WO2014108009A1 - 氮化物发光二极管及其制作方法 - Google Patents

氮化物发光二极管及其制作方法 Download PDF

Info

Publication number
WO2014108009A1
WO2014108009A1 PCT/CN2013/088924 CN2013088924W WO2014108009A1 WO 2014108009 A1 WO2014108009 A1 WO 2014108009A1 CN 2013088924 W CN2013088924 W CN 2013088924W WO 2014108009 A1 WO2014108009 A1 WO 2014108009A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive layer
type conductive
emitting diode
light emitting
Prior art date
Application number
PCT/CN2013/088924
Other languages
English (en)
French (fr)
Inventor
林文禹
叶孟欣
林科闯
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2014108009A1 publication Critical patent/WO2014108009A1/zh
Priority to US14/719,269 priority Critical patent/US9312438B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the invention relates to a nitride light emitting diode and a manufacturing method thereof, and more particularly to a current injection modulation layer (current Modulation layer) Nitride light-emitting diode extension structure design.
  • the P-side current is transmitted from the P-type electrode via the transparent conductive layer (transparent) Conductive layer) implants a P-type conductive layer or even into an active layer, however due to hole concentration in the P-type conductive layer (hole Concentration) usually not high (between 10 16 ⁇ 10 17 Cm -3 ) and its mobility (hole mobility) is also more than 10cm 2 /Vs is below, so that the distribution of current in the P-type conduction layer is not uniform, and current crowding often occurs. (current crowding) It is easy to have excess heat generated here, which ultimately affects the luminous efficiency. In addition, because of the high current density under the electrode, its light intensity is relatively high, however, the light emitted by it is easily shielded or reflected by the electrode and absorbed by the material, resulting in loss of light output power.
  • the N-type conduction layer does not have the strict electrical conduction characteristics as the P-type conduction layer, a better luminous efficiency can be obtained in the case where a relatively uniform current distribution is injected into the active region.
  • the invention provides a current modulation layer
  • Light-emitting diodes are designed to extend the structure, specifically to introduce a high resistivity
  • the material changes the injection current conduction path, thereby increasing the luminous efficiency.
  • the main structure is implemented to grow high-resistance materials in the N-type conductive layer or the P-type conductive layer, respectively. In x Al y Ga 1-xy N), by high temperature H 2 Etched in the reactor In Situ Etching) until a part of the current conduction path is exposed, and then an N-type or P-type conduction layer is separately grown to cover.
  • a nitride light emitting diode comprising an N-type conductive layer, a P-type conductive layer having a light-emitting layer between the N-type conductive layer and the P-type conductive layer; at least in the N-type conductive layer or P-type
  • the conductive layer comprises a current injection modulation layer composed of a nitride insulating material layer having an open-cell structure, which is formed by etching H 2 in an epitaxial growth reactor for current conduction.
  • the material of the current injection modulation layer may be undoped In x Al y Ga 1-xy N , where 0 ⁇ x ⁇ 0.1 , 0 ⁇ y ⁇ 1 , 0 ⁇ x+y ⁇ 1 , and the thickness can be Taking 50nm ⁇ 200nm, a random discrete distribution opening structure is formed by high temperature H 2 etching in the reaction furnace (In Situ Etching), the distribution density is 1x10 4 ⁇ 1x10 8 cm -2 , and the diameter d of the open structure is 50nm ⁇ 200nm.
  • a method for fabricating a nitride light emitting diode wherein an N-type conductive layer, a light-emitting layer and a P-type conductive layer are deposited by an epitaxial growth method, characterized in that at least an N-type conductive layer or a P-type conductive layer A current injection modulation layer is formed therein, which is composed of a nitride insulating material layer having an open-cell structure, which is formed by etching H 2 in an epitaxial growth reactor for conducting current.
  • the material of the current injection modulation layer is undoped In x Al y Ga 1-xy N ( 0 ⁇ x ⁇ 0.1 , 0 ⁇ y ⁇ 1 , 0 ⁇ x+y ⁇ 1 ) by the following method Formed in the N-type conductive layer (or P-type conductive layer): first epitaxially grow an N-type conductive layer (or P-type conductive layer); then deposit a nitride insulating material layer on the N-type conductive layer (or P-type conductive layer) Then, the nitride insulating material layer is etched by H 2 in an epitaxially grown reactor until a portion of the N-type conductive layer (or P-type conductive layer) is exposed to form an opening structure for current conduction; finally, epitaxial growth of the N-type is continued.
  • the invention adopts a method of forming a current conduction path by using a H 2 high temperature etching nitride high resistance insulating material directly in a growth environment in an epitaxial growth process, and forming a current injection modulation layer without secondary epitaxy, which makes the injection current
  • the N-type conductive layer and the P-type conductive layer have a better extension path, and more efficiently and uniformly diffuse and implant the active layer layer, thereby increasing luminous efficiency.
  • FIG. 1 shows a current modulation layer with a current injection layer in accordance with an embodiment of the present invention.
  • Figure 2 shows a cross-sectional view and a cross-sectional view of the current injection modulation layer of Figure 1.
  • Figure 3 illustrates the current conduction path of an LED chip fabricated using the LED epitaxial structure shown in Figure 1.
  • Figure 4 illustrates the current conduction path of an existing LED chip.
  • 100 growth substrate; 200: luminescent epitaxial layer; 210: N-type conduction layer; 220: luminescent layer; 230: electron blocking layer; 240: P-type conduction layer; 250: current injection modulation layer; 251: nitride insulating material ; 252 : opening; 301 : N electrode; 302 : P electrode.
  • Figure 4 shows the phenomenon of current crowding in a conventional nitride light-emitting diode device (current Crowding)
  • current Crowding The current distribution density is unbalanced, the current density under the electrode is the largest, and the light intensity is relatively high.
  • the light emitted by the electrode is easily shielded or reflected by the electrode and absorbed by the material, thereby affecting the luminous efficiency of the device. Therefore, how to improve the uniformity of current distribution has become one of the research focuses in the industry.
  • Chinese patent ZL200410062825.2 proposes to form AlN in p-type photoconductive layer of active layer A nitride semiconductor laser with a narrow current layer.
  • the line structure of such a laser can be manufactured as follows: First, in the reactor of the MOCVD apparatus, at 400 to 600 ° C, a formed element is formed on the formed element. A current narrowing layer composed of AIN is passed directly to the p-type photoconductive layer, and then taken out from the reaction furnace. A strip-shaped opening is formed by photolithography using an alkaline etching solution, and then placed in a reactor of an MOCVD apparatus to grow p. The p-type metal clad layer or the like is further laminated in order to bury the opening of the narrow current layer.
  • US patent US7817692 A gallium nitride-based compound semiconductor laser having a current confinement layer provided with a strip-shaped opening portion is proposed.
  • a current narrowing layer is formed in Al. The ratio is smaller than the semiconductor layer of the aforementioned current confinement layer.
  • the prior art techniques use strip-shaped nitride semiconductor insulating materials for the nitride laser diode N-type conductive layer or
  • the P-type conductive layer acts as a current blocking layer, which must be completed by photolithography and secondary epitaxy.
  • the invention mainly completes the N-type conduction zone and the P by epitaxial growth in a single furnace.
  • the current modulation layer of the type conduction region can save time cost and avoid surface contamination caused by secondary epitaxial growth without requiring secondary epitaxial growth without additional process, and the yield is lowered.
  • an N-type conductive layer 210, a light-emitting layer 220, and a P-type conductive layer are sequentially deposited on the growth substrate 100. 240, constituting the light-emitting epitaxial layer 200.
  • the growth substrate 100 may be a material suitable for epitaxially growing a nitride semiconductor material layer such as sapphire, silicon carbide, gallium nitride or the like.
  • a buffer layer may be further deposited between the growth substrate 100 for improving the lattice quality of the luminescent epitaxial layer.
  • the material of the N-type conductive layer 210 is an n-GaN layer, and the current injection modulation layer 250 is included inside the N-type conductive layer, which preferably has a certain distance from the lower surface of the N-type conductive layer 210, but may also be directly located at N.
  • the current injection modulation layer 250 is a high resistance insulating material layer 251 having an open structure 252.
  • the material of the high-resistance insulating material layer 251 may be selected from In x Al y Ga 1-xy N , wherein in order to ensure high resistance of In x Al y Ga 1-xy N, the growth of the layer is undoped with Si and Mg ( That is un-doped In x Al y Ga 1-xy N) , such as AlN, GaN and the like.
  • the N-type conductive layer 210 can be formed by first growing an N-GaN material on the growth substrate 100, followed by growing an un-doped In x Al y Ga 1-xy N layer 251 of 50 nm to 200 nm; into H 2, etching un-doped in x Al y Ga 1-xy N layer 251, 252 form an open structure randomly distributed in un-doped in x Al y Ga 1-xy N layer in H 2 atmosphere, wherein
  • the opening structure covers the AlN layer 251 to form a flat epitaxial surface, and the finally formed current injection modulation layer 250 is as shown in FIG.
  • a series of openings 252 are distributed on the AlN layer 251, and the distribution density is 1x10 4
  • the light-emitting layer 220 is generally composed of a gallium nitride-based compound semiconductor of In, preferably a multiple quantum well structure, specifically, an In x1 Ga 1-x1 N well layer (0 ⁇ x1 ⁇ 1) and In x2 Ga 1-x2
  • the N barrier layer (0 ⁇ x 2 ⁇ 1 , x 1 > x 2 ) is alternately laminated in an appropriate number of times.
  • An electron blocking layer 230 is further disposed between the light emitting layer 220 and the P type conductive layer, and the material is usually aluminum gallium nitride and the thickness is 10nm ⁇ 60nm and a sufficiently high barrier to limit the electrons injected from the N-type to prevent it from overflowing into the P-type layer.
  • the material of the P-type conductive layer 240 is a p-GaN layer, and the inside of the P-type conductive layer also includes a current injection modulation layer 250 having a certain distance D (about 50 nm to 200 nm) from the lower surface of the P-type conduction layer 210.
  • D about 50 nm to 200 nm
  • the structure and preparation method are basically the same as the current injection modulation layer in the N-type conductive layer. , the description will not be repeated here.
  • Figure 3 illustrates the current conduction path of an LED chip fabricated using the LED epitaxial structure shown in Figure 1. It can be seen from the figure that by controlling the density and size of the opening, the current conducted through the electrode changes the current path to a considerable extent when the current is injected into the modulation layer, thereby increasing the uniformity of the current distribution. Furthermore, since the H 2 atmosphere decomposes un-doped In x Al y Ga 1-xy N, a decomposition reaction is usually generated from a high defect density (dislocation), so that a randomly distributed opening of a better lattice quality is left. -doped In x Al y Ga 1-xy N , which facilitates the growth of subsequent N-type or P-type conductive layers.
  • the furnace in situ The epitaxial structure design is completed, and the yellow light lithography and the secondary epitaxial process are avoided, and the electrical interface abnormality caused by the exposed air may be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

提供了一种具有电流注入调制层(250)的发光二极管,其中导入一种高阻值的材料以改变注入电流传导路径。发光二极管的制造步骤包括:分别在N型传导层(210)或P型传导层(240)中成长高阻值材料(例如InxAlyGa1-x-yN),借由高温H2在反应炉内蚀刻直至露出部分电流传导路径,再分别成长N型或P型传导层进行覆盖。发光二极管的制造方法无需二次外延即可形成电流注入调制层,使得注入电流在N型传导层与P型传导层的扩展路径更好,更有效均匀扩散注入有源区层,进而增加发光效率。

Description

氮化物发光二极管及其制作方法
本申请主张如下优先权:中国发明专利申请号201310010488.1,题为 ' 氮化物发光二极管及其制作方法 ' ,于 2013从 年 1 月 11 日提交。上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种氮化物发光二极管及其制作方法,更具体的是一种具电流注入调制层 (current modulation layer) 氮化物发光二极管之外延结构设计。
背景技术
在现有氮化镓发光二极管中, P 侧电流由 P 型电极经由透明传导层 (transparent conductive layer) 注入 P 型传导层乃至进入有源区 (active layer) ,然而由于 P 型传导层中电洞浓度 (hole concentration) 通常不高(介于 1016~1017cm-3 ),且其迁移率 (hole mobility) 也多在 10cm2/Vs 以下,如此,造成电流在 P 型传导层的分布不易均匀,往往会发生电流拥挤的现象 (current crowding) ,容易有多余的热在此处产生,最终影响发光效率。此外,因为电极下方的高电流密度,其光强度相对高,然而其所发出的光,容易被电极遮蔽或反射进来而被材料所吸收,造成光输出功率的损失。
另一方面, N 型传导层虽然不具 P 型传导层那样严苛之电传导特性,在相对均匀之电流分布注入有源区的情况下,仍是可以得到较佳之发光效率。
发明内容
本发明提供了一种具电流注入调制层 (current modulation layer) 的发光二极管之外延结构设计,具体的说是关于导入一种高阻值 (high resistivity) 的材料以改变注入电流传导路径,进而增加发光效率。其主要的结构实施为分别在 N 型传导层或 P 型传导层中成长高阻值材料(如 InxAlyGa1-x-yN ),借由高温 H2 在反应炉内蚀刻( In Situ Etching )直至露出部分电流传导路径,再分别成长 N 型或 P 型传导层于以覆盖而得。
根据本发明的第一个方面,氮化物发光二极管,包含 N 型传导层, P 型传导层,在 N 型传导层和 P 型传导层之间具有发光层;至少在 N 型传导层或 P 型传导层内包含一层电流注入调制层,其由具有开孔结构的氮化物绝缘材料层构成,所述开孔结构通过在外延生长的反应炉内通入 H2 蚀刻而成,用于电流传导。
优先地,所述电流注入调制层的材料可以为未掺杂的 InxAlyGa1-x-yN ,其中 0 ≦ x ≦ 0.1 , 0 ≦ y ≦ 1 , 0 ≦ x+y ≦ 1 ,厚度可以取 50nm ~ 200nm ,借由高温 H2 在反应炉内蚀刻( In Situ Etching )形成随机离散分布的开口结构,其分布密度为 1x104 ~ 1x108 cm-2 ,开孔结构的直径 d 为 50nm ~ 200nm 。
根据本发明的第二个方面,氮化物发光二极管的制作方法,通过外延生长方法沉积 N 型传导层,发光层和 P 型传导层,其特征在于:至少在 N 型传导层或 P 型传导层内形成一层电流注入调制层,其由具有开孔结构的氮化物绝缘材料层构成,所述开孔通过在外延生长的反应炉内通入 H2 蚀刻而成,用于传导电流。
优先地,所述电流注入调制层的材料为未掺杂的 InxAlyGa1-x-yN ( 0 ≦ x ≦ 0.1 , 0 ≦ y ≦ 1 , 0 ≦ x+y ≦ 1 ),通过下面方法形成于 N 型传导层(或 P 型传导层)内:首先外延生长 N 型传导层(或 P 型传导层);接着在 N 型传导层(或 P 型传导层)上沉积氮化物绝缘材料层;然后在外延生长的反应炉内通入 H2 蚀刻所述氮化物绝缘材料层直至露出部分 N 型传导层(或 P 型传导层)形成开口结构,用于电流传导;最后继续外延生长 N 型传导层(或 P 型传导层),从而在 N 型传导层(或 P 型传导层)内形成电流注入调制层。其中,所述 H2 气氛的浓度可取 H2/NH3 = 2.5~10 ,蚀刻的温度为 900 ℃ ~1200 ℃。
本发明采用在外延生长过程中,直接在生长环境中采用 H2 高温蚀刻氮化物高阻绝缘材料形成电流传导路径,无需二次外延即可形成电流注入调制层之方法,此法使得注入电流在 N 型传导层与 P 型传导层具一更佳之扩展路径,更有效均匀扩散注入有源区层,进而增加发光效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
虽然在下文中将结合一些示例性实施及使用方法来描述本发明,但本领域技术人员应当理解,并不旨在将本发明限制于这些实施例。反之,旨在覆盖包含在所附的权利要求书所定义的本发明的精神与范围内的所有替代品、修正及等效物。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 展示了根据本发明实施的一种具电流注入调制层 (current modulation layer) 的发光二极管之外延结构简图。
图 2 展示了图 1 中的具电流注入调制层的剖面图和截面图。
图 3 演示了采用图 1 所示的发光二极管外延结构制作成的 LED 芯片的电流传导路径。
图 4 演示了现有发光二极管芯片的电流传导路径。
图中各标号表示:
100 :生长衬底; 200 :发光外延层; 210 : N 型传导层; 220 :发光层; 230 :电子阻挡层; 240 : P 型传导层; 250 :电流注入调制层; 251 :氮化物绝缘材料; 252 :开口部; 301 : N 电极; 302 : P 电极。
具体实施方式
图 4 展示了传统氮化物发光二极管器件中的电流拥挤的现象 (current crowding) ,其电流分布密度不均衡,电极下面的电流密度最大,其光强度相对高,然而其所发出的光容易被电极遮蔽或反射进来而被材料所吸收,从而影响了器件的发光效率。因此,如何提高电流分布的均匀性成为业内的研究重点之一。
中国专利 ZL200410062825.2 提出了一种在活性层的 p 型光导层内形成 AlN 电流狭窄层的氮化物半导体激光器。这种激光器的线条结构可按如下制造:首先,在 MOCVD 装置的反应炉内,在 400 ~ 600 ℃下,在形成的元件上形成由 AIN 而构成的电流狭窄层,直达 p 型光导层,接着从反应炉内取出,通过使用碱性蚀刻液的光刻法形成条状开口部后,再装入 MOCVD 装置的反应炉内,生长 p 型光导层以埋没电流狭窄层的开口部,进一步依次层叠 p 型金属包层等。
美国专利 US7817692 提出了一种在具有设置条状开口部的电流狭窄层的氮化镓系化合物半导体激光器,为了阻止蚀刻形成条状开口部的过程中过渡蚀刻破坏外延层,将电流狭窄层形成在 Al 比率小于前述电流狭窄层的半导体层上。
前案技术均以条状 (striped-shaped) 氮化物半导体绝缘材料于氮化物雷射二极体 N 型传导层或 P 型传导层作为电流阻碍层,其都必须透过黄光微影 (photolithography) 及二次外延工艺方可完成。
本发明主要以一次炉内外延成长完成 N 型传导区及 P 型传导区之电流调制层,在不需二次外延成长,不需额外工艺的情形下,将可节省时间成本及避免因为二次外延成长所造成之表面污染,而使良率下降。
下面结合具体实施例和附图对本发明的具体实施进行详细说明。在下面实施例中,分别在 N 型传导层和 P 型传导层中形成电流注入调制层,应该理解为其仅是本发明的较佳实施例,并不限制 P 、 N 两侧均形成此结构,只要在 N 型传导层或 P 型传导层中形成亦可起到调制电流的效果。
请参考附图 1 ,在生长衬底 100 上依次沉积有 N 型传导层 210 、发光层 220 和 P 型传导层 240 ,构成发光外延层 200 。其中生长衬底 100 可以是蓝宝石、碳化硅、氮化镓等适于外延生长氮化物半导体材料层的材料。在 N 型传导层 210 与生长衬底 100 之间可进一步沉积缓冲层用于改善发光外延层的晶格质量。
N 型传导层 210 的材料为 n-GaN 层,在 N 型传导层的内部包含电流注入调制层 250 ,其与 N 型传导层 210 的下表面最好具有一定的距离,但也可以直接位于 N 型传导层 210 的底部。电流注入调制层 250 为具有开口结构 252 的高阻值绝缘材料层 251 。高阻值绝缘材料层 251 的材料可以选用 InxAlyGa1-x-yN ,其中为了保证 InxAlyGa1-x-yN 的高阻性,成长此层过程中未掺杂 Si 及 Mg ( 即为 un-doped InxAlyGa1-x-yN) ,如可以为 AlN , GaN 等材料。 N 型传导层 210 可以通过下面方法形成:首先在生长衬底 100 上生长 N-GaN 材料,接着生长 50nm ~ 200nm 的 un-doped InxAlyGa1-x-yN 层 251 ;然后在反应炉中通入 H2 ,在 H2 气氛中蚀刻 un-doped InxAlyGa1-x-yN 层 251 ,在 un-doped InxAlyGa1-x-yN 层中形成随机分布的开口结构 252 ,其中反应炉内的蚀刻条件可按下面进行设置: H2 氛围 H2/NH3 = 2.5~10 ,蚀刻温度为 900~1200 ℃,蚀刻时间为 30sec ~ 600sec ;然后继续生长 N-GaN 层,其填充所述的开口结构并覆盖所述的 AlN 层 251 ,形成平整的外延表面,最终形成的电流注入调制层 250 如图 2 所示。 AlN 层 251 上分布有一系列的开口 252 ,其分布密度为 1x104 ~ 1x108 cm-2 ,各个开口的直径 d 可控制在 50nm ~ 200nm 之间。
发光层 220 一般由 In 的氮化镓系化合物半导体所构成,较佳为多量子阱结构,具体可以由 In x1 Ga 1-x1 N 阱层 (0 < x1 < 1) 和 In x2 Ga1-x2 N 垒层 (0 ≤ x 2 < 1 , x 1 > x 2 ) ,以适当次数交替反复层叠形成。
在发光层 220 和 P 型传导层之间还设置一层电子阻挡层 230 ,其材料通常为氮化铝镓,厚度为 10nm~60nm 且具有足够高之势垒,用以局限从 N 型注入之电子防止其溢流到 P 型层。
P 型传导层 240 的材料为 p-GaN 层,在 P 型传导层的内部同样包含电流注入调制层 250 ,其与 P 型传导层 210 的下表面具有一定的距离 D (约 50nm~200nm ),此为确保炉内蚀刻分解 un-doped InxAlyGa1-x-yN 时,不会损伤到电子阻挡层或发光层,其结构和制备方法与 N 型传导层内的电流注入调制层基本相同,在此不再重复表述。
图 3 演示了采用图 1 所示的发光二极管外延结构制作成的 LED 芯片的电流传导路径。从图中可看出:借由控制开口密度及大小,凡是经由电极传导出之电流,在经过电流注入调制层时皆有相当程度上影响而改变其电流路径,进而增加电流分布之均匀性。再者,由于 H2 氛围分解 un-doped InxAlyGa1-x-yN 时,通常从高缺陷密度处( dislocation )生成分解反应,如此可留下较佳晶格质量之随机分布开口的 un-doped InxAlyGa1-x-yN ,有利于后续之 N 型或 P 型传导层成长。
进一步地,在本实施中,在炉内 in situ 完成外延结构设计,避免了黄光微影和二次外延工艺,将可避免因暴露空气导致之界面污染而引起光电组件电性异常。

Claims (13)

  1. 氮化物发光二极管,包含 N 型传导层, P 型传导层,在 N 型传导层和 P 型传导层之间具有发光层;至少在 N 型传导层或 P 型传导层内包含一层电流注入调制层,其由具有开孔结构的氮化物绝缘材料层构成,所述开孔结构通过在外延生长的反应炉内通入 H2 蚀刻而成,用于电流传导。
  2. 根据权利要求 1 所述的发光二极管,其特征在于:所述电流注入调制层的材料为未掺杂的 InxAlyGa1-x-yN ,其中 0 ≦ x ≦ 0.1 , 0 ≦ y ≦ 1 , 0 ≦ x+y ≦ 1 。
  3. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述电流注入调制层的开孔结构为随机离散分布。
  4. 根据权利要求 3 所述的氮化物发光二极管,其特征在于:所述电流注入调制层的开孔结构位于所述氮化物绝缘材料层中晶格较差的区域。
  5. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述电流注入调制层开孔结构的分布密度为 1x104 ~ 1x108 cm-2
  6. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述电流注入调制层的下表面距离 P 型传导层的下表面的距离为 50nm~200nm 。
  7. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述电流注入调制层的厚度为 50nm ~ 200nm 。
  8. 氮化物发光二极管的制作方法,通过外延生长方法沉积 N 型传导层,发光层和 P 型传导层,其特征在于:至少在 N 型传导层或 P 型传导层内形成一层电流注入调制层,其由具有开孔结构的氮化物绝缘材料层构成,所述开孔通过在外延生长的反应炉内通入 H2 蚀刻而成,用于传导电流。
  9. 根据权利要求 8 所述的氮化物发光二极管的制作方法,其特征在于:所述电流注入调制层的材料为未掺杂的 InxAlyGa1-x-yN ,其中 0 ≦ x ≦ 0.1 , 0 ≦ y ≦ 1 , 0 ≦ x+y ≦ 1 。
  10. 根据权利要求 8 所述的氮化物发光二极管的制作方法,其特征在于:所述电流注入调制层通过下面方法形成:
    外延生长 N 型传导层或 P 型传导层;
    在 N 型传导层或 P 型传导层上沉积氮化物绝缘材料层;
    在外延生长的反应炉内通入 H2 蚀刻所述氮化物绝缘材料层直至露出部分 N 型传导层或 P 型传导层形成开口结构,用于电流传导;
    继续外延生长 N 型传导层或 P 型传导层,从而在 N 型传导层或 P 型传导层内形成电流注入调制层。
  11. 根据权利要求 10 所述的氮化物发光二极管的制作方法,其特征在于:所述 H2 气氛的浓度为 H2/NH3 = 2.5~10 。
  12. 根据权利要求 10 所述的氮化物发光二极管的制作方法,其特征在于:所述 H2 蚀刻的温度为 900 ℃ ~1200 ℃。
  13. 根据权利要求 10 所述的氮化物发光二极管的制作方法,其特征在于:所述 H2 蚀刻所述氮化物绝缘材料层中晶格较差的部位形成开口结构。
PCT/CN2013/088924 2013-01-11 2013-12-10 氮化物发光二极管及其制作方法 WO2014108009A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/719,269 US9312438B2 (en) 2013-01-11 2015-05-21 Nitride light emitting diode and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310010488.1 2013-01-11
CN201310010488.1A CN103094440B (zh) 2013-01-11 2013-01-11 氮化物发光二极管及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/719,269 Continuation US9312438B2 (en) 2013-01-11 2015-05-21 Nitride light emitting diode and fabrication method thereof

Publications (1)

Publication Number Publication Date
WO2014108009A1 true WO2014108009A1 (zh) 2014-07-17

Family

ID=48206789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088924 WO2014108009A1 (zh) 2013-01-11 2013-12-10 氮化物发光二极管及其制作方法

Country Status (3)

Country Link
US (1) US9312438B2 (zh)
CN (1) CN103094440B (zh)
WO (1) WO2014108009A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738334B (zh) * 2012-06-19 2015-07-08 厦门市三安光电科技有限公司 具有电流扩展层的发光二极管及其制作方法
CN103094440B (zh) * 2013-01-11 2016-03-09 厦门市三安光电科技有限公司 氮化物发光二极管及其制作方法
CN105355742B (zh) * 2015-12-04 2017-11-07 天津三安光电有限公司 发光二极管芯片及其制作方法
CN112151646B (zh) * 2019-06-28 2021-12-21 隆达电子股份有限公司 发光元件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113163A1 (en) * 2002-12-11 2004-06-17 Steigerwald Daniel A. Light emitting device with enhanced optical scattering
CN102064259A (zh) * 2009-11-02 2011-05-18 Lg伊诺特有限公司 包括第二导电类型半导体层的发光器件及其制造方法
CN102074630A (zh) * 2009-11-25 2011-05-25 展晶科技(深圳)有限公司 发光二极管及其制造方法
CN103094440A (zh) * 2013-01-11 2013-05-08 厦门市三安光电科技有限公司 氮化物发光二极管及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713100B2 (ja) * 1996-05-23 2005-11-02 ローム株式会社 半導体発光素子の製法
JPH10294531A (ja) * 1997-02-21 1998-11-04 Toshiba Corp 窒化物化合物半導体発光素子
KR101008285B1 (ko) * 2005-10-28 2011-01-13 주식회사 에피밸리 3족 질화물 반도체 발광소자
KR101134720B1 (ko) * 2009-02-16 2012-04-13 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101616905B1 (ko) * 2009-10-22 2016-04-29 엘지디스플레이 주식회사 반도체 발광 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113163A1 (en) * 2002-12-11 2004-06-17 Steigerwald Daniel A. Light emitting device with enhanced optical scattering
CN102064259A (zh) * 2009-11-02 2011-05-18 Lg伊诺特有限公司 包括第二导电类型半导体层的发光器件及其制造方法
CN102074630A (zh) * 2009-11-25 2011-05-25 展晶科技(深圳)有限公司 发光二极管及其制造方法
CN103094440A (zh) * 2013-01-11 2013-05-08 厦门市三安光电科技有限公司 氮化物发光二极管及其制作方法

Also Published As

Publication number Publication date
US9312438B2 (en) 2016-04-12
US20150270439A1 (en) 2015-09-24
CN103094440B (zh) 2016-03-09
CN103094440A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
US7646027B2 (en) Group III nitride semiconductor stacked structure
KR20080042927A (ko) 반도체 발광 소자 및 반도체 발광 소자를 사용한 조명 장치
TW201521223A (zh) 一種iii-v族氮化物半導體外延片、包含該外延片的器件及其製備方法
CN106159048B (zh) 一种发光二极管外延片及其生长方法
CN106057990B (zh) 一种GaN基发光二极管的外延片的制作方法
CN103337573A (zh) 半导体发光二极管的外延片及其制造方法
CN109860353B (zh) 一种GaN基发光二极管外延片及其制备方法
WO2014108009A1 (zh) 氮化物发光二极管及其制作方法
JP2000091234A (ja) 窒化物系iii−v族化合物半導体の製造方法
CN111599901A (zh) 一种生长在Si衬底上的紫外LED外延片及其制备方法
CN111725371B (zh) 一种led外延底层结构及其生长方法
JP3667995B2 (ja) GaN系量子ドット構造の製造方法およびその用途
CN109473514A (zh) 一种氮化镓基发光二极管外延片及其制造方法
CN109273571A (zh) 一种氮化镓基发光二极管外延片及其制作方法
CN109860341B (zh) 一种GaN基发光二极管外延片及其制备方法
JPH11354843A (ja) Iii族窒化物系量子ドット構造の製造方法およびその用途
CN216450669U (zh) 外延片及半导体发光器件
JP2006060197A (ja) Iii族窒化物半導体積層体及びiii族窒化物半導体発光素子、並びにそれらの製造方法
KR101966623B1 (ko) 반도체층 형성 방법 및 반도체 발광소자
CN111129238A (zh) 一种ⅲ-ⅴ族氮化物半导体外延片、包含该外延片的器件及其制备方法
CN212542464U (zh) 一种生长在Si衬底上的紫外LED外延片
CN116825916A (zh) Led结构及led结构的制备方法
CN110050330B (zh) Iii族氮化物半导体
KR101876576B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
CN107910411B (zh) 发光二极管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871223

Country of ref document: EP

Kind code of ref document: A1