be used.
  • a flattening technique in addition to the CMP method, a laser flattening method, a reflow method, or the like can be used.
  • green light (G) is first selectively detected (absorbed) and photoelectrically converted by the photoelectric conversion section 10 .
  • the photoelectric conversion unit 10 is connected to the gate Gamp of the amplifier transistor AMP and the floating diffusion FD1 via the through electrode 34. Therefore, electrons among excitons generated in the photoelectric conversion part 10 are extracted from the lower electrode 11 side, transferred to the second surface 30S2 side of the semiconductor substrate 30 via the through electrode 34, and accumulated in the floating diffusion FD1. . At the same time, the amount of charge generated in the photoelectric conversion section 10 is modulated into a voltage by the amplifier transistor AMP.
  • a reset gate Grst of the reset transistor RST is arranged next to the floating diffusion FD1. As a result, the charges accumulated in the floating diffusion FD1 are reset by the reset transistor RST.
  • the photoelectric conversion section 10 is connected not only to the amplifier transistor AMP but also to the floating diffusion FD1 via the through electrode 34, the charge accumulated in the floating diffusion FD1 can be easily reset by the reset transistor RST. becomes.
  • FIG. 13 shows an operation example of the imaging element 1A.
  • A shows the potential at the storage electrode 11B
  • B shows the potential at the floating diffusion FD1 (readout electrode 11A)
  • C shows the potential at the gate (Gsel) of the reset transistor TR1rst. is.
  • voltages are individually applied to the readout electrode 11A and the storage electrode 11B.
  • the potential V1 is applied from the drive circuit to the readout electrode 11A and the potential V2 is applied to the storage electrode 11B during the accumulation period.
  • the potentials V1 and V2 are V2>V1.
  • charges (signal charges; electrons) generated by photoelectric conversion are attracted to the storage electrode 11B and accumulated in the region of the semiconductor layer 15 facing the storage electrode 11B (accumulation period).
  • the potential of the region of the semiconductor layer 15 facing the storage electrode 11B becomes a more negative value as the photoelectric conversion time elapses. Holes are sent from the upper electrode 13 to the drive circuit.
  • a reset operation is performed in the latter half of the accumulation period. Specifically, at timing t1, the scanning unit changes the voltage of the reset signal RST from low level to high level. Thereby, in the unit pixel P, the reset transistor TR1rst is turned on, and as a result, the voltage of the floating diffusion FD1 is set to the power supply voltage, and the voltage of the floating diffusion FD1 is reset (reset period).
  • the drive circuit applies a potential V3 to the readout electrode 11A and a potential V4 to the storage electrode 11B.
  • the potentials V3 and V4 are V3 ⁇ V4.
  • the charge accumulated in the region corresponding to the storage electrode 11B is read from the readout electrode 11A to the floating diffusion FD1. That is, the charges accumulated in the semiconductor layer 15 are read out to the control section (transfer period).
  • the potential V1 is applied again from the drive circuit to the readout electrode 11A, and the potential V2 is applied to the storage electrode 11B.
  • charges generated by photoelectric conversion are attracted to the storage electrode 11B and accumulated in the region of the photoelectric conversion layer 24 facing the storage electrode 11B (accumulation period).
  • blue light (B) and red light (R) are sequentially absorbed and photoelectrically converted in the photoelectric conversion region 32B and the photoelectric conversion region 32R, respectively.
  • the photoelectric conversion region 32B electrons corresponding to the incident blue light (B) are accumulated in the n region of the photoelectric conversion region 32B, and the accumulated electrons are transferred to the floating diffusion FD2 by the transfer transistor Tr2.
  • the photoelectric conversion region 32R electrons corresponding to incident red light (R) are accumulated in the n region of the photoelectric conversion region 32R, and the accumulated electrons are transferred to the floating diffusion FD3 by the transfer transistor Tr3. .
  • an organic semiconductor material having crystallinity is included between the lower electrode 11 and the upper electrode 13, has carrier transport properties, and has a diffraction angle (2 ⁇ ) of 15° in the XRD spectrum.
  • the photoelectric conversion layer 12 having three crystallinity peaks in the range of 30° or less is provided. This will be explained below.
  • solid-state imaging devices using an organic semiconductor thin film as a photoelectric conversion layer have been proposed.
  • General solid-state imaging devices are required to have high photoelectric conversion performance (quantum efficiency) corresponding to the amount of incident light and fast photoresponse to moving subjects.
  • photoelectric conversion performance quantum efficiency
  • the crystallinity used in photoelectric conversion materials is important for carrier transport. It is generally known that the higher the crystallinity, the higher the carrier mobility. Furthermore, in a solid-state imaging device, it is desirable that the carrier transportability is high in the direction perpendicular to the electrodes. For this reason, it is required to have high carrier-transporting properties and good carrier-transporting properties in preferred orientations.
  • the photoelectric conversion layer 12 is formed using an organic semiconductor material having crystallinity, and the photoelectric conversion layer 12 has a carrier transport property and a diffraction angle (2 ⁇ ) of 15 in the XRD spectrum. It was made to have three crystallinity peaks in the range of 30° or more. This improves the carrier transportability in the thickness direction.
  • the photoelectric conversion element 10 having high efficiency and high-speed photoresponse and the imaging element 1A including the same.
  • FIG. 15 schematically illustrates a cross-sectional configuration of an imaging device 1B according to Modification 1 of the present disclosure.
  • the image pickup device 1B is, for example, an image pickup device such as a CMOS image sensor used in electronic equipment such as a digital still camera and a video camera, like the image pickup device 1A of the above embodiment.
  • the imaging element 1B of this modified example differs from the above-described embodiment in that the lower electrode 11 is composed of one electrode for each unit pixel P.
  • the imaging device 1B like the imaging device 1A, has one photoelectric conversion section 10 and two photoelectric conversion regions 32B and 32R stacked vertically for each unit pixel P.
  • the photoelectric conversion section 10 corresponds to the photoelectric conversion element 10 described above, and is provided on the back surface (first surface 30A) side of the semiconductor substrate 30 .
  • the photoelectric conversion regions 32B and 32R are embedded in the semiconductor substrate 30 and stacked in the thickness direction of the semiconductor substrate 30 .
  • the lower electrode 11 of the photoelectric conversion section 10 is composed of one electrode, and the insulating layer 14 and the semiconductor layer 15 are provided between the lower electrode 11 and the photoelectric conversion layer 12. It has the same configuration as the imaging device 1A except that it is not provided.
  • the configuration of the photoelectric conversion unit 10 is not limited to that of the image pickup device 1A of the above embodiment. Obtainable.
  • FIG. 16 schematically illustrates a cross-sectional configuration of an imaging device 1C according to Modification 2 of the present disclosure.
  • the imaging device 1C is, for example, an imaging device such as a CMOS image sensor used in electronic equipment such as a digital still camera and a video camera, like the imaging device 1A of the above embodiment.
  • the imaging device 1C of this modified example is obtained by stacking two photoelectric conversion units 10 and 80 and one photoelectric conversion region 32 in the vertical direction.
  • the photoelectric conversion units 10 and 80 and the photoelectric conversion region 32 selectively detect light in different wavelength bands and perform photoelectric conversion.
  • the photoelectric conversion unit 10 acquires a green (G) color signal.
  • the photoelectric conversion unit 80 acquires a blue (B) color signal.
  • the photoelectric conversion area 32 acquires a red (R) color signal.
  • the imaging device 1C can acquire a plurality of types of color signals in one pixel without using a color filter.
  • the photoelectric conversion units 10 and 80 have the same configuration as the imaging device 1A of the above embodiment. Specifically, in the photoelectric conversion section 10, a lower electrode 11, a photoelectric conversion layer 12 and an upper electrode 13 are laminated in this order, similarly to the imaging device 1A.
  • the lower electrode 11 is composed of a plurality of electrodes (for example, a readout electrode 11A and a storage electrode 11B), and between the lower electrode 11 and the photoelectric conversion layer 12, an insulating layer 14 and a semiconductor layer 15 are laminated in this order. .
  • the readout electrode 11A is electrically connected to the semiconductor layer 15 through an opening 14H provided in the insulating layer 14 .
  • the photoelectric conversion section 80 also has a lower electrode 81, a photoelectric conversion layer 82, and an upper electrode 83 stacked in this order.
  • the lower electrode 81 is composed of a plurality of electrodes (for example, a readout electrode 81A and a storage electrode 81B), and between the lower electrode 81 and the photoelectric conversion layer 82, an insulating layer 84 and a semiconductor layer 85 are laminated in this order. .
  • the readout electrode 81A of the lower electrode 81 is electrically connected to the semiconductor layer 85 through an opening 84H provided in the insulating layer 84 .
  • One or both of the semiconductor layer 15 and the semiconductor layer 85 may be omitted.
  • a through electrode 91 that penetrates the interlayer insulating layer 89 and the photoelectric conversion section 10 and is electrically connected to the readout electrode 11A of the photoelectric conversion section 10 is connected to the readout electrode 81A. Furthermore, the readout electrode 81A is electrically connected to the floating diffusion FD provided in the semiconductor substrate 30 via the through electrodes 34 and 91, and temporarily accumulates the charges generated in the photoelectric conversion layer 82. be able to. Furthermore, the readout electrode 81A is electrically connected to the amplifier transistor AMP and the like provided on the semiconductor substrate 30 through the through electrodes 34 and 91 .
  • FIG. 17A schematically illustrates a cross-sectional configuration of an imaging device 1D according to Modification 3 of the present disclosure.
  • FIG. 17B schematically shows an example of the planar configuration of the imaging element 1D shown in FIG. 17A
  • FIG. 17A shows a cross section taken along line II-II shown in FIG. 17B.
  • the imaging device 1D is, for example, a stacked imaging device in which a photoelectric conversion region 32 and a photoelectric conversion unit 60 are stacked.
  • a pixel unit 100A of an imaging device for example, an imaging device 100
  • a pixel unit 1a made up of, for example, four pixels arranged in two rows and two columns is provided as shown in FIG. 17B. It becomes a repeating unit, and is repeatedly arranged in an array formed in the row direction and the column direction.
  • a color filter 55 that selectively transmits red light (R), green light (G), and blue light (B) is provided above the photoelectric conversion unit 60 (light incident side S1). , are provided for each unit pixel P, respectively.
  • the pixel unit 1a composed of four pixels arranged in two rows and two columns, two color filters for selectively transmitting green light (G) are arranged diagonally, and red light (R ) and blue light (B) are arranged on orthogonal diagonal lines one by one.
  • the unit pixel (Pr, Pg, Pb) provided with each color filter for example, the corresponding color light is detected in the photoelectric conversion section 60 . That is, in the pixel section 100A, pixels (Pr, Pg, Pb) for detecting red light (R), green light (G), and blue light (B) are arranged in a Bayer pattern.
  • the photoelectric conversion unit 60 generates excitons (electron-hole pairs) by absorbing light corresponding to part or all of the wavelengths in the visible light region of, for example, 400 nm or more and less than 750 nm.
  • An insulating layer (interlayer insulating layer 23), a semiconductor layer 65, a photoelectric conversion layer 62 and an upper electrode 63 are laminated in this order.
  • the lower electrode 61, the interlayer insulating layer 23, the semiconductor layer 65, the photoelectric conversion layer 62, and the upper electrode 63 are the lower electrode 11, the insulating layer 14, the semiconductor layer 15, and the photoelectric conversion layer 12 of the imaging element 1A in the above embodiment, respectively. and the same configuration as the upper electrode 13 .
  • the lower electrode 61 has, for example, a readout electrode 61A and a storage electrode 61B that are independent of each other, and the readout electrode 61A is shared by, for example, four pixels. Note that the semiconductor layer 65 may be omitted.
  • the photoelectric conversion region 32 detects, for example, an infrared light region of 750 nm or more and 1300 nm or less.
  • the light in the visible light region (red light (R), green light (G), and blue light (B)) is provided with each color filter.
  • the infrared light (IR) transmitted through the photoelectric conversion unit 60 is detected in the photoelectric conversion regions 32 of the unit pixels Pr, Pg, and Pb, and the unit pixels Pr, Pg, and Pb correspond to the infrared light (IR).
  • a signal charge is generated. That is, the imaging device 100 including the imaging device 1D can generate both a visible light image and an infrared light image at the same time.
  • the imaging device 100 including the imaging element 1D, a visible light image and an infrared light image can be obtained at the same position in the XZ plane direction. Therefore, it becomes possible to realize high integration in the XZ plane direction.
  • FIG. 18A schematically illustrates a cross-sectional configuration of an imaging device 1E according to Modification 4 of the present disclosure.
  • FIG. 18B schematically shows an example of the planar configuration of the imaging element 1E shown in FIG. 18A
  • FIG. 18A shows a cross section taken along line III-III shown in FIG. 18B.
  • Modification 3 the example in which the color filter 55 is provided above the photoelectric conversion unit 60 (light incident side S1) is shown. 32 and the photoelectric conversion section 60 may be provided.
  • the color filter 55 is a color filter (color filter 55R) that selectively transmits at least red light (R) and selectively transmits at least blue light (B) in the pixel unit 1a. It has a configuration in which color filters (color filters 55B) are arranged diagonally to each other.
  • the photoelectric conversion section 60 (photoelectric conversion layer 62) is configured to selectively absorb light having a wavelength corresponding to, for example, green light (G).
  • the photoelectric conversion region 32R selectively absorbs light having a wavelength corresponding to red light (R), and the photoelectric conversion region 32B selectively absorbs light having a wavelength corresponding to blue light (B).
  • red light (R), green light (G) or blue light (B) is generated in the photoelectric conversion regions 32 (photoelectric conversion regions 32R and 32B) arranged below the photoelectric conversion section 60 and the color filters 55R and 55B, respectively. It is possible to acquire a signal corresponding to In the imaging device 1E of this modified example, the area of each of the photoelectric conversion units of RGB can be increased compared to a photoelectric conversion device having a general Bayer array, so the S/N ratio can be improved.
  • FIG. 19 illustrates another example (imaging device 1F) of the cross-sectional configuration of the imaging device 1C of modification 2 according to another modification of the present disclosure.
  • FIG. 20A schematically illustrates another example (imaging device 1G) of the cross-sectional configuration of the imaging device 1D of modification 3 according to another modification of the present disclosure.
  • FIG. 20B schematically shows an example of the planar configuration of the imaging element 1G shown in FIG. 20A.
  • FIG. 21A schematically illustrates another example (imaging device 1H) of the cross-sectional configuration of the imaging device 1E of modification 4 according to another modification of the present disclosure.
  • FIG. 21B schematically shows an example of the planar configuration of the imaging element 1H shown in FIG. 21A.
  • Modifications 2 to 4 above show examples in which the lower electrodes 11, 61, 81 constituting the photoelectric conversion units 60, 80 are composed of a plurality of electrodes (readout electrodes 11A, 61A, 81A and storage electrodes 11B, 61B, 81B). However, it is not limited to this.
  • the imaging devices 1C, 1D, and 1E according to Modifications 2 to 4 can be applied even when the lower electrode is composed of one electrode for each unit pixel P, as in Modification 1 above. A similar effect can be obtained.
  • FIG. 22 shows an example of the overall configuration of an imaging device (imaging device 100) including the imaging device (for example, the imaging device 1A) shown in FIG. 8 and the like.
  • the imaging device 100 is, for example, a CMOS image sensor, takes in incident light (image light) from a subject through an optical lens system (not shown), and measures the amount of incident light formed on an imaging surface. The electric signal is converted into an electric signal on a pixel-by-pixel basis and output as a pixel signal.
  • the image pickup device 100 has a pixel section 100A as an image pickup area on a semiconductor substrate 30. In the peripheral region of the pixel section 100A, for example, a vertical drive circuit 111, a column signal processing circuit 112, a horizontal drive circuit 113, an output It has a circuit 114 , a control circuit 115 and an input/output terminal 116 .
  • the pixel section 100A has, for example, a plurality of unit pixels P arranged two-dimensionally in a matrix.
  • a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column.
  • the pixel drive line Lread transmits drive signals for reading signals from pixels.
  • One end of the pixel drive line Lread is connected to an output terminal corresponding to each row of the vertical drive circuit 111 .
  • the vertical driving circuit 111 is a pixel driving section configured by a shift register, an address decoder, and the like, and drives each unit pixel P of the pixel section 100A, for example, in units of rows.
  • a signal output from each unit pixel P in a pixel row selectively scanned by the vertical drive circuit 111 is supplied to the column signal processing circuit 112 through each vertical signal line Lsig.
  • the column signal processing circuit 112 is composed of amplifiers, horizontal selection switches, and the like provided for each vertical signal line Lsig.
  • the horizontal drive circuit 113 is composed of a shift register, an address decoder, etc., and sequentially drives the horizontal selection switches of the column signal processing circuit 112 while scanning them. By selective scanning by the horizontal drive circuit 113, the signals of the pixels transmitted through the vertical signal lines Lsig are sequentially output to the horizontal signal line 121 and transmitted to the outside of the semiconductor substrate 30 through the horizontal signal line 121. .
  • the output circuit 114 performs signal processing on signals sequentially supplied from each of the column signal processing circuits 112 via the horizontal signal line 121 and outputs the processed signals.
  • the output circuit 114 may perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like.
  • a circuit portion consisting of the vertical drive circuit 111, the column signal processing circuit 112, the horizontal drive circuit 113, the horizontal signal line 121 and the output circuit 114 may be formed directly on the semiconductor substrate 30, or may be formed on the external control IC. It may be arranged. Moreover, those circuit portions may be formed on another substrate connected by a cable or the like.
  • the control circuit 115 receives a clock given from the outside of the semiconductor substrate 30, data instructing an operation mode, etc., and outputs data such as internal information of the imaging device 100.
  • the control circuit 115 further has a timing generator that generates various timing signals, and controls the vertical drive circuit 111, the column signal processing circuit 112, the horizontal drive circuit 113, etc. based on the various timing signals generated by the timing generator. It controls driving of peripheral circuits.
  • the input/output terminal 116 exchanges signals with the outside.
  • the imaging apparatus 100 as described above is applied to various electronic devices such as imaging systems such as digital still cameras and digital video cameras, mobile phones with imaging functions, and other devices with imaging functions. can do.
  • FIG. 23 is a block diagram showing an example of the configuration of the electronic device 1000. As shown in FIG. 23
  • an electronic device 1000 includes an optical system 1001, an imaging device 100, and a DSP (Digital Signal Processor) 1002. , an operation system 1006 and a power supply system 1007 are connected to each other, so that still images and moving images can be captured.
  • DSP Digital Signal Processor
  • the optical system 1001 is configured with one or more lenses, takes in incident light (image light) from a subject, and forms an image on the imaging surface of the imaging device 100 .
  • the imaging apparatus 100 converts the amount of incident light imaged on the imaging surface by the optical system 1001 into an electric signal on a pixel-by-pixel basis, and supplies the electric signal as a pixel signal to the DSP 1002 .
  • the DSP 1002 acquires an image by performing various signal processing on the signal from the imaging device 100 and temporarily stores the image data in the memory 1003 .
  • the image data stored in the memory 1003 is recorded in the recording device 1005 or supplied to the display device 1004 to display the image.
  • An operation system 1006 receives various operations by a user and supplies an operation signal to each block of the electronic device 1000 , and a power supply system 1007 supplies electric power necessary for driving each block of the electronic device 1000 .
  • FIG. 24A schematically illustrates an example of the overall configuration of a photodetection system 2000 including the imaging device 100.
  • FIG. FIG. 24B shows an example of the circuit configuration of the photodetection system 2000.
  • a light detection system 2000 includes a light emitting device 2001 as a light source section that emits infrared light L2, and a light detection device 2002 as a light receiving section having a photoelectric conversion element.
  • the imaging device 100 described above can be used.
  • the light detection system 2000 may further include a system control section 2003 , a light source drive section 2004 , a sensor control section 2005 , a light source side optical system 2006 and a camera side optical system 2007 .
  • the photodetector 2002 can detect the light L1 and the light L2.
  • the light L1 is ambient light from the outside and is reflected from the object (measurement object) 2100 (FIG. 24A).
  • Light L2 is light emitted by the light emitting device 2001 and then reflected by the subject 2100 .
  • the light L1 is, for example, visible light
  • the light L2 is, for example, infrared light.
  • the light L1 can be detected in the photoelectric conversion portion of the photodetector 2002, and the light L2 can be detected in the photoelectric conversion region of the photodetector 2002.
  • FIG. Image information of the object 2100 can be obtained from the light L1, and distance information between the object 2100 and the light detection system 2000 can be obtained from the light L2.
  • the light detection system 2000 can be mounted on, for example, electronic devices such as smartphones and moving bodies such as cars.
  • the light emitting device 2001 can be composed of, for example, a semiconductor laser, a surface emitting semiconductor laser, or a vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • an iTOF method can be adopted, but the method is not limited to this.
  • the photoelectric conversion unit can measure the distance to the subject 2100 by, for example, time-of-flight (TOF).
  • a structured light method or a stereo vision method can be adopted as a method for detecting the light L2 emitted from the light emitting device 2001 by the photodetector 2002.
  • the distance between the photodetection system 2000 and the subject 2100 can be measured by projecting a predetermined pattern of light onto the subject 2100 and analyzing the degree of distortion of the pattern.
  • the stereo vision method for example, two or more cameras are used to acquire two or more images of the subject 2100 viewed from two or more different viewpoints, thereby measuring the distance between the photodetection system 2000 and the subject. can.
  • the light emitting device 2001 and the photodetector 2002 can be synchronously controlled by the system control unit 2003 .
  • FIG. 25 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology (this technology) according to the present disclosure can be applied.
  • FIG. 25 illustrates a state in which an operator (doctor) 11131 is performing surgery on a patient 11132 on a patient bed 11133 using an endoscopic surgery system 11000 .
  • an endoscopic surgery system 11000 includes an endoscope 11100, other surgical instruments 11110 such as a pneumoperitoneum tube 11111 and an energy treatment instrument 11112, and a support arm device 11120 for supporting the endoscope 11100. , and a cart 11200 loaded with various devices for endoscopic surgery.
  • An endoscope 11100 is composed of a lens barrel 11101 whose distal end is inserted into the body cavity of a patient 11132 and a camera head 11102 connected to the proximal end of the lens barrel 11101 .
  • an endoscope 11100 configured as a so-called rigid scope having a rigid lens barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible scope having a flexible lens barrel. good.
  • the tip of the lens barrel 11101 is provided with an opening into which the objective lens is fitted.
  • a light source device 11203 is connected to the endoscope 11100, and light generated by the light source device 11203 is guided to the tip of the lens barrel 11101 by a light guide extending inside the lens barrel 11101, where it reaches the objective. Through the lens, the light is irradiated toward the observation object inside the body cavity of the patient 11132 .
  • the endoscope 11100 may be a straight scope, a perspective scope, or a side scope.
  • An optical system and an imaging element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the imaging element by the optical system.
  • the imaging element photoelectrically converts the observation light to generate an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image.
  • the image signal is transmitted to a camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and controls the operations of the endoscope 11100 and the display device 11202 in an integrated manner. Further, the CCU 11201 receives an image signal from the camera head 11102 and performs various image processing such as development processing (demosaicing) for displaying an image based on the image signal.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on an image signal subjected to image processing by the CCU 11201 under the control of the CCU 11201 .
  • the light source device 11203 is composed of a light source such as an LED (light emitting diode), for example, and supplies the endoscope 11100 with irradiation light for imaging a surgical site or the like.
  • a light source such as an LED (light emitting diode)
  • LED light emitting diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and instructions to the endoscopic surgery system 11000 via the input device 11204 .
  • the user inputs an instruction or the like to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100 .
  • the treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for tissue cauterization, incision, blood vessel sealing, or the like.
  • the pneumoperitoneum device 11206 inflates the body cavity of the patient 11132 for the purpose of securing the visual field of the endoscope 11100 and securing the operator's working space, and injects gas into the body cavity through the pneumoperitoneum tube 11111. send in.
  • the recorder 11207 is a device capable of recording various types of information regarding surgery.
  • the printer 11208 is a device capable of printing various types of information regarding surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the endoscope 11100 with irradiation light for photographing the surgical site can be composed of, for example, a white light source composed of an LED, a laser light source, or a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. It can be carried out.
  • the observation target is irradiated with laser light from each of the RGB laser light sources in a time division manner, and by controlling the drive of the imaging device of the camera head 11102 in synchronization with the irradiation timing, each of RGB can be handled. It is also possible to pick up images by time division. According to this method, a color image can be obtained without providing a color filter in the imaging device.
  • the driving of the light source device 11203 may be controlled so as to change the intensity of the output light every predetermined time.
  • the drive of the imaging device of the camera head 11102 in synchronism with the timing of the change in the intensity of the light to obtain an image in a time-division manner and synthesizing the images, a high dynamic A range of images can be generated.
  • the light source device 11203 may be configured to be capable of supplying light in a predetermined wavelength range corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissues, by irradiating light with a narrower band than the irradiation light (i.e., white light) during normal observation, the mucosal surface layer So-called Narrow Band Imaging, in which a predetermined tissue such as a blood vessel is imaged with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained from fluorescence generated by irradiation with excitation light.
  • the body tissue is irradiated with excitation light and the fluorescence from the body tissue is observed (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is examined.
  • a fluorescence image can be obtained by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 can be configured to be able to supply narrowband light and/or excitation light corresponding to such special light observation.
  • FIG. 26 is a block diagram showing an example of functional configurations of the camera head 11102 and CCU 11201 shown in FIG.
  • the camera head 11102 has a lens unit 11401, an imaging section 11402, a drive section 11403, a communication section 11404, and a camera head control section 11405.
  • the CCU 11201 has a communication section 11411 , an image processing section 11412 and a control section 11413 .
  • the camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400 .
  • a lens unit 11401 is an optical system provided at a connection with the lens barrel 11101 . Observation light captured from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401 .
  • a lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the number of imaging elements constituting the imaging unit 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB may be generated by each image pickup element, and a color image may be obtained by synthesizing the image signals.
  • the imaging unit 11402 may be configured to have a pair of imaging elements for respectively acquiring right-eye and left-eye image signals corresponding to 3D (dimensional) display.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of systems of lens units 11401 may be provided corresponding to each imaging element.
  • the imaging unit 11402 does not necessarily have to be provided in the camera head 11102 .
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is configured by an actuator, and moves the zoom lens and focus lens of the lens unit 11401 by a predetermined distance along the optical axis under control from the camera head control unit 11405 . Thereby, the magnification and focus of the image captured by the imaging unit 11402 can be appropriately adjusted.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU 11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400 .
  • the communication unit 11404 receives a control signal for controlling driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405 .
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and/or information to specify the magnification and focus of the captured image. Contains information about conditions.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls driving of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102 .
  • the communication unit 11411 receives image signals transmitted from the camera head 11102 via the transmission cable 11400 .
  • the communication unit 11411 transmits a control signal for controlling driving of the camera head 11102 to the camera head 11102 .
  • Image signals and control signals can be transmitted by electrical communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal, which is RAW data transmitted from the camera head 11102 .
  • the control unit 11413 performs various controls related to imaging of the surgical site and the like by the endoscope 11100 and display of the captured image obtained by imaging the surgical site and the like. For example, the control unit 11413 generates control signals for controlling driving of the camera head 11102 .
  • control unit 11413 causes the display device 11202 to display a captured image showing the surgical site and the like based on the image signal that has undergone image processing by the image processing unit 11412 .
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edges of objects included in the captured image, thereby detecting surgical instruments such as forceps, specific body parts, bleeding, mist during use of the energy treatment instrument 11112, and the like. can recognize.
  • the control unit 11413 may use the recognition result to display various types of surgical assistance information superimposed on the image of the surgical site. By superimposing and presenting the surgery support information to the operator 11131, the burden on the operator 11131 can be reduced and the operator 11131 can proceed with the surgery reliably.
  • a transmission cable 11400 connecting the camera head 11102 and the CCU 11201 is an electrical signal cable compatible with electrical signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be applied to the imaging unit 11402 among the configurations described above. By applying the technology according to the present disclosure to the imaging unit 11402, detection accuracy is improved.
  • the technology according to the present disclosure may also be applied to, for example, a microsurgery system.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be applied to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), etc. It may also be implemented as a body-mounted device.
  • FIG. 27 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • vehicle control system 12000 includes drive system control unit 12010 , body system control unit 12020 , vehicle exterior information detection unit 12030 , vehicle interior information detection unit 12040 , and integrated control unit 12050 .
  • integrated control unit 12050 As the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output section 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062 and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 28 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 28 shows an example of the imaging range of the imaging units 12101 to 12104.
  • FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided in the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the imaging device for example, the imaging device 1A
  • its modification can be applied to the imaging unit 12031 .
  • the photoelectric conversion layer contains, in addition to the above organic semiconductor materials, a subphthalocitanin derivative represented by the following formula (6) as a dye material and fullerene C 60 represented by the following formula (7) as an n-type semiconductor.
  • a subphthalocitanin derivative represented by the following formula (6) as a dye material and fullerene C 60 represented by the following formula (7) as an n-type semiconductor.
  • Each sample was post-annealed at 150° C. for 210 minutes after film formation.
  • Table 1 XRD spectrum diagrams of Experimental Examples 1-1 to 1-4, respectively, measured under the conditions summarized in Table 1 below. The measurement conditions summarized in Table 1 are also used in Experiments 2 to 4, which will be described later.
  • Table 2 shows the organic semiconductor materials used in Experimental Examples 1-1 to 1-5 and the tendency of the crystal orientation in the photoelectric conversion layer and the photoresponsivity of each of Experimental Examples 1-1 to 1-5. This is a summary.
  • the organic semiconductor materials (Experimental Examples 1-3 and 1-4) having peak intensity at the second of the three peaks are inferior in photoresponsivity.
  • the organic semiconductor material represented by Formula (5) had no peak in the XRD spectrum and was amorphous.
  • photoresponsivity was also unfavorable. From the above results, it was found that the strength of the peak on the lowest angle side among the three peaks plays an important role in the device characteristics.
  • EQE was evaluated using a semiconductor parameter analyzer. Specifically, the amount of light (LED light with a wavelength of 560 nm) irradiated from the light source to the sample for photoresponse evaluation through the filter was set to 1.62 ⁇ W/cm 2 , and the bias voltage applied between the electrodes was - EQE was calculated from the bright current value and the dark current value at 2.6V.
  • Photoresponsivity was evaluated by measuring the rate at which the light current value observed during light irradiation falls after stopping the light irradiation using a semiconductor parameter analyzer. Specifically, the amount of light emitted from the light source through the filter to the photoresponsive evaluation sample was set to 1.62 ⁇ W/cm 2 , and the bias voltage applied between the electrodes was set to ⁇ 2.6V. After observing the steady-state current in this state, the light irradiation was stopped and the decay of the current was observed. Subsequently, the area surrounded by the current-time curve and the dark current was defined as 100%, and the time until this area reached 3% was used as an index of photoresponsiveness. All these evaluations were performed at room temperature.
  • the silicon substrate was transferred to a vacuum deposition apparatus, and while the pressure in the deposition tank was reduced to 1 ⁇ 10 ⁇ 5 Pa or less, the substrate holder was rotated, and a An electron-blocking layer, a photoelectric conversion layer, and a hole-blocking layer were sequentially formed on the substrate.
  • the photoelectric conversion layer is formed by co-evaporation of fullerene C 60 represented by the above formula (7), the subphthalocyanine derivative represented by the above formula (6), and the benzothienobenzothiophene derivative represented by the following formula (9).
  • a film was formed at a temperature of 52°C.
  • NDI naphthalene diimide
  • AlSiCu alloy was deposited as an upper electrode to a thickness of 100 nm by vapor deposition.
  • Photoresponsivity was evaluated by setting the wavelength of light emitted from a green LED light source to the sample for photoresponsivity evaluation to be 560 nm and the amount of light to be 162 ⁇ W/cm 2 through a band-pass filter, and the voltage applied to the LED driver by a function generator. and pulsed light with a pulse width of 100 ms was irradiated from the upper electrode side.
  • a bias voltage of +2.6 V was applied between the electrodes of the sample for photoresponse evaluation, and the current decay waveform was observed using an oscilloscope while applying a voltage of +2.6 V to the lower electrode with respect to the upper electrode. bottom.
  • the amount of coulombs in the process of current attenuation was measured 110 ms after the end of light pulse irradiation, and this was used as an index of the amount of afterimage.
  • a lower afterimage amount means a higher photoresponsivity.
  • Table 5 shows the composition ratio, intensity ratio 1 (peak 1/peak 2), and intensity ratio of the hole transport material, the dye material, and the electron transport material in the photoelectric conversion layers formed in Experimental Examples 4-1 to 4-6.
  • 1 Peak C 60 /Peak 1
  • the peak C60 is the residue component (sub-peak) described above.
  • the hole-transporting material and the electron-transporting material the same materials as in Experimental Examples 5-1 to 5-3 were used.
  • 46 to 51 are XRD spectrum diagrams of Experimental Examples 5-1 to 5-6.
  • Tables 6 and 7 summarize the materials, peak intensity ratios, EQE and IQE of the photoelectric conversion layers formed in Experimental Examples 5-1 to 5-6.
  • EQE was evaluated using a semiconductor parameter analyzer. Specifically, the amount of light (LED light with a wavelength of 560 nm) irradiated from the light source to the sample for photoresponse evaluation through the filter was set to 1.62 ⁇ W/cm 2 , and the bias voltage applied between the electrodes was - EQE was calculated from the bright current value and the dark current value at 2.6V.
  • IQE EQE/((1-R) x A)
  • the photoelectric conversion portion 10 using an organic material for detecting green light (G) and the photoelectric conversion regions for detecting blue light (B) and red light (R), respectively 32B and the photoelectric conversion region 32R are laminated
  • the content of the present disclosure is not limited to such a structure. That is, red light (R) or blue light (B) may be detected in a photoelectric conversion portion using an organic material, and green light (G) may be detected in a photoelectric conversion region made of an inorganic material.
  • the number and ratio of the photoelectric conversion portions using these organic materials and the photoelectric conversion regions made of inorganic materials are not limited.
  • the structure is not limited to the structure in which the photoelectric conversion portion using an organic material and the photoelectric conversion region made of an inorganic material are stacked vertically, and they may be arranged side by side along the substrate surface.
  • the configuration of the back-illuminated imaging device was exemplified, but the content of the present disclosure can also be applied to a front-illuminated imaging device.
  • the photoelectric conversion element 10, the imaging element 1A, etc., and the imaging apparatus 100 of the present disclosure do not need to include all of the components described in the above embodiments, and conversely, may include other components.
  • the imaging device 100 may be provided with a shutter for controlling the incidence of light on the imaging device 1A, or may be provided with an optical cut filter according to the purpose of the imaging device 100 .
  • the arrangement of pixels (Pr, Pg, Pb) for detecting red light (R), green light (G), and blue light (B) may be interline arrangement, G-stripe RB checkered arrangement, G-stripe RB complete checkered arrangement, checkered complementary color arrangement, stripe arrangement, diagonal stripe arrangement, primary color difference arrangement, field color difference sequential arrangement, frame color difference sequential arrangement, MOS type arrangement, improved MOS type arrangement, frame interleaved arrangement, field interleaved arrangement good.
  • the photoelectric conversion element 10 as an imaging element, but the photoelectric conversion element 10 of the present disclosure may be applied to a solar cell.
  • the photoelectric conversion layer is preferably designed to broadly absorb wavelengths of, for example, 400 nm to 800 nm.
  • the present technology can also have the following configuration.
  • an organic semiconductor material having crystallinity is included, has carrier transport properties, and has three crystalline peaks in the diffraction angle (2 ⁇ ) range of 15° or more and 30° or less in the XRD spectrum. to have This improves the carrier transportability in the thickness direction. Therefore, it is possible to improve the quantum efficiency and the response speed.
  • An organic semiconductor film comprising an organic semiconductor material having crystallinity, having carrier transport properties, and having three crystallinity peaks in a diffraction angle (2 ⁇ ) range of 15° or more and 30° or less in an XRD spectrum.
  • a photoelectric conversion element comprising: a photoelectric conversion layer having three crystallinity peaks; (15) The photoelectric conversion element according to (14), wherein the first electrode is composed of a plurality of electrodes independent of each other. (16) The photoelectric conversion element according to (15), wherein a voltage is applied to each of the plurality of electrodes individually.
  • a plurality of pixels each provided with an imaging device having one or more photoelectric conversion units The photoelectric conversion unit is a first electrode; a second electrode arranged to face the first electrode; Provided between the first electrode and the second electrode, contains an organic semiconductor material having crystallinity, has a carrier transport property, and has a diffraction angle (2 ⁇ ) in the range of 15 ° or more and 30 ° or less in the XRD spectrum
  • An imaging device comprising: a photoelectric conversion layer having three crystallinity peaks; (18) The imaging device according to (17), wherein the imaging device further includes one or more photoelectric conversion regions that perform photoelectric conversion in a wavelength band different from that of the one or more photoelectric conversion units.
  • the one or more photoelectric conversion regions are embedded in a semiconductor substrate, The imaging device according to (18), wherein the one or more photoelectric conversion units are arranged on the light incident surface side of the semiconductor substrate. (20) The imaging device according to (19) above, wherein a multilayer wiring layer is formed on the surface of the semiconductor substrate opposite to the light incident surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本開示の一実施形態の有機半導体膜は、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する。

Description

有機半導体膜および光電変換素子ならびに撮像装置
 本開示は、例えば、有機半導体材料を用いた有機半導体膜およびこれを備えた光電変換素子ならびに撮像装置に関する。
 例えば、特許文献1では、基板温度を制御して成膜することで光電変換層の配向性を制御する有機光電変換素子の製造方法が開示されている。
特開2008-258421号公報
 ところで、有機半導体膜を用いた光電変換素子では、量子効率および応答速度の向上が求められている。
 量子効率および応答速度を向上させることが可能な有機半導体膜および光電変換素子ならびに撮像装置を提供することが望ましい。
 本開示の一実施の形態の有機半導体膜は、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有するものである。
 本開示の一実施形態の光電変換素子は、第1電極と、第1電極と対向配置された第2電極と、第1電極と第2電極との間に設けられた光電変換層とを備え、光電変換層として、上記本開示の一実施形態の有機光電変換膜を有するものである。
 本開示の一実施形態の撮像装置は、1または複数の光電変換部を有する撮像素子がそれぞれ設けられた複数の画素を備え、1または複数の光電変換部として、上記本開示の一実施形態の光電変換素子を有するものである。
  本開示の一実施形態の有機半導体膜および一実施形態の光電変換素子ならびに一実施形態の撮像装置では、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有するようにした。これにより、厚み方向に対するキャリア輸送性が向上する。
本開示の一実施の形態に係る光電変換素子の構成を表す断面模式図である。 図1に示した光電変換層のXRDスペクトル図である。 ピーク1とピーク2との強度比と、光応答性との関係を表す特性図である。 XRDスペクトルとGIXDスペクトルとの関係の一例を表す図である。 XRDスペクトルとGIXDスペクトルとの関係の他の例を表す図である。 図1に示した光電変換層のXRDスペクトルにおけるサブピークを説明する図である。 サブピークとピーク1との強度比と、光応答性との関係を表す特性図である。 本開示の一実施の形態に係る撮像素子の構成の一例を表す断面模式図である。 図8に示した撮像素子を有する撮像装置の画素構成の一例を表す平面模式図である。 図8に示した撮像素子の等価回路図である。 図8に示した撮像素子の下部電極および制御部を構成するトランジスタの配置を表わす模式図である。 図8に示した撮像素子の製造方法を説明するための断面図である。 図12Aに続く工程を表す断面図である。 図12Bに続く工程を表す断面図である。 図12Cに続く工程を表す断面図である。 図12Dに続く工程を表す断面図である。 図12Eに続く工程を表す断面図である。 図8に示した撮像素子の一動作例を表すタイミング図である。 一般的な撮像素子の光パルス応答波形の一例である。 本開示の変形例1に係る撮像素子の構成の一例を表す断面模式図である。 本開示の変形例2に係る撮像素子の構成の一例を表す断面模式図である。 本開示の変形例3に係る撮像素子の構成の一例を表す断面模式図である。 図17Aに示した撮像素子の平面構成を表す模式図である。 本開示の変形例4に係る撮像素子の構成の一例を表す断面模式図である。 図18Aに示した撮像素子の平面構成を表す模式図である。 本開示の他の変形例に係る変形例2の撮像素子の構成の他の例を表す断面模式図である。 本開示の他の変形例に係る変形例3の撮像素子の構成の他の例を表す断面模式図である。 図20Aに示した撮像素子の平面構成を表す模式図である。 本開示の他の変形例に係る変形例4の撮像素子の構成の他の例を表す断面模式図である。 図10Aに示した撮像素子の平面構成を表す模式図である。 図8等に示した撮像素子を備えた撮像装置の全体構成を表すブロック図である。 図22に示した撮像装置を用いた電子機器の構成の一例を表すブロック図である。 図22に示した撮像装置を用いた光検出システムの全体構成の一例を表す模式図である。 図24Aに示した光検出システムの回路構成の一例を表す図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。 実験例1-1のXRDスペクトル図である。 実験例1-2のXRDスペクトル図である。 実験例1-3のXRDスペクトル図である。 実験例1-4のXRDスペクトル図である。 実験例2-1のXRDスペクトル図である。 実験例2-2のXRDスペクトル図である。 実験例2-3のXRDスペクトル図である。 実験例3-1のXRDスペクトル図である。 実験例3-2のXRDスペクトル図である。 実験例3-3のXRDスペクトル図である。 実験例4-1のXRDスペクトル図である。 実験例4-2のXRDスペクトル図である。 実験例4-3のXRDスペクトル図である。 実験例4-4のXRDスペクトル図である。 実験例4-5のXRDスペクトル図である。 実験例4-6のXRDスペクトル図である。 サブピークとピーク2との強度比と、IQEとの関係を表す特性図である。 実験例5-1のXRDスペクトル図である。 実験例5-2のXRDスペクトル図である。 実験例5-3のXRDスペクトル図である。 実験例5-4のXRDスペクトル図である。 実験例5-5のXRDスペクトル図である。 実験例5-6のXRDスペクトル図である。
 以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.実施の形態
(XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する有機半導体膜を有する光電変換素子および撮像素子の例)
   1-1.光電変換素子の構成
   1-2.撮像素子の構成
   1-3.撮像素子の製造方法
   1-4.撮像素子の信号取得動作
   1-5.作用・効果
 2.変形例
   2-1.変形例1(撮像素子の構成の他の例)
   2-2.変形例2(撮像素子の構成の他の例)
   2-3.変形例3(撮像素子の構成の他の例)
   2-4.変形例4(撮像素子の構成の他の例)
   2-5.変形例5(撮像素子のその他の変形例)
 3.適用例
 4.応用例
 5.実施例
<1.実施の形態>
 図1は、本開示の一実施の形態の光電変換素子(光電変換素子10)の断面構成の一例を模式的に表したものである。光電変換素子10は、例えば、デジタルスチルカメラ、ビデオカメラ等の電子機器に用いられるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像装置(撮像装置100、例えば図22参照)において1つの画素(単位画素P)を構成する撮像素子(撮像素子1A、例えば図8参照)として用いられるものである。光電変換素子10は、下部電極11と、光電変換層12と、上部電極13とがこの順に積層された構成を有している。光電変換層12は、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する。
(1-1.光電変換素子の構成)
 光電変換素子10は、選択的な波長帯域(例えば、400nm以上1300nm未満の可視光領域および近赤外領域)の波長の一部または全部に対応する光を吸収して励起子(電子正孔対)を発生させるものである。光電変換素子10は、後述する撮像素子(例えば、撮像素子1A)では、光電変換によって生じる電子正孔対のうち、例えば、電子が信号電荷として下部電極11側から読み出される。以下では、信号電荷として電子を下部電極11側から読み出す場合を例に、各部の構成や材料等について説明する。
 下部電極11(陰極)は、例えば、光透過性を有する導電膜により構成されている。下部電極11は、4.0eV以上5.5eV以下の仕事関数を有し、且つ、後述する第1層12Aを構成する有機材料よりも深いLUMO準位を有していることが好ましい。このような下部電極11の構成材料としては、例えば、ドーパントとしてスズ(Sn)を添加したInであるインジウム錫酸化物(ITO)が挙げられる。そのITO薄膜の結晶性は、結晶性が高くても、低く(アモルファスに近づく)てもよい。下部電極11の構成材料としては、上記以外にも、ドーパントを添加した酸化スズ(SnO)系材料例えば、ドーパントとしてSbを添加したATO、ドーパントとしてフッ素を添加したFTOが挙げられる。また、酸化亜鉛(ZnO)あるいはドーパントを添加してなる酸化亜鉛系材料を用いてもよい。ZnO系材料としては、例えば、ドーパントとしてアルミニウム(Al)を添加したアルミニウム亜鉛酸化物(AZO)、ガリウム(Ga)を添加したガリウム亜鉛酸化物(GZO)、ホウ素(B)を添加したホウ素亜鉛酸化物およびインジウム(In)を添加したインジウム亜鉛酸化物(IZO)が挙げられる。更に、ドーパントとしてインジウムとガリウムを添加した亜鉛酸化物(IGZO,In-GaZnO4)を用いてもよい。加えて、下部電極11の構成材料としては、CuI、InSbO、ZnMgO、CuInO、MgIN、CdO、ZnSnOまたはTiO等を用いてもよいし、スピネル形酸化物やYbFe構造を有する酸化物を用いてもよい。
 また、下部電極11に光透過性が不要である場合(例えば、上部電極13側から光が入射する場合)には、低い仕事関数(例えば、φ=3.5eV~4.5eV)を有する単金属または合金を用いることができる。具体的には、アルカリ金属(例えば、リチウム(Li)、ナトリウム(Na)およびカリウム(K)等)およびそのフッ化物または酸化物、アルカリ土類金属(例えば、マグネシウム(Mg)およびカルシウム(Ca)等)およびそのフッ化物または酸化物が挙げられる。この他、アルミニウム(Al)、Al-Si-Cu合金、亜鉛(Zn)、錫(Sn)、タリウム(Tl)、Na-K合金、Al-Li合金、Mg-Ag合金、Inおよびイッテリビウム(Yb)等の希土類金属、または、それらの合金が挙げられる。
 更に、下部電極11を構成する材料としては、白金(Pt)、金(Au)、パラジウム(Pd)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、銀(Ag)、タンタル(Ta)、タングステン(W)、銅(Cu)、チタン(Ti)、インジウム(In)、錫(Sn)、鉄(Fe)、コバルト(Co)およびモリブデン(Mo)等の金属、または、それらの金属元素を含む合金、あるいは、それらの金属からなる導電性粒子、それらの金属を含む合金の導電性粒子、不純物を含有したポリシリコン、炭素系材料、酸化物半導体、カーボン・ナノ・チューブ、グラフェン等の導電性物質が挙げられる。この他、下部電極11を構成する材料としては、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸[PEDOT/PSS]といった有機材料(導電性高分子)が挙げられる。また、上記材料をバインダー(高分子)に混合してペーストまたはインクとしたものを硬化させ、電極として用いてもよい。
 下部電極11は、上記材料からなる単層膜あるいは積層膜として形成することができる。下部電極11の積層方向の膜厚(以下、単に厚みとする)は、例えば20nm以上200nm以下であり、好ましくは30nm以上150nm以下である。
 光電変換層12は、本開示の「有機光電変換膜」および「光電変換層」の一具体例に相当するものである。光電変換層12は、光エネルギーを電気エネルギーに変換するものであり、少なくとも可視光領域から近赤外領域に含まれる所定の波長を、例えば60%以上吸収して電荷分離するものである。光電変換層12は、例えば、400nm以上1300nm未満の可視光領域および近赤外領域の一部または全ての波長の光を吸収する。
 光電変換層12は、例えば、p型半導体またはn型半導体として機能する有機材料を2種以上含んで構成されており、層内に、p型半導体とn型半導体との接合面(p/n接合面)を有している。この他、光電変換層12は、p型半導体からなる層(p型半導体層)とn型半導体からなる層(n型半導体層)との積層構造(p型半導体層/n型半導体層)や、p型半導体層と、p型半導体とn型半導体との混合層(バルクヘテロ層)との積層構造(p型半導体層/バルクヘテロ層)、あるいは、n型半導体層とバルクヘテロ層との積層構造(n型半導体層/バルクヘテロ層)としてもよい。また、p型半導体とn型半導体との混合層(バルクヘテロ層)のみで形成してもよい。
 p型半導体は、相対的に電子供与体として機能する正孔輸送材料であり、n型半導体は、相対的に電子受容体として機能する電子輸送材料である。光電変換層12は、光を吸収した際に生じる励起子(電子正孔対)が電子と正孔とに分離する場を提供するものであり、具体的には、電子正孔対は、電子供与体と電子受容体との界面(p/n接合面)において電子と正孔とに分離する。
 光電変換層12は、p型半導体およびn型半導体の他に、さらに、所定の波長帯域の光を吸収する一方、他の波長帯域の光を透過させる有機材料、所謂色素材料を含んで構成されていてもよい。光電変換層12をp型半導体、n型半導体および色素材料の3種類の有機材料を用いて形成する場合には、p型半導体およびn型半導体は、可視光領域において光透過性を有する材料であることが好ましい。これにより、光電変換層12では、色素材料が吸収する波長帯域の光が選択的に光電変換されるようになる。
 本実施の形態の光電変換層12は、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、X線回折(XRD)スペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する。結晶性を有する有機半導体材料は、光電変換層12内において、面内方向に対して水平配向していることが好ましい。換言すると、結晶性を有する有機半導体材料は、光電変換層12内において、下部電極11の電極面に対して水平配向していることが好ましい。回折角(2θ)15°以上30°以下の範囲のうち、最も低角側から順に第1の結晶性ピーク(ピーク1)、第2の結晶性ピーク(ピーク2)、第3の結晶性ピーク(ピーク3)とする。3本の結晶性ピークは、いずれかのピークが他のピークよりも高い強度を有する。
 各ピークは、膜中に存在する結晶の配向方位を示していると考えられる。図4は、(110)配向が強い有機半導体材料を含む薄膜のXRDスペクトル(A)および微小入射角X線回折(GIXD)スペクトル(B)を表したものである。図5は、(020)配向が強い有機半導体材料を含む薄膜のXRDスペクトル(A)および微小入射角X線回折(GIXD)スペクトル(B)を表したものである。(110)配向は各結晶方位に対して立体的に導電性を示すパッキングとなっているのに対して、(020)配向では異方性、つまり特定方位にのみ伝導性が高くなるようなパッキングとなっていると推測される。有機半導体膜では、非連続な結晶パッキングが存在すると、そこでキャリアがブロックもしくはとラッピングされてしまい素子特性が悪化する。(020)配向では、結晶ドメイン同士が離れていた場合、伝導方位が限定されてしまうため、キャリアが結晶ドメイン間を飛び越えていけなくなる。一方で、(110)配向では、異なるドメイン間も等方的にキャリアが飛び越えていけることが考えられる。
 このことから、例えば図2に示したように、キャリアの輸送が阻害されにくい(110)配向を示す第1の結晶性ピーク(ピーク1)が、(020)配向を示す第2の結晶性ピーク(ピーク2)および(120)配向を示す第3の結晶性ピーク(ピーク3)よりも高い強度を有することが好ましい。図3は、ピーク1とピーク2との強度比(ピーク1/ピーク2)と、光応答性との関係を表したものである。図3からわかるように、ピーク1とピーク2との強度比(ピーク1/ピーク2)が大きくなるほど光応答性が改善される。例えば、(110)配向を示すピーク1で優位にキャリアを輸送させるため、ピーク1とピーク2との強度比(ピーク1/ピーク2)は2よりも大きいことが好ましい。
 なお、ピーク1、ピーク2およびピーク3の強度はそれぞれ、ピークの面積に置き換えることができる。ピーク面積は、[a,b]区間においてシンプソン則(下記数式(1))を用いることで算出できる。
Figure JPOXMLDOC01-appb-M000001
 
 上述した結晶性を有する有機半導体材料は、上記p型半導体および色素材料の一方または両方に相当する。但し、必ずしも上記n型半導体が上述した結晶性を有する有機半導体材料に相当することは排除するものではない。n型半導体は、本開示の「第1の有機半導体材料」の一具体例に相当するものである。p型半導体は、本開示の「第2の有機半導体材料」の一具体例に相当するものである。色素材料は、本開示の「第3の有機半導体材料」の一具体例に相当するものである。
 結晶性を有する有機半導体材料としては、例えば、面内異方性を有すると共に、分子内にπ共役面を有することが好ましい。具体的には、分子内に芳香族骨格および芳香族置換基を有する化合物が好ましい。結晶性を有する有機半導体材料を構成する芳香族置換基としては、例えば、例えば炭素数6以上60以下のビフェニル基、トリフェニル基、ターフェニル基、スチルベン基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、ペリレニル基、テトラセニル基、クリセニル基、フルオレニル基、アセナフタセニル基、トリフェニレン基およびフルオランテン基等が挙げられる。
 結晶性を有し、電子輸送性を有する有機半導体材料(n型半導体;第1の有機半導体材料)は、例えば、第3の有機半導体材料のLUMO(Lowest Unoccupied Molecular Orbital)準位と同等のLUMO準位を有することが好ましい。例えば、第1の有機半導体材料のLUMO準位は、4.0eV以上5.0eV以下であることが好ましい。このような有機半導体材料としては、例えば、ペリレンテトラカルボン酸ジイミド誘導体やナフタレンテトラカルボン酸ジイミド誘導体およびフルオロペンタセン誘導体等が挙げられる。
 結晶性を有し、正孔輸送性を有する有機半導体材料(p型半導体;第2の有機半導体材料)は、例えば、第3の有機半導体材料のHOMO(Highest Occupied Molecular Orbital)準位と同等のHOMO準位を有することが好ましい。例えば、第2の有機半導体材料のHOMO準位は、5.0eV以上6.0eV以下であることが好ましい。更に、第2の有機半導体材料は、第1の有機半導体材料よりも浅いHOMO準位またはLUMO準位を有することが好ましい。このような有機半導体材料としては、例えば、単環式または多環式の複素環芳香族骨格を有する化合物が挙げられる。
 結晶性を有する色素材料(第3の有機半導体材料)としては、例えば、400nm以上750nm以下の緑色光で50000cm-1以上の吸収係数を有する色材が挙げられる。このような色素材料としては、例えば、サブフタロシアニンまたはその誘導体が挙げられる。
 この他、光電変換層12は、他の有機半導体材料として、可視光に対して透過性を有すると共に、例えば、上記結晶性を有する有機半導体材料と対となるキャリア輸送性を有する有機半導体材料を含んで構成されていることが好ましい。例えば、結晶性を有する有機半導体材料として、上記正孔輸送性を有する有機半導体材料を用いる場合には、電子輸送性を有する材料(n型半導体)として、例えば、フラーレンC60、フラーレンC70、フラーレンC74等の高次フラーレンや内包フラーレン等に代表されるフラーレンおよびその誘導体が挙げられる。なお、ここでは、フラーレンを有機半導体として扱う。
 n型半導体として、フラーレンおよびその誘導体を用いた場合、例えば図6に示したように、回折角(2θ)20°付近には、回折角(2θ)15°以上30°以下の範囲に確認される3つのピークの残渣成分(サブピーク)が確認される。このサブピークは、フラーレンC60の凝集成分に由来するものであると考えられる。フラーレンC60の凝集成分は、正孔輸送材料の結晶性を低下させ、有機半導体膜の正孔輸送性能を低下させる。図7は、サブピークとピーク1との強度比と光応答性との関係を表したものである。強度比は、領域サブピークと領域ピーク1との面積の比(領域サブピーク/領域ピーク1)で表される。図7からわかるように、サブピークとピーク1との強度比が小さくなるほど光応答性が改善される。これは、ピーク1の強度が高いほど、正孔輸送材料が良好な結晶性を有し、また、例えば正孔輸送性に優れることを意味する。例えば、良好な光応答性(例えば、0.1以下)を得るためには、サブピークとピーク1との強度比は1よりも小さいことが好ましいといえる。
 なお、残渣成分(サブピーク)は以下のように定義される。結晶性の評価は、Out of PlaneのGIXDで評価できる。XRDスペクトルのバックグラウンドを2次指数減少関数ExpDec2(下記数式(2))で定義し、PearsonVII関数(下記数式(3))でピークフィッティングする。ピーク1,2,3の残渣成分をPearsonVII関数でフィッティング(半値幅;2以上、中心;15°~24°)したものがサブピークとなる。
Figure JPOXMLDOC01-appb-M000002
 
 サブピークの強度は、光電変換層12に含まれる有機半導体材料の組成比を調製することで制御することができる。具体的には、結晶性を有する有機半導体材料に相当する正孔輸送材料と、フラーレンまたはその誘導体との組成比(正孔輸送材料/フラーレンまたはその誘導体)を1よりも大きくすることで、サブピークとピーク1との強度比を1よりも小さくすることができる。
 図45は、サブピークとピーク2との強度比と内部量子効率(IQE)との関係を表したものである。ピーク2とサブピークとの強度比は、領域サブピークと領域ピーク2との面積の比(領域サブピーク/領域ピーク2)で表される。正孔輸送材料とフラーレンC60との混合膜においてフラーレンC60の比率を増やすと、3本のピークのうちピーク2が消失する。これは、フラーレンC60によって正孔輸送材料の配向が乱されることによるものである。そのため、サブピークとピーク2との強度比を算出することにより、有機半導体膜におけるフラーレンC60の凝集性による影響および正孔輸送材料の配向性の影響を合わせて評価することができる。
 ピーク2はフラーレンC60と強いπ-π相互作用を有する。一般に、π軌道は分子平面に垂直に広がる。ピーク2((020)面)の正孔輸送材料のπ軌道は、フラーレンC60のπ軌道との重なりが大きく、正孔輸送材料とフラーレンC60との間に強いπ-π相互作用が働く。この強いπ-π相互作用は、例えば、光電変換層12内のp型半導体とn型半導体との界面(p/n接合面)において解離した電子と正孔との再結合を促し、その結果としてIQEが低下する。つまり、ピーク2が成長すると、正孔輸送材料の(020)面とフラーレンC60との接触面を減らすことができ、再結合しやすい界面を減らすことができ、IQEを向上させることができる。
 また、上記のように、p型半導体(正孔輸送材料)、n型半導体(例えば、フラーレンC60)および色素材料の3種類の有機材料を用いて形成された光電変換層12では、入射した光のうち所定の波長帯域の光を吸収し、これにより励起子が生じる。励起子は、例えば、光電変換層12内を拡散し、正孔輸送材料とフラーレンC60との界面(p/n接合面)において電子と正孔とに解離する。あるいは、励起子は、例えば、色素材料とフラーレンC60との界面において電子と正孔とに解離する。そのため、光電変換には少なくとも色素材料とフラーレンC60との界面を多く有すること(即ち、高い相溶性)が求められ、IQEの改善には、電荷分離後に電子と正孔を対応する電極まで輸送できることが重要となる。
 上述したように、サブピークは、フラーレンC60の凝集成分に由来するものであると考えられる。フラーレンC60が凝集すると、色素材料も凝集するため、色素材料からフラーレンC60へ励起子が拡散できずに失活してしまう。また、フラーレンC60が凝集すると、光電変換層12内における電子輸送パスが途切れ、電子が電極まで運ばれずに失活してしまう。つまり、色素材料とフラーレンC60とが相溶していれば、これらが解消され、IQEを向上させることができる。
 以上のことから、サブピークとピーク2との強度比が小さくなるほどIQEが改善される。特に、図45からわかるように、ピーク2の強度比に対するサブピークの強度比を1.8よりも小さくすることにより、90%以上のIQEが得られるようになる。
 光電変換層12は、例えば10nm以上500nm以下の厚みを有し、好ましくは、100nm以上400nm以下の厚みを有している。
 上部電極13(陽極)は、下部電極11と同様に、例えば、光透過性を有する導電膜により構成されている。上部電極13の構成材料としては、例えば、ドーパントとしてスズ(Sn)を添加したInであるインジウム錫酸化物(ITO)が挙げられる。そのITO薄膜の結晶性は、結晶性が高くても、低く(アモルファスに近づく)てもよい。下部電極11の構成材料としては、上記以外にも、ドーパントを添加した酸化スズ(SnO)系材料例えば、ドーパントとしてSbを添加したATO、ドーパントとしてフッ素を添加したFTOが挙げられる。また、酸化亜鉛(ZnO)あるいはドーパントを添加してなる酸化亜鉛系材料を用いてもよい。ZnO系材料としては、例えば、ドーパントとしてアルミニウム(Al)を添加したアルミニウム亜鉛酸化物(AZO)、ガリウム(Ga)を添加したガリウム亜鉛酸化物(GZO)、ホウ素(B)を添加したホウ素亜鉛酸化物およびインジウム(In)を添加したインジウム亜鉛酸化物(IZO)が挙げられる。さらにドーパントとしてインジウムとガリウムを添加した亜鉛酸化物(IGZO,In-GaZnO4)を用いてもよい。加えて、下部電極11の構成材料としては、CuI、InSbO、ZnMgO、CuInO、MgIN、CdO、ZnSnOまたはTiO等を用いてもよいし、スピネル形酸化物やYbFe構造を有する酸化物を用いてもよい。
 また、上部電極13に光透過性が不要である場合には、高い仕事関数(例えば、φ=4.5eV~5.5eV)を有する単金属または合金を用いることができる。具体的には、例えば、Au、Ag、Cr、Ni、Pd、Pt、Fe、イリジウム(Ir)、ゲルマニウム(Ge)、オスミウム(Os)、レニウム(Re)、テルル(Te)およびそれらの合金が挙げられる。
 更に、上部電極13を構成する材料としては、Pt、Au、Pd、Cr、Ni、Al、Ag、Ta、W、Cu、Ti、In、Sn、Fe、CoおよびMo等の金属、または、それらの金属元素を含む合金、あるいは、それらの金属からなる導電性粒子、それらの金属を含む合金の導電性粒子、不純物を含有したポリシリコン、炭素系材料、酸化物半導体、カーボン・ナノ・チューブ、グラフェン等の導電性物質が挙げられる。この他、上部電極13を構成する材料としては、PEDOT/PSSといった有機材料(導電性高分子)が挙げられる。また、上記材料をバインダー(高分子)に混合してペーストまたはインクとしたものを硬化させ、電極として用いてもよい。
 上部電極13は、上記材料からなる単層膜あるいは積層膜として形成することができる。上部電極13の厚みは、例えば20nm以上200nm以下であり、好ましくは30nm以上150nm以下である。
 なお、下部電極11と上部電極13との間には、他の層をさらに有していてもよい。例えば、下部電極11と光電変換層12との間には、正孔ブロック層や下引き層を設けるようにしてもよい。正孔ブロック層は、光電変換層12において発生した電荷のうち、電子を選択的に下部電極11へ輸送すると共に、下部電極11側からの正孔の注入を阻害するものである。電子ブロック層は、光電変換層12において発生した電荷のうち、正孔を選択的に上部電極13へ輸送すると共に、上部電極13側からの電子の注入を阻害するものである。仕事関数調整層は、上部電極13の仕事関数よりも大きな電子親和力または仕事関数を有するものである。
 光電変換素子10に入射した光は、光電変換層12において吸収される。これによって生じた励起子(電子正孔対)は、光電変換層12を構成するp型半導体とn型半導体との界面(p/n接合面)において励起子分離、即ち、電子と正孔とに解離する。ここで発生したキャリア(電子および正孔)は、キャリアの濃度差による拡散や、陽極と陰極との仕事関数の差による内部電界によって、それぞれ異なる電極へ運ばれ、光電流として検出される。例えば、p/n接合面において分離された電子は、下部電極11から取り出される。p/n接合面において分離された正孔は、上部電極13から取り出される。なお、電子および正孔の輸送方向は、下部電極11と上部電極13との間に電位を印加することによっても制御することができる。
(1-2.撮像素子の構成)
 図8は、上述した光電変換素子10を用いた撮像素子(撮像素子1A)の断面構成の一例を模式的に表したものである。図9は、図8に示した撮像素子1Aの平面構成の一例を模式的に表したものであり、図8は、図9に示したI-I線における断面を表している。撮像素子1Aは、例えば、図22に示した撮像装置100の画素部100Aにおいてアレイ状に繰り返し配置される1つの画素(単位画素P)を構成するものである。画素部100Aでは、図9に示したように、例えば2行×2列で配置された4つの画素からなる画素ユニット1aが繰り返し単位となり、行方向と列方向とからなるアレイ状に繰り返し配置されている。
 撮像素子1Aは、互いに異なる波長帯域の光を選択的に検出して光電変換を行う、例えば有機材料を用いて形成された1つの光電変換部と、例えば無機材料からなる2つの光電変換部(光電変換領域32B,32R)とが縦方向に積層された、所謂縦方向分光型のものである。上述した光電変換素子10は、撮像素子1Aを構成する光電変換部として用いることができる。以下では、光電変換部は上述した光電変換素子10と同様の構成を有するものとして同じ符号10を付して説明する。
 撮像素子1Aでは、光電変換部10は、半導体基板30の裏面(第1面30S1)側に設けられている。光電変換領域32B,32Rは、半導体基板30内に埋め込み形成されており、半導体基板30の厚み方向に積層されている。
 光電変換部10と、光電変換領域32B,32Rとは、互いに異なる波長帯域の光を選択的に検出して光電変換を行うものである。例えば、光電変換部10では、緑(G)の色信号を取得する。光電変換領域32B,32Rでは、吸収係数の違いにより、それぞれ、青(B)および赤(R)の色信号を取得する。これにより、撮像素子1Aでは、カラーフィルタを用いることなく一つの画素において複数種類の色信号を取得可能となっている。
 なお、撮像素子1Aでは、光電変換によって生じる電子正孔対のうち、電子を信号電荷として読み出す場合について説明する。また、図中において、「p」「n」に付した「+(プラス)」は、p型またはn型の不純物濃度が高いことを表している。
 半導体基板30は、例えば、n型のシリコン(Si)基板により構成され、所定領域にpウェル31を有している。pウェル31の第2面(半導体基板30の表面)30S2には、例えば、各種フローティングディフュージョン(浮遊拡散層)FD(例えば、FD1,FD2,FD3)と、各種トランジスタTr(例えば、縦型トランジスタ(転送トランジスタ)Tr2、転送トランジスタTr3、アンプトランジスタ(変調素子)AMPおよびリセットトランジスタRST)が設けられている。半導体基板30の第2面30S2には、さらに、ゲート絶縁層33を介して多層配線層40が設けられている。多層配線層40は、例えば、配線層41,42,43を絶縁層44内に積層した構成を有している。また、半導体基板30の周辺部には、ロジック回路等からなる周辺回路(図示せず)が設けられている。
 光電変換部10の上方には、保護層51が設けられている。保護層51内には、例えば、遮光膜53や画素部100Aの周囲において上部電極13と周辺回路部とを電気的に接続する配線が設けられている。保護層51の上方には、さらに、平坦化層(図示せず)やオンチップレンズ52L等の光学部材が配設されている。
 なお、図3では、半導体基板30の第1面30S1側を光入射面S1、第2面30S2側を配線層側S2と表している。
 以下、各部の構成や材料等について詳細に説明する。
 光電変換部10は、下部電極11と、光電変換層12と、上部電極13とがこの順に積層されたものである。撮像素子1Aでは、下部電極11は、複数の電極(例えば、読み出し電極11Aおよび蓄積電極11Bの2つ)からなり、下部電極11と光電変換層12との間には、例えば、絶縁層14および半導体層15がこの順に積層されている。下部電極11のうち、読み出し電極11Aは、絶縁層14に設けられた開口14Hを介して半導体層15と電気的に接続されている。
 読み出し電極11Aは、光電変換層12内で発生した電荷をフローティングディフュージョンFD1に転送するためのものであり、例えば、上部第2コンタクト24B、パッド部39B、上部第1コンタクト29A、パッド部39A、貫通電極34、接続部41Aおよび下部第2コンタクト46を介してフローティングディフュージョンFD1に接続されている。蓄積電極11Bは、光電変換層12内で発生した電荷のうち、電子を信号電荷として半導体層15内に蓄積するためのものである。蓄積電極11Bは、半導体基板30内に形成された光電変換領域32B,32Rの受光面と正対して、これらの受光面を覆う領域に設けられている。蓄積電極11Bは、読み出し電極11Aよりも大きいことが好ましく、これにより、多くの電荷を蓄積することができる。蓄積電極11Bには、図11に示したように、例えば上部第3コンタクト24Cおよびパッド部39C等の配線を介して電圧印加部54が接続されている。
 絶縁層14は、蓄積電極11Bと半導体層15とを電気的に分離するためのものである。絶縁層14は、下部電極11を覆うように、例えば、層間絶縁層23上に設けられている。絶縁層14は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)および酸窒化シリコン(SiO)等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。絶縁層14の厚みは、例えば20nm以上500nm以下である。
 半導体層15は、光電変換層12で発生した信号電荷を蓄積するためのものである。半導体層15は、光電変換層12よりも電荷の移動度が高く、且つ、バンドギャップが大きな材料を用いて形成されていることが好ましい。例えば、半導体層15の構成材料のバンドギャップは、3.0eV以上であることが好ましい。このような材料としては、例えば、IGZO等の酸化物半導体および有機半導体等が挙げられる。有機半導体としては、例えば、遷移金属ダイカルコゲナイド、シリコンカーバイド、ダイヤモンド、グラフェン、カーボン・ナノ・チューブ、縮合多環炭化水素化合物および縮合複素環化合物等が挙げられる。半導体層15の厚みは、例えば10nm以上300nm以下である。上記材料によって構成された半導体層15を下部電極11と光電変換層12との間に設けることにより、電荷蓄積時における電荷の再結合を防止し、転送効率を向上させることが可能となる。
 なお、図3では、半導体層15、光電変換層12および上部電極13が複数の画素(単位画素P,図22参照)に共通した連続層として設けた例を示したが、これに限らない。半導体層15、光電変換層12および上部電極13は、例えば、単位画素P毎に分離形成されていてもよい。
 半導体基板30と下部電極11との間には、例えば、固定電荷を有する層(固定電荷層)21と、絶縁性を有する誘電体層22と、層間絶縁層23とが、半導体基板30の第1面30S1側からこの順に設けられている。
 固定電荷層21は、正の固定電荷を有する膜でもよいし、負の固定電荷を有する膜でもよい。固定電荷層21の構成材料としては、半導体基板30よりもバンドギャップの広い半導体または導電材料を用いて形成することが好ましい。これにより、半導体基板30の界面における暗電流の発生を抑えることができる。固定電荷層21の構成材料としては、例えば、酸化ハフニウム(HfO)、酸化アルミニウム(AlO)、酸化ジルコニウム(ZrO)、酸化タンタル(TaO)、酸化チタン(TiO)、酸化ランタン(LaO)、酸化プラセオジム(PrO)、酸化セリウム(CeO)、酸化ネオジム(NdO)、酸化プロメチウム(PmO)、酸化サマリウム(SmO)、酸化ユウロピウム(EuO)、酸化ガドリニウム(GdO)、酸化テルビウム(TbO)、酸化ジスプロシウム(DyO)、酸化ホルミウム(HoO)、酸化ツリウム(TmO)、酸化イッテルビウム(YbO)、酸化ルテチウム(LuO)、酸化イットリウム(YO)、窒化ハフニウム(HfN)、窒化アルミニウム(AlN)、酸窒化ハフニウム(HfO)および酸窒化アルミニウム(AlO)等が挙げられる。
 誘電体層22は、半導体基板30と層間絶縁層23との間の屈折率差によって生じる光の反射を防止するためのものである。誘電体層22の構成材料としては、半導体基板30の屈折率と層間絶縁層23の屈折率との間の屈折率を有する材料であることが好ましい。誘電体層22の構成材料としては、例えば、SiO、TEOS、SiNおよびSiO等が挙げられる。
 層間絶縁層23は、例えば、SiO、SiNおよびSiO等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。
 光電変換領域32B,32Rは、例えばPIN(Positive Intrinsic Negative)型のフォトダイオードによって構成されており、それぞれ、半導体基板30の所定領域にpn接合を有する。光電変換領域32B,32Rは、シリコン基板において光の入射深さに応じて吸収される波長帯域が異なることを利用して縦方向に光を分光することを可能としたものである。
 光電変換領域32Bは、青色光を選択的に検出して青色に対応する信号電荷を蓄積させるものであり、青色光を効率的に光電変換可能な深さに形成されている。光電変換領域32Rは、赤色光を選択的に検出して赤色に対応する信号電荷を蓄積させるものであり、赤色光を効率的に光電変換可能な深さに形成されている。なお、青(B)は、例えば400nm以上495nm未満の波長帯域、赤(R)は、例えば620nm以上750nm未満の波長帯域に対応する色である。光電変換領域32B,32Rはそれぞれ、各波長帯域のうちの一部または全部の波長帯域の光を検出可能となっていればよい。
 光電変換領域32Bおよび光電変換領域32Rは、具体的には、図8に示したように、それぞれ、例えば、正孔蓄積層となるp+領域と、電子蓄積層となるn領域とを有する(p-n-pの積層構造を有する)。光電変換領域32Bのn領域は、縦型トランジスタTr2に接続されている。光電変換領域32Bのp+領域は、縦型トランジスタTr2に沿って屈曲し、光電変換領域32Rのp+領域につながっている。
 ゲート絶縁層33は、例えば、SiO、SiNおよびSiO等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。
 半導体基板30の第1面30S1と第2面30S2との間には、貫通電極34が設けられている。貫通電極34は、光電変換部10とアンプトランジスタAMPのゲートGampおよびフローティングディフュージョンFD1とのコネクタとしての機能を有すると共に、光電変換部10において生じた電荷の伝送経路となるものである。フローティングディフュージョンFD1(リセットトランジスタRSTの一方のソース/ドレイン領域36B)の隣にはリセットトランジスタRSTのリセットゲートGrstが配置されている。これにより、フローティングディフュージョンFD1に蓄積された電荷を、リセットトランジスタRSTによりリセットすることが可能となる。
 貫通電極34の上端は、例えば、層間絶縁層23内に設けられたパッド部39A、上部第1コンタクト24A、パッド電極38Bおよび上部第2コンタクト24Bを介して読み出し電極11Aに接続されている。貫通電極34の下端は、配線層41内の接続部41Aに接続されており、接続部41Aと、アンプトランジスタAMPのゲートGampとは、下部第1コンタクト45を介して接続されている。接続部41Aと、フローティングディフュージョンFD1(領域36B)とは、例えば、下部第2コンタクト46を介して接続されている。
 上部第1コンタクト24A、上部第2コンタクト24B、上部第3コンタクト24C、パッド部39A,39B,39C、配線層41,42,43、下部第1コンタクト45、下部第2コンタクト46およびゲート配線層47は、例えば、PDAS(Phosphorus Doped Amorphous Silicon)等のドープされたシリコン材料、または、Al、W、Ti、Co、HfおよびTa等の金属材料を用いて形成することができる。
 絶縁層44は、例えば、SiO、SiNおよびSiO等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。
 保護層51およびオンチップレンズ52Lは、光透過性を有する材料により構成され、例えば、例えば、SiO、SiNおよびSiO等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。保護層51の厚みは、例えば100nm以上30000nm以下である。
 遮光膜53は、例えば、少なくとも蓄積電極11Bにはかからず、半導体層15と直接接している読み出し電極21Aの領域を覆うように設けられている。遮光膜53は、例えば、W、AlおよびAlとCuとの合金等を用いて形成することができる。
 図10は、図7に示した撮像素子1Aの等価回路図である。図11は、図7に示した撮像素子1Aの下部電極11および制御部を構成するトランジスタの配置を模式的に表したものである。
 リセットトランジスタRST(リセットトランジスタTR1rst)は、光電変換部10からフローティングディフュージョンFD1に転送された電荷をリセットするためのものであり、例えばMOSトランジスタにより構成されている。具体的には、リセットトランジスタTR1rstは、リセットゲートGrstと、チャネル形成領域36Aと、ソース/ドレイン領域36B,36Cとから構成されている。リセットゲートGrstは、リセット線RST1に接続され、リセットトランジスタTR1rstの一方のソース/ドレイン領域36Bは、フローティングディフュージョンFD1を兼ねている。リセットトランジスタTR1rstを構成する他方のソース/ドレイン領域36Cは、電源線VDDに接続されている。
 アンプトランジスタAMPは、光電変換部10で生じた電荷量を電圧に変調する変調素子であり、例えばMOSトランジスタにより構成されている。具体的には、アンプトランジスタAMPは、ゲートGampと、チャネル形成領域35Aと、ソース/ドレイン領域35B,35Cとから構成されている。ゲートGampは、下部第1コンタクト45、接続部41A、下部第2コンタクト46および貫通電極34等を介して、読み出し電極11AおよびリセットトランジスタTR1rstの一方のソース/ドレイン領域36B(フローティングディフュージョンFD1)に接続されている。また、一方のソース/ドレイン領域35Bは、リセットトランジスタTR1rstを構成する他方のソース/ドレイン領域36Cと、領域を共有しており、電源線VDDに接続されている。
 選択トランジスタSEL(選択トランジスタTR1sel)は、ゲートGselと、チャネル形成領域34Aと、ソース/ドレイン領域34B,34Cとから構成されている。ゲートGselは、選択線SEL1に接続されている。一方のソース/ドレイン領域34Bは、アンプトランジスタAMPを構成する他方のソース/ドレイン領域35Cと、領域を共有しており、他方のソース/ドレイン領域34Cは、信号線(データ出力線)VSL1に接続されている。
 転送トランジスタTR2(転送トランジスタTR2trs)は、光電変換領域32Bにおいて発生し、蓄積された、青色に対応する信号電荷を、フローティングディフュージョンFD2に転送するためのものである。光電変換領域32Bは半導体基板30の第2面30S2から深い位置に形成されているので、光電変換領域32Bの転送トランジスタTR2trsは縦型のトランジスタにより構成されていることが好ましい。転送トランジスタTR2trsは、転送ゲート線TG2に接続されている。転送トランジスタTR2trsのゲートGtrs2の近傍の領域37Cには、フローティングディフュージョンFD2が設けられている。光電変換領域32Bに蓄積された電荷は、ゲートGtrs2に沿って形成される転送チャネルを介してフローティングディフュージョンFD2に読み出される。
 転送トランジスタTR3(転送トランジスタTR3trs)は、光電変換領域32Rにおいて発生し、蓄積された赤色に対応する信号電荷を、フローティングディフュージョンFD3に転送するためのものであり、例えばMOSトランジスタにより構成されている。転送トランジスタTR3trsは、転送ゲート線TG3に接続されている。転送トランジスタTR3trsのゲートGtrs3の近傍の領域38Cには、フローティングディフュージョンFD3が設けられている。光電変換領域32Rに蓄積された電荷は、ゲートGtrs3に沿って形成される転送チャネルを介してフローティングディフュージョンFD3に読み出される。
 半導体基板30の第2面30S2側には、さらに、光電変換領域32Bの制御部を構成するリセットトランジスタTR2rstと、アンプトランジスタTR2ampと、選択トランジスタTR2selが設けられている。更に、光電変換領域32Rの制御部を構成するリセットトランジスタTR3rstと、アンプトランジスタTR3ampおよび選択トランジスタTR3selが設けられている。
 リセットトランジスタTR2rstは、ゲート、チャネル形成領域およびソース/ドレイン領域から構成されている。リセットトランジスタTR2rstのゲートはリセット線RST2に接続され、リセットトランジスタTR2rstの一方のソース/ドレイン領域は電源線VDDに接続されている。リセットトランジスタTR2rstの他方のソース/ドレイン領域は、フローティングディフュージョンFD2を兼ねている。
 アンプトランジスタTR2ampは、ゲート、チャネル形成領域およびソース/ドレイン領域から構成されている。ゲートは、リセットトランジスタTR2rstの他方のソース/ドレイン領域(フローティングディフュージョンFD2)に接続されている。アンプトランジスタTR2ampを構成する一方のソース/ドレイン領域は、リセットトランジスタTR2rstを構成する一方のソース/ドレイン領域と領域を共有しており、電源線VDDに接続されている。
 選択トランジスタTR2selは、ゲート、チャネル形成領域およびソース/ドレイン領域から構成されている。ゲートは、選択線SEL2に接続されている。選択トランジスタTR2selを構成する一方のソース/ドレイン領域は、アンプトランジスタTR2ampを構成する他方のソース/ドレイン領域と領域を共有している。選択トランジスタTR2selを構成する他方のソース/ドレイン領域は、信号線(データ出力線)VSL2に接続されている。
 リセットトランジスタTR3rstは、ゲート、チャネル形成領域およびソース/ドレイン領域から構成されている。リセットトランジスタTR3rstのゲートはリセット線RST3に接続され、リセットトランジスタTR3rstを構成する一方のソース/ドレイン領域は電源線VDDに接続されている。リセットトランジスタTR3rstを構成する他方のソース/ドレイン領域は、フローティングディフュージョンFD3を兼ねている。
 アンプトランジスタTR3ampは、ゲート、チャネル形成領域およびソース/ドレイン領域から構成されている。ゲートは、リセットトランジスタTR3rstを構成する他方のソース/ドレイン領域(フローティングディフュージョンFD3)に接続されている。アンプトランジスタTR3ampを構成する一方のソース/ドレイン領域は、リセットトランジスタTR3rstを構成する一方のソース/ドレイン領域と、領域を共有しており、電源線VDDに接続されている。
 選択トランジスタTR3selは、ゲート、チャネル形成領域およびソース/ドレイン領域から構成されている。ゲートは、選択線SEL3に接続されている。選択トランジスタTR3selを構成する一方のソース/ドレイン領域は、アンプトランジスタTR3ampを構成する他方のソース/ドレイン領域と、領域を共有している。選択トランジスタTR3selを構成する他方のソース/ドレイン領域は、信号線(データ出力線)VSL3に接続されている。
 リセット線RST1,RST2,RST3、選択線SEL1,SEL2,SEL3、転送ゲート線TG2,TG3は、それぞれ、駆動回路を構成する垂直駆動回路に接続されている。信号線(データ出力線)VSL1,VSL2,VSL3は、駆動回路を構成するカラム信号処理回路112に接続されている。
(1-3.撮像素子の製造方法)
 本実施の形態の撮像素子1Aは、例えば、次のようにして製造することができる。
 図12A~図12Fは、撮像素子1Aの製造方法を工程順に表したものである。まず、図12Aに示したように、半導体基板30内に例えばpウェル31を形成し、このpウェル31内に例えばn型の光電変換領域32B,32Rを形成する。半導体基板30の第1面30S1近傍にはp+領域を形成する。
 半導体基板30の第2面30S2には、同じく図12Aに示したように、例えばフローティングディフュージョンFD1~FD3となるn+領域を形成したのち、ゲート絶縁層33と、転送トランジスタTr2、転送トランジスタTr3、選択トランジスタSEL、アンプトランジスタAMPおよびリセットトランジスタRSTの各ゲートを含むゲート配線層47とを形成する。これにより、転送トランジスタTr2、転送トランジスタTr3、選択トランジスタSEL、アンプトランジスタAMPおよびリセットトランジスタRSTを形成する。更に、半導体基板30の第2面30S2上に、下部第1コンタクト45、下部第2コンタクト46および接続部41Aを含む配線層41~43および絶縁層44からなる多層配線層40を形成する。
 半導体基板30の基体としては、例えば、半導体基板30と、埋込み酸化膜(図示せず)と、保持基板(図示せず)とを積層したSOI(Silicon on Insulator)基板を用いる。埋込み酸化膜および保持基板は、図12Aには図示しないが、半導体基板30の第1面30S1に接合されている。イオン注入後、アニール処理を行う。
 次いで、半導体基板30の第2面30S2側に設けられた多層配線層40上に支持基板(図示せず)または他の半導体基体等を接合して、上下反転する。続いて、半導体基板30をSOI基板の埋込み酸化膜および保持基板から分離し、半導体基板30の第1面30S1を露出させる。以上の工程は、イオン注入およびCVD(Chemical Vapor Deposition)法等、通常のCMOSプロセスで使用されている技術にて行うことが可能である。
 次いで、図12Bに示したように、例えばドライエッチングにより半導体基板30を第1面30S1側から加工し、例えば環状の開口34Hを形成する。開口34Hの深さは、図12Cに示したように、半導体基板30の第1面30S1から第2面30S2まで貫通すると共に、例えば、接続部41Aまで達するものである。
 続いて、半導体基板30の第1面30S1および開口34Hの側面に、例えば負の固定電荷層21および誘電体層22を順に形成する。固定電荷層21は、例えば、原子層堆積法(ALD法)を用いてHfO膜を成膜することで形成することができる。誘電体層22は、例えば、プラズマCVD法を用いてSiO膜を製膜することで形成することができる。次に、誘電体層22上の所定の位置に、例えば、チタンと窒化チタンとの積層膜(Ti/TiN膜)からなるバリアメタルとW膜とが積層されたパッド部39Aを形成する。その後、誘電体層22およびパッド部39A上に、層間絶縁層23を形成し、CMP(Chemical Mechanical Polishing)法を用いて層間絶縁層23の表面を平坦化する。
 続いて、図12Cに示したように、パッド部39A上に開口23H1を形成した後、この開口23H1に、例えばAl等の導電材料を埋め込み、上部第1コンタクト24Aを形成する。次に、図12Cに示したように、パッド部39Aと同様にして、パッド部39B,39Cした後、層間絶縁層23および上部第2コンタクト24B、上部第3コンタクト24Cを順に形成する。
 続いて、図12Dに示したように、層間絶縁層23上に、例えば、スパッタリング法を用いて導電膜11Xを成膜した後、フォトリソグラフィ技術を用いてパターニングを行う。具体的には、導電膜11Xの所定の位置にフォトレジストPRを形成した後、ドライエッチングまたはウェットエッチングを用いて導電膜11Xを加工する。その後、フォトレジストPRを除去することで、図12Eに示したように、読み出し電極11Aおよび蓄積電極11Bが形成される。
 次に、図12Fに示したように、絶縁層14、半導体層15、光電変換層12および上部電極13を順に成膜する。絶縁層14は、例えば、ALD法を用いてSiO膜を製膜した後、CMP法を用いて絶縁層14の表面を平坦化する。その後、読み出し電極11A上に、例えば、ウェットエッチングを用いて開口14Hを形成する。半導体層15は、例えば、スパッタリング法を用いて形成することができる。光電変換層12は、例えば、真空蒸着法を用いて形成する。上部電極13は、下部電極11と同様に、例えば、スパッタリング法を用いて形成する。最後に、上部電極13上に、保護層51、遮光膜53およびオンチップレンズ52Lを配設する。以上により、図8に示した撮像素子1Aが完成する。
 なお、下部電極11と上部電極13との間に光電変換層12の他に、正孔ブロック層や電子ブロック層等を形成する場合には、各層を真空工程において連続的に(真空一貫プロセスで)形成することが望ましい。また、正孔ブロック層、光電変換層12および電子ブロック層等の有機層や下部電極11および上部電極13等の導電膜は、乾式成膜法または湿式成膜法を用いて形成することができる。乾式成膜法としては、抵抗加熱あるいは高周波加熱を用いた真空蒸着法の他に、電子ビーム(EB)蒸着法、各種スパッタリング法(マグネトロンスパッタリング法、RF-DC結合形バイアススパッタリング法、ECRスパッタリング法、対向ターゲットスパッタリング法、高周波スパッタリング法)、イオンプレーティング法、レーザブレーション法、分子線エピタキシー法およびレーザ転写法が挙げられる。この他、乾式成膜法としては、プラズマCVD法、熱CVD法、MOCVD法および光CVD法等の化学的気相成長法が挙げられる。湿式成膜法としては、スピンコート法、インクジェット法、スプレーコート法、スタンプ法、マイクロコンタクトプリント法、フレキソ印刷法、オフセット印刷法、グラビア印刷法およびディップ法等が挙げられる。
 パターニングについては、フォトリソグラフィ技術の他に、シャドーマスクおよびレーザ転写等の化学的エッチング、紫外線やレーザ等による物理的エッチング等を用いることができる。平坦化技術としては、CMP法の他に、レーザ平坦化法やリフロー法等を用いることができる。
(1-4.撮像素子の信号取得動作)
 撮像素子1Aでは、光電変換部10に、オンチップレンズ52Lを介して光が入射すると、その光は、光電変換部10、光電変換領域32B,32Rの順に通過し、その通過過程において緑、青、赤の色光毎に光電変換される。以下、各色の信号取得動作について説明する。
(光電変換部10による緑色信号の取得)
 撮像素子1Aへ入射した光のうち、まず、緑色光(G)が、光電変換部10において選択的に検出(吸収)され、光電変換される。
 光電変換部10は、貫通電極34を介して、アンプトランジスタAMPのゲートGampとフローティングディフュージョンFD1とに接続されている。よって、光電変換部10で発生した励起子のうちの電子が下部電極11側から取り出され、貫通電極34を介して半導体基板30の第2面30S2側へ転送され、フローティングディフュージョンFD1に蓄積される。これと同時に、アンプトランジスタAMPにより、光電変換部10で生じた電荷量が電圧に変調される。
 また、フローティングディフュージョンFD1の隣には、リセットトランジスタRSTのリセットゲートGrstが配置されている。これにより、フローティングディフュージョンFD1に蓄積された電荷は、リセットトランジスタRSTによりリセットされる。
 光電変換部10は、貫通電極34を介して、アンプトランジスタAMPだけでなくフローティングディフュージョンFD1にも接続されているので、フローティングディフュージョンFD1に蓄積された電荷をリセットトランジスタRSTにより容易にリセットすることが可能となる。
 これに対して、貫通電極34とフローティングディフュージョンFD1とが接続されていない場合には、フローティングディフュージョンFD1に蓄積された電荷をリセットすることが困難となり、大きな電圧をかけて上部電極13側へ引き抜くことになる。そのため、光電変換層24がダメージを受ける虞がある。また、短時間でのリセットを可能とする構造は暗時ノイズの増大を招き、トレードオフとなるため、この構造は困難である。
 図13は、撮像素子1Aの一動作例を表したものである。(A)は、蓄積電極11Bにおける電位を示し、(B)は、フローティングディフュージョンFD1(読み出し電極11A)における電位を示し、(C)は、リセットトランジスタTR1rstのゲート(Gsel)における電位を示したものである。撮像素子1Aでは、読み出し電極11Aおよび蓄積電極11Bは、それぞれ個別に電圧が印加されるようになっている。
 撮像素子1Aでは、蓄積期間において、駆動回路から読み出し電極11Aに電位V1が印加され、蓄積電極11Bに電位V2が印加される。ここで、電位V1,V2は、V2>V1とする。これにより、光電変換によって生じた電荷(信号電荷;電子)は、蓄積電極11Bに引きつけられ、蓄積電極11Bと対向する半導体層15の領域に蓄積される(蓄積期間)。因みに、蓄積電極11Bと対向する半導体層15の領域の電位は、光電変換の時間経過に伴い、より負側の値となる。なお、正孔は、上部電極13から駆動回路へと送出される。
 撮像素子1Aでは、蓄積期間の後期にリセット動作がなされる。具体的には、タイミングt1において、走査部は、リセット信号RSTの電圧を低レベルから高レベルに変化させる。これにより、単位画素Pでは、リセットトランジスタTR1rstがオン状態になり、その結果、フローティングディフュージョンFD1の電圧が電源電圧に設定され、フローティングディフュージョンFD1の電圧がリセットされる(リセット期間)。
 リセット動作の完了後、電荷の読み出しが行われる。具体的には、タイミングt2において、駆動回路から読み出し電極11Aには電位V3が印加され、蓄積電極11Bには電位V4が印加される。ここで、電位V3,V4は、V3<V4とする。これにより、蓄積電極11Bに対応する領域に蓄積されていた電荷は、読み出し電極11AからフローティングディフュージョンFD1へと読み出される。即ち、半導体層15に蓄積された電荷が制御部に読み出される(転送期間)。
 読み出し動作完了後、再び、駆動回路から読み出し電極11Aに電位V1が印加され、蓄積電極11Bに電位V2が印加される。これにより、光電変換によって生じた電荷は、蓄積電極11Bに引きつけられ、蓄積電極11Bと対向する光電変換層24の領域に蓄積される(蓄積期間)。
(光電変換領域32B,32Rによる青色信号,赤色信号の取得)
 続いて、光電変換部10を透過した光のうち、青色光(B)は光電変換領域32B、赤色光(R)は光電変換領域32Rにおいて、それぞれ順に吸収され、光電変換される。光電変換領域32Bでは、入射した青色光(B)に対応した電子が光電変換領域32Bのn領域に蓄積され、蓄積された電子は、転送トランジスタTr2によりフローティングディフュージョンFD2へと転送される。同様に、光電変換領域32Rでは、入射した赤色光(R)に対応した電子が光電変換領域32Rのn領域に蓄積され、蓄積された電子は、転送トランジスタTr3によりフローティングディフュージョンFD3へと転送される。
(1-5.作用・効果)
 本実施の形態の光電変換素子10では、下部電極11と上部電極13との間に、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する光電変換層12を設けるようにした。以下、これについて説明する。
 近年、有機半導体薄膜を光電変換層として用いた固体撮像素子が提案されている。一般的な固体撮像素子には、光入射量に対応する光電変換性能(量子効率)が高いことおよび動被写体に対する光応答性が速いことが求められる。特に、光応答性は有機半導体特有の導電性の低さにより改善が求められている。光応答性の改善には光電変換層中のキャリア輸送性の向上が重要となる。
 図14は、光パルス応答波形の一例を表したものである。特定の光照射時間の後、t=0で光をオフした後の遅延電流が光応答性の指標となる。この光応答性は、光電変換層のキャリア輸送性に強く依存する。このため、光電変換層のキャリア輸送性を向上させることが光応答性の改善に重要である。
 一方、キャリア輸送には光電変換材料に用いる結晶性が重要となる。一般的には結晶性が高いほど、キャリア移動度が向上することが知られている。更には、固体撮像素子では、電極に対して垂直方向にキャリア輸送性が高いことが望ましい。このため、キャリア輸送性が高い事および好ましい方位に対して良好なキャリア輸送性を持つことが要求される。
 これに対して、本実施の形態では、結晶性を有する有機半導体材料を用いて光電変換層12を形成し、光電変換層12がキャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有するようにした。これにより、厚み方向に対するキャリア輸送性が向上する。
 以上により、高効率且つ高速な光応答性を有する光電変換素子10およびこれを備えた撮像素子1Aを提供することが可能となる。
 次に、本開示の変形例1~5について説明する。なお、上記実施の形態の光電変換素子10および撮像素子1Aに対応する構成要素には同一の符号を付して説明を省略する。
<2.変形例>
(2-1.変形例1)
 図15は、本開示の変形例1に係る撮像素子1Bの断面構成を模式的に表したものである。撮像素子1Bは、上記実施の形態の撮像素子1Aと同様に、例えば、デジタルスチルカメラ、ビデオカメラ等の電子機器に用いられるCMOSイメージセンサ等の撮像素子である。本変形例の撮像素子1Bは、下部電極11が単位画素P毎に1つの電極からなる点が、上記実施の形態とは異なる。
 撮像素子1Bは、上記撮像素子1Aと同様に、単位画素P毎に、1つの光電変換部10と、2つの光電変換領域32B,32Rとが縦方向に積層されたものである。光電変換部10は、上記光電変換素子10に相当し、半導体基板30の裏面(第1面30A)側に設けられている。光電変換領域32B,32Rは、半導体基板30内に埋め込み形成されており、半導体基板30の厚み方向に積層されている。
 本変形例の撮像素子1Bは、上記のように、光電変換部10の下部電極11が1つの電極からなり、下部電極11と光電変換層12との間に絶縁層14および半導体層15が設けられていないこと以外は、上記撮像素子1Aと同様の構成を有している。
 このように、光電変換部10の構成は上記実施の形態の撮像素子1Aに限定されず、本変形例の撮像素子1Bの光電変換部10の構成としても、上記実施の形態と同様の効果を得ることができる。
(2-2.変形例2)
 図16は、本開示の変形例2に係る撮像素子1Cの断面構成を模式的に表したものである。撮像素子1Cは、上記実施の形態の撮像素子1Aと同様に、例えば、デジタルスチルカメラ、ビデオカメラ等の電子機器に用いられるCMOSイメージセンサ等の撮像素子である。本変形例の撮像素子1Cは、2つの光電変換部10,80と、1つの光電変換領域32とが縦方向に積層されたものである。
 光電変換部10,80と、光電変換領域32とは、互いに異なる波長帯域の光を選択的に検出して光電変換を行うものである。例えば、光電変換部10では緑(G)の色信号を取得する。例えば、光電変換部80では青(B)の色信号を取得する。例えば、光電変換領域32では赤(R)の色信号を取得する。これにより、撮像素子1Cでは、カラーフィルタを用いることなく一つの画素において複数種類の色信号を取得可能となっている。
 光電変換部10,80は、上記実施の形態の撮像素子1Aと同様の構成を有している。具体的には、光電変換部10は、撮像素子1Aと同様に、下部電極11、光電変換層12および上部電極13がこの順に積層されている。下部電極11は、複数の電極(例えば、読み出し電極11Aおよび蓄積電極11B)からなり、下部電極11と光電変換層12との間には、絶縁層14および半導体層15がこの順に積層されている。下部電極11のうち、読み出し電極11Aは、絶縁層14に設けられた開口14Hを介して半導体層15と電気的に接続されている。光電変換部80も光電変換部10と同様に、下部電極81、光電変換層82および上部電極83がこの順に積層されている。下部電極81は、複数の電極(例えば、読み出し電極81Aおよび蓄積電極81B)からなり、下部電極81と光電変換層82との間には、絶縁層84および半導体層85がこの順に積層されている。下部電極81のうち、読み出し電極81Aは、絶縁層84に設けられた開口84Hを介して半導体層85と電気的に接続されている。なお、半導体層15および半導体層85の一方または両方は省略しても構わない。
 読み出し電極81Aには、層間絶縁層89および光電変換部10を貫通し、光電変換部10の読み出し電極11Aと電気的に接続された貫通電極91が接続されている。更に、読み出し電極81Aは、貫通電極34,91を介して、半導体基板30に設けられたフローティングディフュージョンFDと電気的に接続されており、光電変換層82において生成された電荷を一時的に蓄積することができる。更に、読み出し電極81Aは、貫通電極34,91を介して、半導体基板30に設けられたアンプトランジスタAMP等と電気的に接続されている。
(2-3.変形例3)
 図17Aは、本開示の変形例3に係る撮像素子1Dの断面構成を模式的に表したものである。図17Bは、図17Aに示した撮像素子1Dの平面構成の一例を模式的に表したものであり、図17Aは、図17Bに示したII-II線における断面を表している。撮像素子1Dは、例えば、光電変換領域32と、光電変換部60とが積層された積層型の撮像素子である。この撮像素子1Dを備えた撮像装置(例えば、撮像装置100)の画素部100Aでは、例えば図17Bに示したように、例えば2行×2列で配置された4つの画素からなる画素ユニット1aが繰り返し単位となり、行方向と列方向とからなるアレイ状に繰り返し配置されている。
 本変形の撮像素子1Dでは、光電変換部60の上方(光入射側S1)には、赤色光(R)、緑色光(G)および青色光(B)を選択的に透過させるカラーフィルタ55が、それぞれ、単位画素P毎に設けられている。具体的には、2行×2列で配置された4つの画素からなる画素ユニット1aにおいて、緑色光(G)を選択的に透過させるカラーフィルタが対角線上に2つ配置され、赤色光(R)および青色光(B)を選択的に透過させるカラーフィルタが、直交する対角線上に1つずつ配置されている。各カラーフィルタが設けられた単位画素(Pr,Pg,Pb)では、例えば、光電変換部60において、それぞれ、対応する色光が検出されるようになっている。即ち、画素部100Aでは、それぞれ、赤色光(R)、緑色光(G)および青色光(B)を検出する画素(Pr,Pg,Pb)が、ベイヤ状に配置されている。
 光電変換部60は、例えば、400nm以上750nm未満の可視光領域の波長の一部または全部に対応する光を吸収して励起子(電子正孔対)を発生させるものであり、下部電極61、絶縁層(層間絶縁層23)、半導体層65,光電変換層62および上部電極63がこの順に積層されている。下部電極61、層間絶縁層23、半導体層65、光電変換層62および上部電極63は、それぞれ、上記実施の形態における撮像素子1Aの下部電極11、絶縁層14、半導体層15、光電変換層12および上部電極13と同様の構成を有している。下部電極61は、例えば、互いに独立した読み出し電極61Aおよび蓄積電極61Bを有し、読み出し電極61Aは、例えば4つの画素によって共有されている。なお、半導体層65は省略しても構わない。
 光電変換領域32は、例えば、750nm以上1300nm以下の赤外光領域を検出する。
 撮像素子1Dでは、カラーフィルタ55を透過した光のうち、可視光領域の光(赤色光(R)、緑色光(G)および青色光(B))は、それぞれ、各カラーフィルタが設けられた単位画素(Pr,Pg,Pb)の光電変換部60で吸収され、それ以外の光、例えば、赤外光領域(例えば、750nm以上1000nm以下)の光(赤外光(IR))は、光電変換部60を透過する。この光電変換部60を透過した赤外光(IR)は、各単位画素Pr,Pg,Pbの光電変換領域32において検出され、各単位画素Pr,Pg,Pbでは赤外光(IR)に対応する信号電荷が生成される。即ち、撮像素子1Dを備えた撮像装置100では、可視光画像および赤外光画像の両方を同時に生成可能となっている。
 また、撮像素子1Dを備えた撮像装置100では、可視光画像および赤外光画像をXZ面内方向において同じ位置で取得することができる。よって、XZ面内方向における高集積化を実現することが可能となる。
(2-4.変形例4)
 図18Aは、本開示の変形例4に係る撮像素子1Eの断面構成を模式的に表したものである。図18Bは、図18Aに示した撮像素子1Eの平面構成の一例を模式的に表したものであり、図18Aは、図18Bに示したIII-III線における断面を表している。上記変形例3では、カラーフィルタ55が光電変換部60の上方(光入射側S1)に設けられた例を示したが、カラーフィルタ55は、例えば、図18Aに示したように、光電変換領域32と光電変換部60との間に設けるようにしてもよい。
 撮像素子1Eでは、例えば、カラーフィルタ55は、画素ユニット1a内において、少なくとも赤色光(R)を選択的に透過させるカラーフィルタ(カラーフィルタ55R)および少なくとも青色光(B)を選択的に透過させるカラーフィルタ(カラーフィルタ55B)が互いに対角線上に配置された構成を有している。光電変換部60(光電変換層62)は、例えば緑色光(G)に対応する波長を有する光を選択的に吸収するように構成されている。光電変換領域32Rでは、赤色光(R)に対応する波長を有する光が、光電変換領域32Bでは青色光(B)に対応する波長を有する光が、それぞれ選択的に吸収される。これにより、光電変換部60およびカラーフィルタ55R,55Bの下方にそれぞれ配置された光電変換領域32(光電変換領域32R,32B)において赤色光(R)、緑色光(G)または青色光(B)に対応する信号を取得することが可能となる。本変形例の撮像素子1Eでは、一般的なベイヤ配列を有する光電変換素子よりもRGBそれぞれの光電変換部の面積を拡大することができるため、S/N比を向上させることが可能となる。
(2-5.変形例5)
 図19は、本開示の他の変形例に係る変形例2の撮像素子1Cの断面構成の他の例(撮像素子1F)を表したものである。図20Aは、本開示の他の変形例に係る変形例3の撮像素子1Dの断面構成の他の例(撮像素子1G)を模式的に表したものである。図20Bは、図20Aに示した撮像素子1Gの平面構成の一例を模式的に表したものである。図21Aは、本開示の他の変形例に係る変形例4の撮像素子1Eの断面構成の他の例(撮像素子1H)を模式的に表したものである。図21Bは、図21Aに示した撮像素子1Hの平面構成の一例を模式的に表したものである。
 上記変形例2~4では、光電変換部60,80を構成する下部電極11,61,81が複数の電極(読み出し電極11A,61A,81Aおよび蓄積電極11B,61B,81B)からなる例を示したがこれに限らない。変形例2~4に係る撮像素子1C,1D,1Eは、上記変形例1と同様に、下部電極が単位画素P毎に1つ電極からなる場合においても適用でき、上記変形例2~4と同様の効果を得ることができる。
<3.適用例>
(適用例1)
 図22は、図8等に示した撮像素子(例えば、撮像素子1A)を備えた撮像装置(撮像装置100)の全体構成の一例を表したものである。
 撮像装置100は、例えば、CMOSイメージセンサであり、光学レンズ系(図示せず)を介して被写体からの入射光(像光)を取り込んで、撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力するものである。撮像装置100は、半導体基板30上に、撮像エリアとしての画素部100Aを有すると共に、この画素部100Aの周辺領域に、例えば、垂直駆動回路111、カラム信号処理回路112、水平駆動回路113、出力回路114、制御回路115および入出力端子116を有している。
 画素部100Aには、例えば、行列状に2次元配置された複数の単位画素Pを有している。この単位画素Pには、例えば、画素行ごとに画素駆動線Lread(具体的には行選択線およびリセット制御線)が配線され、画素列ごとに垂直信号線Lsigが配線されている。画素駆動線Lreadは、画素からの信号読み出しのための駆動信号を伝送するものである。画素駆動線Lreadの一端は、垂直駆動回路111の各行に対応した出力端に接続されている。
 垂直駆動回路111は、シフトレジスタやアドレスデコーダ等によって構成され、画素部100Aの各単位画素Pを、例えば、行単位で駆動する画素駆動部である。垂直駆動回路111によって選択走査された画素行の各単位画素Pから出力される信号は、垂直信号線Lsigの各々を通してカラム信号処理回路112に供給される。カラム信号処理回路112は、垂直信号線Lsigごとに設けられたアンプや水平選択スイッチ等によって構成されている。
 水平駆動回路113は、シフトレジスタやアドレスデコーダ等によって構成され、カラム信号処理回路112の各水平選択スイッチを走査しつつ順番に駆動するものである。この水平駆動回路113による選択走査により、垂直信号線Lsigの各々を通して伝送される各画素の信号が順番に水平信号線121に出力され、当該水平信号線121を通して半導体基板30の外部へ伝送される。
 出力回路114は、カラム信号処理回路112の各々から水平信号線121を介して順次供給される信号に対して信号処理を行って出力するものである。出力回路114は、例えば、バッファリングのみを行う場合もあるし、黒レベル調整、列ばらつき補正および各種デジタル信号処理等が行われる場合もある。
 垂直駆動回路111、カラム信号処理回路112、水平駆動回路113、水平信号線121および出力回路114からなる回路部分は、半導体基板30上に直に形成されていてもよいし、あるいは外部制御ICに配設されたものであってもよい。また、それらの回路部分は、ケーブル等により接続された他の基板に形成されていてもよい。
 制御回路115は、半導体基板30の外部から与えられるクロックや、動作モードを指令するデータ等を受け取り、また、撮像装置100の内部情報等のデータを出力するものである。制御回路115はさらに、各種のタイミング信号を生成するタイミングジェネレータを有し、当該タイミングジェネレータで生成された各種のタイミング信号を基に垂直駆動回路111、カラム信号処理回路112および水平駆動回路113等の周辺回路の駆動制御を行う。
 入出力端子116は、外部との信号のやり取りを行うものである。
(適用例2)
 また、上述したような撮像装置100は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像システム、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
 図23は、電子機器1000の構成の一例を表したブロック図である。
 図23に示すように、電子機器1000は、光学系1001、撮像装置100、DSP(Digital Signal Processor)1002を備えており、バス1008を介して、DSP1002、メモリ1003、表示装置1004、記録装置1005、操作系1006および電源系1007が接続されて構成され、静止画像および動画像を撮像可能である。
 光学系1001は、1枚または複数枚のレンズを有して構成され、被写体からの入射光(像光)を取り込んで撮像装置100の撮像面上に結像するものである。
 撮像装置100としては、上述した撮像装置100が適用される。撮像装置100は、光学系1001によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号としてDSP1002に供給する。
 DSP1002は、撮像装置100からの信号に対して各種の信号処理を施して画像を取得し、その画像のデータを、メモリ1003に一時的に記憶させる。メモリ1003に記憶された画像のデータは、記録装置1005に記録されたり、表示装置1004に供給されて画像が表示されたりする。また、操作系1006は、ユーザによる各種の操作を受け付けて電子機器1000の各ブロックに操作信号を供給し、電源系1007は、電子機器1000の各ブロックの駆動に必要な電力を供給する。
(適用例3)
 図24Aは、撮像装置100を備えた光検出システム2000の全体構成の一例を模式的に表したものである。図24Bは、光検出システム2000の回路構成の一例を表したものである。光検出システム2000は、赤外光L2を発する光源部としての発光装置2001と、光電変換素子を有する受光部としての光検出装置2002とを備えている。光検出装置2002としては、上述した撮像装置100を用いることができる。光検出システム2000は、さらに、システム制御部2003、光源駆動部2004、センサ制御部2005、光源側光学系2006およびカメラ側光学系2007を備えていてもよい。
 光検出装置2002は光L1と光L2とを検出することができる。光L1は、外部からの環境光が被写体(測定対象物)2100(図24A)において反射された光である。光L2は発光装置2001において発光されたのち、被写体2100に反射された光である。光L1は例えば可視光であり、光L2は例えば赤外光である。光L1は、光検出装置2002における光電変換部において検出可能であり、光L2は、光検出装置2002における光電変換領域において検出可能である。光L1から被写体2100の画像情報を獲得し、光L2から被写体2100と光検出システム2000との間の距離情報を獲得することができる。光検出システム2000は、例えば、スマートフォン等の電子機器や車等の移動体に搭載することができる。発光装置2001は例えば、半導体レーザ、面発光半導体レーザ、垂直共振器型面発光レーザ(VCSEL)で構成することができる。発光装置2001から発光された光L2の光検出装置2002による検出方法としては、例えばiTOF方式を採用することができるが、これに限定されることはない。iTOF方式では、光電変換部は、例えば光飛行時間(Time-of-Flight;TOF)により被写体2100との距離を測定することができる。発光装置2001から発光された光L2の光検出装置2002による検出方法としては、例えば、ストラクチャード・ライト方式やステレオビジョン方式を採用することもできる。例えばストラクチャード・ライト方式では、あらかじめ定められたパターンの光を被写体2100に投影し、そのパターンのひずみ具合を解析することによって光検出システム2000と被写体2100との距離を測定することができる。また、ステレオビジョン方式においては、例えば2以上のカメラを用い、被写体2100を2以上の異なる視点から見た2以上の画像を取得することで光検出システム2000と被写体との距離を測定することができる。なお、発光装置2001と光検出装置2002とは、システム制御部2003によって同期制御することができる。
<4.応用例>
(内視鏡手術システムへの応用例)
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図25は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図25では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図26は、図25に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部11402に適用され得る。撮像部11402に本開示に係る技術を適用することにより、検出精度が向上する。
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
(移動体への応用例)
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図27は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図27に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図27の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図28は、撮像部12031の設置位置の例を示す図である。
 図28では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図28には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、上記実施の形態およびその変形例に係る撮像素子(例えば、撮像素子1A)は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、ノイズの少ない高精細な撮影画像を得ることができるので、移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことができる。
<5.実施例>
 次に、本開示の実施例について詳細に説明する。
[実験1;配向性および光応答性の評価]
 まず、実験例1-1~実験例1-5として、下記式(1)~(5)に示した有機半導体材料を含む光電変換層をそれぞれシリコン基板上に成膜し、これを結晶性評価用サンプルとした。また、同様にして、ITO電極(下部電極)付きシリコン基板上に、下記式(1)~(5)に示した有機半導体材料をそれぞれ含む光電変換層を成膜した。続いて、光電変換層上にAlSiCu合金電極(上部電極)を成膜し、これを光応答性評価用サンプルとした。光電変換層は、上記有機半導体材料の他に、色素材料として下記式(6)に示したサブフタロシタニン誘導体と、n型半導体として下記式(7)に示したフラーレンC60を含む。各サンプルは成膜後に150℃、210分のポストアニール処理を施した。
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
 図29~図32は、それぞれ、下記表1にまとめた条件で測定した実験例1-1~実験例1-4のXRDスペクトル図である。なお、後述する実験2~実験4においても表1にまとめた測定条件を用いる。表2は、実験例1-1~実験例1-5において用いた有機半導体材料および実験例1-1~実験例1-5それぞれの光電変換層内における結晶配向性の傾向ならびに光応答性をまとめたものである。
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
 光応答性は図14に示したt=0以降の遅延電流の積算値を規格化して示した。この値が少ないほど優れた光応答性を有する。結果を見ると、XRDスペクトルに見られる回折角(2θ)15°~30°のピーク強度のうち、最も低角に見られるピーク強度が大きいほど良好な光応答性を示した。一方、3本のピークのうち2本目にピーク強度を持つ有機半導体材料(実験例1-3,実験例1-4)では光応答性が劣ることがわかった。更に、式(5)に示した有機半導体材料(実験例1-5)はXRDスペクトルにピークを持たず、アモルファスであることがわかった。更に、光応答性も好ましくなかった。以上の結果から、3本のピークのうち最も低角側にあるピークが強いことが素子特性に重要な役割を担うことがわかった。
[実験2;素子特性の評価]
 実験例2-1~実験例2-3として、上記光応答性評価用サンプルの作製方法と同様の方法を用いて、有機半導体材料A,B,Cおよび色素材料として上記式(6)に示したサブフタロシタニン誘導体、n型半導体(電子輸送材料)として上記式(7)に示したフラーレンC60を含む光応答性評価用サンプルを作製した。
 図33~図35は、実験例2-1~実験例2-3のXRDスペクトル図である。表3は、実験例2-1~実験例2-3において形成した光電変換層の材料、ピーク強度比、外部量子効率(EQE)および光応答性をまとめたものである。
Figure JPOXMLDOC01-appb-T000007
 
 EQEは、半導体パラメータアナライザを用いて評価した。具体的には、フィルタを介して光源から光応答性評価用サンプルに照射される光(波長560nmのLED光)の光量を1.62μW/cmとし、電極間に印加されるバイアス電圧を-2.6Vとした場合の明電流値および暗電流値からEQEを算出した。
 光応答性の評価は、半導体パラメータアナライザを用いて光照射時に観測される明電流値が、光照射を止めてから立ち下がる速さを測定することによって行った。具体的には、フィルタを介して光源から光応答性評価用サンプルに照射される光の光量を1.62μW/cmとし、電極間に印加されるバイアス電圧を-2.6Vとした。この状態で定常電流を観測した後、光照射を止めて電流が減衰していく様子を観測した。続いて、電流-時間曲線と暗電流で囲まれる面積を100%とし、この面積が3%に相当するまでの時間を光応答性の指標とした。これらの評価は全て室温で行った。
 本実験では、実験例2-1において得られたEQEおよび光応答性のそれぞれの値を規格化して示した。結果を見ると、強度比1(ピーク1/ピーク2)として1.7、強度比2(ピーク1/ピーク3)として2を有する実験例2-1に対して、それぞれの強度比が小さな実験例2-2ではEQEについてはほぼ同等の値を示したものの、光応答性については劣っていた。また、強度比が逆転した実験例2-3ではEQEについてはほぼ同等の値を示したものの、光応答性が大きく劣っていた。以上の結果から、3本のピークのうち最も低角側にあるピークが強いことが素子特性に重要な役割を担うことがわかった。
[実験3;素子特性の評価]
 実験例3-1~実験例3-3として、上記光応答性評価用サンプルの作製方法と同様の方法を用いて、正孔輸送材料および電子輸送材料(フラーレンC60)の組成比を変えた光応答性評価用サンプルを作製した。
 図36~図38は、実験例3-1~実験例3-3のXRDスペクトル図である。表4は、実験例3-1~実験例3-3において形成した光電変換層における正孔輸送材料および電子輸送材料の組成比、ピーク強度比、外部量子効率(EQE)および光応答性をまとめたものである。
Figure JPOXMLDOC01-appb-T000008
 
 本実験では、実験例3-1において得られたEQEおよび光応答性のそれぞれの値を規格化して示した。結果を見ると、最も低角に見られるピーク強度が大きいほど良好な光応答性を示した。このとき、正孔輸送材料とフラーレンC60との組成比は、1のときが最も光応答性が低く、1.58、2と大きくなるにつれて改善された。以上の結果から、正孔輸送材料とフラーレンC60との比率を1よりも大きくすることが光応答性に対して重要な役割を担うことがわかった。また、フラーレンC60に対する正孔輸送材料の比率を大きくすることにより、強度比1(ピーク1/ピーク3)が大きくなることがわかった。
[実験4;素子特性の評価]
 実験例4-1~実験例4-3では光応答性評価用サンプルとして、まず、スパッタ装置を用いてシリコン基板に厚さ100nmのITO膜を成膜し、これをフォトリソグラフィおよびエッチングによって加工して下部電極を形成した。次に、シリコン基板および下部電極上に絶縁膜を成膜し、リソグラフィおよびエッチングによって下部電極が露出する1mm角の開口を形成した。続いて、シリコン基板をUV/オゾン処理にて洗浄した後、シリコン基板を真空蒸着装置に移し、蒸着槽を1×10-5Pa以下に減圧した状態で基板ホルダを回転させながら、下部電極上に電子ブロック層、光電変換層、正孔ブロック層を順次成膜した。具体的には、電子ブロック層は下記式(8)に示したカルバゾール誘導体を基板温度0℃で10nm(蒸着レート=1Å/秒)成膜した。光電変換層は、上記式(7)に示したフラーレンC60、上記式(6)に示したサブフタロシアニン誘導体、下記式(9)に示したベンゾチエノベンゾチオフェン誘導体の共蒸着からなる膜を基板温度52℃で成膜した。正孔ブロック層は、下記式(10)に示したナフタレンジイミド(NDI)誘導体を10nm(蒸着レート=0.3Å/秒)の厚みで成膜した。最後に、上部電極としてAlSiCu合金を蒸着法にて厚み100nmとなるように成膜した。
 また、実験例4-4~実験例4-6では、上記式(6)に示したサブフタロシアニン誘導体に変えて、下記式(11)に示したboron-dipyrromethene(BODIPY)誘導体を用いて光応答性評価用サンプルを作製した。
Figure JPOXMLDOC01-appb-C000009
 
 光応答性の評価は、緑LED光源からバンドパスフィルターを介して光応答性評価用サンプルに照射される光の波長を560nm、光量を162μW/cmとし、LEDドライバに印加する電圧をファンクションジェネレータで制御し、パルス幅100msのパルス光を上部電極側から照射した。光応答性評価用サンプルの電極間に印加されるバイアス電圧を上部電極に対して下部電極に+2.6Vの電圧を印加した状態でパルス光を照射し、オシロスコープを用いて電流の減衰波形を観測した。光パルス照射停止直後から110ms後に電流が減衰する過程でのクーロン量を測定し、これを残像量の指標とした。残像量が低いほど、光応答性が高いことを意味する。
 図39~図44は、実験例4-1~実験例4-6のXRDスペクトル図である。表5は、実験例4-1~実験例4-6において形成した光電変換層における正孔輸送材料、色素材料および電子輸送材料の組成比、強度比1(ピーク1/ピーク2)、強度比1(ピークC60/ピーク1)、EQEおよび光応答性をまとめたものである。なお、ピークC60とは、上述した残渣成分(サブピーク)である。
Figure JPOXMLDOC01-appb-T000010
 
 本実験では、図14に示したt=0以降の遅延電流の積算値を規格化して示した。結果を見ると、XRDスペクトルに見られる回折角(2θ)15°~30°のピーク強度のうち、最も低角に見られるピーク強度に対する残渣成分の強度が小さいほど良好な応答速度を示した。逆に、残渣成分の大きな組成では応答速度が劣ることがわかった。最も低角側のピーク1に対する残渣成分の強度比2が1より大きいときは応答速度が低く、強度比2が小さくなるにつれて改善した。以上の結果から、残渣成分のピーク強度が小さいことが素子特性に重要な役割を担うことがわかった。
[実験5;素子特性の評価]
 実験例5-1~実験例5-3として、上記光応答性評価用サンプルの作製方法と同様の方法を用いて、有機半導体材料(正孔輸送材料)として上記式(9)に示したベンゾチエノベンゾチオフェン誘導体、色素材料として上記式(6)に示したサブフタロシアニン誘導体およびn型半導体(電子輸送材料)として上記式(7)に示したフラーレンC60を含む評価用サンプルを作製した。また、実験例5-4~実験例5-6として、上記光応答性評価用サンプルの作製方法と同様の方法を用いて、有機半導体材料(正孔輸送材料)、色素材料として上記式(6)に示したサブフタロシアニン誘導体(色素1)および上記式(11)に示したBODIPY誘導体(色素2)ならびにn型半導体(電子輸送材料)を含む評価用サンプルを作製した。正孔輸送材料および電子輸送材料については、実験例5-1~実験例5-3と同様の材料を用いた。
 図46~図51は、実験例5-1~実験例5-6のXRDスペクトル図である。表6および表7は、実験例5-1~実験例5-6において形成した光電変換層の材料、ピーク強度比、EQEおよびIQEをまとめたものである。
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
 EQEは、半導体パラメータアナライザを用いて評価した。具体的には、フィルタを介して光源から光応答性評価用サンプルに照射される光(波長560nmのLED光)の光量を1.62μW/cmとし、電極間に印加されるバイアス電圧を-2.6Vとした場合の明電流値および暗電流値からEQEを算出した。
 IQEは、評価用サンプルの反射率Rおよび吸収率Aを計測し、EQEから吸収率に対する反射の影響を差し引いくことで算出した(IQE=EQE/((1-R)×A))。
 1種類の色素材料を用いた実験例5-1~実験例5-3では、実験例5-1において得られたEQEおよびIQEのそれぞれの値を規格化して示した。2種類の色素材料を用いた実験例5-4~実験例5-4では、実験例5-4において得られたEQEおよびIQEのそれぞれの値を規格化して示した。結果をみると、強度比3(サブピーク/ピーク2)として1.8未満の値を有する実験例5-2,5-3は、実験例5-1よりも優れたEQEおよびIQEが得られた。同様に、強度比3(サブピーク/ピーク2)として1.8未満の値を有する実験例5-5,5-6は、実験例5-4よりも優れたEQEおよびIQEが得られた。以上の結果から、ピーク2の強度比に対するサブピークの強度比を1.8よりも小さい構成とすることにより、色素材料の構成に関わらずEQEおよびIQEが改善されることがわかった。
 以上、実施の形態、変形例1~5および実施例ならびに適用例および応用例を挙げて本技術を説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態等では、信号電荷として電子が下部電極11側から読み出される例を示したがこれに限らず、正孔を信号電荷として下部電極11側から読み出すようにしてもよい。
 また、上記実施の形態では、撮像素子1Aとして、緑色光(G)を検出する有機材料を用いた光電変換部10と、青色光(B)および赤色光(R)をそれぞれ検出する光電変換領域32Bおよび光電変換領域32Rとを積層させた構成としたが、本開示内容はこのような構造に限定されるものではない。即ち、有機材料を用いた光電変換部において赤色光(R)あるいは青色光(B)を検出するようにしてもよいし、無機材料からなる光電変換領域において緑色光(G)を検出するようにしてもよい。
 更にまた、これらの有機材料を用いた光電変換部および無機材料からなる光電変換領域の数やその比率も限定されるものではない。更に、有機材料を用いた光電変換部および無機材料からなる光電変換領域を縦方向に積層させる構造に限らず、基板面に沿って並列させてもよい。
 更に、上記実施の形態等では、裏面照射型の撮像素子の構成を例示したが、本開示内容は表面照射型の撮像素子にも適用可能である。
 更にまた、本開示の光電変換素子10、撮像素子1A等および撮像装置100では、上記実施の形態で説明した各構成要素を全て備えている必要はなく、また逆に他の構成要素を備えていてもよい。例えば、撮像装置100には、撮像素子1Aへの光の入射を制御するためのシャッターを配設してもよいし、撮像装置100の目的に応じて光学カットフィルターを具備してもよい。また、赤色光(R)、緑色光(G)および青色光(B)を検出する画素(Pr,Pg,Pb)の配列は、ベイヤ配列の他に、インターライン配列、GストライプRB市松配列、GストライプRB完全市松配列、市松補色配列、ストライプ配列、斜めストライプ配列、原色色差配列、フィールド色差順次配列、フレーム色差順次配列、MOS型配列、改良MOS型配列、フレームインターリーブ配列、フィールドインターリーブ配列としてもよい。
 また、上記実施の形態等では、光電変換素子10を撮像素子として用いて例を示したが、本開示の光電変換素子10は、太陽電池に適用してもよい。太陽電池に適用する場合には、光電変換層は、例えば、400nm~800nmの波長をブロードに吸収するように設計することが好ましい。
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成を取ることも可能である。以下の構成の本技術によれば、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有するようにした。これにより、厚み方向に対するキャリア輸送性が向上する。よって、量子効率および応答速度を向上させることが可能となる。
(1)
 結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する
 有機半導体膜。
(2)
 前記3本の結晶性ピークとして低角側から第1の結晶性ピーク、第2の結晶性ピークおよび第3の結晶性ピークを有し、
 前記3本の結晶性ピークのうち最も低角側に位置する前記第1の結晶性ピークは、前記第2の結晶性ピークおよび前記第3の結晶性ピークよりも高いピーク強度を有する、前記(1)に記載の有機半導体膜。
(3)
 前記第1の結晶性ピークと、前記第2の結晶性ピークおよび前記第3の結晶性ピークのそれぞれとの強度比は2よりも大きい、前記(2)に記載の有機半導体膜。
(4)
 前記第1の結晶性ピークのピーク強度に対する、前記第1の結晶性ピーク、前記第2の結晶性ピークおよび前記第3の結晶性ピークの残渣成分の強度比は1よりも小さい、前記(2)乃至(4)のうちのいずれか1つに記載の有機半導体膜。
(5)
 電子輸送性を有する第1の有機半導体材料をさらに含む、前記(1)乃至(4)のうちのいずれか1つに記載の有機半導体膜。
(6)
 前記有機半導体材料として第2の有機半導体材料を含み、
 前記第2の有機半導体材料は、正孔輸送性を有すると共に、前記第1の有機半導体材料よりも浅いHOMO準位またはLUMO準位を有する、前記(5)に記載の有機半導体膜。
(7)
 前記有機半導体材料として所定の波長帯域の光に対して吸収ピークを有する第3の有機半導体材料を含む、前記(6)に記載の有機半導体膜。
(8)
 前記第1の有機半導体材料のLUMO準位は、4.0eV以上5.0eV以下である、前記(7)に記載の有機半導体膜。
(9)
 前記第2の有機半導体材料のHOMO準位は、5.0eV以上6.0eV以下である、前記(7)または(8)に記載の有機半導体膜。
(10)
 前記第1の有機半導体材料と前記第2の有機半導体材料との組成比は1よりも大きい、前記(6)乃至(9)のうちのいずれか1つに記載の有機半導体膜。
(11)
 前記有機半導体材料は面内方向に対して水平配向している、前記(1)乃至(10)のうちのいずれか1つに記載の有機半導体膜。
(12)
 前記第1の有機半導体材料はフラーレンまたはフラーレン誘導体である、前記(5)乃至(11)のうちのいずれか1つに記載の有機半導体膜。
(13)
 前記3本の結晶性ピークとして低角側から第1の結晶性ピーク、第2の結晶性ピークおよび第3の結晶性ピークを有し、
 前記第2の結晶性ピークの強度比に対する、前記第1の結晶性ピーク、前記第2の結晶性ピークおよび前記第3の結晶性ピークの残渣成分の強度比は1.8よりも小さい、前記(1)乃至(12)のうちのいずれか1つに記載の有機半導体膜。
(14)
 第1電極と、
 前記第1電極と対向配置された第2電極と、
 前記第1電極と前記第2電極との間に設けられ、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する光電変換層と
 を備えた光電変換素子。
(15)
 前記第1電極は、互いに独立した複数の電極からなる、前記(14)に記載の光電変換素子。
(16)
 前記複数の電極にはそれぞれ個別に電圧が印加される、前記(15)に記載の光電変換素子。
(17)
 1または複数の光電変換部を有する撮像素子がそれぞれ設けられた複数の画素を備え、
 前記光電変換部は、
 第1電極と、
 前記第1電極と対向配置された第2電極と、
 前記第1電極と前記第2電極との間に設けられ、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する光電変換層と
 を有する撮像装置。
(18)
 前記撮像素子は、前記1または複数の光電変換部とは異なる波長帯域の光電変換を行う1または複数の光電変換領域をさらに有する、前記(17)に記載の撮像装置。
(19)
 前記1または複数の光電変換領域は半導体基板に埋め込み形成され、
 前記1または複数の光電変換部は前記半導体基板の光入射面側に配置されている、前記(18)に記載の撮像装置。
(20)
 前記半導体基板の前記光入射面とは反対側の面に多層配線層が形成されている、前記(19)に記載の撮像装置。
 本出願は、日本国特許庁において2021年11月10日に出願された日本特許出願番号2021-183507号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する
     有機半導体膜。
  2.  前記3本の結晶性ピークとして低角側から第1の結晶性ピーク、第2の結晶性ピークおよび第3の結晶性ピークを有し、
     前記3本の結晶性ピークのうち最も低角側に位置する前記第1の結晶性ピークは、前記第2の結晶性ピークおよび前記第3の結晶性ピークよりも高いピーク強度を有する、請求項1に記載の有機半導体膜。
  3.  前記第1の結晶性ピークと、前記第2の結晶性ピークおよび前記第3の結晶性ピークのそれぞれとの強度比は2よりも大きい、請求項2に記載の有機半導体膜。
  4.  前記第1の結晶性ピークのピーク強度に対する、前記第1の結晶性ピーク、前記第2の結晶性ピークおよび前記第3の結晶性ピークの残渣成分の強度比は1よりも小さい、請求項2に記載の有機半導体膜。
  5.  電子輸送性を有する第1の有機半導体材料をさらに含む、請求項1に記載の有機半導体膜。
  6.  前記有機半導体材料として第2の有機半導体材料を含み、
     前記第2の有機半導体材料は、正孔輸送性を有すると共に、前記第1の有機半導体材料よりも浅いHOMO準位またはLUMO準位を有する、請求項5に記載の有機半導体膜。
  7.  前記有機半導体材料として所定の波長帯域の光に対して吸収ピークを有する第3の有機半導体材料を含む、請求項6に記載の有機半導体膜。
  8.  前記第1の有機半導体材料のLUMO準位は、4.0eV以上5.0eV以下である、請求項7に記載の有機半導体膜。
  9.  前記第2の有機半導体材料のHOMO準位は、5.0eV以上6.0eV以下である、請求項7に記載の有機半導体膜。
  10.  前記第1の有機半導体材料と前記第2の有機半導体材料との組成比は1よりも大きい、請求項6に記載の有機半導体膜。
  11.  前記有機半導体材料は面内方向に対して水平配向している、請求項1に記載の有機半導体膜。
  12.  前記第1の有機半導体材料はフラーレンまたはフラーレン誘導体である、請求項5に記載の有機半導体膜。
  13.  前記3本の結晶性ピークとして低角側から第1の結晶性ピーク、第2の結晶性ピークおよび第3の結晶性ピークを有し、
     前記第2の結晶性ピークの強度比に対する、前記第1の結晶性ピーク、前記第2の結晶性ピークおよび前記第3の結晶性ピークの残渣成分の強度比は1.8よりも小さい、請求項1に記載の有機半導体膜。
  14.  第1電極と、
     前記第1電極と対向配置された第2電極と、
     前記第1電極と前記第2電極との間に設けられ、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する光電変換層と
     を備えた光電変換素子。
  15.  前記第1電極は、互いに独立した複数の電極からなる、請求項14に記載の光電変換素子。
  16.  前記複数の電極にはそれぞれ個別に電圧が印加される、請求項15に記載の光電変換素子。
  17.  1または複数の光電変換部を有する撮像素子がそれぞれ設けられた複数の画素を備え、
     前記光電変換部は、
     第1電極と、
     前記第1電極と対向配置された第2電極と、
     前記第1電極と前記第2電極との間に設けられ、結晶性を有する有機半導体材料を含み、キャリア輸送性を有すると共に、XRDスペクトルにおいて回折角(2θ)15°以上30°以下の範囲に3本の結晶性ピークを有する光電変換層と
     を有する撮像装置。
  18.  前記撮像素子は、前記1または複数の光電変換部とは異なる波長帯域の光電変換を行う1または複数の光電変換領域をさらに有する、請求項17に記載の撮像装置。
  19.  前記1または複数の光電変換領域は半導体基板に埋め込み形成され、
     前記1または複数の光電変換部は前記半導体基板の光入射面側に配置されている、請求項18に記載の撮像装置。
  20.  前記半導体基板の前記光入射面とは反対側の面に多層配線層が形成されている、請求項19に記載の撮像装置。
PCT/JP2022/041020 2021-11-10 2022-11-02 有機半導体膜および光電変換素子ならびに撮像装置 WO2023085188A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247012846A KR20240101556A (ko) 2021-11-10 2022-11-02 유기 반도체막 및 광전 변환 소자 그리고 촬상 장치
DE112022005367.4T DE112022005367T5 (de) 2021-11-10 2022-11-02 Organischer halbleiterfilm, fotoelektrisches umwandlungselement und bildgebungsvorrichtung
JP2023559593A JPWO2023085188A1 (ja) 2021-11-10 2022-11-02
CN202280069107.4A CN118104415A (zh) 2021-11-10 2022-11-02 有机半导体膜、光电转换元件和成像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021183507 2021-11-10
JP2021-183507 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023085188A1 true WO2023085188A1 (ja) 2023-05-19

Family

ID=86335870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041020 WO2023085188A1 (ja) 2021-11-10 2022-11-02 有機半導体膜および光電変換素子ならびに撮像装置

Country Status (6)

Country Link
JP (1) JPWO2023085188A1 (ja)
KR (1) KR20240101556A (ja)
CN (1) CN118104415A (ja)
DE (1) DE112022005367T5 (ja)
TW (1) TW202337056A (ja)
WO (1) WO2023085188A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343718A (ja) * 1991-10-01 1993-12-24 Ricoh Co Ltd 光起電力素子
WO2013031468A1 (ja) * 2011-09-02 2013-03-07 国立大学法人九州大学 複素環式化合物及びその利用
JP2014027176A (ja) * 2012-07-27 2014-02-06 Mitsubishi Chemicals Corp 光電変換素子、太陽電池及び太陽電池モジュール
US20160043318A1 (en) * 2014-08-07 2016-02-11 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor and electronic device
JP2018093191A (ja) * 2016-11-30 2018-06-14 ソニー株式会社 光電変換素子および固体撮像装置
WO2019058995A1 (ja) * 2017-09-20 2019-03-28 ソニー株式会社 光電変換素子および撮像装置
WO2019093188A1 (ja) * 2017-11-08 2019-05-16 ソニー株式会社 光電変換素子および撮像装置
JP2019099570A (ja) * 2017-12-04 2019-06-24 三星電子株式会社Samsung Electronics Co.,Ltd. フラーレン誘導体及びそれを含む薄膜、光電素子並びにイメージセンサ及び電子装置
WO2020022421A1 (ja) * 2018-07-26 2020-01-30 ソニー株式会社 光電変換素子
WO2021085227A1 (ja) * 2019-11-01 2021-05-06 ソニー株式会社 光電変換素子および撮像素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258421A (ja) 2007-04-05 2008-10-23 Nippon Hoso Kyokai <Nhk> 有機光電変換素子及びその製造方法
JP7429158B2 (ja) 2020-05-22 2024-02-07 ダイカン株式会社 ファイバードラム、ファイバードラム用蓋体ならびにファイバードラム用ドラム本体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343718A (ja) * 1991-10-01 1993-12-24 Ricoh Co Ltd 光起電力素子
WO2013031468A1 (ja) * 2011-09-02 2013-03-07 国立大学法人九州大学 複素環式化合物及びその利用
JP2014027176A (ja) * 2012-07-27 2014-02-06 Mitsubishi Chemicals Corp 光電変換素子、太陽電池及び太陽電池モジュール
US20160043318A1 (en) * 2014-08-07 2016-02-11 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor and electronic device
JP2018093191A (ja) * 2016-11-30 2018-06-14 ソニー株式会社 光電変換素子および固体撮像装置
WO2019058995A1 (ja) * 2017-09-20 2019-03-28 ソニー株式会社 光電変換素子および撮像装置
WO2019093188A1 (ja) * 2017-11-08 2019-05-16 ソニー株式会社 光電変換素子および撮像装置
JP2019099570A (ja) * 2017-12-04 2019-06-24 三星電子株式会社Samsung Electronics Co.,Ltd. フラーレン誘導体及びそれを含む薄膜、光電素子並びにイメージセンサ及び電子装置
WO2020022421A1 (ja) * 2018-07-26 2020-01-30 ソニー株式会社 光電変換素子
WO2021085227A1 (ja) * 2019-11-01 2021-05-06 ソニー株式会社 光電変換素子および撮像素子

Also Published As

Publication number Publication date
CN118104415A (zh) 2024-05-28
DE112022005367T5 (de) 2024-09-05
KR20240101556A (ko) 2024-07-02
TW202337056A (zh) 2023-09-16
JPWO2023085188A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
CN111066166B (zh) 光电转换器件和成像装置
KR20200085732A (ko) 광전변환 소자 및 촬상 장치
WO2022024799A1 (ja) 光電変換素子および撮像装置
TW201946262A (zh) 攝像元件、積層型攝像元件及固體攝像裝置
TW201944590A (zh) 攝像元件、積層型攝像元件及固體攝像裝置
KR102694607B1 (ko) 광전변환 소자 및 고체 촬상 장치
WO2022249595A1 (ja) 光電変換素子および撮像装置
WO2021200508A1 (ja) 撮像素子および撮像装置
WO2023085188A1 (ja) 有機半導体膜および光電変換素子ならびに撮像装置
TW202125857A (zh) 光電轉換元件及攝像元件
KR20210144699A (ko) 고체 촬상 소자 및 고체 촬상 소자의 제조 방법, 광전 변환 소자, 촬상 장치, 및 전자 기기
WO2023127603A1 (ja) 光電変換素子および撮像装置ならびに電子機器
WO2023176852A1 (ja) 光電変換素子および光検出装置ならびに光検出システム
WO2023162982A1 (ja) 光電変換素子および光検出装置ならびに電子機器
WO2024171854A1 (ja) 光電変換素子および光検出装置ならびに電子機器
WO2023112595A1 (ja) 光電変換素子および撮像装置
WO2023276827A1 (ja) 半導体素子および半導体装置
WO2023037622A1 (ja) 撮像素子および撮像装置
WO2023223801A1 (ja) 光電変換素子および光検出装置ならびに電子機器
WO2023007822A1 (ja) 撮像素子および撮像装置
WO2023037621A1 (ja) 撮像素子および撮像装置
WO2021256385A1 (ja) 光電変換素子および撮像装置
CN118696618A (zh) 光电转换元件、光检测装置和光检测系统
KR20210144689A (ko) 광전 변환 소자 및 촬상 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559593

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280069107.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022005367

Country of ref document: DE