WO2010050519A1 - 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管 - Google Patents

耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管 Download PDF

Info

Publication number
WO2010050519A1
WO2010050519A1 PCT/JP2009/068518 JP2009068518W WO2010050519A1 WO 2010050519 A1 WO2010050519 A1 WO 2010050519A1 JP 2009068518 W JP2009068518 W JP 2009068518W WO 2010050519 A1 WO2010050519 A1 WO 2010050519A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
content
phase
strength
Prior art date
Application number
PCT/JP2009/068518
Other languages
English (en)
French (fr)
Inventor
近藤 邦夫
尚 天谷
秀樹 高部
大江 太郎
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to EP09823629.2A priority Critical patent/EP2341161B1/en
Priority to AU2009310835A priority patent/AU2009310835B2/en
Priority to JP2010535822A priority patent/JP4761008B2/ja
Priority to ES09823629.2T priority patent/ES2553759T3/es
Priority to CN2009801432527A priority patent/CN102203309B/zh
Priority to CA2733649A priority patent/CA2733649C/en
Priority to BRPI0919892-0A priority patent/BRPI0919892B1/pt
Priority to MX2011004528A priority patent/MX2011004528A/es
Publication of WO2010050519A1 publication Critical patent/WO2010050519A1/ja
Priority to US13/082,432 priority patent/US8608872B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a stainless steel pipe having high strength, and particularly as a stainless steel pipe or line pipe for oil wells used in oil wells producing crude oil or gas wells producing natural gas, particularly hydrogen sulfide gas, carbon dioxide gas and chloride.
  • the present invention relates to a stainless steel pipe having excellent corrosion resistance and high strength, which is suitable for oil wells or gas wells having severe corrosive environments at high temperatures containing ions.
  • oil wells and gas wells containing carbon dioxide gas 13% Cr martensitic stainless steel pipes having excellent carbon dioxide corrosion resistance are generally used.
  • oil wells the depth of oil wells and gas wells (hereinafter abbreviated as oil wells) has progressed, and materials having higher strength than those in the past have been required.
  • the oil well environment becomes high temperature and high pressure as the depth increases, and the partial pressure of carbon dioxide and hydrogen sulfide increases. Therefore, a steel pipe having sufficient corrosion resistance is required even in a harsh environment.
  • Patent Documents 1 to 16 Japanese Patent Documents 1 to 16.
  • JP-A-3-75335 Japanese Unexamined Patent Publication No. 7-166303 Japanese Patent Laid-Open No. 9-291344 Japanese Patent Application Laid-Open No. 2002-4009 JP 2004-107773 A JP 2005-105357 A Japanese Patent Laid-Open No. 2006-16637 JP 2005-336595 A JP 2005-336599 A WO2004 / 001082 JP 2006-307287 A JP 2007-146226 A JP 2007-332431 A JP 2007-332442 A JP 2007-169776 A Japanese Patent Laid-Open No. 10-25549
  • the present inventors examined the component composition of stainless steel that simultaneously satisfies the three conditions described above (high strength, sufficient corrosion resistance in a high-temperature carbon dioxide environment, and sufficient sulfide stress cracking resistance). Specifically, first, the alloy composition of stainless steel was examined so that sufficient corrosion resistance could be secured even in a high temperature (for example, 200 ° C.) carbon dioxide environment. As a result, the present inventors have found that the Cr content is most important in securing the corrosion resistance of stainless steel. In addition, the present inventors have found that a certain amount of Mo needs to be contained in the stainless steel in order to ensure sufficient sulfide stress cracking characteristics.
  • Ni is also an element that improves the corrosion resistance, and if it is added in a large amount, the corrosion resistance can be improved. However, if a large amount of Ni is added, the Ms point that is the martensite transformation point temperature is lowered. Thereby, since the residual ⁇ phase increases and stabilizes, the strength of the stainless steel is greatly reduced. Accordingly, the present inventors have made various studies on the assumption that Ni can be effectively utilized if the Ms point can be raised to suppress a decrease in strength. As a result, it has been found that unless the N content and the Mn content are provided with certain restrictions, the decrease in the Ms point due to the addition of Ni cannot be suppressed, and the targeted high strength cannot be obtained. From this examination result, the present inventors can add Cr, Mo, Cu and Ni to the maximum by restricting the N content and the Mn content, and the high strength and high corrosion resistance of the stainless steel pipe can be increased. It was found that it is possible to achieve both.
  • the object of the present invention is to have a high strength that can cope with deep oil wells or gas wells, to have sufficient corrosion resistance even in a high-temperature carbon dioxide environment of 200 ° C., and to recover crude oil or gas temporarily. It is an object of the present invention to provide a stainless steel pipe having sufficient sulfide stress cracking resistance even when the environmental temperature of an oil well or gas well is lowered by being stopped.
  • “having sufficient corrosion resistance (corrosion) even in a high-temperature carbon dioxide environment” means excellent corrosion resistance against stress corrosion cracking in a high-temperature carbon dioxide environment containing chloride ions. It is a thing. Specifically, it has corrosion resistance that does not cause stress corrosion cracking even in a severe environment of about 200 ° C.
  • “sufficient sulfide stress cracking resistance” means excellent resistance to cracking phenomenon caused by hydrogen embrittlement in oil well (gas well) environment containing a small amount of hydrogen sulfide, and is sensitive near room temperature. Means having excellent corrosion resistance against high cracking phenomenon.
  • the “high-strength stainless steel pipe” is a high-strength stainless steel pipe having a yield strength of 758 MPa (110 ksi) or more, more preferably 861 MPa (125 ksi) or more.
  • the inventors of the present invention first studied the alloy composition of stainless steel so that sufficient corrosion resistance of the stainless steel pipe could be secured even in a high temperature (for example, 200 ° C.) carbon dioxide environment. As a result, the present inventors have found that the Cr content is most important in securing the corrosion resistance of stainless steel, and found that the Cr content needs to exceed 16%.
  • Ni was examined as another alloy element.
  • 13Cr-based materials Ni usually stabilizes the austenite phase at high temperatures.
  • the austenite phase stabilized at a high temperature by Ni is transformed into a martensite phase by the subsequent heat treatment (cooling treatment). Thereby, high-strength stainless steel is obtained.
  • the Ni content is limited to less than 5%, not a martensite single-phase steel, but a mixed structure of martensite and ferrite, and there is a problem that the strength of stainless steel is reduced due to the presence of ferrite.
  • the present inventors have found that it is necessary to add Cu in order to ensure strength even in the presence of ferrite. Furthermore, the present inventors have found that addition of Mo is necessary to ensure the corrosion resistance of stainless steel against a trace amount of hydrogen sulfide at room temperature.
  • the present inventors further decrease the Ms point by adding Cu and Mo. Therefore, in order to increase the Ms point and ensure the necessary high strength, the N content and Mn content of stainless steel are required. We found that the amount needed to be limited.
  • the present invention has been completed based on these findings, and the gist of the present invention is the stainless steel pipe shown in the following (1) to (3). Hereinafter, these are referred to as the present inventions (1) to (3), respectively. Collectively, the present invention is sometimes referred to.
  • the element symbol in Formula (1) represents content (unit: mass%) in steel of each element.
  • the present invention it is possible to provide a stainless steel pipe having high strength and excellent corrosion resistance, and it becomes possible to produce crude oil and natural gas in a deeper place at a lower cost than before. Therefore, the present invention is a highly valuable invention that contributes to the stable supply of energy in the world.
  • the “%” display of the content of each element means “mass%” of each element in the stainless steel.
  • Chemical composition C 0.05% or less
  • the C content is set to 0.05% or less. From the viewpoint of corrosion resistance, it is desirable to reduce the C content, and it is preferably 0.03% or less. The more preferable content of C is 0.01% or less.
  • Si 1.0% or less Si is an element that acts as a deoxidizer. If the Si content exceeds 1%, the amount of ferrite produced increases and the desired high strength cannot be obtained. Therefore, the Si content is set to 1.0% or less. A preferable content of Si is 0.5% or less. In order to act as a deoxidizer, it is preferable to contain 0.05% or more.
  • P 0.05% or less
  • P is an element that decreases the corrosion resistance to high-temperature carbon dioxide. Since corrosion resistance will fall when P content exceeds 0.05%, it is necessary to reduce P content to 0.05% or less.
  • the preferable content of P is 0.025% or less, and the more preferable content is 0.015% or less.
  • S Less than 0.002% S is an element that decreases hot workability.
  • the stainless steel according to the present invention has a two-phase structure of ferrite and austenite at the time of hot working at high temperature, and the adverse effect on the hot workability of S increases. Therefore, in order to obtain a stainless steel pipe having no surface defects, it is necessary to reduce the S content to less than 0.002%. A more preferable content of S is 0.001% or less.
  • Cr more than 16% and not more than 18% Cr is an element necessary for ensuring corrosion resistance against high-temperature carbon dioxide gas.
  • stress corrosion cracking in a high temperature (for example, 200 ° C.) carbon dioxide gas environment is suppressed.
  • a Cr content exceeding 16% is required.
  • Cr has the effect of increasing the ferrite content and reducing the strength, it is necessary to provide a limit to the Cr content. Specifically, when the Cr content exceeds 18%, ferrite increases and the strength of the stainless steel is significantly reduced. Therefore, the Cr content is set to 18% or less.
  • the minimum with preferable Cr content is 16.5%, and a preferable upper limit is 17.8%.
  • Mo More than 2% and 3% or less When the production of crude oil (or gas) is suspended in an oil well (or gas well), the environmental temperature of the oil well (or gas well) decreases, but the oil well (or gas well) When hydrogen sulfide is contained in the environment of), the sensitivity of the stainless steel pipe to sulfide stress corrosion cracking becomes a problem. In particular, high-strength materials are more susceptible to corrosion, so corrosion resistance to sulfide stress cracking is important. Mo is an element that improves resistance to sulfide stress cracking, and in order to ensure high strength and good resistance to sulfide stress cracking, a Mo content exceeding 2% is required.
  • Mo has the effect of increasing the amount of ferrite and lowering the strength of stainless steel, so addition exceeding 3% is not preferable. Therefore, the range of the Mo content is more than 2% and not more than 3%.
  • the minimum with preferable Mo content is 2.2%, and a preferable upper limit is 2.8%.
  • the portion that was austenite at high temperature (during hot working) is transformed into martensite at room temperature, and becomes a metal structure mainly composed of martensite phase and ferrite phase at room temperature.
  • aging precipitation of the Cu phase is important. If the Cu content is less than 1%, the strength is not sufficiently increased. If the Cu content exceeds 3.5%, the hot workability is lowered and it becomes difficult to manufacture the steel pipe. Therefore, the range of Cu content is set to 1% to 3.5%.
  • the lower limit of the Cu content is preferably 1.5%, more preferably 2.3%. Further, the upper limit of the Cu content is preferably 3.2%, more preferably 3.0%.
  • Ni 3% or more and less than 5%
  • Ni is an element that can improve the strength of stainless steel by stabilizing austenite at a high temperature and increasing the amount of martensite at room temperature. Furthermore, since it has the effect
  • the Ni content is 3% or more and less than 5%.
  • the lower limit of the Ni content is preferably 3.6%, more preferably 4.0%.
  • the upper limit of the Ni content is preferably 4.9%, more preferably 4.8%.
  • Al 0.001% to 0.1%
  • Al is an element necessary for deoxidation. If it is less than 0.001%, the effect is not sufficient, and if it exceeds 0.1%, the amount of ferrite is increased and the strength is lowered. Therefore, the range of Al content is set to 0.001% to 0.1%.
  • O (oxygen) 0.01% or less Since O (oxygen) is an element that lowers toughness and corrosion resistance, the content is preferably reduced. In order to ensure the target toughness and corrosion resistance of the present invention, the content needs to be 0.01% or less.
  • each element symbol in Formula (1) represents content (unit: mass%) in each steel of each element.
  • the corrosion resistance can be improved by increasing the contents of Cr, Mo, Ni and Cu.
  • the Ms point is lowered and the residual ⁇ phase is decreased. Becomes stable.
  • the strength of the stainless steel pipe is greatly reduced. Therefore, in the present invention, the content ranges of Cr, Mo, Ni and Cu are defined as described above.
  • the inventors limited the Mn content and the N content in order to sufficiently improve the strength of the stainless steel pipe while limiting the respective contents of Cr, Mo, Ni, and Cu within the above-described ranges. Found that there is a need to do.
  • the present inventors in stainless steel in which each content of Cr, Mo, Ni and Cu is a value close to the upper limit value of each of the above ranges, the strength is changed when the Mn content and the N content are changed. Investigated in detail how changes occur. Specifically, in the stainless steel whose base component is C: 0.01%, Cr: 17.5%, Mo: 2.5%, Ni: 4.8% and Cu: 2.5%, It was investigated in detail how the strength changes by changing the Mn content and the N content. The result is shown in FIG. The tested stainless steel was heated at 980 ° C. for 15 minutes, then quenched and tempered by water cooling. In FIG.
  • indicates that the yield strength (yield stress: YS) of 861 MPa or higher was ensured under tempering conditions of 500 ° C. or higher for 30 minutes, and ⁇ indicates that tempering conditions of 500 ° C. or higher for 30 minutes were also obtained , YS was less than 861 MPa even under tempering conditions of less than 500 ° C. for 30 minutes.
  • the stainless steel having the above base composition has a yield strength of 861 MPa (125 ksi) or more when the above formula (1) is satisfied. Therefore, the present inventors limited the Mn content and the N content to a range satisfying the above formula (1). Thereby, the strength of stainless steel can be sufficiently improved.
  • Mn content since toughness will fall when Mn content exceeds 1%, Mn content was made into 1% or less irrespective of N content. Further, if the N content exceeds 0.05%, the precipitation of Cr nitride increases and the corrosion resistance decreases, so the N content is set to 0.05% or less regardless of the Mn content.
  • Ca and B are arbitrarily added elements.
  • the stainless steel according to the present invention has a two-phase structure of ferrite and austenite. Therefore, scratches and defects may be generated in the stainless steel pipe depending on the hot working conditions.
  • one or more of Ca and B are contained as required, it is possible to process a stainless steel pipe having a good surface property.
  • the Ca content exceeds 0.01%
  • inclusions increase and the toughness of the stainless steel pipe decreases.
  • B content exceeds 0.01%
  • Cr carboboride precipitates at the grain boundaries, and the toughness of the stainless steel pipe decreases.
  • the preferable contents of Ca and B are each 0.01% or less.
  • said effect of Ca and B becomes remarkable when Ca content is 0.0003% or more, or when B content is 0.0002% or more. Therefore, when one or more of Ca and B are contained for improving pipe forming properties, the Ca content is in the range of 0.0003% to 0.01%, and the B content is 0.0002. More preferably, the content is in the range of% to 0.01%.
  • the upper limit of the total content of Ca and B is preferably 0.01% or less.
  • V, Ti, Zr, Nb 0.3% or less
  • V, Ti, Zr, and Nb are optional added elements.
  • V, Ti, Zr, and Nb are optional added elements.
  • carbonitrides are produced in the stainless steel, and the strength and toughness are improved by the precipitation action and the grain refining action.
  • the content of any element exceeds 0.3%, coarse carbonitrides increase and the toughness of stainless steel decreases. Accordingly, the preferred contents of V, Ti, Zr and Nb are each 0.3% or less.
  • said effect of V, Ti, Zr, and Nb becomes remarkable when the content is 0.003% or more of all elements.
  • the content of each element is 0.003% to 0.3%. A range is more preferable.
  • the upper limit of the total content of V, Ti, Zr and Nb is preferably 0.3% or less.
  • Metal structure Ferrite phase 10% to 40%
  • Ni is added in a range that does not cause a decrease in strength due to a decrease in Ms point while ensuring the Cr content and Mo content necessary to ensure good corrosion resistance of stainless steel, a martensite single phase metal at room temperature Obtaining an organization is difficult. Specifically, a metal structure containing a ferrite phase with a volume fraction of 10% or more at room temperature is obtained.
  • content of the ferrite phase in stainless steel exceeds 40% by a volume fraction, it will become difficult to ensure high intensity
  • the volume fraction of the ferrite phase can be calculated, for example, by etching the polished stainless steel with a mixed solution of aqua regia and glycerin and then measuring the area ratio of the ferrite phase by a dot calculation method.
  • Residual ⁇ phase 10% or less
  • a small amount of residual ⁇ phase has little influence on the decrease in strength of stainless steel, and greatly improves toughness. However, as the amount of residual ⁇ phase increases, the strength of stainless steel is significantly reduced. Therefore, although the presence of the residual ⁇ phase is necessary, the upper limit value of the content of the residual ⁇ phase is set to 10% by volume fraction.
  • the volume fraction of the residual ⁇ phase can be measured by, for example, an X-ray diffraction method.
  • the residual ⁇ phase is preferably present in a volume fraction of 1.0% or more.
  • the metal structure other than the ferrite phase and the residual ⁇ phase is mainly a tempered martensite phase.
  • the martensite phase is contained in a volume fraction of 50% or more.
  • carbides, nitrides, borides, Cu phases, and the like may be present.
  • the manufacturing method of the stainless steel pipe which concerns on this invention is not specifically limited, What is necessary is just to satisfy each requirement mentioned above.
  • a method for manufacturing a stainless steel pipe first, a stainless steel billet having the above-described alloy composition is manufactured. Next, a steel pipe is manufactured from a billet by a process for manufacturing a general seamless steel pipe. Then, after cooling the steel pipe, a tempering process or a quenching and tempering process is performed. By carrying out the tempering treatment at 500 ° C. to 600 ° C., an appropriate amount of the residual ⁇ phase is generated, and at the same time, the desired high strength and high toughness can be obtained by precipitation strengthening with the Cu phase.
  • Stainless steel tubes Nos. 1-31 having metal structures shown in Table 2 were produced from stainless steels of steel types A to Z, a and b having chemical compositions shown in Table 1. Specifically, first, stainless steel materials of steel types A to Z, a and b were respectively melted, heated at 1250 ° C. for 2 hours, and then forged to produce a round billet for each steel type. Next, each round billet was heated and held at 1100 ° C. for 1 hour, and then drilled with an experimental piercer to produce a stainless steel tube having a diameter of 125 mm and a wall thickness of 10 mm. Next, the inner and outer surfaces of each stainless steel pipe were ground by 1 mm by machining. Thereafter, each stainless steel tube was heated at 980 ° C.
  • Table 2 shows the details of the quenching conditions and tempering conditions of each stainless steel pipe.
  • H, P, and N two different types of heat treatment were performed to produce two stainless steel pipes having different metal structures (trial numbers 8, 14, 16, 29 to 31 in Table 2). .
  • Steel types A to R in Table 1 are stainless steel materials whose chemical compositions are within the range defined by the present invention.
  • steel types S to Z, a, and b are stainless steel materials of comparative examples whose chemical compositions deviate from the range defined in the present invention.
  • the stainless steel pipes having trial numbers 1 to 18 are stainless steel pipes of examples in which the chemical composition and the metal structure are within the ranges defined by the present invention, and the trial numbers 19 to 31 are chemical compositions or metal structures. Is a stainless steel pipe of a comparative example deviating from the range defined in the present invention.
  • the volume fraction of the ferrite phase was calculated by etching the polished stainless steel (test piece) with a mixed solution of aqua regia and glycerin, and then measuring the area ratio of the ferrite phase by a point calculation method. Further, the volume fraction of the residual ⁇ phase was measured by an X-ray diffraction method. Table 2 shows the results of a tensile test and a 4-point bending corrosion test described later.
  • Specimens for performing a tensile test and a four-point bending corrosion test were collected from the stainless steel pipe produced as described above.
  • tensile test pieces round bar tensile test pieces having a parallel part diameter and length of 4 mm and 20 mm, respectively, were taken along the longitudinal direction of the stainless steel pipe. The tensile test was performed at room temperature and the yield strength (yield stress) was measured.
  • a stress corrosion cracking test in a high temperature carbon dioxide environment and a sulfide stress cracking test in a trace hydrogen sulfide environment were performed.
  • Each four-point bending test was performed as follows. The four-point bending test was performed on test pieces of trial numbers 1 to 18, 22, 25, and 26 (see Table 2).
  • Test environment 0 consisting of 0.001 MPa (0.01 bar) of H 2 S and the balance (CO 2 ) 1 MPa (1 bar) gas, 20% NaCl aqueous solution + 21 mg / L NaHCO 3 aqueous solution, 25 ° C., pH 4
  • Test time 336 hours
  • “ ⁇ ” indicates no cracking and “x” indicates occurrence of cracking.
  • ⁇ XX indicates occurrence of cracking.
  • the stainless steels of trial numbers 29 to 31 whose chemical composition is within the specified range of the present invention but whose metal structure (volume fraction of ferrite phase or residual ⁇ phase) is outside the specified range of the present invention.
  • the quenching temperature is 1200 ° C.
  • the ⁇ ferrite is quenched from a stable region.
  • the ferrite content seems to have increased.
  • the tempering temperature is a two-phase region temperature of ferrite + austenite, the retained austenite increases. From this, it is understood that the yield strength is improved by adjusting the metallographic structure of stainless steel within the range of the present invention by heat treatment.
  • the four-point bending test was performed on the stainless steels of trial numbers 22, 25, and 26 that had a predetermined strength among the stainless steels of trial numbers 1 to 18 that are examples of the present invention and the stainless steel of the comparative example.
  • the stainless steel of the sample number 25 (refer to steel type Y in Table 1) having a Cr content less than the specified range of the present invention and the stainless steel of the sample number 26 having a Mo content less than the specified range of the present invention (the steel type of Table 1) In Z), cracks are generated in the four-point bending test. From this, it can be seen that the corrosion resistance deteriorates due to insufficient Cr content or Mo content.
  • the stainless steel pipe according to the present invention can be suitably used in various oil wells and gas wells.

Abstract

 質量%で、C:0.05%以下、Si:1.0%以下、P:0.05%以下、S:0.002%未満、Cr:16%を超え18%以下、Mo:2%を超え3%以下、Cu:1%~3.5%、Ni:3%以上5%未満、Al:0.001%~0.1%、O:0.01%以下であって、更に、Mn:1%以下、N:0.05%以下の領域で、MnとNが式(1)を満たし、残部はFeと不純物からなり、金属組織はマルテンサイト相を主体として体積分率で10~40%のフェライト相と体積分率で10%以下の残留γ相を含む高強度ステンレス鋼管。この高強度ステンレス鋼管は、高温の炭酸ガス環境下において十分な耐食性を有しかつ常温において優れた耐硫化物応力割れ性を有する。 [Mn]×([N]-0.0045)≦0.001 (1) 但し、式(1)中の元素記号は、各元素の鋼中における含有量(単位:質量%)を表す。

Description

耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管
 本発明は、高強度を有するステンレス鋼管に係わり、特に原油を産出する油井または天然ガスを産出するガス井に使用される油井用ステンレス鋼管またはラインパイプとして、とりわけ、硫化水素ガス、炭酸ガスおよび塩化物イオンを含む高温の腐食環境の厳しい油井またはガス井用として好適な、優れた耐食性と高い強度を有するステンレス鋼管に関する。
 炭酸ガスを含む環境下の油井およびガス井では、耐炭酸ガス腐食性に優れた13%Crマルテンサイト系ステンレス鋼管が使用されるのが一般的であった。しかしながら、近年、油井およびガス井(以下、油井と略記する。)の大深度化が進み、従来よりも高強度の材料が必要とされている。また、油井環境は、深度が大きくなるに従って高温および高圧になり、炭酸ガスおよび硫化水素の分圧が高くなる。そのため、より厳しい環境でも十分な耐食性を有する鋼管が必要となっている。
 高温での炭酸ガス腐食性は一般的にCr含有量によって支配されるので、鋼管の耐食性を向上させるためには、更にCr含有量を増加させる成分設計が必要である。しかしながら、Cr含有量を増加させると、一般的にδフェライトが生成され、マルテンサイト単相組織が得られなくなり、強度と靱性が低下する。そのため、高強度が要求される油井では、冷間加工された二相ステンレス鋼管が用いられることも多かった。しかし、二相ステンレス鋼管は、合金元素量が多く、さらに冷間加工という特殊な製造工程が必要という問題があり、安価に提供できる材料ではない。
 そこで、近年、マルテンサイト系ステンレス鋼をベースにして、従来の鋼管よりもさらにCr量を増加させた鋼管が検討されている。その例としては、特許文献1~16が挙げられる。
特開平3-75335号公報 特開平7-166303号公報 特開平9-291344号公報 特開2002-4009号公報 特開2004-107773号公報 特開2005-105357号公報 特開2006-16637号公報 特開2005-336595号公報 特開2005-336599号公報 WO2004/001082号公報 特開2006-307287号公報 特開2007-146226号公報 特開2007-332431号公報 特開2007-332442号公報 特開2007-169776号公報 特開平10-25549号公報
 上記の各特許文献には、大深度の油井またはガス井に対応した以下の(1)~(3)の全ての条件を満足させる鋼または鋼管の具体的開示は無い。
(1)高強度が必要である。
(2)200℃という高温の炭酸ガス環境でも十分な耐食性を有する。
(3)原油またはガスの回収が一時的に停止されることにより油井またはガス井の環境温度が低下した時であっても十分な耐硫化物応力割れ性を有する。
 そこで、本発明者らは、上述した3つの条件(高強度、高温炭酸ガス環境下における十分な耐食性、十分な耐硫化物応力割れ性)を同時に満足するステンレス鋼の成分組成を検討した。具体的には、まず、高温(例えば、200℃)の炭酸ガス環境下においても十分な耐食性を確保できるように、ステンレス鋼の合金組成の検討を実施した。その結果、Cr含有量がステンレス鋼の耐食性を確保する上で最も重要であることを見出した。また、本発明者らは、十分な耐硫化物応力割れ特性を確保するためには、ステンレス鋼に一定量のMoを含有させる必要があることを見出した。
 ここで、ステンレス鋼の高強度および高靱性を確保するためには、従来はマルテンサイト単相系の金属組織を狙うのが通例であった。しかしながら、本発明者らの種々の検討により、高Cr含有かつMo含有の成分系のステンレス鋼において、常温でマルテンサイト単相を狙い、熱間加工時や焼入れ開始時にオーステナイト単相系とするためには、かなり多量のNi添加が必要となることが判明した。また、多量のNi添加により残留γ相が大幅に増加して、かえって強度の確保が難しいことが新たに判明した。
 そこで、マルテンサイト単相系でなくても、強度、靱性および耐食性を満足することができるステンレス鋼の成分系を検討した。具体的には、δフェライトを積極的に活用し、それをベースに従来と同様の高強度の確保およびさらなる耐食性の向上を検討した。その結果、Cuを添加して析出強化作用を活用する事によって、強度を確保することができ、さらに耐食性も向上することが判明した。
 また、Niも耐食性を改善する元素であり、多く添加した方が耐食性を向上させることができるが、多量のNi添加は、マルテンサイト変態点温度であるMs点を低下させる。それにより、残留γ相が多くなるとともに安定するので、ステンレス鋼の強度が大幅に低下する。そこで、本発明者らは、Ms点を上昇させて強度低下を抑制することが可能であれば、Niを有効に活用することが可能であると考えて種々の検討を行った。その結果、N含有量およびMn含有量に一定の制限を設けなければ、Ni添加によるMs点の低下を抑制することが出来ず、狙いの高強度が得られないことが判明した。この検討結果から、本発明者らは、N含有量とMn含有量を制限することによって、Cr、Mo、CuおよびNiを最大限に添加できるようになり、ステンレス鋼管の高強度および高耐食性を両立させることが可能になることを見出した。
 従って、本発明の目的は、大深度の油井またはガス井に対応できる高強度を有し、200℃という高温の炭酸ガス環境でも十分な耐食性を有し、さらに、原油またはガスの回収が一時的に停止されることにより油井またはガス井の環境温度が低下した時であっても十分な耐硫化物応力割れ性を有する、ステンレス鋼管を提供することである。
 なお、本発明において、「高温の炭酸ガス環境でも十分な耐食(腐食)性を有する」とは、塩化物イオンを含む高温の炭酸ガス環境下において、応力腐食割れに対して優れた耐食性を示す事である。具体的には、200℃程度の過酷な環境においても応力腐食割れを起こさない耐食性を有することである。また、「十分な耐硫化物応力割れ性」とは、微量の硫化水素を含む油井(ガス井)環境において、水素脆性に起因する割れ現象に対して優れた耐性を有し、常温付近において感受性が高い割れ現象に対して優れた耐食性能を有することを意味する。また、「高強度ステンレス鋼管」とは、758MPa(110ksi)以上、より好ましくは861MPa(125ksi)以上の降伏強度を有する高強度のステンレス鋼管を対象とする。
 本発明者らは、まず、高温(例えば、200℃)の炭酸ガス環境下においてもステンレス鋼管の十分な耐食性を確保できるように、ステンレス鋼の合金組成の検討を実施した。その結果、Cr含有量がステンレス鋼の耐食性を確保する上で最も重要であることを見出し、Cr含有量が16%を超える必要があることを見出した。
 次に、16%を超えるCr含有量の成分系の材料(ステンレス鋼)において、強度確保の観点から他の合金元素の影響を検討した。まず、他の合金元素としてNiについて検討した。13Cr系材料において、Niは、通常、高温でオーステナイト相を安定にする。また、Niにより高温で安定したオーステナイト相は、その後の熱処理(冷却処理)によりマルテンサイト相に変態する。それにより、高強度のステンレス鋼が得られる。
 しかしながら、本発明者らの種々の検討により、Cr含有量が16%を超えるステンレス鋼において高温でオーステナイト単相とするためには、多量のNi添加が必要となることが判明した。また、多量のNiを添加した場合、マルテンサイト変態開始温度であるMs点が室温近くまで低下しオーステナイト相が室温近くまで安定となるので、マルテンサイト相が得られず、ステンレス鋼の強度が大幅に低下することが判明した。この検討結果から、本発明者らは、Ms点の低下を防止するためにNi含有量を制限する必要があることを見出した。具体的には、Ms点を室温よりも十分高くするためには、Ni含有量を5%未満に制限する必要がある。
 一方、Ni含有量を5%未満に制限すると、マルテンサイト単相鋼ではなく、マルテンサイトとフェライトの混合組織となり、フェライトの存在によりステンレス鋼の強度が低下する問題点がある。本発明者らは、フェライトが存在しても強度を確保するためにCuを添加する必要があることを見出した。さらに、本発明者らは、常温の微量硫化水素に対するステンレス鋼の耐食性を確保するために、Moの添加が必要であることを見出した。
 また、本発明者らは、CuおよびMoを添加することによりMs点がさらに低下するので、Ms点を上昇させて必要な高強度を確保するためには、ステンレス鋼のN含有量およびMn含有量を制限する必要があることを見出した。
 本発明は、これらの見知に基づいて完成されたものであり、その要旨とするところは、次の(1)~(3)に示すステンレス鋼管である。以下、それぞれ、本発明(1)~(3)という。総称して、本発明ということがある。
 (1)質量%で、C:0.05%以下、Si:1.0%以下、P:0.05%以下、S:0.002%未満、Cr:16%を超え18%以下、Mo:2%を超え3%以下、Cu:1%~3.5%、Ni:3%以上5%未満、Al:0.001%~0.1%、O:0.01%以下であって、更に、Mn:1%以下、N:0.05%以下の領域で、MnとNが式(1)を満たし、残部はFeと不純物からなり、金属組織はマルテンサイト相を主体として体積分率で10~40%のフェライト相と体積分率で10%以下の残留γ相を含むことを特徴とする、耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管。
[Mn]×([N]-0.0045)≦0.001 (1)
但し、式(1)中の元素記号は、各元素の鋼中における含有量(単位:質量%)を表す。
 (2)Feの一部に代えて、Ca:0.01%以下およびB:0.01%以下のうち1種以上を含有することを特徴とする上記(1)記載のステンレス鋼管。
 (3)Feの一部に代えて、V:0.3%以下、Ti:0.3%以下、Zr:0.3%以下およびNb:0.3%以下のうち1種以上を含有することを特徴とする上記(1)または(2)記載のステンレス鋼管。
 本発明により、高強度で、さらに耐食性にも優れたステンレス鋼管が提供でき、従来よりさらに深い場所の原油や天然ガスの生産を安価なコストで行うことが可能になる。したがって、本発明は、世界のエネルギーの安定供給に貢献する価値の高い発明である。
 以下、本発明のステンレス鋼管の各要件について詳しく説明する。なお、以下の説明においては、特に言及する場合を除いて、各元素の含有量の「%」表示はステンレス鋼中における各元素の「質量%」を意味する。
 1.化学組成
 C:0.05%以下
 C含有量が0.05%を超えると、焼戻し時にCr炭化物が析出して高温の炭酸ガスに対する耐食性が低下する。そこで、C含有量は0.05%以下とした。耐食性の観点からは、C含有量は低減した方が望ましく、0.03%以下が望ましい。Cのさらに好ましい含有量は、0.01%以下である。
 Si:1.0%以下
 Siは脱酸剤として作用する元素である。Si含有量が1%を超えるとフェライトの生成量が多くなり、所望の高強度が得られなくなる。そこで、Si含有量は1.0%以下とした。Siの好ましい含有量は0.5%以下である。脱酸剤として作用させるためには0.05%以上含有させることが好ましい。
 P:0.05%以下
 Pは、高温の炭酸ガスに対する耐食性を低下させる元素である。P含有量が0.05%を超えると耐食性が低下するので、P含有量を0.05%以下に低減する必要がある。Pの好ましい含有量は0.025%以下、より好ましい含有量は0.015%以下である。
 S:0.002%未満
 Sは、熱間加工性を低下させる元素である。特に、本発明に係るステンレス鋼は、高温の熱間加工時には、フェライトとオーステナイトの2相組織となり、Sの熱間加工性に対する悪影響は大きくなる。そのため、表面欠陥の無いステンレス鋼管を得るためには、S含有量を0.002%未満に低減する必要がある。Sのより好ましい含有量は、0.001%以下である。
 Cr:16%を超え18%以下
 Crは、高温の炭酸ガスに対する耐食性を確保するために必要な元素である。耐食性を向上させる他の元素との相乗作用により、高温(例えば、200℃)の炭酸ガス環境での応力腐食割れを抑制する。炭酸ガス環境での応力腐食割れを十分に抑制するためには、16%を超えるCr含有量が必要である。Cr含有量は多いほど炭酸ガス環境での耐食性が向上するが、Crはフェライト量を増加させて、強度を低下させる作用を有しているので、Cr含有量には制限を設ける必要がある。具体的には、Cr含有量が18%を超えるとフェライトが増加してステンレス鋼の強度が大幅に低下するので、Cr含有量は18%以下とした。Cr含有量の好ましい下限は16.5%であり、好ましい上限は17.8%である。
 Mo:2%を超え3%以下
 油井(またはガス井)において原油(またはガス)の生産が一時停止されたときに、油井(またはガス井)の環境温度が低下するが、油井(またはガス井)の環境中に硫化水素が含有されていると、ステンレス鋼管の硫化物応力腐食割れ感受性が問題になる。特に高強度材ではその感受性が高くなるので、硫化物応力割れ性に対する耐食性が重要である。Moは硫化物応力割れに対する耐性を改善する元素であり、高強度でかつ良好な耐硫化物応力割れ性を確保するためには、2%を超えるMo含有量が必要である。一方、Moはフェライト量を増加させて、ステンレス鋼の強度を低下させる作用を有するので、3%を超える添加は好ましくない。そこで、Mo含有量の範囲は2%を超え3%以下とした。Mo含有量の好ましい下限は2.2%であり、好ましい上限は2.8%である。
 Cu:1%~3.5%
 本発明に係るステンレス鋼においては、高温で(熱間加工時に)オーステナイトであった部分は常温でマルテンサイトに変態し、常温ではマルテンサイト相およびフェライト相を主体とする金属組織となるが、本発明の目標とする強度を確保するためには、Cu相の時効析出が重要である。なお、Cu含有量が1%未満では高強度化が十分でなく、3.5%を超えると熱間加工性が低下して鋼管の製造が困難になる。そこで、Cu含有量の範囲は1%~3.5%とした。Cu含有量の下限は、1.5%とするのが好ましく、2.3%とするのがより好ましい。また、Cu含有量の上限は、3.2%とするのが好ましく、3.0%とするのがより好ましい。
 Ni:3%以上5%未満
 Niは、高温でオーステナイトを安定させ常温でのマルテンサイト量を増加させることにより、ステンレス鋼の強度を向上させることができる元素である。さらに、高温環境下での耐食性を改善する作用を有するので添加可能なら多く添加したい元素であり、3.5%以上の添加が必要である。しかしながら、Ni含有量を増加させるとMs点を低下させる作用も大きい。そのため、Niを多く添加すると、高温において安定したオーステナイト相が冷却してもマルテンサイト変態を起こさず、常温で多量の残留γ相となる。それにより、ステンレス鋼の強度が大幅に低下する。しかし、少量の残留γ相は、ステンレス鋼の強度低下への影響も小さく、高靱性を確保するためにも好適である。Niをなるべく多く添加しても多量の残留γ相を生成させないためには、Mn含有量またはN含有量の低減が有効である。しかし、Ni含有量が5%以上になると、Mn含有量またはN含有量を低減しても多量の残留γ相が生成される。そこで、Ni含有量は、3%以上5%未満とした。Ni含有量の下限は、3.6%とするのが好ましく、4.0%とするのがより好ましい。また、Ni含有量の上限は、4.9%とするのが好ましく、4.8%とするのがより好ましい。
 Al:0.001%~0.1%
 Alは、脱酸のために必要な元素である。0.001%未満ではその効果が十分でなく、0.1%を超えるとフェライト量を増加させ強度を低下させる。そこで、Al含有量の範囲は、0.001%~0.1%とした。
 O(酸素):0.01%以下
 O(酸素)は、靱性および耐食性を低下させる元素であるので、含有量を低減することが好ましい。本発明の目標とする靱性および耐食性を確保するためには、含有量を0.01%以下にする必要がある。
 Mn:1%以下
 N:0.05%以下
 [Mn]×([N]-0.0045)≦0.001 (1)
 但し、式(1)中の各元素記号は、各元素の鋼中における含有量(単位:質量%)を表す。
 本発明に係るステンレス鋼管では、Cr、Mo、NiおよびCuの含有量を増加させることにより耐食性を向上させることができるが、それらの元素を所定量以上添加するとMs点が低下して残留γ相が安定となる。その結果、ステンレス鋼管の強度が大幅に低下する。そこで、本発明においては、Cr、Mo、NiおよびCuの含有量の範囲を上述したように規定した。また、本発明者らは、Cr、Mo、NiおよびCuの各含有量を上述した範囲内に制限しつつステンレス鋼管の強度を十分に向上させるためには、Mn含有量およびN含有量を制限する必要があることを見出した。
 そこで、本発明者らは、Cr、Mo、NiおよびCuの各含有量が上記の各範囲の上限値に近い値であるステンレス鋼において、Mn含有量およびN含有量を変化させた場合に強度がどのように変化するか詳細に調査した。具体的には、ベースとなる成分がC:0.01%、Cr:17.5%、Mo:2.5%、Ni:4.8%およびCu:2.5%であるステンレス鋼において、Mn含有量およびN含有量を変化させることにより強度がどのように変化するか詳細に調査した。その結果を図1に示す。なお、供試されたステンレス鋼は、980℃で15分間加熱した後、水冷による焼入れおよび焼戻しを行ったものである。図1中、○は、500℃以上の30分間の焼戻条件で861MPa以上の降伏強度(降伏応力:YS)を確保できたものを、×は、500℃以上の30分間の焼戻条件でも、500℃未満の30分間の焼戻条件でもYSが861MPa未満であったものを示す。
 図1に示すように、上記のベース組成を有するステンレス鋼は、上記式(1)を満たす場合に861MPa(125ksi)以上の降伏強度を有する。そこで、本発明者らは、Mn含有量およびN含有量を、上記式(1)を満たす範囲に制限した。それにより、ステンレス鋼の強度を十分に向上させることが可能になった。なお、Mn含有量が1%を超えると靱性が低下するので、N含有量に関係なく、Mn含有量は1%以下とした。また、N含有量が0.05%を超えるとCr窒化物の析出が多くなって耐食性が低下するので、Mn含有量に関係なく、N含有量は0.05%以下とした。
 Ca:0.01%以下
 B:0.01%以下
 CaおよびBは、任意添加元素である。熱間加工による製管時には、本発明に係るステンレス鋼はフェライトおよびオーステナイトの2相組織となるので、熱間加工の条件によってはステンレス鋼管にキズや欠陥が生成される場合がある。この問題を解決するために、必要に応じてCaおよびBのうちの1種以上を含有させると、表面性状の良好なステンレス鋼管の加工が可能となる。しかし、Ca含有量が0.01%を超えると、介在物が多くなってステンレス鋼管の靱性が低下する。また、B含有量が0.01%を超えると結晶粒界にCrの炭硼化物が析出し、ステンレス鋼管の靱性が低下する。従って、CaおよびBの好ましい含有量は、それぞれ0.01%以下とした。なお、CaおよびBの上記の効果は、Ca含有量が0.0003%以上の場合、またはB含有量が0.0002%以上の場合に顕著になる。従って、製管性の改善のためにCaおよびBのうちの1種以上を含有させる場合には、Ca含有量は0.0003%~0.01%の範囲にし、B含有量は0.0002%~0.01%の範囲にすることがより好ましい。なお、CaおよびBの合計含有量の上限は、0.01%以下が好ましい。
 V、Ti、Zr、Nb:0.3%以下
 V、Ti、ZrおよびNbは任意添加元素である。V、Ti、ZrおよびNbのうちの1種以上を含有させると、ステンレス鋼中で炭窒化物が生成され、析出作用と結晶粒微細化作用により強度および靱性が向上する。しかし、いずれの元素も、その含有量が0.3%を超えると、粗大な炭窒化物が多くなりステンレス鋼の靱性が低下する。従って、V、Ti、ZrおよびNbの好ましい含有量は、それぞれ0.3%以下とした。なお、V、Ti、ZrおよびNbの上記の効果は、いずれの元素も、その含有量が0.003%以上の場合に顕著となる。従って、ステンレス鋼のさらなる強度向上と靱性向上のためにV、Ti、ZrおよびNbのうちの1種以上を含有させる場合には、各元素の含有量を0.003%~0.3%の範囲にすることがより好ましい。なお、V、Ti、ZrおよびNbの合計含有量の上限は、0.3%以下が好ましい。
 2.金属組織
 フェライト相:10%~40%
 ステンレス鋼の良好な耐食性を確保するために必要なCr含有量およびMo含有量を確保しつつ、Ms点の低下による強度低下を起こさない範囲でNiを添加すると、常温においてマルテンサイト単相の金属組織を得ることは困難である。具体的には、常温において体積分率で10%以上のフェライト相を含有する金属組織となる。なお、ステンレス鋼中のフェライト相の含有量が体積分率で40%を超えると、高強度を確保することが困難になる。そこで、フェライト相の含有量は体積分率で10~40%とした。なお、フェライト相の体積分率は、例えば、研磨したステンレス鋼を王水とグリセリンの混合溶液でエッチングした後、フェライト相の面積率を点算法で計測することにより算出することができる。
 残留γ相:10%以下
 少量の残留γ相は、ステンレス鋼の強度低下への影響が少なく、靱性を大幅に改善する。しかし、残留γ相の量が多くなるとステンレス鋼の強度が大幅に低下する。従って、残留γ相の存在は必要であるが、残留γ相の含有量の上限値を体積分率で10%とした。残留γ相の体積分率は、例えば、X線回折法により測定することができる。なお、本発明に関わるステンレス鋼の靱性を向上させるためには、残留γ相は体積分率で1.0%以上存在することが好ましい。
 マルテンサイト相
 本発明に係るステンレス鋼においては、フェライト相および残留γ相以外の金属組織は、主として焼き戻されたマルテンサイト相である。本発明において、マルテンサイト相は、体積分率で50%以上含有される。なお、マルテンサイト相の他に、炭化物、窒化物、硼化物、Cu相等が存在してもよい。
 3.製造方法
 本発明に係るステンレス鋼管の製造方法は特に限定されず、上述した各要件を満足すればよい。ステンレス鋼管の製造方法の一例としては、まず、上述した合金組成を有するステンレス鋼のビレットを製造する。次に、一般的な継目無鋼管を製造するプロセスによりビレットから鋼管を製造する。その後、その鋼管を冷却した後、焼戻し処理または焼入れ焼戻し処理を実施する。焼戻し処理を500℃~600℃で実施する事により、適切な量の残留γ相が生成されるのと同時にCu相による析出強化により、所望の高強度と高靱性を得ることができる。
 次に実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有する鋼種A~Z、aおよびbのステンレス鋼材から表2に示す金属組織を有する試番1~31のステンレス鋼管を作製した。具体的には、まず、鋼種A~Z、aおよびbのステンレス鋼材をそれぞれ溶解し、1250℃で2時間加熱した後、鍛伸することにより鋼種ごとに丸ビレットを作製した。次に、各丸ビレットを1100℃で1時間加熱保持した後、実験用ピアサーにて穿孔することにより、直径125mm、肉厚10mmのステンレス鋼管を作製した。次に、各ステンレス鋼管の内外面を機械加工により1mm研削した。その後、各ステンレス鋼管を980℃~1200℃で15分間加熱した後水冷し(焼入れ)、さらに、500℃~650℃で焼戻しを行うことにより金属組織および強度の調整を行った。各ステンレス鋼管の焼入れ条件および焼戻し条件の詳細は、表2に示す。なお、鋼種H、PおよびNについては、それぞれ異なる2種類の熱処理を行うことにより、異なる金属組織を有する2つのステンレス鋼管(表2の試番8、14、16、29~31)を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1における鋼種A~Rは、化学組成が本発明で規定する範囲内にあるステンレス鋼材である。一方、鋼種S~Z、aおよびbは、化学組成が本発明で規定する範囲から外れた比較例のステンレス鋼材である。
 また、表2において試番1~18のステンレス鋼管は、化学組成および金属組織が本発明で規定する範囲内にある実施例のステンレス鋼管であり、試番19~31は、化学組成または金属組織が本発明で規定する範囲から外れた比較例のステンレス鋼管である。
 なお、表2において、フェライト相の体積分率は、研磨したステンレス鋼(試験片)を王水とグリセリンの混合溶液でエッチングした後、フェライト相の面積率を点算法で計測することにより算出した。また、残留γ相の体積分率は、X線回折法により測定した。なお、表2には、後述する引張試験および4点曲げ腐食試験の結果が示されている。
 上記のようにして作製したステンレス鋼管から、引張試験および4点曲げ腐食試験を行うための試験片を採取した。引張試験片としては、平行部の直径および長さがそれぞれ4mmおよび20mmの丸棒引張試験片をステンレス鋼管の長手方向に沿って採取した。引張試験は常温で実施し、降伏強度(降伏応力)を測定した。
 また、4点曲げ腐食試験としては、高温炭酸ガス環境下における応力腐食割れ試験および微量硫化水素環境下における硫化物応力割れ試験を行った。各4点曲げ試験は下記の要領で実施した。なお、4点曲げ試験は、試番1~18、22、25および26(表2参照)の試験片について実施した。
 (高温炭酸ガス環境下における曲げ試験の実施要領)
 試験片:4点曲げ試験片(幅:10mm、厚み:2mm、長さ75mm)を試番ごとに3本ずつ採取
 付加応力:引張試験によって得られた降伏応力(同一のステンレス鋼管から得られた試験片の降伏応力:表2参照)の100%の値をASTM-G39式に従ってたわみ量制御により付加
 試験環境:3MPa(30bar)のCO2、濃度25%のNaCl水溶液、200℃
 試験時間:720時間
 評価:上記の条件で各試験片において4点曲げ試験を実施し、割れの有無を評価。表2において、「○」は割れ無しを示し、「×」は割れ発生を示す。例えば、試番22のステンレス鋼においては、全て(3本)の試験片で割れが発生したので、「×××」と示されている。
 (微量硫化水素環境下における曲げ試験の実施要領)
 試験片:4点曲げ試験片(幅:10mm、厚み:2mm、長さ75mm)を試番ごとに3本ずつ採取
 付加応力:引張試験によって得られた降伏応力(同一のステンレス鋼管から得られた試験片の降伏応力:表2参照)の100%の値をASTM-G39式に従ってたわみ量制御により付加
 試験環境:0.001MPa(0.01bar)のH2Sと残部(CO2)からなる0.1MPa(1bar)のガス、濃度20%のNaCl水溶液+濃度21mg/LのNaHCO3水溶液、25℃、pH4
 試験時間:336時間
 評価:上記の条件で各試験片において4点曲げ試験を実施し、割れの有無を評価。表2において、「○」は割れ無しを示し、「×」は割れ発生を示す。例えば、試番22のステンレス鋼においては、試験片3本中、割れ無が2本、割れ発生が1本であったので、「○○×」と示されている。
 まず、引張試験の結果から考察する。表2に示すように、本発明の実施例である試番1~18のステンレス鋼では、861MPa(125ksi)以上の高い降伏強度(降伏応力)が得られている。一方、N含有量およびMn含有量が本発明規定の範囲(式(1)を満たす範囲)から外れる試番19~21のステンレス鋼(表1の鋼種S~U参照)では、Ms点が低下することにより残留γ相が著しく増加している。そのため、試番19~21のステンレス鋼においては十分な降伏強度が得られていない。
 また、Cr含有量が本発明の規定範囲を超えている試番23のステンレス鋼(表1の鋼種W参照)およびNi含有量が本発明の規定範囲を超えている試番24のステンレス鋼(表1の鋼種X参照)においても、Ms点が低下することにより残留γ相が著しく増加している。そのため、十分な降伏強度が得られていない。
 また、Cu含有量が本発明の規定範囲より少ない試番27のステンレス鋼(表1の鋼種a参照)においては、析出強化による強度上昇が十分ではなく、十分な降伏強度が得られていない。また、Ni含有量が本発明の規定範囲より少ない試番28のステンレス鋼(表1の鋼種b参照)においては、フェライト相が多くなることにより、十分な降伏強度が得られていない。
 また、化学組成は本発明の規定範囲内であるが金属組織(フェライト相の体積分率または残留γ相の体積分率)が本発明の規定範囲を外れている試番29~31のステンレス鋼においても十分な強度が得られていない。なお、試番29および30においては、焼入温度が1200℃であり、δフェライトが安定な領域から焼入を行っている。その結果、フェライト含有率が多くなったものと思われる。また、試番30においては、焼戻温度がフェライト+オーステナイトの2相域温度であるため、残留オーステナイトが増加している。このことから、ステンレス鋼の金属組織を熱処理により本発明の範囲内に調整することにより、降伏強度が向上することが分かる。
 次に、4点曲げ試験の結果について考察する。4点曲げ試験は、本発明の実施例である試番1~18のステンレス鋼ならびに比較例のステンレス鋼のうち所定の強度が得られた試番22、25および26のステンレス鋼について行った。
 表2に示すように、本発明の実施例である試番1~18のステンレス鋼においては、高温炭酸ガス環境下における応力腐食割れ試験および微量硫化水素環境下における硫化物応力割れ試験において割れが発生しなかった。このことから、本発明の実施例である試番1~18のステンレス鋼は、高強度を有しかつ高温炭酸ガス中での応力腐食割れおよび常温の硫化物応力割れを十分に防止することができる優れた耐食性を有することが確認された。
 一方、P含有量が本発明の規定範囲を超えている試番22のステンレス鋼(表1の鋼種V参照)においては、4点曲げ試験において割れが発生している。このことから、試番22のステンレス鋼は、本発明に係るステンレス鋼に比べて耐食性が劣っていることが分かる。特に、高温炭酸ガス中における4点曲げ試験において2本の試験片に割れが発生していることから、高温での応力腐食割れ感受性が高くなっていることが分かる。
 また、Cr含有量が本発明の規定範囲より少ない試番25のステンレス鋼(表1の鋼種Y参照)およびMo含有量が本発明の規定範囲より少ない試番26のステンレス鋼(表1の鋼種Z参照)においても、4点曲げ試験において割れが発生している。ことから、Cr含有量またはMo含有量が不足することにより、耐食性が低下することが分かる。
 本発明に係るステンレス鋼管は、種々の油井およびガス井において好適に用いることができる。
ベース組成がC:0.01%、Cr:17.5%、Mo:2.5%、Ni:4.8%およびCu:2.5%であるステンレス鋼において、Mn含有量およびN含有量を変化させた場合の強度変化を示す図

Claims (3)

  1.  質量%で、C:0.05%以下、Si:1.0%以下、P:0.05%以下、S:0.002%未満、Cr:16%を超え18%以下、Mo:2%を超え3%以下、Cu:1%~3.5%、Ni:3%以上5%未満、Al:0.001%~0.1%、O:0.01%以下であって、更に、Mn:1%以下、N:0.05%以下の領域で、MnとNが式(1)を満たし、残部はFeと不純物からなり、金属組織はマルテンサイト相を主体として体積分率で10~40%のフェライト相と体積分率で10%以下の残留γ相を含むことを特徴とする、耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管。
    [Mn]×([N]-0.0045)≦0.001 (1)
    但し、式(1)中の元素記号は、各元素の鋼中における含有量(単位:質量%)を表す。
  2.  Feの一部に代えて、Ca:0.01%以下およびB:0.01%以下のうち1種以上を含有することを特徴とする請求項1記載のステンレス鋼管。
  3.  Feの一部に代えて、V:0.3%以下、Ti:0.3%以下、Zr:0.3%以下およびNb:0.3%以下のうち1種以上を含有することを特徴とする請求項1または2記載のステンレス鋼管。
PCT/JP2009/068518 2008-10-30 2009-10-28 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管 WO2010050519A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP09823629.2A EP2341161B1 (en) 2008-10-30 2009-10-28 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
AU2009310835A AU2009310835B2 (en) 2008-10-30 2009-10-28 High strength stainless steel piping having outstanding resistance to sulphide stress cracking and resistance to high temperature carbon dioxide corrosion
JP2010535822A JP4761008B2 (ja) 2008-10-30 2009-10-28 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管
ES09823629.2T ES2553759T3 (es) 2008-10-30 2009-10-28 Tubería de acero inoxidable de alta resistencia que tiene resistencia sobresaliente al agrietamiento bajo tensión por sulfuro y resistencia a la corrosión por dióxido de carbono a alta temperatura
CN2009801432527A CN102203309B (zh) 2008-10-30 2009-10-28 抗硫化物应力裂纹性和抗高温二氧化碳腐蚀优异的高强度不锈钢钢管
CA2733649A CA2733649C (en) 2008-10-30 2009-10-28 High-strength stainless steel pipe excellent in sulfide stress cracking resistance and high-temperature carbonic-acid gas corrosion resistance
BRPI0919892-0A BRPI0919892B1 (pt) 2008-10-30 2009-10-28 tubo de aço inoxidável de alta resistência com capacidade de resistência à fissuração sob tensão em presença de sulfeto e capacidade de resistência à corrosão por gás de ácido carbônico em alta temperatura
MX2011004528A MX2011004528A (es) 2008-10-30 2009-10-28 Tubo de acero inoxidable de alta resistencia excelente para la resistencia a la tension por sulfuro y la resistencia a la corrosion por gas de acido carbonico de alta temperatura.
US13/082,432 US8608872B2 (en) 2008-10-30 2011-04-08 High-strength stainless steel pipe excellent in sulfide stress cracking resistance and high-temperature carbonic-acid gas corrosion resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-279014 2008-10-30
JP2008279014 2008-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/082,432 Continuation US8608872B2 (en) 2008-10-30 2011-04-08 High-strength stainless steel pipe excellent in sulfide stress cracking resistance and high-temperature carbonic-acid gas corrosion resistance

Publications (1)

Publication Number Publication Date
WO2010050519A1 true WO2010050519A1 (ja) 2010-05-06

Family

ID=42128878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068518 WO2010050519A1 (ja) 2008-10-30 2009-10-28 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管

Country Status (12)

Country Link
US (1) US8608872B2 (ja)
EP (1) EP2341161B1 (ja)
JP (1) JP4761008B2 (ja)
CN (1) CN102203309B (ja)
AR (1) AR073884A1 (ja)
AU (1) AU2009310835B2 (ja)
BR (1) BRPI0919892B1 (ja)
CA (1) CA2733649C (ja)
ES (1) ES2553759T3 (ja)
MX (1) MX2011004528A (ja)
RU (1) RU2459884C1 (ja)
WO (1) WO2010050519A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149317A (ja) * 2011-01-20 2012-08-09 Jfe Steel Corp 油井用高強度マルテンサイト系ステンレス継目無鋼管
WO2013146046A1 (ja) 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
WO2013179667A1 (ja) * 2012-05-31 2013-12-05 Jfeスチール株式会社 油井管用高強度ステンレス鋼継目無管およびその製造方法
WO2013190834A1 (ja) 2012-06-21 2013-12-27 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
WO2014097628A1 (ja) 2012-12-21 2014-06-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2016079922A1 (ja) * 2014-11-18 2016-05-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
JP2017014543A (ja) * 2015-06-29 2017-01-19 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP6156609B1 (ja) * 2016-02-08 2017-07-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2017122405A1 (ja) * 2016-01-13 2017-07-20 新日鐵住金株式会社 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
WO2017138050A1 (ja) 2016-02-08 2017-08-17 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2018020886A1 (ja) 2016-07-27 2018-02-01 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2018131340A1 (ja) 2017-01-13 2018-07-19 Jfeスチール株式会社 高強度ステンレス継目無鋼管およびその製造方法
WO2018155041A1 (ja) 2017-02-24 2018-08-30 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2019035329A1 (ja) 2017-08-15 2019-02-21 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US10378079B2 (en) 2015-08-04 2019-08-13 Nippon Steel Corporation Stainless steel and stainless steel product for oil well
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
WO2022224640A1 (ja) 2021-04-21 2022-10-27 Jfeスチール株式会社 ステンレス鋼管およびその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2795326C (en) 2010-04-28 2016-05-17 Sumitomo Metal Industries, Ltd. High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
CN102400057B (zh) * 2011-11-28 2014-12-03 宝山钢铁股份有限公司 抗二氧化碳腐蚀油井管用低合金钢及其制造方法
JP6045256B2 (ja) * 2012-08-24 2016-12-14 エヌケーケーシームレス鋼管株式会社 高強度高靭性高耐食マルテンサイト系ステンレス鋼
MX2016002824A (es) * 2013-09-04 2016-06-22 Jfe Steel Corp Metodo de fabricacion de una tuberia de acero inoxidable de alta resistencia y una tuberia de acero inoxidable de alta resistencia.
WO2015064128A1 (ja) 2013-10-31 2015-05-07 Jfeスチール株式会社 低温靭性に優れたフェライト−マルテンサイト2相ステンレス鋼およびその製造方法
BR112016015486A2 (pt) * 2014-01-17 2017-08-08 Nippon Steel & Sumitomo Metal Corp Cano de ferro e aço que contém cromo à base de martensita para poço de óleo
BR102014005015A8 (pt) 2014-02-28 2017-12-26 Villares Metals S/A aço inoxidável martensítico-ferrítico, produto manufaturado, processo para a produção de peças ou barras forjadas ou laminadas de aço inoxidável martensítico-ferrítico e processo para a produção de tudo sem costura de aço inoxidável martensítico-ferrítico
MX2017009205A (es) * 2015-01-15 2017-11-17 Jfe Steel Corp Tuberia de acero inoxidable sin costura para productos tubulares de region petrolifera y metodo de fabricacion de la misma.
CN109415776B (zh) * 2016-04-22 2020-09-08 安普朗公司 一种用于由片材制造马氏体不锈钢部件的工艺
EP3850114A1 (de) 2019-10-31 2021-07-21 Deutsche Edelstahlwerke Specialty Steel GmbH & Co.KG Korrosionsbeständiger und ausscheidungshärtender stahl, verfahren zur herstellung eines stahlbauteils und stahlbauteil

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375335A (ja) 1989-08-16 1991-03-29 Nippon Steel Corp 耐食性の優れたマルテンサイト系ステンレス鋼およびその製造方法
JPH07166303A (ja) 1993-10-22 1995-06-27 Nkk Corp 耐応力腐食割れ性に優れた高強度マルテンサイト系ステンレス鋼とその製造方法
JPH09291344A (ja) 1996-02-26 1997-11-11 Nippon Steel Corp 低硬度マルテンサイト系ステンレス鋼
JPH1025549A (ja) 1996-07-12 1998-01-27 Nippon Steel Corp 熱間加工性に優れたマルテンサイト系ステンレス鋼
JP2002004009A (ja) 2000-06-19 2002-01-09 Kawasaki Steel Corp 油井用高強度マルテンサイト系ステンレス鋼管およびその製造方法
WO2004001082A1 (ja) 2002-06-19 2003-12-31 Jfe Steel Corporation 油井用ステンレス鋼管およびその製造方法
JP2004107773A (ja) 2002-09-20 2004-04-08 Jfe Steel Kk 耐食性に優れたラインパイプ用ステンレス鋼管
JP2005105357A (ja) 2003-09-30 2005-04-21 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管
JP2005336599A (ja) 2003-10-31 2005-12-08 Jfe Steel Kk 耐食性に優れたラインパイプ用高強度ステンレス鋼管およびその製造方法
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2006016637A (ja) 2004-06-30 2006-01-19 Jfe Steel Kk 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
JP2006307287A (ja) 2005-04-28 2006-11-09 Jfe Steel Kk 拡管性に優れる油井用ステンレス鋼管
JP2007146226A (ja) 2005-11-28 2007-06-14 Jfe Steel Kk 拡管性に優れた油井管用ステンレス鋼管
JP2007169776A (ja) 2005-11-28 2007-07-05 Jfe Steel Kk 拡管性に優れた油井管用ステンレス鋼管およびその製造方法
JP2007332442A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
JP2007332431A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 拡管性に優れる油井用ステンレス鋼管
JP2008081793A (ja) * 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1275287B (it) 1995-05-31 1997-08-05 Dalmine Spa Acciaio inossidabile supermartensitico avente elevata resistenza meccanica ed alla corrosione e relativi manufatti
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
JPH11350081A (ja) 1998-06-11 1999-12-21 Nippon Steel Corp 耐食鋼
JP2001164341A (ja) 1999-12-10 2001-06-19 Nippon Steel Corp 加工部耐食性に優れた鋼
AR042494A1 (es) 2002-12-20 2005-06-22 Sumitomo Chemical Co Acero inoxidable martensitico de alta resistencia con excelentes propiedades de resistencia a la corrosion por dioxido de carbono y resistencia a la corrosion por fisuras por tensiones de sulfuro
EP1652950B1 (en) 2003-07-22 2014-10-15 Nippon Steel & Sumitomo Metal Corporation Martensitic stainless steel
CN100451153C (zh) * 2003-08-19 2009-01-14 杰富意钢铁株式会社 耐腐蚀性优良的油井用高强度不锈钢管及其制造方法
BRPI0416001B1 (pt) * 2003-10-31 2017-04-11 Jfe Steel Corp tubo de aço inoxidável sem costura para tubulações de condução
CN100497705C (zh) * 2003-10-31 2009-06-10 杰富意钢铁株式会社 耐腐蚀性优良的管线管用高强度不锈钢管及其制造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375335A (ja) 1989-08-16 1991-03-29 Nippon Steel Corp 耐食性の優れたマルテンサイト系ステンレス鋼およびその製造方法
JPH07166303A (ja) 1993-10-22 1995-06-27 Nkk Corp 耐応力腐食割れ性に優れた高強度マルテンサイト系ステンレス鋼とその製造方法
JPH09291344A (ja) 1996-02-26 1997-11-11 Nippon Steel Corp 低硬度マルテンサイト系ステンレス鋼
JPH1025549A (ja) 1996-07-12 1998-01-27 Nippon Steel Corp 熱間加工性に優れたマルテンサイト系ステンレス鋼
JP2002004009A (ja) 2000-06-19 2002-01-09 Kawasaki Steel Corp 油井用高強度マルテンサイト系ステンレス鋼管およびその製造方法
WO2004001082A1 (ja) 2002-06-19 2003-12-31 Jfe Steel Corporation 油井用ステンレス鋼管およびその製造方法
JP2004107773A (ja) 2002-09-20 2004-04-08 Jfe Steel Kk 耐食性に優れたラインパイプ用ステンレス鋼管
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2005105357A (ja) 2003-09-30 2005-04-21 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管
JP2005336599A (ja) 2003-10-31 2005-12-08 Jfe Steel Kk 耐食性に優れたラインパイプ用高強度ステンレス鋼管およびその製造方法
JP2006016637A (ja) 2004-06-30 2006-01-19 Jfe Steel Kk 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
JP2006307287A (ja) 2005-04-28 2006-11-09 Jfe Steel Kk 拡管性に優れる油井用ステンレス鋼管
JP2007146226A (ja) 2005-11-28 2007-06-14 Jfe Steel Kk 拡管性に優れた油井管用ステンレス鋼管
JP2007169776A (ja) 2005-11-28 2007-07-05 Jfe Steel Kk 拡管性に優れた油井管用ステンレス鋼管およびその製造方法
JP2007332442A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
JP2007332431A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 拡管性に優れる油井用ステンレス鋼管
JP2008081793A (ja) * 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2341161A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149317A (ja) * 2011-01-20 2012-08-09 Jfe Steel Corp 油井用高強度マルテンサイト系ステンレス継目無鋼管
WO2013146046A1 (ja) 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP5348354B1 (ja) * 2012-03-26 2013-11-20 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
AU2013238482B2 (en) * 2012-03-26 2015-07-16 Nippon Steel Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
US9783876B2 (en) 2012-03-26 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
WO2013179667A1 (ja) * 2012-05-31 2013-12-05 Jfeスチール株式会社 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP2013249516A (ja) * 2012-05-31 2013-12-12 Jfe Steel Corp 油井管用高強度ステンレス鋼継目無管およびその製造方法
WO2013190834A1 (ja) 2012-06-21 2013-12-27 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
US9758850B2 (en) 2012-06-21 2017-09-12 Jfe Steel Corporation High strength stainless steel seamless pipe with excellent corrosion resistance for oil well and method of manufacturing the same
WO2014097628A1 (ja) 2012-12-21 2014-06-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US10151011B2 (en) 2012-12-21 2018-12-11 Jfe Steel Corporation High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same
WO2016079922A1 (ja) * 2014-11-18 2016-05-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
JPWO2016079922A1 (ja) * 2014-11-18 2017-04-27 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
JP2017014543A (ja) * 2015-06-29 2017-01-19 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
US10378079B2 (en) 2015-08-04 2019-08-13 Nippon Steel Corporation Stainless steel and stainless steel product for oil well
WO2017122405A1 (ja) * 2016-01-13 2017-07-20 新日鐵住金株式会社 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
JP6168245B1 (ja) * 2016-01-13 2017-07-26 新日鐵住金株式会社 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
WO2017138050A1 (ja) 2016-02-08 2017-08-17 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6156609B1 (ja) * 2016-02-08 2017-07-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11085095B2 (en) 2016-02-08 2021-08-10 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe
WO2018020886A1 (ja) 2016-07-27 2018-02-01 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11072835B2 (en) 2016-07-27 2021-07-27 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same
WO2018131340A1 (ja) 2017-01-13 2018-07-19 Jfeスチール株式会社 高強度ステンレス継目無鋼管およびその製造方法
US11268161B2 (en) 2017-01-13 2022-03-08 Jfe Steel Corporation High strength seamless stainless steel pipe and method for producing same
WO2018155041A1 (ja) 2017-02-24 2018-08-30 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
WO2019035329A1 (ja) 2017-08-15 2019-02-21 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11286548B2 (en) 2017-08-15 2022-03-29 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2022224640A1 (ja) 2021-04-21 2022-10-27 Jfeスチール株式会社 ステンレス鋼管およびその製造方法

Also Published As

Publication number Publication date
JPWO2010050519A1 (ja) 2012-03-29
AR073884A1 (es) 2010-12-09
MX2011004528A (es) 2011-05-24
US8608872B2 (en) 2013-12-17
AU2009310835A1 (en) 2010-05-06
EP2341161A1 (en) 2011-07-06
CN102203309A (zh) 2011-09-28
JP4761008B2 (ja) 2011-08-31
CN102203309B (zh) 2013-06-19
CA2733649C (en) 2016-05-10
AU2009310835B2 (en) 2012-09-06
US20110226378A1 (en) 2011-09-22
BRPI0919892B1 (pt) 2021-01-26
EP2341161B1 (en) 2015-09-30
RU2459884C1 (ru) 2012-08-27
BRPI0919892A2 (pt) 2017-11-14
CA2733649A1 (en) 2010-05-06
EP2341161A4 (en) 2014-07-02
ES2553759T3 (es) 2015-12-11

Similar Documents

Publication Publication Date Title
JP4761008B2 (ja) 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管
JP5487689B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
US11072835B2 (en) High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same
JP4911266B2 (ja) 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
WO2018131340A1 (ja) 高強度ステンレス継目無鋼管およびその製造方法
WO2005017222A1 (ja) 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
WO2013146046A1 (ja) 油井用ステンレス鋼及び油井用ステンレス鋼管
WO2014112353A1 (ja) 油井用ステンレス継目無鋼管およびその製造方法
WO2017162160A1 (zh) 耐硫化氢应力腐蚀开裂的马氏体不锈钢油套管用钢、油套管及其制造方法
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
JP5499575B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6045256B2 (ja) 高強度高靭性高耐食マルテンサイト系ステンレス鋼
JP4978070B2 (ja) 拡管性に優れる油井用ステンレス鋼管
JP7111253B2 (ja) ステンレス継目無鋼管およびその製造方法
JP5040215B2 (ja) 拡管性に優れる油井用ステンレス鋼管
JP2009120954A (ja) マルテンサイト系ステンレス鋼およびその製造方法
WO2023053743A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2021065262A1 (ja) ステンレス継目無鋼管およびその製造方法
CN116926411A (zh) 耐高浓度硫化物应力腐蚀开裂马氏体不锈钢油套管用钢及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143252.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535822

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009823629

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2733649

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009310835

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009310835

Country of ref document: AU

Date of ref document: 20091028

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1759/KOLNP/2011

Country of ref document: IN

Ref document number: MX/A/2011/004528

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011121611

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0919892

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110425