CN103094440B - 氮化物发光二极管及其制作方法 - Google Patents

氮化物发光二极管及其制作方法 Download PDF

Info

Publication number
CN103094440B
CN103094440B CN201310010488.1A CN201310010488A CN103094440B CN 103094440 B CN103094440 B CN 103094440B CN 201310010488 A CN201310010488 A CN 201310010488A CN 103094440 B CN103094440 B CN 103094440B
Authority
CN
China
Prior art keywords
conducting shell
type conducting
layer
pulse current
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310010488.1A
Other languages
English (en)
Other versions
CN103094440A (zh
Inventor
林文禹
叶孟欣
林科闯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Sanan Semiconductor Technology Co Ltd
Original Assignee
Xiamen Sanan Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Sanan Optoelectronics Technology Co Ltd filed Critical Xiamen Sanan Optoelectronics Technology Co Ltd
Priority to CN201310010488.1A priority Critical patent/CN103094440B/zh
Publication of CN103094440A publication Critical patent/CN103094440A/zh
Priority to PCT/CN2013/088924 priority patent/WO2014108009A1/zh
Priority to US14/719,269 priority patent/US9312438B2/en
Application granted granted Critical
Publication of CN103094440B publication Critical patent/CN103094440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种具电流注入调制层(current?modulation?layer)的发光二极管之外延结构设计,具体的说是关于导入一种高阻值(high?resistivity)的材料以改变注入电流传导路径。其主要的结构实施为分别在N型传导层或P型传导层中成长高阻值材料(如InxAlyGa1-x-yN),借由高温H2在反应炉内蚀刻(In?Situ?Etching)直至露出部分电流传导路径,再分别成长N型或P型传导层于以覆盖而得。此设计无需二次外延即可形成电流注入调制层,此法使得注入电流在N型传导层与P型传导层具一更佳之扩展路径,更有效均匀扩散注入有源区层,进而增加发光效率。

Description

氮化物发光二极管及其制作方法
技术领域
本发明涉及一种氮化物发光二极管及其制作方法,更具体的是一种具电流注入调制层(currentmodulationlayer)氮化物发光二极管之外延结构设计。
背景技术
在现有氮化镓发光二极管中,P侧电流由P型电极经由透明传导层(transparentconductivelayer)注入P型传导层乃至进入有源区(activelayer),然而由于P型传导层中电洞浓度(holeconcentration)通常不高(介于1016~1017cm-3),且其迁移率(holemobility)也多在10cm2/Vs以下,如此,造成电流在P型传导层的分布不易均匀,往往会发生电流拥挤的现象(currentcrowding),容易有多余的热在此处产生,最终影响发光效率。此外,因为电极下方的高电流密度,其光强度相对高,然而其所发出的光,容易被电极遮蔽或反射进来而被材料所吸收,造成光输出功率的损失。
另一方面,N型传导层虽然不具P型传导层那样严苛之电传导特性,在相对均匀之电流分布注入有源区的情况下,仍是可以得到较佳之发光效率。
发明内容
本发明提供了一种具电流注入调制层(currentmodulationlayer)的发光二极管之外延结构设计,具体的说是关于导入一种高阻值(highresistivity)的材料以改变注入电流传导路径,进而增加发光效率。其主要的结构实施为分别在N型传导层或P型传导层中成长高阻值材料(如InxAlyGa1-x-yN),借由高温H2在反应炉内蚀刻(InSituEtching)直至露出部分电流传导路径,再分别成长N型或P型传导层于以覆盖而得。
根据本发明的第一个方面,氮化物发光二极管,包含N型传导层,P型传导层,在N型传导层和P型传导层之间具有发光层;至少在N型传导层或P型传导层内包含一层电流注入调制层,其由具有开孔结构的氮化物绝缘材料层构成,所述开孔结构通过在外延生长的反应炉内通入H2蚀刻而成,用于电流传导。
优先地,所述电流注入调制层的材料可以为未掺杂的InxAlyGa1-x-yN,其中0≦x≦0.1,0≦y≦1,0≦x+y≦1,厚度可以取50nm~200nm,借由高温H2在反应炉内蚀刻(InSituEtching)形成随机离散分布的开口结构,其分布密度为1×104~1×108cm-2,开孔结构的直径d为50nm~200nm。
根据本发明的第二个方面,氮化物发光二极管的制作方法,通过外延生长方法沉积N型传导层,发光层和P型传导层,其特征在于:至少在N型传导层或P型传导层内形成一层电流注入调制层,其由具有开孔结构的氮化物绝缘材料层构成,所述开孔通过在外延生长的反应炉内通入H2蚀刻而成,用于传导电流。
优先地,所述电流注入调制层的材料为未掺杂的InxAlyGa1-x-yN(0≦x≦0.1,0≦y≦1,0≦x+y≦1),通过下面方法形成于N型传导层(或P型传导层)内:首先外延生长N型传导层(或P型传导层);接着在N型传导层(或P型传导层)上沉积氮化物绝缘材料层;然后在外延生长的反应炉内通入H2蚀刻所述氮化物绝缘材料层直至露出部分N型传导层(或P型传导层)形成开口结构,用于电流传导;最后继续外延生长N型传导层(或P型传导层),从而在N型传导层(或P型传导层)内形成电流注入调制层。其中,所述H2气氛的浓度可取H2/NH3=2.5~10,蚀刻的温度为900℃~1200℃。
本发明采用在外延生长过程中,直接在生长环境中采用H2高温蚀刻氮化物高阻绝缘材料形成电流传导路径,无需二次外延即可形成电流注入调制层之方法,此法使得注入电流在N型传导层与P型传导层具一更佳之扩展路径,更有效均匀扩散注入有源区层,进而增加发光效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
虽然在下文中将结合一些示例性实施及使用方法来描述本发明,但本领域技术人员应当理解,并不旨在将本发明限制于这些实施例。反之,旨在覆盖包含在所附的权利要求书所定义的本发明的精神与范围内的所有替代品、修正及等效物。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1展示了根据本发明实施的一种具电流注入调制层(currentmodulationlayer)的发光二极管之外延结构简图。
图2展示了图1中的具电流注入调制层的剖面图和截面图。
图3演示了采用图1所示的发光二极管外延结构制作成的LED芯片的电流传导路径。
图4演示了现有发光二极管芯片的电流传导路径。
图中各标号表示:
100:生长衬底;200:发光外延层;210:N型传导层;220:发光层;230:电子阻挡层;240:P型传导层;250:电流注入调制层;251:氮化物绝缘材料;252:开口部;301:N电极;302:P电极。
具体实施方式
图4展示了传统氮化物发光二极管器件中的电流拥挤的现象(currentcrowding),其电流分布密度不均衡,电极下面的电流密度最大,其光强度相对高,然而其所发出的光容易被电极遮蔽或反射进来而被材料所吸收,从而影响了器件的发光效率。因此,如何提高电流分布的均匀性成为业内的研究重点之一。
中国专利ZL200410062825.2提出了一种在活性层的p型光导层内形成AlN电流狭窄层的氮化物半导体激光器。这种激光器的线条结构可按如下制造:首先,在MOCVD装置的反应炉内,在400~600℃下,在形成的元件上形成由AIN而构成的电流狭窄层,直达p型光导层,接着从反应炉内取出,通过使用碱性蚀刻液的光刻法形成条状开口部后,再装入MOCVD装置的反应炉内,生长p型光导层以埋没电流狭窄层的开口部,进一步依次层叠p型金属包层等。
美国专利US7817692提出了一种在具有设置条状开口部的电流狭窄层的氮化镓系化合物半导体激光器,为了阻止蚀刻形成条状开口部的过程中过渡蚀刻破坏外延层,将电流狭窄层形成在Al比率小于前述电流狭窄层的半导体层上。
前案技术均以条状(striped-shaped)氮化物半导体绝缘材料于氮化物雷射二极体N型传导层或P型传导层作为电流阻碍层,其都必须透过黄光微影(photolithography)及二次外延工艺方可完成。
本发明主要以一次炉内外延成长完成N型传导区及P型传导区之电流调制层,在不需二次外延成长,不需额外工艺的情形下,将可节省时间成本及避免因为二次外延成长所造成之表面污染,而使良率下降。
下面结合具体实施例和附图对本发明的具体实施进行详细说明。在下面实施例中,分别在N型传导层和P型传导层中形成电流注入调制层,应该理解为其仅是本发明的较佳实施例,并不限制P、N两侧均形成此结构,只要在N型传导层或P型传导层中形成亦可起到调制电流的效果。
请参考附图1,在生长衬底100上依次沉积有N型传导层210、发光层220和P型传导层240,构成发光外延层。其中生长衬底100可以是蓝宝石、碳化硅、氮化镓等适于外延生长氮化物半导体材料层的材料。在N型传导层210与生长衬底100之间可进一步沉积缓冲层用于改善发光外延层的晶格质量。
N型传导层210的材料为n-GaN层,在N型传导层的内部包含电流注入调制层250,其与N型传导层210的下表面最好具有一定的距离,但也可以直接位于N型传导层210的底部。电流注入调制层250为具有开口结构252的高阻值绝缘材料层251。高阻值绝缘材料层251的材料可以选用InxAlyGa1-x-yN,其中为了保证InxAlyGa1-x-yN的高阻性,成长此层过程中未掺杂Si及Mg(即为un-dopedInxAlyGa1-x-yN),如可以为AlN,GaN等材料。N型传导层210可以通过下面方法形成:首先在生长衬底100上生长N-GaN材料,接着生长50nm~200nm的un-dopedInxAlyGa1-x-yN层251;然后在反应炉中通入H2,在H2气氛中蚀刻un-dopedInxAlyGa1-x-yN层251,在un-dopedInxAlyGa1-x-yN层中形成随机分布的开口结构252,其中反应炉内的蚀刻条件可按下面进行设置:H2氛围H2/NH3=2.5~10,蚀刻温度为900~1200℃,蚀刻时间为30sec~600sec;然后继续生长N-GaN层,其填充所述的开口结构并覆盖所述的AlN层251,形成平整的外延表面,最终形成的电流注入调制层250如图2所示。AlN层251上分布有一系列的开口252,其分布密度为1×104~1×108cm-2,各个开口的直径d可控制在50nm~200nm之间。
发光层220一般由In的氮化镓系化合物半导体所构成,较佳为多量子阱结构,具体可以由Inx1Ga1-x1N阱层(0<x1<1)和Inx2Ga1-x2N垒层(0≤x2<1,x1>x2),以适当次数交替反复层叠形成。
在发光层220和P型传导层之间还设置一层电子阻挡层230,其材料通常为氮化铝镓,厚度为10nm~60nm且具有足够高之势垒,用以局限从N型注入之电子防止其溢流到P型层。
P型传导层240的材料为p-GaN层,在P型传导层的内部同样包含电流注入调制层250,其与P型传导层240的下表面具有一定的距离D(约50nm~200nm),此为确保炉内蚀刻分解un-dopedInxAlyGa1-x-yN时,不会损伤到电子阻挡层或发光层,其结构和制备方法与N型传导层内的电流注入调制层基本相同,在此不再重复表述。
图3演示了采用图1所示的发光二极管外延结构制作成的LED芯片的电流传导路径。从图中可看出:借由控制开口密度及大小,凡是经由电极传导出之电流,在经过电流注入调制层时皆有相当程度上影响而改变其电流路径,进而增加电流分布之均匀性。再者,由于H2氛围分解un-dopedInxAlyGa1-x-yN时,通常从高缺陷密度处(dislocation)生成分解反应,如此可留下较佳晶格质量之随机分布开口的un-dopedInxAlyGa1-x-yN,有利于后续之N型或P型传导层成长。
进一步地,在本实施中,在炉内insitu完成外延结构设计,避免了黄光微影和二次外延工艺,将可避免因暴露空气导致之界面污染而引起光电组件电性异常。

Claims (13)

1.氮化物发光二极管,包含N型传导层,P型传导层,在N型传导层和P型传导层之间具有发光层;至少在N型传导层或P型传导层内包含一层电流注入调制层,其由具有开孔结构的氮化物绝缘材料层构成,所述开孔结构通过在外延生长的反应炉内通入H2蚀刻而成,用于电流传导;当所述电流注入调制层位于N型传导层内时,其与N型传导层之邻近发光层的表面具有距离,当所述电流注入调制层位于P型传导层内时,其与P型传导层之下表面具有距离。
2.根据权利要求1所述的发光二极管,其特征在于:所述电流注入调制层的材料为未掺杂的InxAlyGa1-x-yN,其中0≦x≦0.1,0≦y≦1,0≦x+y≦1。
3.根据权利要求1所述的氮化物发光二极管,其特征在于:所述电流注入调制层的开孔结构为随机离散分布。
4.根据权利要求3所述的氮化物发光二极管,其特征在于:所述电流注入调制层的开孔结构位于所述氮化物绝缘材料层中晶格较差的区域。
5.根据权利要求1所述的氮化物发光二极管,其特征在于:所述电流注入调制层开孔结构的分布密度为1×104~1×108cm-2
6.根据权利要求1所述的氮化物发光二极管,其特征在于:所述电流注入调制层的下表面距离P型传导层的下表面的距离为50nm~200nm。
7.根据权利要求1所述的氮化物发光二极管,其特征在于:所述电流注入调制层的厚度为50nm~200nm。
8.氮化物发光二极管的制作方法,通过外延生长方法沉积N型传导层,发光层和P型传导层,其特征在于:至少在N型传导层或P型传导层内形成一层电流注入调制层,其由具有开孔结构的氮化物绝缘材料层构成,所述开孔通过在外延生长的反应炉内通入H2蚀刻而成,用于传导电流;当所述电流注入调制层位于N型传导层内时,其与N型传导层之邻近发光层的表面具有距离,当所述电流注入调制层位于P型传导层内时,其与P型传导层之下表面具有距离。
9.根据权利要求8所述的氮化物发光二极管的制作方法,其特征在于:所述电流注入调制层的材料为未掺杂的InxAlyGa1-x-yN,其中0≦x≦0.1,0≦y≦1,0≦x+y≦1。
10.根据权利要求8所述的氮化物发光二极管的制作方法,其特征在于:所述电流注入调制层通过下面方法形成:
外延生长N型传导层或P型传导层;
在N型传导层或P型传导层上沉积氮化物绝缘材料层;
在外延生长的反应炉内通入H2蚀刻所述氮化物绝缘材料层直至露出部分N型传导层或P型传导层形成开口结构,用于电流传导;
继续外延生长N型传导层或P型传导层,从而在N型传导层或P型传导层内形成电流注入调制层。
11.根据权利要求10所述的氮化物发光二极管的制作方法,其特征在于:所述H2气氛的浓度为H2/NH3=2.5~10。
12.根据权利要求10所述的氮化物发光二极管的制作方法,其特征在于:所述H2蚀刻的温度为900℃~1200℃。
13.根据权利要求10所述的氮化物发光二极管的制作方法,其特征在于:所述H2蚀刻所述氮化物绝缘材料层中晶格较差的部位形成开口结构。
CN201310010488.1A 2013-01-11 2013-01-11 氮化物发光二极管及其制作方法 Active CN103094440B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310010488.1A CN103094440B (zh) 2013-01-11 2013-01-11 氮化物发光二极管及其制作方法
PCT/CN2013/088924 WO2014108009A1 (zh) 2013-01-11 2013-12-10 氮化物发光二极管及其制作方法
US14/719,269 US9312438B2 (en) 2013-01-11 2015-05-21 Nitride light emitting diode and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310010488.1A CN103094440B (zh) 2013-01-11 2013-01-11 氮化物发光二极管及其制作方法

Publications (2)

Publication Number Publication Date
CN103094440A CN103094440A (zh) 2013-05-08
CN103094440B true CN103094440B (zh) 2016-03-09

Family

ID=48206789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310010488.1A Active CN103094440B (zh) 2013-01-11 2013-01-11 氮化物发光二极管及其制作方法

Country Status (3)

Country Link
US (1) US9312438B2 (zh)
CN (1) CN103094440B (zh)
WO (1) WO2014108009A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738334B (zh) * 2012-06-19 2015-07-08 厦门市三安光电科技有限公司 具有电流扩展层的发光二极管及其制作方法
CN103094440B (zh) * 2013-01-11 2016-03-09 厦门市三安光电科技有限公司 氮化物发光二极管及其制作方法
CN105355742B (zh) * 2015-12-04 2017-11-07 天津三安光电有限公司 发光二极管芯片及其制作方法
CN112151646B (zh) * 2019-06-28 2021-12-21 隆达电子股份有限公司 发光元件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317574A2 (en) * 2009-11-02 2011-05-04 LG Innotek Co., Ltd. Light emitting device comprising metal oxide semiconductor layer and pattern for light extraction on active layer
CN102074630A (zh) * 2009-11-25 2011-05-25 展晶科技(深圳)有限公司 发光二极管及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713100B2 (ja) * 1996-05-23 2005-11-02 ローム株式会社 半導体発光素子の製法
JPH10294531A (ja) * 1997-02-21 1998-11-04 Toshiba Corp 窒化物化合物半導体発光素子
US7071494B2 (en) * 2002-12-11 2006-07-04 Lumileds Lighting U.S. Llc Light emitting device with enhanced optical scattering
KR101008285B1 (ko) * 2005-10-28 2011-01-13 주식회사 에피밸리 3족 질화물 반도체 발광소자
KR101134720B1 (ko) * 2009-02-16 2012-04-13 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101616905B1 (ko) * 2009-10-22 2016-04-29 엘지디스플레이 주식회사 반도체 발광 소자
CN103094440B (zh) * 2013-01-11 2016-03-09 厦门市三安光电科技有限公司 氮化物发光二极管及其制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2317574A2 (en) * 2009-11-02 2011-05-04 LG Innotek Co., Ltd. Light emitting device comprising metal oxide semiconductor layer and pattern for light extraction on active layer
CN102074630A (zh) * 2009-11-25 2011-05-25 展晶科技(深圳)有限公司 发光二极管及其制造方法

Also Published As

Publication number Publication date
US20150270439A1 (en) 2015-09-24
US9312438B2 (en) 2016-04-12
CN103094440A (zh) 2013-05-08
WO2014108009A1 (zh) 2014-07-17

Similar Documents

Publication Publication Date Title
KR100661614B1 (ko) 질화물계 반도체 발광소자 및 그 제조방법
JP5084837B2 (ja) 深紫外線発光素子及びその製造方法
KR101241477B1 (ko) 질화물 반도체 발광소자 및 그 제조 방법
KR100668351B1 (ko) 질화물계 발광소자 및 그 제조방법
EP1923924A1 (en) Semiconductor light emitting element and illuminating apparatus using same
EP3016151A1 (en) Light emitting device
KR20070091828A (ko) 나노콘 성장방법 및 이를 이용한 발광 다이오드의제조방법
KR20090010284A (ko) 반도체 발광소자 및 그 제조방법
CN103094440B (zh) 氮化物发光二极管及其制作方法
CN104205367A (zh) 近紫外发光装置
KR100682873B1 (ko) 반도체 발광 소자 및 그 제조 방법
KR100661960B1 (ko) 발광 다이오드 및 그 제조 방법
KR20070068061A (ko) 발광 다이오드 및 그 제조방법
KR101134493B1 (ko) 발광 다이오드 및 이의 제조 방법
KR20090076163A (ko) 질화물 반도체 발광소자 제조방법 및 이에 의해 제조된질화물 반도체 발광소자
JPH11354843A (ja) Iii族窒化物系量子ドット構造の製造方法およびその用途
KR100728132B1 (ko) 전류 확산층을 이용한 발광 다이오드
KR20090070980A (ko) 질화물 반도체 발광 소자 및 그 제조 방법
KR20130087766A (ko) 발광 다이오드 및 그 제조 방법
KR20100054589A (ko) 질화물 반도체 소자 및 그 제조방법
KR20130094451A (ko) 질화물 반도체 발광소자 및 그 제조방법
KR101862406B1 (ko) 질화물계 발광소자 및 그 제조방법
KR100646571B1 (ko) 고효율 발광소자 및 그 제조방법
KR20120019655A (ko) 반도체 발광소자 제조방법
KR101349604B1 (ko) 질화갈륨계 발광소자

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231016

Address after: Yuanqian village, Shijing Town, Nan'an City, Quanzhou City, Fujian Province

Patentee after: QUANZHOU SAN'AN SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

Address before: 361009 no.1721-1725, Luling Road, Siming District, Xiamen City, Fujian Province

Patentee before: XIAMEN SANAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd.