WO2010055987A1 - 산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법 - Google Patents

산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법 Download PDF

Info

Publication number
WO2010055987A1
WO2010055987A1 PCT/KR2009/003658 KR2009003658W WO2010055987A1 WO 2010055987 A1 WO2010055987 A1 WO 2010055987A1 KR 2009003658 W KR2009003658 W KR 2009003658W WO 2010055987 A1 WO2010055987 A1 WO 2010055987A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium oxide
layer
based substrate
gallium
light emitting
Prior art date
Application number
PCT/KR2009/003658
Other languages
English (en)
French (fr)
Inventor
문용태
Original Assignee
엘지이노텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍주식회사 filed Critical 엘지이노텍주식회사
Priority to JP2011536211A priority Critical patent/JP2012508974A/ja
Priority to CN2009801283467A priority patent/CN102124575A/zh
Priority to EP09826220.7A priority patent/EP2360746A4/en
Publication of WO2010055987A1 publication Critical patent/WO2010055987A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the embodiment relates to a gallium oxide based substrate manufacturing method, a light emitting device and a light emitting device manufacturing method.
  • Nitride semiconductors are receiving great attention in the field of optical devices and high power electronic devices due to their high thermal stability and wide bandgap energy.
  • blue, green, and UV light emitting devices using nitride semiconductors are commercially used and widely used.
  • the nitride semiconductor light emitting device includes a nitride semiconductor layer organically deposited on a sapphire substrate, which is a dissimilar substrate.
  • the sapphire substrate Since the sapphire substrate has an electrically insulating property, it is necessary to partially etch the nitride semiconductor layer or remove the sapphire substrate in order to apply power to the nitride semiconductor layer.
  • the nitride semiconductor light emitting device may be classified into a lateral type and a vertical type according to the position of the electrode layer.
  • a nitride semiconductor layer is formed on the sapphire substrate, and two electrode layers are disposed on the nitride semiconductor layer.
  • the vertical type nitride semiconductor light emitting device is formed by forming a nitride semiconductor layer on the sapphire substrate, and then separating the sapphire substrate from the nitride semiconductor layer so that two electrode layers are disposed above and below the nitride semiconductor layer, respectively. do.
  • the lateral type nitride semiconductor light emitting device has to remove a part of the nitride semiconductor layer to form two electrode layers, and has a nonuniform distribution of current, there is a problem that reliability or efficiency of light emission characteristics is deteriorated. .
  • the vertical type nitride semiconductor light emitting device has a problem of separating the sapphire substrate.
  • nitride semiconductor light emitting devices of a vertical type in particular, nitride semiconductor light emitting devices which do not need to be separated from a substrate by using a conductive substrate.
  • the embodiment provides a method of manufacturing a gallium oxide based substrate, a light emitting device, and a light emitting device manufacturing method.
  • the embodiment provides a method of manufacturing a gallium oxide based substrate on which a high quality nitride semiconductor layer can be formed, a light emitting device, and a light emitting device manufacturing method.
  • the light emitting device is a gallium oxide based substrate; A gallium oxynitride based layer on the gallium oxide based substrate; A first conductive semiconductor layer on the gallium oxide nitride layer; An active layer on the first conductive semiconductor layer; And a second conductive semiconductor layer on the active layer.
  • the gallium oxide based substrate manufacturing method comprises the steps of preparing a gallium oxide based substrate; And heat treating the gallium oxide based substrate in an oxygen atmosphere.
  • the light emitting device manufacturing method comprises the steps of preparing a gallium oxide based substrate; Forming a gallium oxynitride based layer on the gallium oxide based substrate; Forming a first conductive semiconductor layer on the gallium oxide nitride base layer; Forming an active layer on the first conductive semiconductor layer; And forming a second conductive semiconductor layer on the active layer.
  • the embodiment can provide a method of manufacturing a gallium oxide based substrate, a light emitting device, and a light emitting device manufacturing method.
  • the embodiment can provide a method for manufacturing a gallium oxide based substrate on which a high quality nitride semiconductor layer can be formed, a light emitting device, and a light emitting device manufacturing method.
  • FIG. 1 is a view illustrating a light emitting device manufactured by a gallium oxide based substrate manufacturing method and a light emitting device manufacturing method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a light emitting device according to an embodiment of the present invention.
  • 3 is a view for explaining the surface scratches of the gallium oxide based substrate.
  • FIGS. 4 and 5 are diagrams for explaining the surface of the gallium nitride based layer when a 100 nm thick gallium nitride based layer is grown on a gallium oxide based substrate having surface scratches.
  • FIG. 6 is a view for explaining the surface of the gallium oxide based substrate after the heat treatment in the oxygen atmosphere for the gallium oxide based substrate.
  • FIG. 7 is a view for explaining a surface of a gallium nitride based layer when a 100 nm thick gallium nitride based layer is grown on a gallium oxide based substrate subjected to heat treatment in an oxygen atmosphere.
  • each layer (region), region, pattern, or structure is “on” or “under” the substrate, each layer (film), region, pad, or pattern.
  • each layer (film), region, pad, or pattern In the case where it is described as being formed at, “up” and “under” include both “directly” or “indirectly” formed through another layer. do.
  • the criteria for the top or bottom of each layer will be described with reference to the drawings.
  • each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not necessarily reflect the actual size.
  • FIG. 1 is a view illustrating a light emitting device manufactured by a gallium oxide based substrate manufacturing method and a light emitting device manufacturing method according to an embodiment.
  • a first conductive semiconductor layer 20, an active layer 30, and a second conductive semiconductor layer 40 are formed on a gallium oxide based substrate 10.
  • the first electrode layer 50 is disposed below the gallium-based substrate 10, and the second electrode layer 60 is disposed above the second conductive semiconductor layer 40.
  • a gallium oxide nitride based layer 11 may be formed between the gallium oxide based substrate 10 and the first conductive semiconductor layer 20.
  • the gallium oxide based substrate 10 may be formed of gallium oxide (Ga 2 O 3 ), and may have excellent electrical conductivity by doping with impurities.
  • the gallium oxide-based substrate 10 may be formed of any one of (InGa) 2 O 3 , (AlGa) 2 O 3 , (InAlGa) 2 O 3 .
  • the first conductive semiconductor layer 20 may be a semiconductor layer having an n-type conductivity.
  • the first conductive semiconductor layer 20 may be a gallium nitride (GaN) based layer implanted with n-type impurities.
  • the semiconductor layer having the n-type conductivity may be formed of any one of InGaN, AlGaN, InAlGaN, AlInN, AlGaN / GaN short-period superlattice (SPS), and AlGaN / AlGaN SPS.
  • the active layer 30 is a layer in which electrons and holes from the first conductive semiconductor layer 20 and the second conductive semiconductor layer 40 are combined to generate light, and a barrier layer and a well layer are formed. Can be.
  • the active layer 30 may be formed of a gallium nitride layer or a gallium nitride layer containing indium (In).
  • the active layer 30 may be formed of any one of InGaN / GaN, InGaN / InGaN, and InGaN / AlGaN.
  • the second conductive semiconductor layer 40 may be a semiconductor layer having a p-type conductivity.
  • the second conductive semiconductor layer 40 may be a gallium nitride based layer implanted with p-type impurities.
  • the semiconductor layer having the p-type conductivity may be any one of InGaN, AlGaN, InAlGaN, AlInN, AlGaN / GaN short-period superlattice (SPS), and AlGaN / AlGaN SPS implanted with p-type impurities.
  • SPS short-period superlattice
  • the first electrode layer 50 and the second electrode layer 60 may be formed of a conductive material and may include a metal.
  • the structure of the light emitting device shown in FIG. 1 is merely an example and is not intended to limit the present invention.
  • a semiconductor layer not described in FIG. 1 may be added between each semiconductor layer shown in FIG. 1.
  • an n-type conductive semiconductor layer may be further formed between the second conductive semiconductor layer 40 and the second electrode layer 60.
  • gallium oxide has a problem of thermochemically unstable at high temperatures and mechanically weak.
  • the crystal structure of gallium oxide is a monoclinic system, and has strong cleavage with respect to specific crystal planes, that is, (100) and (001) crystal planes. Accordingly, when gallium oxide is manufactured in a thin film form, there is a problem in that separation of layers is easy and surface treatment of the substrate is not easy.
  • the gallium nitride based layer grown on the gallium oxide based substrate 10 may be grown to a high quality thin film through surface treatment of the gallium oxide based substrate 10.
  • FIG. 2 is a flowchart illustrating a method of manufacturing a light emitting device according to an embodiment.
  • a gallium oxide based substrate 10 is prepared (S100).
  • the gallium oxide based substrate 10 may be a gallium oxide based substrate implanted with impurities of a first conductivity type, for example, silicon (Si), to improve electrical conductivity.
  • a first conductivity type for example, silicon (Si)
  • the gallium oxide based substrate 10 is wet-washed to remove organic and inorganic materials on the gallium oxide based substrate 10.
  • the wet wash may be performed by an organic wash and then an acid wash.
  • the organic cleaning is to remove foreign substances on the gallium oxide based substrate 10 using acetone and methanol, and the acid cleaning is a protrusion on the gallium oxide based substrate 10 using hydrofluoric acid, sulfuric acid and hydrogen peroxide. It is to remove the gallium oxide particles present.
  • the gallium oxide based substrate 10 may be soaked in acetone and methanol for 3 minutes by the organic cleaning method, and then ultrasonically cleaned for 3 minutes with deionized water.
  • the gallium oxide based substrate 10 is made by mechanically cutting a gallium oxide crystal mass to have a predetermined size and a predetermined crystallographic direction. Thus, surface scratches generated during the cutting process exist on the surface of the gallium oxide based substrate 10.
  • FIG. 3 is a view for explaining the surface scratches of the gallium oxide based substrate. As shown in FIG. 3, it can be seen that a plurality of surface scratches 15 have occurred on the gallium oxide based substrate 10.
  • gallium nitride based layer is formed on the gallium oxide based substrate 10 on which the surface scratches 15 are formed, it is difficult to form a high quality gallium nitride based layer. These surface scratches 15 are not removed by wet cleaning.
  • FIG 4 and 5 are views for explaining the surface of the gallium nitride based layer 23 when the gallium nitride based layer 23 having a thickness of 100 nm is grown on the gallium oxide based substrate having surface scratches.
  • FIG. 4 shows a gallium nitride based pattern 21 having a crystal phase different from the surroundings and protruding from the surroundings on the surface of the gallium nitride layer 23, and
  • FIG. 5 shows a gallium nitride based layer 23. It is shown that the growth rate is slower than the periphery on the surface of) to form a gallium nitride based pattern 22 in the form of a valley.
  • the shape of the surface of the gallium nitride based layer 23 as shown in FIGS. 4 and 5 is determined in accordance with the aspect of surface scratching of the gallium oxide based substrate 10.
  • the gallium oxide based substrate 10 is heat treated in an oxygen atmosphere to remove surface scratches 15 generated on the surface of the gallium oxide based substrate 10.
  • an injection of oxygen gas or a mixed gas including oxygen gas as a main gas is performed in the chamber, and heat treatment is performed on the gallium oxide based substrate 10 at a temperature of 900-1400 ° C. for 3 minutes to 3 hours.
  • the heat treatment is performed for a short time when the heat treatment temperature is high, and conversely for a long time when the heat treatment temperature is low.
  • the method of heat treatment in the oxygen atmosphere is a one hour after raising the temperature of the chamber to 1100 °C while putting the gallium oxide-based substrate 10 in the chamber and flowing a high-purity oxygen gas into the chamber at a rate of 5 slm High temperature oxygen heat treatment may be performed.
  • the wet cleaning may be performed again on the gallium oxide based substrate 10 heat-treated in the oxygen atmosphere.
  • the atoms on the surface of the gallium oxide based substrate 10 are thermally moved to the most stable position thermodynamically, thereby rearranging the surface atoms.
  • the surface scratches 15 of the gallium oxide based substrate 10 may be cured.
  • gallium oxide has a melting point temperature of 1725 °C, when the heat treatment at a temperature higher than 1400 °C thermal melting and evaporation of crystal atoms on the surface of the gallium oxide-based substrate 10 is generated, the surface of the gallium oxide-based substrate 10 When the characteristics of the deterioration and heat treatment at a temperature lower than 900 °C the mobility of crystal atoms on the surface of the gallium oxide-based substrate 10 is low, the surface scratches (15) can not be effectively cured.
  • FIG. 6 is a view for explaining the surface of a gallium oxide based substrate after performing heat treatment on an gallium oxide based substrate in an oxygen atmosphere.
  • FIG. 7 is a diagram for describing a surface of a gallium nitride based layer when a gallium nitride based layer having a thickness of 100 nm is grown on a gallium oxide based substrate subjected to heat treatment in an oxygen atmosphere.
  • a high temperature nitriding treatment may be selectively performed on the substrate 10 in an ammonia atmosphere (S120).
  • the high temperature nitriding treatment may be performed by injecting ammonia gas, a mixed gas of ammonia gas and oxygen gas, or a mixed gas of ammonia gas and nitrogen gas into the chamber.
  • the gallium oxide nitride based layer 11 is formed on the surface of the gallium oxide based substrate 10 by the high temperature nitriding treatment.
  • the gallium oxide nitride based layer 11 may serve as a buffer layer of the gallium nitride based layer to be grown thereafter, and a high quality gallium nitride based layer may be formed on the gallium oxide based substrate 10.
  • the electrical conductivity of the gallium oxide nitride based layer 11 may be improved by injecting a gas containing silicon (Si), such as silane gas, into the gas injected into the chamber.
  • a gas containing silicon (Si) such as silane gas
  • a first conductive semiconductor layer 20 is grown on the gallium nitride film 11 (S130), and an active layer 30 is grown on the first conductive semiconductor layer 20 (S140).
  • the second conductive semiconductor layer 40 is grown on the active layer 30.
  • the first conductive semiconductor layer 20 may contain n-type impurities such as trimethyl gallium gas (TMGa), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and silicon (Si) in the chamber.
  • TMGa trimethyl gallium gas
  • NH 3 ammonia gas
  • N 2 nitrogen gas
  • Si silicon
  • the silane gas (SiH 4 ) that is included may be injected and formed.
  • the active layer 30 is trimethyl gallium gas (TMGa), ammonia gas (NH 3 ), nitrogen gas (N 2 ), trimethyl indium gas (TMIn) is injected into a multi-quantum well structure having an InGaN / GaN structure Can be formed.
  • TMGa trimethyl gallium gas
  • NH 3 ammonia gas
  • N 2 nitrogen gas
  • TMIn trimethyl indium gas
  • the second conductive semiconductor layer 40 includes p-type impurities such as trimethyl gallium gas (TMGa), ammonia gas (NH 3 ), nitrogen gas (N 2 ), and magnesium (Mg) in the chamber.
  • TMGa trimethyl gallium gas
  • NH 3 ammonia gas
  • N 2 nitrogen gas
  • Mg magnesium
  • Bicetyl cyclopentadienyl magnesium (EtCp 2 Mg) ⁇ Mg (C 2 H 5 C 5 H 4 ) 2 ⁇ may be formed by injection.
  • a first electrode layer 50 is formed below the gallium oxide based substrate 10, and a second electrode layer 60 is formed on the second conductive semiconductor layer 40.
  • the embodiment of the present invention may allow the gallium nitride based layer grown on the gallium oxide based substrate 10 to be formed with high quality by surface treating the gallium oxide based substrate 10.
  • the gallium nitride based layer to be grown on the gallium oxide based substrate 10 can be formed with higher quality do.
  • the electrical conductivity of the gallium oxide nitride base layer 11 may be further improved.
  • the embodiment of the present invention forms a nitride semiconductor layer on a substrate having electrical conductivity, thereby manufacturing a vertical type light emitting device without removing the substrate.
  • the embodiment can be applied to a light emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시예에 따른 발광소자는 산화갈륨 기반 기판; 상기 산화갈륨 기반 기판 상에 산화갈륨질화 기반막; 상기 산화갈륨질화 기반막 상에 제1 도전형의 반도체층; 상기 제1 도전형의 반도체층 상에 활성층; 및 상기 활성층 상에 제2 도전형의 반도체층이 포함된다.

Description

산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법
실시예는 산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법에 관한 것이다.
질화물 반도체는 높은 열적 안정성과 폭넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색, 녹색, UV 발광소자는 상용화되어 널리 사용되고 있다.
질화물 반도체 발광소자는 이종기판인 사파이어 기판 위에 유기 화학적으로 증착된 질화물 반도체층을 포함한다.
상기 사파이어 기판은 전기적으로 절연 특성을 갖기 때문에, 상기 질화물 반도체층에 전원을 인가하기 위해서 상기 질화물 반도체층을 일부 식각하거나 상기 사파이어 기판을 제거할 필요가 있다.
상기 질화물 반도체 발광소자는 전극층의 위치에 따라 래터럴 타입(Lateral Type)과 버티컬 타입(Vertical type)으로 구분할 수 있다.
상기 래터럴 타입의 질화물 반도체 발광소자는 상기 사파이어 기판 상에 질화물 반도체층을 형성하고, 상기 질화물 반도체층의 상측에 두개의 전극층이 배치되도록 형성한다.
상기 버티컬 타입의 질화물 반도체 발광소자는 상기 사파이어 기판 상에 질화물 반도체층을 형성한 후, 상기 사파이어 기판을 상기 질화물 반도체층으로부터 분리하여 두개의 전극층이 각각 상기 질화물 반도체층의 상측 및 하측에 배치되도록 형성한다.
한편, 상기 래터럴 타입의 질화물 반도체 발광소자는 두개의 전극층을 형성하기 위해 질화물 반도체층의 일부를 제거해야 하고, 전류의 불균일한 분포를 갖기 때문에, 발광 특성에 대한 신뢰성 또는 효율성이 저하되는 문제가 있다.
또한, 상기 버티컬 타입의 질화물 반도체 발광소자는 상기 사파이어 기판을 분리해야 하는 문제가 있다.
따라서, 버티컬 타입의 질화물 반도체 발광소자, 특히 전도성 기판을 사용함으로써 기판을 분리할 필요가 없는 질화물 반도체 발광소자에 대한 연구가 많이 진행되고 있다.
실시예는 산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법을 제공한다.
실시예는 고품질의 질화물 반도체층이 형성될 수 있는 산화갈륨 기반 기판의 제조방법, 발광소자 및 발광소자 제조방법을 제공한다.
실시예에 따른 발광소자는 산화갈륨 기반 기판; 상기 산화갈륨 기반 기판 상에 산화갈륨질화 기반막; 상기 산화갈륨질화 기반막 상에 제1 도전형의 반도체층; 상기 제1 도전형의 반도체층 상에 활성층; 및 상기 활성층 상에 제2 도전형의 반도체층이 포함된다.
실시예에 따른 산화갈륨 기반 기판 제조방법은 산화갈륨 기반 기판이 준비되는 단계; 및 상기 산화갈륨 기반 기판을 산소 분위기에서 열처리하는 단계가 포함된다.
실시예에 따른 발광소자 제조방법은 산화갈륨 기반 기판이 준비되는 단계; 상기 산화갈륨 기반 기판 상에 산화갈륨질화 기반막을 형성하는 단계; 상기 산화갈륨질화 기반막 상에 제1 도전형의 반도체층을 형성하는 단계; 상기 제1 도전형의 반도체층 상에 활성층을 형성하는 단계; 및 상기 활성층 상에 제2 도전형의 반도체층을 형성하는 단계가 포함된다.
실시예는 산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법을 제공할 수 있다.
실시예는 고품질의 질화물 반도체층이 형성될 수 있는 산화갈륨 기반 기판의 제조방법, 발광소자 및 발광소자 제조방법을 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 산화갈륨 기반 기판 제조방법 및 발광소자 제조방법에 의해 제조된 발광소자를 도시한 도면.
도 2는 본 발명의 실시예에 따른 발광소자 제조방법을 설명하는 흐름도.
도 3은 산화갈륨 기반 기판의 표면 긁힘을 설명하기 위한 도면.
도 4와 도 5는 표면 긁힘이 존재하는 산화갈륨 기반 기판 상에 100nm 두께의 질화갈륨 기반층을 성장한 경우에 질화갈륨 기반층의 표면을 설명하기 위한 도면.
도 6은 산화갈륨 기반 기판에 대해 산소 분위기에서 열처리를 수행한 후, 산화갈륨 기반 기판의 표면을 설명하기 위한 도면.
도 7은 산소 분위기에서 열처리를 한 산화갈륨 기반 기판 상에 100nm 두께의 질화갈륨 기반층을 성장한 경우에 질화갈륨 기반층의 표면을 설명하기 위한 도면.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on)"에 또는 "하/아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on)"와 "하/아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
도 1은 실시예에 따른 산화갈륨 기반 기판 제조방법 및 발광소자 제조방법에 의해 제조된 발광소자를 도시한 도면이다.
도 1을 참조하면, 발광소자는 산화갈륨 기반 기판(10) 상에 제1 도전형의 반도체층(20), 활성층(30) 및 제2 도전형의 반도체층(40)이 형성되고, 상기 산화갈륨기반 기판(10)의 하측에 제1 전극층(50)이 배치되고 상기 제2 도전형의 반도체층(40)의 상측에 제2 전극층(60)이 배치된다.
또한, 상기 산화갈륨 기반 기판(10)과 상기 제1 도전형의 반도체층(20) 사이에는 산화갈륨질화 기반막(11)이 형성될 수 있다.
상기 산화갈륨 기반 기판(10)는 산화갈륨(Ga2O3)으로 형성될 수 있으며, 불순물 도핑에 의해 우수한 전기 전도성을 가질 수 있다.
또한, 상기 산화갈륨 기반 기판(10)은 (InGa)2O3, (AlGa)2O3, (InAlGa)2O3 중 어느 하나로 형성될 수도 있다.
상기 제1 도전형의 반도체층(20)은 n 타입의 도전형을 갖는 반도체층이 될 수 있으며, 예를 들어, n 형 불순물이 주입된 질화갈륨(GaN) 기반층이 될 수도 있다.
또한, 상기 n 타입의 도전형을 갖는 반도체층은 n 형 불순물이 주입된 InGaN, AlGaN, InAlGaN, AlInN, AlGaN/GaN SPS(short-period superlattice), AlGaN/AlGaN SPS 중 어느 하나로 형성될 수도 있다.
상기 활성층(30)은 상기 제1 도전형의 반도체층(20) 및 제2 도전형의 반도체층(40)으로부터의 전자 및 정공이 결합되어 빛이 발생되는 층으로, 장벽층과 우물층이 형성될 수 있다. 예를 들어, 상기 활성층(30)은 질화갈륨층, 또는 인듐(In)이 포함된 질화갈륨층으로 형성될 수도 있다.
또한, 상기 활성층(30)은 InGaN/GaN, InGaN/InGaN, InGaN/AlGaN 중 어느 하나로 형성될 수도 있다.
상기 제2 도전형의 반도체층(40)은 p 타입의 도전형을 갖는 반도체층이 될 수 있으며, 예를 들어, p 형 불순물이 주입된 질화갈륨 기반층이 될 수도 있다.
또한, 상기 p 타입의 도전형을 갖는 반도체층은 p형 불순물이 주입된 InGaN, AlGaN, InAlGaN, AlInN, AlGaN/GaN SPS(short-period superlattice), AlGaN/AlGaN SPS 중 어느 하나가 될 수도 있다.
상기 제1 전극층(50) 및 제2 전극층(60)은 도전 물질로 형성되며, 금속을 포함할 수도 있다.
도 1에 도시된 발광소자의 구조는 단지 예시에 불과할 뿐, 본 발명을 제한하고자 하는 것이 아니다. 발광소자의 제작함에 있어서, 도 1에 도시된 각각의 반도체층 사이에 도 1에서 설명되지 않은 반도체층이 추가될 수도 있다. 예를 들어, 상기 제2 도전형의 반도체층(40)과 상기 제2 전극층(60) 사이에 n 타입의 도전형을 갖는 반도체층이 더 형성될 수도 있다.
한편, 산화갈륨은 고온에서 열화학적으로 불안정한 문제점이 있고 기계적으로 취약한 문제점이 있다.
산화갈륨의 결정 구조는 단사정계(monoclinic system)이며, 특정 결정면, 즉 (100) 및 (001) 결정면에 대하여 강한 벽개성을 갖는다. 따라서, 산화갈륨을 박막 형태로 제작하는 경우 층별 분리가 쉬운 문제점이 있고 기판의 표면 처리가 쉽지 않은 문제가 있다.
따라서, 실시예에서는 상기 산화갈륨 기반 기판(10)의 표면처리를 통해 상기 산화갈륨 기반 기판(10) 상에 성장되는 질화갈륨 기반층이 고품질의 박막으로 성장될 수 있도록 한다.
도 2는 실시예에 따른 발광소자 제조방법을 설명하는 흐름도이다.
도 2를 참조하면, 먼저, 산화갈륨 기반 기판(10)이 준비된다(S100). 상기 산화갈륨 기반 기판(10)은 전기 전도성이 향상되도록 제1 도전형의 불순물, 예를 들어, 실리콘(Si)이 주입된 산화갈륨 기반 기판이 사용될 수 있다.
상기 산화갈륨 기반 기판(10)에 대해 습식 세척을 실시하여 산화갈륨 기반 기판(10)상의 유기물 및 무기물을 제거한다. 예를 들어, 상기 습식 세척은 먼저 유기 세척을 실시한 후 산 세척을 실시할 수도 있다.
상기 유기 세척은 아세톤과 메탄올 등을 이용하여 산화갈륨 기반 기판(10) 상의 이물질을 제거하기 위한 것이고, 산 세척은 불산, 황산 및 과산화수소 등을 이용하여 산화갈륨 기반 기판(10) 상에 돌기 형태로 존재하는 산화갈륨 입자들을 제거하기 위한 것이다.
예를 들어, 상기 유기 세척 방법으로 상기 산화갈륨 기반 기판(10)을 아세톤과 메탄올 각각에 담궈 3분씩 초음파 세척을 실시하고 탈이온수로 3분동안 초음파 세척을 실시할 수 있다.
한편, 산화갈륨 기반 기판(10)은 산화갈륨 결정 덩어리를 일정 크기 및 일정 결정학적 방향을 갖도록 기계적으로 절단하여 만든다. 따라서, 산화갈륨 기반 기판(10)의 표면에는 절단과정에서 발생된 표면 긁힘(scratch)이 존재한다.
도 3은 산화갈륨 기반 기판의 표면 긁힘을 설명하기 위한 도면이다. 도 3에 도시된 바와 같이, 산화갈륨 기반 기판(10)에 다수의 표면 긁힘(15)이 발생된 것을 확인할 수 있다.
이러한 표면 긁힘(15)이 형성된 산화갈륨 기반 기판(10) 상에 질화갈륨 기반층을 형성하는 경우, 고품질의 질화갈륨 기반층이 형성되는 것이 어렵다. 이러한 표면 긁힘((15)은 습식 세척에 의해 제거되지 않는다.
도 4와 도 5는 표면 긁힘이 존재하는 산화갈륨 기반 기판 상에 100nm 두께의 질화갈륨 기반층(23)을 성장한 경우에 질화갈륨 기반층(23)의 표면을 설명하기 위한 도면이다.
도 4에는 질화갈륨층(23)의 표면에 주변과 다른 결정상(Phase)을 갖고 주변보다 돌출된 형태의 질화갈륨 기반 패턴(21)이 형성된 것이 도시되어 있고, 도 5에는 질화갈륨 기반층(23)의 표면에 주변보다 성장 속도가 지연되어 계곡 형태로 함몰된 형태의 질화갈륨 기반 패턴(22)이 형성된 것이 도시되어 있다.
도 4와 도 5에 도시된 바와 같은 질화갈륨 기반층(23) 표면의 형태는 상기 산화갈륨 기반 기판(10)의 표면 긁힘의 양상에 따라 결정된다.
한편, 상기 산화갈륨 기반 기판(10) 상에 고품질의 질화갈륨 기반층을 성장하기 위해서는 상기 산화갈륨 기반 기판(10)의 표면 긁힘(15)을 제거할 필요가 있다.
다시 도 2를 참조하면, 실시예에서는 상기 산화갈륨 기반 기판(10)의 표면에 발생되는 표면 긁힘(15)을 제거하기 위하여 상기 산화갈륨 기반 기판(10)을 산소 분위기에서 열처리한다.
즉, 챔버에 산소 가스 또는 산소 가스를 주된 가스로 포함하는 혼합가스를 주입하고 900-1400℃ 온도에서 3분 내지 3시간 동안 상기 산화갈륨 기반 기판(10)에 대한 열처리를 수행한다. 여기서, 열처리는 열처리 온도가 높은 경우 짧은 시간동안 실시하고, 반대로 열처리 온도가 낮은 경우 오랜 시간동안 실시한다.
예를 들어, 상기 산소 분위기에서 열처리하는 방법은 상기 산화갈륨 기반 기판(10)을 챔버에 넣고 고순도의 산소 가스를 5 slm의 속도로 챔버 내부로 흘려주면서 챔버의 온도를 1100℃로 올린 후 1시간동안 고온 산소 열처리를 수행할 수 있다. 그리고, 상기 산소 분위기에서 열처리한 산화갈륨 기반 기판(10)에 대해 다시 습식 세척을 진행할 수도 있다.
상기 산화갈륨 기반 기판(10)에 대해 열처리를 수행하면 상기 산화갈륨 기반 기판(10) 표면의 원자들은 열역학적으로 가장 안정된 자리로 열적 이동을 하게 되어 표면 원자들의 재배열이 이루어진다. 따라서, 상기 산화갈륨 기반 기판(10)의 표면 긁힘(15)은 치유될 수 있다.
한편, 산화갈륨은 용융점의 온도가 1725℃이므로, 1400℃보다 높은 온도에서 열처리를 하는 경우 산화갈륨 기반 기판(10) 표면의 결정원자들의 열적 용융 및 증발이 발생되어 산화갈륨 기반 기판(10) 표면의 특성이 저하되고, 900℃보다 낮은 온도에서 열처리를 하는 경우 산화갈륨 기반 기판(10) 표면의 결정원자들의 이동도가 낮아 표면 긁힘(15)을 효과적으로 치유할 수 없다.
도 6은 산화갈륨 기반 기판에 대해 산소 분위기에서 열처리를 수행한 후, 산화갈륨 기반 기판의 표면을 설명하기 위한 도면이다.
도 6에 도시된 바와 같이, 산화갈륨 기반 기판(10)에 대해 산소 분위기에서 열처리를 수행하는 경우 산화갈륨 기반 기판(10)의 표면 긁힘(15)이 대부분 치유되어 미미한 흔적만 남는 것을 확인할 수 있다.
도 7은 산소 분위기에서 열처리를 한 산화갈륨 기반 기판 상에 100nm 두께의 질화갈륨 기반층을 성장한 경우에 질화갈륨 기반층의 표면을 설명하기 위한 도면이다.
도 4 및 도 5와 비교하면, 질화갈륨 기반층(23)의 표면에 표면 긁힘에 의한 흔적이 대부분 제거되어 미미하게 질화갈륨 기반 패턴(21)이 남아있는 것을 알 수 있다.
다시 도 2를 참조하면, 상기 산화갈륨 기반 기판(10)에 대해 산소 분위기에서 열처리를 수행한 후, 상기 기판(10)에 대해 암모니아 분위기에서 고온 질화처리를 선택적으로 수행할 수도 있다(S120).
상기 고온 질화처리는 챔버에 암모니아 가스, 또는 암모니아 가스와 산소 가스의 혼합가스, 또는 암모니아 가스와 질소 가스의 혼합가스를 주입하여 실시할 수 있다.
상기 고온 질화처리에 의해 상기 산화갈륨 기반 기판(10)의 표면에는 산화갈륨질화 기반막(11)이 형성된다. 상기 산화갈륨질화 기반막(11)은 이후 성장되는 질화갈륨 기반층의 버퍼층 역할을 할 수 있으며, 산화갈륨 기반 기판(10) 상에 고품질의 질화갈륨 기반층이 형성되도록 한다.
이때, 상기 챔버에 주입되는 가스에 실란가스와 같이 실리콘(Si)를 포함하는 가스를 주입함으로써 상기 산화갈륨질화 기반막(11)의 전기 전도성을 향상시킬 수도 있다.
다음, 상기 산화갈륨질화막(11) 상에 제1 도전형의 반도체층(20)을 성장시키고(S130), 상기 제1 도전형의 반도체층(20) 상에 활성층(30)을 성장시키고(S140), 상기 활성층(30) 상에 제2 도전형의 반도체층(40)을 성장시킨다(S150).
예를 들어, 상기 제1 도전형의 반도체층(20)은 챔버에 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 실리콘(Si)와 같은 n 형 불순물을 포함하는 실란 가스(SiH4)가 주입되어 형성될 수 있다.
또한, 상기 활성층(30)은 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 트리메틸 인듐 가스(TMIn)가 주입되어 InGaN/GaN 구조를 갖는 다중 양자우물구조가 형성될 수 있다.
또한, 상기 제2 도전형의 반도체층(40)은 챔버에 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 마그네슘(Mg)과 같은 p 형 불순물을 포함하는 비세틸 사이클로 펜타디에닐 마그네슘(EtCp2Mg){Mg(C2H5C5H4)2}가 주입되어 형성될 수 있다.
그리고, 상기 산화갈륨 기반 기판(10)의 하측에 제1 전극층(50)을 형성하고, 상기 제2 도전형의 반도체층(40) 상에 제2 전극층(60)을 형성한다.
상술한 바와 같이, 본 발명의 실시예는 산화갈륨 기반 기판(10)을 표면 처리함으로써 상기 산화갈륨 기반 기판(10) 상에 성장되는 질화갈륨 기반층이 고품질로 형성될 수 있도록 할 수 있다.
또한, 상기 산화갈륨 기반 기판(10)의 표면에 산화갈륨질화 기반막(11)을 형성함에 의해, 상기 산화갈륨 기반 기판(10) 상에 성장되는 질화갈륨 기반층이 보다 고품질로 형성될 수 있도록 한다.
또한, 상기 산화갈륨질화 기반막(11)에 불순물을 주입함으로써, 상기 산화갈륨질화 기반막(11)의 전기 전도성을 보다 향상시킬 수 있다.
이와 같은 과정을 통해, 본 발명의 실시예는 전기 전도성을 갖는 기판 상에 질화물 반도체층을 형성함으로써, 기판을 제거하는 공정없이 버티컬 타입의 발광소자를 제작할 수 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시예는 발광소자에 적용될 수 있다.

Claims (20)

  1. 산화갈륨 기반 기판;
    상기 산화갈륨 기반 기판 상에 산화갈륨질화 기반막;
    상기 산화갈륨질화 기반막 상에 제1 도전형의 반도체층;
    상기 제1 도전형의 반도체층 상에 활성층; 및
    상기 활성층 상에 제2 도전형의 반도체층이 포함되는 발광소자.
  2. 제 1항에 있어서,
    상기 산화갈륨 기반 기판 아래 제1 전극층 및 상기 제2 도전형의 반도체층 상에 제2 전극층이 포함되는 발광소자.
  3. 제 1항에 있어서,
    상기 산화갈륨질화 기반막에는 제1 도전형의 불순물이 포함된 발광소자.
  4. 제 1항에 있어서,
    상기 산화갈륨 기반 기판에는 제1 도전형의 불순물이 포함된 발광소자.
  5. 제 1항에 있어서,
    상기 제1 도전형의 반도체층은 n형 불순물이 포함된 질화갈륨 기반층으로 형성되고, 상기 제2 도전형의 반도체층은 p형 불순물이 포함된 질화갈륨 기반층으로 형성되는 발광 소자.
  6. 제 1항에 있어서,
    상기 활성층은 질화갈륨 기반층 또는 인듐(In)이 포함된 질화갈륨 기반층으로 형성되는 발광 소자.
  7. 제 1항에 있어서,
    상기 산화갈륨 기반 기판의 표면은 표면 긁힘이 거의 없는 발광 소자.
  8. 산화갈륨 기반 기판이 준비되는 단계; 및
    상기 산화갈륨 기반 기판을 산소 분위기에서 열처리하는 단계가 포함되는 산화갈륨 기반 기판 제조방법.
  9. 제 8항에 있어서,
    상기 산화갈륨 기반 기판을 산소 분위기에서 열처리한 후, 상기 산화갈륨 기반 기판을 질화처리하는 단계가 포함되는 산화갈륨 기반 기판 제조방법.
  10. 제 8항에 있어서,
    상기 산화갈륨 기반 기판을 산소 분위기에서 열처리하기 전, 상기 산화갈륨 기반 기판을 습식 세척하는 단계가 포함되는 산화갈륨 기반 기판 제조방법.
  11. 제 8항에 있어서,
    상기 산화갈륨 기반 기판을 산소 분위기에서 열처리하는 단계는 상기 산화갈륨 기반 기판이 배치된 챔버에 산소 가스 또는 산소 가스를 포함하는 혼합가스를 주입하고 900-1400℃ 온도에서 3분 내지 3시간 동안 열처리하는 산화갈륨 기반 기판 제조방법.
  12. 제 9항에 있어서,
    상기 산화갈륨 기반 기판을 질화처리하는 단계는 상기 산화갈륨 기반 기판이 배치된 챔버에 암모니아 가스, 또는 암모니아 가스와 산소 가스의 혼합가스, 또는 암모니아 가스와 질소 가스의 혼합가스를 주입하여 실시하는 산화갈륨 기반 기판 제조방법.
  13. 제 9항에 있어서,
    상기 산화갈륨 기반 기판을 질화처리하는 단계는 제1 도전형의 불순물이 포함된 가스를 주입하는 산화갈륨 기반 기판 제조방법.
  14. 산화갈륨 기반 기판이 준비되는 단계;
    상기 산화갈륨 기반 기판 상에 산화갈륨질화 기반막을 형성하는 단계;
    상기 산화갈륨질화 기반막 상에 제1 도전형의 반도체층을 형성하는 단계;
    상기 제1 도전형의 반도체층 상에 활성층을 형성하는 단계; 및
    상기 활성층 상에 제2 도전형의 반도체층을 형성하는 단계가 포함되는 발광소자 제조방법.
  15. 제 14항에 있어서,
    상기 산화갈륨 기반 기판 아래에 제1 전극층을 형성하는 단계 및 상기 제2 도전형의 반도체층 상에 제2 전극층을 형성하는 단계가 포함되는 발광소자 제조방법.
  16. 제 14항에 있어서,
    상기 산화갈륨 기반 기판이 준비되는 단계는 상기 산화갈륨 기반 기판을 산소 분위기에서 열처리하는 단계를 포함하는 발광소자 제조방법.
  17. 제 14항에 있어서,
    상기 산화갈륨 기반 기판에는 제1 도전형의 불순물이 포함되는 발광소자 제조방법.
  18. 제 14항에 있어서,
    상기 산화갈륨질화 기반막에는 제1 도전형의 불순물이 포함되는 발광소자 제조방법.
  19. 제 14항에 있어서,
    상기 제1 도전형의 반도체층은 n형 불순물이 포함된 질화갈륨 기반층으로 형성되고, 상기 제2 도전형의 반도체층은 p형 불순물이 포함된 질화갈륨 기반층으로 형성되는 발광 소자 제조방법.
  20. 제 14항에 있어서,
    상기 활성층은 질화갈륨 기반층 또는 인듐(In)이 포함된 질화갈륨 기반층으로 형성되는 발광 소자 제조방법.
PCT/KR2009/003658 2008-11-17 2009-07-03 산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법 WO2010055987A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011536211A JP2012508974A (ja) 2008-11-17 2009-07-03 酸化ガリウム基板の製造方法、発光素子、及び発光素子の製造方法
CN2009801283467A CN102124575A (zh) 2008-11-17 2009-07-03 制造氧化镓基衬底的方法、发光器件及其制造方法
EP09826220.7A EP2360746A4 (en) 2008-11-17 2009-07-03 METHOD FOR PRODUCING A GALLIUM OXIDE SUBSTRATE, ILLUMINATING ELEMENT AND METHOD FOR PRODUCING THE ILLUMINATING ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080114144A KR101020958B1 (ko) 2008-11-17 2008-11-17 산화갈륨기판 제조방법, 발광소자 및 발광소자 제조방법
KR10-2008-0114144 2008-11-17

Publications (1)

Publication Number Publication Date
WO2010055987A1 true WO2010055987A1 (ko) 2010-05-20

Family

ID=42170106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003658 WO2010055987A1 (ko) 2008-11-17 2009-07-03 산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법

Country Status (7)

Country Link
US (2) US8125001B2 (ko)
EP (1) EP2360746A4 (ko)
JP (2) JP2012508974A (ko)
KR (1) KR101020958B1 (ko)
CN (1) CN102124575A (ko)
TW (1) TWI476302B (ko)
WO (1) WO2010055987A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020958B1 (ko) * 2008-11-17 2011-03-09 엘지이노텍 주식회사 산화갈륨기판 제조방법, 발광소자 및 발광소자 제조방법
JP5529420B2 (ja) * 2009-02-09 2014-06-25 住友電気工業株式会社 エピタキシャルウエハ、窒化ガリウム系半導体デバイスを作製する方法、窒化ガリウム系半導体デバイス、及び酸化ガリウムウエハ
JPWO2012137783A1 (ja) * 2011-04-08 2014-07-28 株式会社タムラ製作所 半導体積層体及びその製造方法、並びに半導体素子
JP5865271B2 (ja) * 2013-01-11 2016-02-17 株式会社タムラ製作所 結晶積層構造体及び発光素子
WO2018045175A1 (en) * 2016-09-01 2018-03-08 Hrl Laboratories, Llc Normally-off gallium oxide based vertical transistors with p-type algan blocking layers
CN109346570A (zh) * 2018-10-15 2019-02-15 华中科技大学鄂州工业技术研究院 基于n型掺杂氧化镓的深紫外LED垂直芯片的制备方法
CN109103309A (zh) * 2018-10-15 2018-12-28 华中科技大学鄂州工业技术研究院 基于n型掺杂氧化镓倒装结构的深紫外LED垂直芯片
CN109273564A (zh) * 2018-10-15 2019-01-25 华中科技大学鄂州工业技术研究院 基于n型掺杂氧化镓的深紫外LED垂直芯片装置及制备方法
CN112665943A (zh) * 2020-12-31 2021-04-16 山东大学 一种氧化镓晶体的亚表面损伤快速检测方法
CN116705927B (zh) * 2023-08-09 2023-11-07 江西兆驰半导体有限公司 Led外延片及其制备方法、led

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310765A (ja) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd 低温成長バッファ層の形成方法、発光素子の製造方法、発光素子、および発光装置
JP2007234902A (ja) * 2006-03-01 2007-09-13 Toyoda Gosei Co Ltd 発光素子およびその製造方法
JP2008270694A (ja) * 2007-04-20 2008-11-06 Yiguang Electronic Ind Co Ltd 発光ダイオードの構造
KR20080098550A (ko) * 2006-05-10 2008-11-10 쇼와 덴코 가부시키가이샤 Ⅲ족 질화물 화합물 반도체 적층 구조체

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358072B2 (ja) * 1994-12-28 2002-12-16 株式会社ジャパンエナジー 窒化ガリウム系半導体発光素子
JP2002009335A (ja) * 2000-06-19 2002-01-11 Hitachi Cable Ltd 発光ダイオード
JP3679097B2 (ja) * 2002-05-31 2005-08-03 株式会社光波 発光素子
JP4754164B2 (ja) 2003-08-08 2011-08-24 株式会社光波 半導体層
JP4110222B2 (ja) * 2003-08-20 2008-07-02 住友電気工業株式会社 発光ダイオード
JP2005310765A (ja) 2004-03-26 2005-11-04 Aisin Seiki Co Ltd 燃料電池システム
JP4647287B2 (ja) * 2004-11-09 2011-03-09 株式会社光波 半導体装置
JP4066268B2 (ja) 2005-03-25 2008-03-26 船井電機株式会社 データ伝送システム
JP4968660B2 (ja) * 2005-08-24 2012-07-04 スタンレー電気株式会社 ZnO系化合物半導体結晶の製造方法、及び、ZnO系化合物半導体基板
CN100418240C (zh) * 2005-10-18 2008-09-10 南京大学 在β三氧化二镓衬底上生长InGaN/GaN量子阱LED器件结构的方法
JP2007137728A (ja) * 2005-11-18 2007-06-07 Nippon Light Metal Co Ltd 酸化ガリウム単結晶複合体の製造方法、及びこれを用いた窒化物半導体膜の製造方法
JP2007165626A (ja) * 2005-12-14 2007-06-28 Toyoda Gosei Co Ltd 発光素子及びその製造方法
US20070134833A1 (en) 2005-12-14 2007-06-14 Toyoda Gosei Co., Ltd. Semiconductor element and method of making same
TWI306316B (en) * 2006-07-28 2009-02-11 Huga Optotech Inc Semiconductor light emitting device and method of fabricating the same
WO2008029915A1 (fr) 2006-09-08 2008-03-13 The Furukawa Electric Co., Ltd. Dispositif d'émission de lumière à semiconducteur et son procédé de fabrication
JP5103683B2 (ja) * 2007-11-21 2012-12-19 日本軽金属株式会社 酸化ガリウム基板用電極の製造方法及びそれにより製造される酸化ガリウム基板用電極
KR101020958B1 (ko) * 2008-11-17 2011-03-09 엘지이노텍 주식회사 산화갈륨기판 제조방법, 발광소자 및 발광소자 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310765A (ja) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd 低温成長バッファ層の形成方法、発光素子の製造方法、発光素子、および発光装置
JP2007234902A (ja) * 2006-03-01 2007-09-13 Toyoda Gosei Co Ltd 発光素子およびその製造方法
KR20080098550A (ko) * 2006-05-10 2008-11-10 쇼와 덴코 가부시키가이샤 Ⅲ족 질화물 화합물 반도체 적층 구조체
JP2008270694A (ja) * 2007-04-20 2008-11-06 Yiguang Electronic Ind Co Ltd 発光ダイオードの構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2360746A4 *

Also Published As

Publication number Publication date
TW201022490A (en) 2010-06-16
JP2012508974A (ja) 2012-04-12
US8125001B2 (en) 2012-02-28
TWI476302B (zh) 2015-03-11
KR20100055187A (ko) 2010-05-26
EP2360746A1 (en) 2011-08-24
US8680569B2 (en) 2014-03-25
KR101020958B1 (ko) 2011-03-09
US20120119227A1 (en) 2012-05-17
EP2360746A4 (en) 2015-12-16
US20100123167A1 (en) 2010-05-20
CN102124575A (zh) 2011-07-13
JP2014143446A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2010055987A1 (ko) 산화갈륨 기반 기판 제조방법, 발광소자 및 발광소자 제조방법
WO2013018937A1 (ko) 반도체 발광소자
WO2010101332A1 (ko) 발광소자
WO2011046292A2 (ko) 다공성 질화물 반도체 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
WO2009120044A2 (ko) 발광소자 및 그 제조방법
WO2010013936A2 (en) Semiconductor device, light emitting device and method of manufacturing the same
WO2010085042A2 (en) Semiconductor device, light emitting device and method for manufacturing the same
CN1291793A (zh) 制造半导体器件的方法
WO2012118250A1 (ko) 패턴화된 격자 완충층을 이용한 질화물계 발광소자 및 그 제조 방법
WO2010098606A2 (en) Method for fabricating light emitting device
CN103258927A (zh) 一种提高GaN基LED抗静电能力的外延结构及其生长方法
WO2010036002A2 (ko) 단결정 기판의 제조방법, 이에 의해 제조된 단결정 기판, 상기 단결정 기판을 포함하는 발광소자, 및 이의 제조방법
WO2013157875A1 (ko) 고효율 발광다이오드 제조방법
WO2014108009A1 (zh) 氮化物发光二极管及其制作方法
CN107482095A (zh) 一种led外延生长方法
WO2016159614A1 (en) Uv light emitting device
WO2011065665A2 (en) Method of manufacturing nitride semiconductor device
WO2009136770A2 (ko) 발광 소자 및 그 제조방법
WO2015016507A1 (ko) 발광 소자 제조용 템플릿 및 자외선 발광 소자 제조 방법
WO2017073939A1 (ko) 발광 소자 및 그 제조 방법
WO2012118247A1 (ko) 질화갈륨 파우더 제조 방법 및 그 방법으로 제조된 질화갈륨 파우더를 이용한 질화물계 발광소자
WO2009128646A2 (en) Semiconductor substrate and method for manufacturing the same
WO2012118249A1 (ko) 결정성 및 휘도가 우수한 질화물계 발광소자 및 그 제조 방법
KR20140075253A (ko) 반도체층 형성 방법 및 반도체 발광소자
WO2014017793A1 (ko) 금속입자층 형성 방법 및 이를 이용하여 제조된 발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128346.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009826220

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011536211

Country of ref document: JP