WO2018131340A1 - 高強度ステンレス継目無鋼管およびその製造方法 - Google Patents

高強度ステンレス継目無鋼管およびその製造方法 Download PDF

Info

Publication number
WO2018131340A1
WO2018131340A1 PCT/JP2017/043775 JP2017043775W WO2018131340A1 WO 2018131340 A1 WO2018131340 A1 WO 2018131340A1 JP 2017043775 W JP2017043775 W JP 2017043775W WO 2018131340 A1 WO2018131340 A1 WO 2018131340A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
stainless steel
phase
temperature
Prior art date
Application number
PCT/JP2017/043775
Other languages
English (en)
French (fr)
Inventor
祐一 加茂
正雄 柚賀
江口 健一郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2019008377A priority Critical patent/MX2019008377A/es
Priority to JP2018516099A priority patent/JP6384636B1/ja
Priority to US16/477,393 priority patent/US11268161B2/en
Priority to BR112019013803A priority patent/BR112019013803A2/pt
Priority to EP17890889.3A priority patent/EP3569724B1/en
Publication of WO2018131340A1 publication Critical patent/WO2018131340A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength stainless steel seamless steel pipe suitable for use in crude oil or natural gas oil wells, gas wells, and the like and a method for producing the same.
  • the high-strength stainless steel seamless steel pipe of the present invention is particularly resistant to corrosion under high temperature severe corrosive environment containing carbon dioxide (CO 2 ) and chlorine ion (Cl ⁇ ), and under an environment containing hydrogen sulfide (H 2 S). Excellent in low temperature toughness.
  • Oil fields and gas fields are being actively developed.
  • Such oil and gas fields are generally extremely deep, the atmosphere is also high in temperature, and the environment is severely corrosive including CO 2 , Cl ⁇ , and H 2 S.
  • the oil well steel pipe used in such an environment is required to have a material having high strength, excellent low-temperature toughness, and excellent corrosion resistance.
  • 13% Cr martensitic stainless steel pipe has been generally used as an oil well pipe used for mining in oil fields and gas fields in an environment containing CO 2 , Cl 2- , and the like. Recently, however, oil wells under corrosive environments at higher temperatures (up to 200 ° C.) have been developed. Under such circumstances, the 13% Cr martensitic stainless steel pipe may have insufficient corrosion resistance. For this reason, the steel pipe for oil wells which is excellent in corrosion resistance which can be used also in said environment is desired.
  • Patent Document 3 by mass, C: 0.05% or less, Si: 1% or less, P: 0.05% or less, S: less than 0.002%, Cr: more than 16% and 18% or less Mo: more than 2% and 3% or less, Cu: 1 to 3.5%, Ni: 3% or more and less than 5%, Al: 0.001 to 0.1%, O: 0.01% or less, and Mn: not more than 1%, N: not more than 0.05%, a composition containing Mn and N so as to satisfy a specific relational expression, and a volume ratio of 10 to 40% mainly composed of a martensite phase.
  • a high-strength stainless steel pipe having improved ferrite stress cracking resistance and high-temperature carbon dioxide gas corrosion resistance having a ferrite phase and a structure containing a residual austenite ( ⁇ ) phase of 10% or less by volume is described.
  • yield strength high strength of 758 MPa (110 ksi) or more, sufficient corrosion resistance even in a high temperature carbon dioxide environment of 200 ° C., and sufficient sulfide stress cracking resistance even when the environmental temperature is lowered It is said that a high-strength stainless steel pipe with improved corrosion resistance can be obtained.
  • Patent Document 4 in mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.01 to 0.5%, P: 0.04% or less, S: 0 0.01% or less, Cr: more than 16.0% and 18.0% or less, Ni: more than 4.0% and 5.6% or less, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.
  • Patent Document 5 in mass%, C: 0.04% or less, Si: 0.50% or less, Mn: 0.20 to 1.80%, P: 0.03% or less, S: 0 0.005% or less, Cr: 15.5 to 17.5%, Ni: 2.5 to 5.5%, V: 0.20% or less, Mo: 1.5 to 3.5%, W: 0.00.
  • Patent Document 6 C: 0.01% or less, Si: 0.5% or less, Mn: 0.1 to 2.0%, P: 0.03% or less, S: 0% by mass. 0.005% or less, Cr: more than 15.5% and 17.5% or less, Ni: 2.5 to 5.5%, Mo: 1.8 to 3.5%, Cu: 0.3 to 3.5% V: 0.20% or less, Al: 0.05% or less, N: 0.06% or less, preferably 15% or more ferrite phase by volume, or further 25% or less retained austenite
  • a high-strength martensitic stainless steel seamless pipe for oil wells having a structure comprising a phase and the balance consisting of a tempered martensite phase is described.
  • a composition containing W: 0.25 to 2.0% and / or Nb: 0.20% or less may be used.
  • High-strength martensitic stainless steel seamless pipes for oil wells that have sufficient corrosion resistance (carbon dioxide corrosion resistance, sulfide stress corrosion cracking resistance) even in severe corrosive environments are said to be obtained stably.
  • Patent Document 7 by mass, C: 0.05% or less, Si: 1.0% or less, Mn: 0.01 to 1.0%, P: 0.05% or less, S: 0 0.002% or less, Cr: 16-18%, Mo: 1.8-3%, Cu: 1.0-3.5%, Ni: 3.0-5.5%, Co: 0.01-1 0.0%, Al: 0.001 to 0.1%, O: 0.05% or less, N: 0.05% or less, Cr, Ni, Mo and Cu have a specific relationship, and Cr , Ni, Mo, and Cu / 3 satisfy a specific relationship, and preferably, the ferrite phase is 10% or more and less than 60% by volume, 10% or less of retained austenite phase, and 40% or more of martensite.
  • An oil well stainless steel pipe having a structure containing a site phase is described. Thereby, it is said that a yield strength: a high strength of 758 MPa or more and a stainless steel pipe for oil wells having high temperature corrosion resistance can be obtained.
  • the corrosion resistance refers to excellent carbon dioxide gas corrosion resistance and excellent sulfide stress corrosion cracking at a high temperature of 200 ° C. or higher, particularly in a severe corrosive environment containing CO 2 , Cl ⁇ , and H 2 S. It means having both the resistance (SCC resistance) and the sulfide stress cracking resistance (SSC resistance).
  • the present invention is suitable for use in oil wells, gas wells, etc. of crude oil or natural gas, and has high yield strength: high strength of 758 MPa or more, excellent low-temperature toughness, and excellent corrosion resistance.
  • An object of the present invention is to provide a stainless steel seamless steel pipe and a method for producing the same.
  • “high strength” refers to a material having a yield strength of 758 MPa (110 ksi) or more.
  • the yield strength here is obtained by carrying out a tensile test in accordance with the provisions of API 5CT so that the tube axis direction becomes the tensile direction, as described in Examples below.
  • excellent low temperature toughness means that the absorbed energy vE ⁇ 10 of the Charpy impact test at a test temperature of ⁇ 10 ° C. has a strength of 80 J or more.
  • the absorbed energy of the Charpy impact test referred to here is a V-notch test piece (10 mm) so that the longitudinal direction of the test piece is the tube axis direction in accordance with the provisions of JIS Z 2242 as described in the examples below. Thickness) is collected, a Charpy impact test is performed, and an arithmetic average value of three test pieces is obtained.
  • excellent corrosion resistance means “excellent carbon dioxide corrosion resistance”, “excellent sulfide stress corrosion cracking resistance” and “excellent sulfide stress crack resistance”.
  • excellent carbon dioxide corrosion resistance refers to a test piece in a test solution retained in an autoclave: 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., CO 2 gas atmosphere at 30 atm). And the corrosion rate when the immersion time is 336 hours is 0.125 mm / y or less.
  • “excellent sulfide stress corrosion cracking resistance” referred to here is a test solution held in an autoclave: 20 mass% NaCl aqueous solution (liquid temperature: 100 ° C., CO 2 gas of 30 atm, 0.1 atm)
  • the test piece is immersed in an aqueous solution adjusted to pH: 3.3 by adding acetic acid + Na acetate to the H 2 S atmosphere), the immersion time is 720 hours, and the load stress is 100% of the yield stress. In this case, the test piece after the test is not cracked.
  • excellent sulfide stress cracking resistance refers to a test solution retained in an autoclave: 20 mass% NaCl aqueous solution (liquid temperature: 25 ° C., 0.9 atm CO 2 gas, 0.1 The test piece is immersed in an aqueous solution adjusted to pH: 3.5 by adding acetic acid + Na acetate to a H 2 S atmosphere at atmospheric pressure), the immersion time is set to 720 hours, and 90% of the yield stress is set as the load stress. This refers to the case where cracks do not occur in the test piece after loading.
  • the present inventors diligently studied various factors affecting the low-temperature toughness value in the composition of a 17% Cr-based stainless steel pipe whose Cr content was increased from the viewpoint of corrosion resistance. As a result, it was found that the low temperature toughness value can be improved by suppressing the processing induced transformation of retained austenite accompanying the deformation of the test piece during the Charpy test.
  • the reason why the low-temperature toughness value is improved is that the retained austenite that remains untransformed is superior to the low-temperature toughness than the as-quenched martensite in which the retained austenite undergoes work-induced transformation.
  • the Md 30 point of the retained austenite phase should be kept lower than ⁇ 10 ° C. in order to suppress the processing-induced transformation of the retained austenite.
  • the above ⁇ 10 ° C. is a temperature widely used in the evaluation of low temperature toughness of oil country tubular goods. In other words, if a desired low temperature toughness value can be achieved at this temperature, it means that the present invention can be applied in almost most use environments.
  • the Md 30 point is a temperature at which 50% of the structure undergoes martensitic transformation when tensile deformation of 30% is applied. When this value is small, the retained austenite phase undergoes processing-induced martensitic transformation accompanying processing. It is an index that indicates that it is difficult to cause.
  • the structure is a composite structure including a tempered martensite phase as a main phase, a second phase as a ferrite phase having a volume fraction of 20 to 40%, and a residual austenite phase having a volume ratio of 25% or less.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the main phase is a tempered martensite phase
  • the ferrite phase is 20-40% by volume and the residual austenite phase is 25% or less.
  • Md 30 1148-1775C-44Cr-39Ni-37Mo-698N-15W-13Cu ⁇ -10 Expression (1)
  • C, Cr, Ni, Mo, N, W, and Cu indicate the content (% by mass) of each element in the retained austenite phase. In the case of an element not included, the element symbol in the formula is calculated as 0.
  • the composition further includes, by mass%, Ti: 0.3% or less, V: 0.5% or less, Zr: 0.2% or less, Co: 1.4% or less, Ta: 0.1 %, B: 0.0100% or less
  • the high-strength stainless steel seamless steel pipe according to [1] containing one or more selected from two or more.
  • the composition further contains one or two selected from Ca: 0.0005 to 0.0050% and REM: 0.001 to 0.01% by mass% [1] ] Or the high-strength stainless steel seamless steel pipe according to [2].
  • the seamless steel pipe is heated to a quenching temperature in the range of 850 to 1150 ° C., and the surface of the seamless steel pipe is subjected to an average cooling rate of 0.05 ° C./s or more.
  • a quenching treatment is performed to cool to a cooling stop temperature of 50 ° C. or less and over 0 ° C., followed by heating to a temperature in the range of 200 to 500 ° C., an air-cooled austenite stabilization heat treatment, and then in a range of 500 to 650 ° C.
  • a method for producing a high-strength stainless steel seamless pipe that is subjected to a tempering treatment that is heated to a tempering temperature [5]
  • the composition further includes, by mass%, Ti: 0.3% or less, V: 0.5% or less, Zr: 0.2% or less, Co: 1.4% or less, Ta: 0.1 % Or less, B: The method for producing a high-strength stainless steel seamless pipe according to [4], containing one or more selected from 0.0100% or less.
  • the composition further contains, by mass%, one or two selected from Ca: 0.0005 to 0.0050% and REM: 0.001 to 0.01% [4] ] Or the manufacturing method of the high intensity
  • the yield strength YS high strength of 758 MPa or more and excellent low temperature toughness are combined. At the same time, it has excellent carbon dioxide gas corrosion resistance, excellent sulfide stress corrosion cracking resistance and excellent sulfide stress cracking resistance even in a severe corrosive environment containing CO 2 , Cl ⁇ , and even H 2 S.
  • a high-strength stainless steel seamless pipe is obtained. And by applying the high-strength stainless steel seamless steel pipe manufactured according to the present invention to the stainless steel seamless steel pipe for oil wells, it can be manufactured at low cost and has a remarkable industrial effect.
  • C 0.012% to 0.05% C increases the strength of martensitic stainless steel. Furthermore, C is an important element having an effect of improving the stability of the retained austenite phase by diffusing into the retained austenite phase by an austenite stabilization heat treatment described later. In order to achieve a high strength with a yield strength of 758 MPa or more and a low temperature toughness with a vE- 10 of 80 J or more, C needs to contain 0.012% or more. However, if the C content exceeds 0.05%, precipitation of carbides becomes excessive by heat treatment, and the corrosion resistance decreases. For this reason, content of C shall be 0.05% or less. Therefore, the C content is 0.012% to 0.05%. The content of C is preferably 0.04% or less, and more preferably 0.03% or less. Further, the C content is preferably 0.015% or more, more preferably 0.020% or more.
  • Si 1.0% or less
  • Si is an element that acts as a deoxidizer. In order to obtain this effect, Si preferably contains 0.005% or more.
  • content of Si shall be 1.0% or less.
  • the Si content is preferably 0.8% or less, more preferably 0.6% or less, and further preferably 0.4% or less.
  • the lower limit of the Si content is not particularly limited, but the Si content is preferably 0.005% or more, and more preferably 0.1% or more.
  • Mn 0.1 to 0.5%
  • Mn is an element that increases the strength of martensitic stainless steel. In order to ensure the desired strength of the present invention, the Mn content needs to be 0.1% or more. On the other hand, when Mn exceeds 0.5%, low-temperature toughness decreases. Therefore, the Mn content is set to 0.1 to 0.5%.
  • the Mn content is preferably 0.4% or less, and more preferably 0.3% or less. Further, the Mn content is preferably 0.15% or more, and more preferably 0.20% or more.
  • P 0.05% or less
  • P is an element that lowers corrosion resistance such as carbon dioxide corrosion resistance and sulfide stress cracking resistance. In the present invention, it is preferable to reduce it as much as possible, but it is acceptable if P is contained at 0.05% or less. Therefore, the P content is 0.05% or less.
  • the P content is preferably 0.04% or less, more preferably 0.03% or less, and still more preferably 0.02% or less.
  • the lower limit of the P content is not particularly limited, but the P content is preferably 0.002% or more.
  • S 0.005% or less
  • S is an element that significantly reduces the hot workability and impedes the stable operation of the hot pipe making process. In the present invention, it is preferable to reduce as much as possible. However, if S is contained in an amount of 0.005% or less, pipes can be manufactured in a normal process. In addition, S exists as sulfide inclusions in steel and reduces corrosion resistance. Therefore, the S content is set to 0.005% or less. The S content is preferably 0.003% or less, and more preferably 0.002% or less. The lower limit of the S content is not particularly limited, but the S content is preferably 0.0002% or more.
  • Cr more than 16.0% and less than 18.0% Cr forms a protective film and contributes to improvement of corrosion resistance.
  • Cr is an element that improves the stability of the retained austenite phase. In order to acquire these effects, Cr needs to contain more than 16.0%. On the other hand, if the Cr content exceeds 18.0%, the volume fraction of the ferrite phase becomes too high, and the desired high strength cannot be ensured. For this reason, content of Cr shall be 16.0% and 18.0% or less.
  • the content of Cr is preferably 16.1% or more.
  • the content of Cr is preferably 17.5% or less.
  • the content of Cr is more preferably 16.2% or more.
  • the content of Cr is more preferably 17.0% or less.
  • Mo 2.0% greater than 3.0% or less
  • Mo is to stabilize a protective coating, Cl - or by increasing the resistance to pitting low pH, sulfide stress cracking resistance and sulfide It is an element that enhances stress corrosion cracking.
  • Mo is an element that improves the stability of the retained austenite phase. In order to acquire such an effect, Mo needs to contain more than 2.0%.
  • Mo is an expensive element, and if Mo exceeds 3.0%, the material cost increases. At the same time, low temperature toughness and sulfide stress corrosion cracking resistance are reduced. For this reason, the Mo content is more than 2.0% and not more than 3.0%.
  • the Mo content is preferably 2.1% or more.
  • the Mo content is preferably 2.8% or less.
  • the Mo content is more preferably 2.2% or more.
  • the content of Mo is more preferably 2.7% or less.
  • Cu 0.5 to 3.5% or less
  • Cu is an element that strengthens the protective film and suppresses hydrogen intrusion into the steel and improves the resistance to sulfide stress cracking and the resistance to sulfide stress corrosion cracking. Further, Cu is an element that improves the stability of the retained austenite phase. In order to acquire such an effect, Cu needs to contain 0.5% or more. On the other hand, if Cu exceeds 3.5%, grain boundary precipitation of CuS is caused and hot workability is lowered. Therefore, the Cu content is in the range of 0.5 to 3.5%.
  • the Cu content is preferably 0.7% or more.
  • the Cu content is preferably 3.0% or less.
  • the Cu content is more preferably 0.8% or more.
  • the Cu content is more preferably 2.8% or less.
  • Ni 3.0% or more and less than 5.0%
  • Ni is an element that strengthens the protective film and contributes to improvement in corrosion resistance.
  • Ni is an element that increases the strength of the steel by solid solution strengthening. Further, Ni is an element that improves the stability of the retained austenite phase. Such an effect becomes remarkable by containing 3.0% or more of Ni.
  • content of Ni shall be 3.0% or more and less than 5.0%.
  • the Ni content is preferably 3.5% or more.
  • the Ni content is preferably 4.5% or less.
  • the Ni content is more preferably 3.7% or more.
  • the Ni content is more preferably 4.3% or less.
  • W 0.01-3.0% W contributes to improving the strength of the steel.
  • W is an element that stabilizes the protective film and improves the resistance to sulfide stress cracking and the resistance to sulfide stress corrosion cracking. Therefore, W is an important element in the present invention.
  • W is an element that improves the stability of the retained austenite phase. In order to obtain such an effect, it is necessary to contain 0.01% or more of W.
  • the W content exceeds 3.0%, the low temperature toughness is lowered. Therefore, the W content is in the range of 0.01 to 3.0%.
  • the W content is preferably 0.5% or more.
  • the W content is preferably 2.0% or less.
  • the W content is more preferably 0.8% or more.
  • the content of W is more preferably 1.3% or less.
  • Nb 0.01 to 0.5% Nb combines with C and N and precipitates as Nb carbonitride (Nb precipitate), contributing to the improvement of the yield strength YS. Therefore, Nb is an important element in the present invention. In order to obtain such an effect, it is necessary to contain 0.01% or more of Nb. On the other hand, the content of Nb exceeding 0.5% fixes C and N contributing to stabilization of the retained austenite phase as carbonitrides and destabilizes the retained austenite phase. Further, if Nb content exceeds 0.5%, the low temperature toughness and the resistance to sulfide stress cracking are reduced. Therefore, the Nb content is set to 0.01 to 0.5%. The Nb content is preferably 0.05% or more. The Nb content is preferably 0.2% or less. The Nb content is more preferably 0.07% or more. The Nb content is more preferably 0.15% or less.
  • Al 0.001 to 0.1%
  • Al is an element that acts as a deoxidizer. In order to acquire such an effect, Al needs to contain 0.001% or more.
  • the Al content is in the range of 0.001 to 0.1%.
  • the Al content is preferably 0.01% or more.
  • the Al content is preferably 0.07% or less.
  • the Al content is more preferably 0.02% or more.
  • the Al content is more preferably 0.04% or less.
  • N 0.012 to 0.07% N improves pitting corrosion resistance. Further, N is an important element that diffuses into the retained austenite phase during the austenite stabilization heat treatment and improves the stability of the retained austenite phase. In order to acquire such an effect, N needs to contain 0.012% or more. However, when N is contained by 0.07% or more, nitrides are formed and low temperature toughness is lowered. Therefore, the N content is in the range of 0.012 to 0.07%. The N content is preferably 0.02% or more. The N content is preferably 0.06% or less. The N content is more preferably 0.03% or more. The N content is more preferably 0.055% or less.
  • O 0.01% or less
  • O oxygen
  • the content of O exceeds 0.01%, hot workability, corrosion resistance, and low temperature toughness are deteriorated. Therefore, the O content is 0.01% or less.
  • the content of O is preferably 0.006% or less, and more preferably 0.003% or less.
  • the balance is Fe and inevitable impurities.
  • the above components are basic components, and the high-strength stainless steel seamless steel pipe of the present invention has the desired characteristics.
  • the following selective elements can be contained as required.
  • Ti 0.3% or less, V: 0.5% or less, Zr: 0.2% or less, Co: 1.4% or less, Ta: 0.1% or less, B: 0.0100% or less
  • Ti, V, Zr, Co, Ta, and B are all useful as elements for increasing the strength, and are selected as necessary and contain one or more. be able to. Ti, V, Zr, Co, Ta, and B have the effect of improving the resistance to sulfide stress cracking in addition to the above-described effects.
  • Ti, V, Zr, Co, Ta, and B are more preferably Ti: 0.1% or less, V: 0.1% or less, Zr: 0.1% or less, Co: 0.1% Hereinafter, Ta: 0.05% or less, B: 0.0050% or less. Further, the contents of Ti, V, Zr, Co, Ta, and B are more preferably Ti: 0.003% or more, V: 0.03% or more, Zr: 0.03% or more, Co: 0.06 % Or more, Ta: 0.03% or more, and B: 0.0010% or more.
  • Both of Ca and REM rare earth metal
  • Ca and REM are controlled through the form control of sulfide.
  • it is useful as an element that contributes to the improvement of resistance to sulfide stress corrosion cracking, and can contain one or two kinds as required.
  • it is desirable to contain one or two selected from Ca: 0.0005% or more and REM: 0.001% or more.
  • Ca and REM when Ca and REM are contained, it is preferable that Ca: 0.0005 to 0.0050% and REM: 0.001 to 0.01%, respectively. More preferably, Ca: 0.0020 to 0.0040% and REM: 0.002 to 0.009%, respectively.
  • volume ratio be a volume ratio with respect to the whole steel plate structure.
  • the high-strength stainless steel seamless pipe of the present invention has the above-described composition, and further includes a tempered martensite phase as a main phase, a ferrite phase having a volume ratio of 20 to 40%, and a retained austenite having a volume ratio of 25% or less. It has a composite structure consisting of phases.
  • the “main phase” refers to a phase that occupies more than 40% in volume ratio.
  • C, Cr, Ni, Mo, N, W, and Cu in the above-mentioned residual austenite phase have a structure satisfying the following formula (1).
  • the high-strength stainless steel seamless pipe of the present invention has a tempered martensite phase as the main phase in order to ensure the desired high strength in the present invention.
  • the ferrite phase is precipitated as the second phase by volume.
  • desired corrosion resistance carbon dioxide gas corrosion resistance, sulfide stress corrosion cracking resistance and sulfide stress cracking resistance
  • the ferrite phase is in the range of 20 to 40% by volume.
  • a ferrite phase is 23% or more by volume ratio.
  • the ferrite phase is 35% or less by volume.
  • a residual austenite phase is precipitated by 25% or less by volume ratio. Due to the presence of the retained austenite phase, ductility and low temperature toughness are improved. In order to obtain such an effect, it is desirable to deposit the retained austenite phase at a volume ratio of 5% or more. On the other hand, a large amount of residual austenite phase exceeding 25% by volume cannot secure a desired high strength. For this reason, a residual austenite phase shall be 25% or less by volume ratio.
  • the residual austenite phase is 5% or more by volume.
  • the residual austenite phase is 20% or less by volume.
  • the volume ratio of a tempered martensite phase, an austenite phase, and a ferrite phase can be measured by the method as described in the Example mentioned later.
  • the high-strength stainless steel seamless steel pipe of this invention needs to contain each element in a retained austenite phase so that the following formula
  • the process-induced transformation of the retained austenite phase accompanying the deformation of the test piece during the Charpy test can be suppressed, and excellent low temperature toughness can be obtained.
  • Md 30 1148-1775C-44Cr-39Ni-37Mo-698N-15W-13Cu ⁇ ⁇ 10 Formula (1)
  • C, Cr, Ni, Mo, N, W, and Cu indicate the content (% by mass) of each element in the retained austenite phase. In the case of an element not included, the element symbol in the formula is calculated as 0.
  • the Md 30 point in the formula (1) is a temperature at which 50% of the structure undergoes martensitic transformation when a tensile deformation of 30% is applied. This index indicates that it is difficult to cause site transformation.
  • the coefficient of the formula (1) is newly obtained by the present inventors. When the value of the formula (1) exceeds ⁇ 10.0 (° C.), the martensite increases in the as-quenched state where the retained austenite undergoes work-induced transformation, and thus the low temperature toughness targeted by the present invention cannot be ensured.
  • the value of Md 30 in the formula (1) is preferably ⁇ 14.0 ° C. or less.
  • each element in the above-mentioned residual austenite phase was calculated
  • a specimen for tissue observation is collected so that the cross section in the tube axis direction becomes the observation surface, residual austenite is identified by EBSP analysis (Electron Back Scattering Pattern), and FE- EPMA (Field Emission Electron Probe Micro Analyzer: 20 points of each sample are measured with a field emission electron probe microanalyzer), and the value obtained by averaging the quantitative values of the obtained chemical composition is defined as the chemical composition in the residual austenite phase of the steel.
  • the manufacturing method of the high-strength stainless steel seamless steel pipe according to the present invention includes a heating process for heating a steel pipe material, and hot pipemaking to provide a seamless steel pipe by subjecting the steel pipe material heated in the heating process to hot forming.
  • a steel pipe material having the above composition is used as a starting material.
  • the manufacturing method of the steel pipe material to be used is not particularly limited, and any generally known manufacturing method of the steel pipe material can be applied.
  • a method for producing a steel pipe material for example, a molten steel having the above-described composition is melted by a conventional melting method such as a converter, and a generally known casting method such as a continuous casting method or an ingot-bundling rolling method is used.
  • a method of making a billet (steel pipe material) such as a billet is preferable.
  • the manufacturing method of a steel pipe raw material is not limited to this. Moreover, there is no problem even if a steel slab having a desired size and shape obtained by further hot rolling the slab is used as a steel pipe material.
  • the obtained steel pipe material is heated and subjected to hot pipe making using a hot pipe making process such as a Mannesmann-plug mill method or a Mannesmann-Mandrel mill method, and a seamless steel pipe having a desired size with the above composition.
  • a hot pipe making process such as a Mannesmann-plug mill method or a Mannesmann-Mandrel mill method
  • the heating temperature T (° C.) in the heating process is in the range of 1100 to 1300 ° C. If heating temperature T is less than 1100 degreeC, hot workability will fall and a flaw will generate
  • the heating time in the heating step is not particularly limited, but is preferably 15 minutes to 2 hours, for example, from the viewpoint of productivity. More preferably, the heating time of the heating step is 30 minutes to 1 hour.
  • the hot pipe making in the hot pipe making process can produce a seamless steel pipe having a desired size, it is not necessary to define the production conditions in particular, and any of the usual production conditions can be applied.
  • the obtained seamless steel pipe is cooled in a cooling process.
  • the cooling conditions in the cooling step need not be particularly limited. If it is the composition range of this invention, it can be set as the structure
  • a heat treatment including a quenching treatment, an austenite stabilization heat treatment, and a tempering treatment is performed as a heat treatment step.
  • the seamless steel pipe cooled in the cooling step is heated to a quenching temperature in the range of 850 to 1150 ° C., and then air cooling or more, preferably at an average cooling rate of 0.05 ° C./s or more. It is set as the process which cools to the cooling stop temperature whose surface temperature of a seamless steel pipe is 50 degrees C or less and exceeds 0 degree C.
  • the heating temperature (quenching temperature) of the quenching treatment is less than 850 ° C.
  • the reverse transformation of martensite to austenite hardly occurs, and the transformation from austenite to martensite during cooling from the quenching temperature to the cooling stop temperature. Is less likely to occur. For this reason, there exists a possibility that desired high intensity
  • the quenching temperature is higher than 1150 ° C. More preferably, the quenching temperature is 900 to 1000 ° C.
  • the holding time in the quenching treatment is preferably 5 minutes or more from the viewpoint of making the temperature in the material uniform. If the holding time in the quenching process is less than 5 minutes, there is a possibility that the desired structure cannot be made uniform. More preferably, the holding time in the quenching process is 10 min or more. Further, the holding time in the quenching treatment is preferably 210 min or less.
  • the average cooling rate of the quenching treatment is less than 0.05 ° C./s, coarse carbonitrides and intermetallic compounds are precipitated, so that low temperature toughness and corrosion resistance are remarkably lowered.
  • the upper limit of the average cooling rate is not particularly limited.
  • the average cooling rate refers to the average cooling rate in the range from the quenching temperature to the cooling stop temperature of the quenching process.
  • the cooling stop temperature of the quenching process exceeds 50 ° C., the amount of martensite contributing to the strength is reduced, so that the strength is significantly lowered. Therefore, the cooling stop temperature of the quenching process is set to 50 ° C. or less. More preferably, it is 40 ° C. or less and 0 ° C. or more.
  • the present invention it is easy to adjust the volume ratio of the ferrite phase within an appropriate range by setting the heating temperature of the quenching treatment within the above range. If the cooling stop temperature of the quenching process is too low, it becomes difficult to adjust the amount of retained austenite phase within an appropriate range.
  • the austenite stabilization heat treatment is an extremely important process for the present invention. That is, the seamless steel pipe subjected to the quenching treatment is heated to a temperature in the range of 200 to 500 ° C. and cooled.
  • C and N which are austenite forming elements in the quenched martensite and have a large diffusion coefficient, diffuse into the retained austenite. This lowers the Md 30 point of retained austenite and improves the low temperature toughness value. If the heating temperature of the austenite stabilization heat treatment is less than 200 ° C., the desired low temperature toughness value cannot be obtained because C and N are not sufficiently diffused into the retained austenite. On the other hand, when the heating temperature of the austenite stabilization heat treatment is 500 ° C. or higher, C and N are precipitated as carbonitrides, and the amount of C and N effective for stabilizing the retained austenite is reduced. For this reason, a desired low temperature toughness value cannot be obtained.
  • the heating temperature of the austenite stabilization heat treatment is set in the range of 200 to 500 ° C.
  • the heating temperature of the austenite stabilizing heat treatment is in the range of 250 to 450 ° C.
  • the holding time in the austenite stabilizing heat treatment is preferably 5 min or more from the viewpoint of making the temperature in the material uniform. If the holding time in the austenite stabilizing heat treatment is less than 5 minutes, the desired structure cannot be made uniform. More preferably, the holding time in the austenite stabilizing heat treatment is 20 min or more. The holding time in the austenite stabilizing heat treatment is preferably 210 min or less.
  • the cooling in the austenite stabilization heat treatment means cooling from a temperature range of 200 to 500 ° C. to room temperature at an average cooling rate equal to or higher than air cooling. Preferably, the average cooling rate in the austenite stabilizing heat treatment is 0.05 ° C./s or more.
  • the tempering process is a process in which a seamless steel pipe subjected to the austenite stabilization process is heated to a tempering temperature in the range of 500 to 650 ° C. and cooled.
  • the tempering temperature of the tempering treatment is less than 500 ° C.
  • the desired tempering effect may not be expected because the temperature is too low.
  • the tempering temperature is higher than 650 ° C.
  • an as-quenched martensite phase is generated, and it may not be possible to combine desired high strength, low temperature toughness, and excellent corrosion resistance. Therefore, the tempering temperature is in the range of 500 to 650 ° C.
  • the tempering temperature is in the range of 550-630 ° C.
  • the holding time in the tempering treatment is preferably 5 min or more from the viewpoint of making the temperature in the material uniform. If the holding time in the tempering process is less than 5 minutes, the desired structure cannot be made uniform.
  • the holding time in the tempering process is 20 min or more.
  • the holding time in the tempering process is preferably 210 min or less.
  • the cooling in the tempering process means cooling from the tempering temperature to room temperature at an average cooling rate equal to or higher than air cooling.
  • the average cooling rate in the tempering process is 0.05 ° C./s or more.
  • the structure of the seamless steel pipe has a tempered martensite phase as a main phase, a ferrite phase, and a residual austenite phase. It becomes a composite organization. Thereby, it can be set as the high intensity
  • molten steels having the compositions shown in Tables 1 and 2 were melted in a converter and cast into billets (slab: steel pipe material) by a continuous casting method.
  • the obtained steel pipe material (slab) was subjected to a heating process of heating at the heating temperature T shown in Tables 3 and 4.
  • the holding time at the heating temperature T was the time shown in Table 3 and Table 4.
  • the steel pipe material heated in the heating step is piped by hot working using a model seamless rolling mill (hot pipe making), and a seamless steel pipe (outer diameter 83.8 mm ⁇ ⁇ wall thickness 12.7 mm) did.
  • the seamless steel pipe was air-cooled after pipe making.
  • test piece material was cut out from the obtained seamless steel pipe, heated under the conditions shown in Table 3 and Table 4, then subjected to quenching treatment with water, and subsequently heated under the conditions shown in Table 3 and Table 4. After that, an austenite stabilization heat treatment for air cooling was performed. Further, after heating under the conditions shown in Tables 3 and 4, a tempering treatment for air cooling was performed. That is, this test piece material corresponds to a seamless steel pipe that has been subjected to quenching, austenite stabilization heat treatment, and tempering treatment.
  • test pieces for structure observation were collected and subjected to structure observation, composition quantitative evaluation in residual austenite phase, tensile test, Charpy impact test, and corrosion resistance test.
  • corrosion resistance test a corrosion test, a sulfide stress corrosion cracking test (SCC test), and a sulfide stress cracking test (SSC test) were performed.
  • the test method was as follows.
  • test piece for tissue observation was collected from the obtained test piece material so that the cross section in the tube axis direction was an observation surface.
  • the volume fraction of the ferrite phase was determined by observing the observation surface with a scanning electron microscope.
  • the above-mentioned specimen for tissue observation is corroded with Virella reagent (mixed solution of ethanol 100 mL, hydrochloric acid 10 mL, picric acid 2 g), the tissue is imaged with a scanning electron microscope (1000 times), and an image analyzer is used.
  • the average value of the area ratio of the ferrite phase was calculated and used as the volume ratio (%).
  • the volume fraction of the retained austenite phase was measured using an X-ray diffraction method.
  • a test piece for X-ray diffraction is taken from the above-mentioned test piece material so that a cross section (C cross section) perpendicular to the tube axis direction becomes the measurement surface, and the (220) plane of the retained austenite phase ( ⁇ ) by X-ray diffraction
  • the diffraction X-ray integral intensity of the (211) plane of the ferrite phase ( ⁇ ) was measured.
  • I ⁇ ⁇ integral strength
  • R ⁇ ⁇ crystallographic theoretical calculated value
  • I ⁇ ⁇ integral strength
  • R ⁇ ⁇ crystallographic theoretical calculated value
  • the volume ratio of the martensite phase was calculated as the remainder other than these phases.
  • API 5CT arc-shaped tensile test pieces are collected from the above-mentioned test piece materials so that the tube axis direction becomes the tensile direction, and a tensile test is performed in accordance with the provisions of API 5CT. Yield strength YS, tensile strength TS) were determined. “API” is an abbreviation for American Petroleum Institute. In the present invention, the yield strength was evaluated as 758 MPa or more as acceptable.
  • V-notch test piece (10 mm thick) was sampled from the above-mentioned test piece material so that the test piece longitudinal direction was the tube axis direction in accordance with JIS Z 2242. The test was conducted. The test temperatures were ⁇ 10 ° C. and ⁇ 40 ° C., the absorbed energy vE ⁇ 10 at ⁇ 10 ° C. and the absorbed energy vE ⁇ 40 at ⁇ 40 ° C. were obtained, respectively, and the toughness was evaluated. In addition, the test piece was made into three each, the arithmetic mean value of the obtained value was computed, and it was set as the absorbed energy (J) of a high-strength stainless steel seamless pipe. In the present invention, vE ⁇ 10 : 80J or more was evaluated as acceptable.
  • Corrosion test (CO2 corrosion resistance test) A corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was produced from the above-described test piece material by machining, a corrosion test was performed, and carbon dioxide gas corrosion resistance was evaluated.
  • the corrosion test was performed by immersing the corrosion test piece in a test solution held in an autoclave: 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., 30 atmospheres CO 2 gas atmosphere), and the immersion period was 14 days (336 hours). ). The mass of the corrosion test piece before and after the test was measured, and the corrosion rate was calculated from the difference. In the present invention, the case where the corrosion rate was 0.125 mm / y or less was evaluated as acceptable.
  • SSC resistance test Sulfide stress cracking resistance test
  • NACE National Association of Corrosion Engineering
  • SCC test Sulfide stress corrosion cracking test
  • SCC test A four-point bending test piece of thickness 3 mm x width 15 mm x length 115 mm is sampled from the above-mentioned test piece material and subjected to a sulfide stress corrosion cracking test (SCC test) in accordance with EFC17. Carried out.
  • EFC is an abbreviation for European Federal of Corrosion.
  • All of the inventive examples have a high yield strength of 758 MPa or more and a low temperature toughness of absorbed energy at ⁇ 10 ° C. of 80 J or more.
  • the inventive examples CO 2 and, Cl - high corrosion resistance ( ⁇ acid gas corrosion resistance) in high temperature corrosive environments that 200 ° C. containing further cracking in an environment containing H 2 S (SSC, SCC)
  • SSC, SCC H 2 S
  • comparative examples out of the scope of the present invention are the strength, low temperature toughness, carbon dioxide corrosion resistance, sulfide stress cracking resistance (SSC resistance), and sulfide stress corrosion cracking resistance ( Any one or more of SCC resistance was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

高強度、優れた低温靭性、優れた耐食性を兼備する高強度ステンレス継目無鋼管およびその製造方法を提供する。質量%で、C:0.012~0.05%、Si:1.0%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.005%以下、Cr:16.0%超え18.0%以下、Mo:2.0%超え3.0%以下、Cu:0.5~3.5%、Ni:3.0%以上5.0%未満、W:0.01~3.0%、Nb:0.01~0.5%、Al:0.001~0.1%、N:0.012~0.07%、O:0.01%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、焼戻マルテンサイト相を主相とし、体積率で20~40%のフェライト相と25%以下の残留オーステナイト相からなり、残留オーステナイト相中の、C、Cr、Ni、Mo、Nb、N、W、Cuが所定の式を満足する組織を有する。

Description

高強度ステンレス継目無鋼管およびその製造方法
 本発明は、原油あるいは天然ガスの油井、ガス井等に用いて好適な高強度ステンレス継目無鋼管およびその製造方法に関する。本発明の高強度ステンレス継目無鋼管は、特に、炭酸ガス(CO)、塩素イオン(Cl)を含む高温の厳しい腐食環境下や、硫化水素(HS)を含む環境下等における耐食性に優れ、さらには低温靭性にも優れる。
 近年、近い将来に予想される石油などのエネルギー資源の枯渇という観点から、従来は省みられなかったような深度が深い油田や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んに行われている。このような油田、ガス田は一般に深度が極めて深く、またその雰囲気も高温で、かつCO、Cl、さらにHSを含む厳しい腐食環境となっている。このような環境下で使用される油井用鋼管には、高強度、優れた低温靭性、かつ優れた耐食性を兼備した材質を有することが要求される。
 従来から、CO、Cl等を含む環境の油田、ガス田では、採掘に使用する油井管として13%Crマルテンサイト系ステンレス鋼管が一般的に使用されてきた。しかし、最近では、更なる高温(200℃までの高温)の腐食環境下にある油井の開発が進められている。このような環境下では、13%Crマルテンサイト系ステンレス鋼管では耐食性が不足する場合があった。このため、上記の環境下でも使用できる、耐食性に優れた油井用鋼管が要望されている。
 このような要望に対し、例えば、特許文献1には、質量%で、C:0.005~0.05%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18%、Ni:1.5~5%、Mo:1~3.5%、V:0.02~0.2%、N:0.01~0.15%、O:0.006%以下を含有し、Cr、Ni、Mo、Cuおよび、Cが特定の関係式を満足し、さらにCr、Mo、Si、C、Mn、Ni、Cuおよび、Nが特定の関係式を満足するように含有する組成を有し、さらにマルテンサイト相をベース相とし、フェライト相を体積率で10~60%、あるいはさらにオーステナイト相を体積率で30%以下含有する組織を有する、耐食性を改善した油井用高強度ステンレス鋼管が記載されている。これにより、CO、Cl等を含む230℃までの高温の過酷な腐食環境においても十分な耐CO耐食性を示し、降伏強さ:654MPa(95ksi)を超える高強度とさらには高靭性を有する油井用高強度ステンレス鋼管を安定して得られるとしている。
 また、特許文献2には、mass%で、C:0.04%以下、Si:0.50%以下、Mn:0.20~1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5~17.5%、Ni:2.5~5.5%、V:0.20%以下、Mo:1.5~3.5%、W:0.50~3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を含み、かつCr、Mo、Wおよび、Cが特定の関係式を、また、Cr、Mo、W、Si、C、Mn、Cu、Niおよび、Nが特定の関係式を、さらにMoおよび、Wが特定の関係式を、それぞれ満足するように含有する組成と、マルテンサイト相をベース相とし、フェライト相を体積率で10~50%を含有する組織を有する、高靭性で、耐食性を向上させた油井用高強度ステンレス鋼管が記載されている。これにより、降伏強さ:654MPa(95ksi)を超える高強度を有し、CO、Cl、さらにHSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス鋼管を安定して得られるとしている。
 また、特許文献3には、質量%で、C:0.05%以下、Si:1%以下、P:0.05%以下、S:0.002%未満、Cr:16%超18%以下、Mo:2%超3%以下、Cu:1~3.5%、Ni:3%以上5%未満、Al:0.001~0.1%、O:0.01%以下を含み、かつMn:1%以下、N:0.05%以下の領域で、MnとNが特定の関係式を満足するように含有する組成と、マルテンサイト相を主体として、体積率で10~40%のフェライト相と、体積率で10%以下の残留オーステナイト(γ)相を含む組織とを有する、耐硫化物応力割れ性と耐高温炭酸ガス腐食を向上させた高強度ステンレス鋼管が記載されている。これにより、降伏強さ:758MPa(110ksi)以上の高強度で、さらに200℃という高温の炭酸ガス環境下でも十分な耐食性を有し、環境温度が低下したときでも、十分な耐硫化物応力割れ性を有する耐食性を向上させた高強度ステンレス鋼管を得られるとしている。
 また、特許文献4には、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0%超18.0%以下、Ni:4.0%超5.6%以下、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、Cr、Cu、Niおよび、Moが特定の関係式を満足し、さらに、(C+N)、Mn、Ni、Cuおよび、(Cr+Mo)が特定の関係式を満足する組成と、マルテンサイト相と体積率で10~40%のフェライト相とを含み、表面から厚さ方向に50μmの長さを有し、10μmピッチで200μmの範囲に1列に配列された複数の仮想線分と、フェライト相が交差する割合が85%より多い組織とを有し、0.2%耐力:758MPa以上の高強度を有する油井用ステンレス鋼管が記載されている。これにより、150~250℃の高温環境で耐食性を向上させ、常温での耐硫化物応力腐食割れ性を向上させた油井用ステンレス鋼管を得られるとしている。
 また、特許文献5には、質量%で、C:0.04%以下、Si:0.50%以下、Mn:0.20~1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5~17.5%、Ni:2.5~5.5%、V:0.20%以下、Mo:1.5~3.5%、W:0.50~3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を含有し、Cr、Mo、Wおよび、Cが特定の関係式を満足し、Cr、Mo、W、Si、C、Mn、Cu、Niおよび、Nが、また、Moおよび、Wが、それぞれ特定の関係式を満足するように含有する組成を有し、最も大きい結晶粒において、粒内の任意の2点間の距離が200μm以下である組織を有する、高靭性、耐食性を向上させた油井用高強度ステンレス鋼管が記載されている。これにより、降伏強さ:654MPa(95ksi)を超える高強度で、靭性を向上させ、CO、Cl、さらにHSを含む170℃以上の高温腐食環境下において十分な耐食性を示す油井用高強度ステンレス鋼管を得られるとしている。
 また、特許文献6には、質量%で、C:0.01%以下、Si:0.5%以下、Mn:0.1~2.0%、P:0.03%以下、S:0.005%以下、Cr:15.5%超17.5%以下、Ni:2.5~5.5%、Mo:1.8~3.5%、Cu:0.3~3.5%、V:0.20%以下、Al:0.05%以下、N:0.06%以下を含む組成を有し、好ましくは体積率で15%以上のフェライト相あるいはさらに25%以下の残留オーステナイト相を含み、残部が焼戻マルテンサイト相からなる組織を有する、油井用高強度マルテンサイト系ステンレス継目無鋼管が記載されている。なお、特許文献6では、前記組成に加えて、W:0.25~2.0%、および/または、Nb:0.20%以下を含有する組成としてもよいとしている。これにより、降伏強さ:655MPa以上862MPa以下の高強度と降伏比:0.90以上の引張特性を有し、CO、Cl等、さらにはHSを含む、170℃以上の高温の厳しい腐食環境においても十分な耐食性(耐炭酸ガス腐食性、耐硫化物応力腐食割れ性)を有する油井用高強度マルテンサイト系ステンレス継目無鋼管を、安定して得られるとしている。
 また、特許文献7には、質量%で、C:0.05%以下、Si:1.0%以下、Mn:0.01~1.0%、P:0.05%以下、S:0.002%以下、Cr:16~18%、Mo:1.8~3%、Cu:1.0~3.5%、Ni:3.0~5.5%、Co:0.01~1.0%、Al:0.001~0.1%、O:0.05%以下、N:0.05%以下を含有し、Cr、Ni、Moおよび、Cuが特定の関係を、またCr、Ni、Moおよび、Cu/3が特定の関係を満足する組成とし、好ましくは、体積率で10%以上60%未満のフェライト相と、10%以下の残留オーステナイト相と、40%以上のマルテンサイト相を含有する組織を有する、油井用ステンレス鋼管が記載されている。これにより、降伏強さ:758MPa以上の高強度と、高温耐食性を有する油井用ステンレス鋼管を得られるとしている。
特開2005-336595号公報 特開2008-81793号公報 国際公開第2010/050519号 国際公開第2010/134498号 特開2010-209402号公報 特開2012-149317号公報 国際公開第2013/146046号
 最近の厳しい腐食環境における油田やガス田等の開発に伴い、油井用鋼管には、降伏強さ:758MPa(110ksi)以上の高強度、低温靭性、かつ耐食性を保持することが要望されるようになっている。ここで、耐食性とは、特にCO、Cl、さらにHSを含む厳しい腐食環境下における、200℃以上という高温での、優れた耐炭酸ガス腐食性と優れた耐硫化物応力腐食割れ性(耐SCC性)、および耐硫化物応力割れ性(耐SSC性)を兼備することを意味する。
 特許文献1~7に記載された技術では、耐食性向上のために、17%のCrをベースとして合金元素を多量に含有させている。しかし、このような組成では、最終製品においてフェライト、マルテンサイトおよびオーステナイトの三相組織となり、低温脆性に劣るフェライト相を含有しているために、低温靭性が悪化しやすいという問題があった。
 このような問題に対し、17%Cr系ステンレス鋼では、(1)低温で熱間圧延し、フェライト相を微細化する、(2)低温靭性値を高めるオーステナイト相分率を増加する、(3)フェライト相の粒成長粗大化を抑制するピン止め効果を有する相を含有させる、等の対策が取られてきた。しかしながら、上記(1)の低温で熱間圧延する対策に関しては、圧延疵が発生してしまう問題があった。また上記(2)、(3)の対策に関しては、実製造における相分率の制御が難しいという問題があった。
 本発明は係る問題に鑑み、原油あるいは天然ガスの油井、ガス井等に用いて好適な、降伏強さ:758MPa以上の高強度と、優れた低温靭性と、優れた耐食性とを兼備する高強度ステンレス継目無鋼管およびその製造方法を提供することを目的とする。
 なお、本発明において、「高強度」とは、降伏強さ:758MPa(110ksi)以上の強度を有するものをいう。ここでいう降伏強さは、後述の実施例に記載のように、管軸方向が引張方向となるように、API 5CTの規定に準拠して引張試験を実施して求める。
 また、本発明において、「優れた低温靭性」とは、試験温度:-10℃におけるシャルピー衝撃試験の吸収エネルギーvE-10が80J以上の強度を有するものをいう。ここでいうシャルピー衝撃試験の吸収エネルギーは、後述の実施例に記載のように、JIS Z 2242の規定に準拠して、試験片長手方向が管軸方向となるように、Vノッチ試験片(10mm厚)を採取し、シャルピー衝撃試験を実施し、試験片3本の算術平均値で求める。
 また、本発明において、「優れた耐食性」とは、「優れた耐炭酸ガス腐食性」、「優れた耐硫化物応力腐食割れ性」および「優れた耐硫化物応力割れ性」を有する場合をいう。そして、ここでいう「優れた耐炭酸ガス腐食性」とは、オートクレーブ中に保持された試験液:20mass%NaCl水溶液(液温:200℃、30気圧のCOガス雰囲気)中に、試験片を浸漬し、浸漬時間を336時間として実施した場合の腐食速度が0.125mm/y以下の場合をいう。また、ここでいう「優れた耐硫化物応力腐食割れ性」とは、オートクレーブ中に保持された試験液:20mass%NaCl水溶液(液温:100℃、30気圧のCOガス、0.1気圧のHS雰囲気)に、酢酸+酢酸Naを加えてpH:3.3に調整した水溶液中に、試験片を浸漬し、浸漬時間を720時間とし、降伏応力の100%を負荷応力として負荷し、試験後の試験片に割れが発生しない場合をいう。また、ここでいう「優れた耐硫化物応力割れ性」とは、オートクレーブ中に保持された試験液:20mass%NaCl水溶液(液温:25℃、0.9気圧のCOガス、0.1気圧のHS雰囲気)に、酢酸+酢酸Naを加えてpH:3.5に調整した水溶液中に、試験片を浸漬し、浸漬時間を720時間とし、降伏応力の90%を負荷応力として負荷し、試験後の試験片に割れが発生しない場合をいう。
 本発明者らは、上記した目的を達成するため、耐食性の観点からCr含有量を高めた、17%Cr系ステンレス鋼管の組成における低温靭性値に及ぼす各種要因について鋭意検討した。その結果、シャルピー試験時の試験片の変形に伴う残留オーステナイトの加工誘起変態を抑制することで、低温靭性値を向上できることを知見した。低温靭性値が向上する理由は、残留オーステナイトが加工誘起変態した焼き入れままマルテンサイトよりも、未変態のままの残留オーステナイトの方が低温靭性に優れるためである。そこで、残留オーステナイトの加工誘起変態を抑制するためには、残留オーステナイト相のMd30点を-10℃よりも低く抑えればよいことを見出した。上記の-10℃とは油井管材料の低温靭性の評価において、広く使用される温度である。すなわち、この温度で所望の低温靭性値を達成することができれば、おおよそ殆どの使用環境にて適用可能であることを意味する。なお、Md30点とは、30%の引張変形を与えた際に、組織の50%がマルテンサイト変態する温度であり、この値が小さいと残留オーステナイト相が加工に伴う加工誘起マルテンサイト変態を起こし難いことを表す指標である。
 また、17%Cr系ステンレス鋼管について、200℃以上という高温で、かつCO、Cl、さらにはHSを含む厳しい腐食環境下における耐食性に及ぼす各種要因について鋭意検討した。その結果、組織は、焼戻マルテンサイト相を主相とし、第二相が体積率で20~40%のフェライト相とし、さらに体積率で25%以下の残留オーステナイト相からなる複合組織とする。これにより、上記の厳しい腐食環境下において、優れた耐炭酸ガス腐食性、優れた耐硫化物応力腐食割れ性および優れた耐硫化物応力割れ性を兼ね備えることができることを知見した。
 本発明は、以上の知見に基づいて完成されたものであり、その要旨は以下の通りである。
[1]C:0.012~0.05%、Si:1.0%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.005%以下、Cr:16.0%超え18.0%以下、Mo:2.0%超え3.0%以下、Cu:0.5~3.5%、Ni:3.0%以上5.0%未満、W:0.01~3.0%、Nb:0.01~0.5%、Al:0.001~0.1%、N:0.012~0.07%、O:0.01%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、焼戻マルテンサイト相を主相とし、体積率で20~40%のフェライト相と25%以下の残留オーステナイト相からなり、前記残留オーステナイト相中の、C、Cr、Ni、Mo、N、W、Cuが式(1)を満足する組織を有する高強度ステンレス継目無鋼管。
Md30=1148-1775C-44Cr-39Ni-37Mo-698N-15W-13Cu≦-10・・・式(1)
ここで、C、Cr、Ni、Mo、N、W、Cuは、残留オーステナイト相中の各元素の含有量(質量%)を示す。含まない元素の場合は、式中の元素記号を0として計算する。
[2]前記組成は、さらに、質量%で、Ti:0.3%以下、V:0.5%以下、Zr:0.2%以下、Co:1.4%以下、Ta:0.1%以下、B:0.0100%以下のうちから選ばれた1種または2種以上を含有する[1]に記載の高強度ステンレス継目無鋼管。
[3]前記組成は、さらに、質量%で、Ca:0.0005~0.0050%、REM:0.001~0.01%のうちから選ばれた1種または2種を含有する[1]または[2]に記載の高強度ステンレス継目無鋼管。
[4]質量%で、C:0.012~0.05%、Si:1.0%以下、Mn:0.1~0.5%、P:0.05%以下、S:0.005%以下、Cr:16.0%超え18.0%以下、Mo:2.0%超え3.0%以下、Cu:0.5~3.5%、Ni:3.0%以上5.0%未満、W:0.01~3.0%、Nb:0.01~0.5%、Al:0.001~0.1%、N:0.012~0.07%、O:0.01%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼管素材を、1100~1300℃の範囲の加熱温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、前記熱間加工後に、前記継目無鋼管を850~1150℃の範囲の焼入温度に加熱し、0.05℃/s以上の平均冷却速度で前記継目無鋼管の表面温度が50℃以下0℃超えの冷却停止温度まで冷却する焼入れ処理を施し、次いで200~500℃の範囲の温度に加熱し、空冷するオーステナイト安定化熱処理を施し、次いで500~650℃の範囲の焼戻温度に加熱する焼戻処理を施す高強度ステンレス継目無鋼管の製造方法。
[5]前記組成は、さらに、質量%で、Ti:0.3%以下、V:0.5%以下、Zr:0.2%以下、Co:1.4%以下、Ta:0.1%以下、B:0.0100%以下のうちから選ばれた1種または2種以上を含有する[4]に記載の高強度ステンレス継目無鋼管の製造方法。
[6]前記組成は、さらに、質量%で、Ca:0.0005~0.0050%、REM:0.001~0.01%のうちから選ばれた1種または2種を含有する[4]または[5]に記載の高強度ステンレス継目無鋼管の製造方法。
 本発明によれば、降伏強さYS:758MPa以上の高強度と、優れた低温靭性を兼備する。これとともに、CO、Cl、さらにはHSを含む厳しい腐食環境下においても、優れた耐炭酸ガス腐食性、優れた耐硫化物応力腐食割れ性および優れた耐硫化物応力割れ性を兼ね備えた、高強度ステンレス継目無鋼管が得られる。そして、本発明により製造した高強度ステンレス継目無鋼管を油井用ステンレス継目無鋼管に適用することにより、安価に製造することができ、産業上格段の効果を奏する。
 以下、本発明について詳細に説明する。
 まず、本発明の高強度ステンレス継目無鋼管の組成と、その限定理由について説明する。以下、特に断わらない限り、質量%は単に%で記す。
 C:0.012%~0.05%
 Cは、マルテンサイト系ステンレス鋼の強度を増加させる。さらに、Cは、後述のオーステナイト安定化熱処理にて残留オーステナイト相中に拡散して、残留オーステナイト相の安定度を向上させる効果を有する重要な元素である。降伏強さが758MPa以上の高強度、およびvE-10が80J以上の低温靭性を実現するためには、Cは0.012%以上を含有することが必要である。しかし、Cが0.05%を超える含有は、熱処理により炭化物の析出が過剰となり、耐食性が低下する。このため、Cの含有量は0.05%以下とする。したがって、Cの含有量は0.012%~0.05%とする。Cの含有量は、好ましくは0.04%以下であり、より好ましくは0.03%以下である。また、Cの含有量は、好ましくは0.015%以上であり、より好ましくは0.020%以上である。
 Si:1.0%以下
 Siは、脱酸剤として作用する元素である。この効果を得るためには、Siは0.005%以上を含有することが望ましい。一方、Siが1.0%を超える多量の含有は、熱間加工性、耐食性を低下させる。このため、Siの含有量は1.0%以下とする。Siの含有量は、好ましくは0.8%以下であり、より好ましくは0.6%以下であり、さらに好ましくは0.4%以下である。なお、Siの含有量の下限は、特に限定されないが、Siの含有量は、好ましくは0.005%以上であり、より好ましくは0.1%以上である。
 Mn:0.1~0.5%
 Mnは、マルテンサイト系ステンレス鋼の強度を増加させる元素である。本発明の所望の強度を確保するためには、Mnは0.1%以上の含有を必要とする。一方、Mnは0.5%を超えて含有すると、低温靭性が低下する。このため、Mnの含有量は0.1~0.5%とする。Mnの含有量は、好ましくは0.4%以下であり、さらに好ましくは0.3%以下である。また、Mnの含有量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。
 P:0.05%以下
 Pは、耐炭酸ガス腐食性、耐硫化物応力割れ性等の耐食性を低下させる元素である。本発明ではできるだけ低減することが好ましいが、Pは0.05%以下の含有であれば許容できる。このようなことから、Pの含有量は0.05%以下とする。Pの含有量は、好ましくは0.04%以下であり、より好ましくは0.03%以下であり、さらに好ましくは0.02%以下である。なお、Pの含有量の下限は、特に限定されないが、Pの含有量は好ましくは0.002%以上である。
 S:0.005%以下
 Sは、熱間加工性を著しく低下させ、熱間造管工程の安定操業を阻害する元素である。本発明ではできるだけ低減することが好ましいが、Sは0.005%以下の含有であれば、通常の工程でパイプ製造が可能となる。また、Sは、鋼中では硫化物系介在物として存在し、耐食性を低下させる。このようなことから、Sの含有量は0.005%以下とする。Sの含有量は、好ましくは0.003%以下であり、より好ましくは0.002%以下である。なお、Sの含有量の下限は、特に限定されないが、Sの含有量は好ましくは0.0002%以上である。
 Cr:16.0%超え18.0%以下
 Crは、保護皮膜を形成して耐食性の向上に寄与する。また、Crは、残留オーステナイト相の安定度を向上させる元素である。これらの効果を得るためには、Crは16.0%超の含有を必要とする。一方、Crが18.0%を超える含有は、フェライト相の体積率が高くなりすぎて、所望の高強度を確保できなくなる。このため、Crの含有量は、16.0%超え18.0%以下とする。Crの含有量は、好ましくは16.1%以上である。Crの含有量は、好ましくは17.5%以下である。Crの含有量は、より好ましくは16.2%以上である。Crの含有量は、より好ましくは17.0%以下である。
 Mo:2.0%超え3.0%以下
 Moは、保護皮膜を安定化させて、Clや低pHによる孔食に対する抵抗性を増加させることにより、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める元素である。また、Moは、残留オーステナイト相の安定度を向上させる元素である。このような効果を得るためには、Moは2.0%超の含有を必要とする。一方、Moは高価な元素であり、Moが3.0%を超える含有は、材料コストの高騰を招く。これとともに、低温靭性、耐硫化物応力腐食割れ性の低下を招く。このため、Moの含有量は2.0%超え3.0%以下とする。Moの含有量は、好ましくは2.1%以上である。Moの含有量は、好ましくは2.8%以下である。Moの含有量は、より好ましくは2.2%以上である。Moの含有量は、より好ましくは2.7%以下である。
 Cu:0.5~3.5%以下
 Cuは、保護皮膜を強固にして鋼中への水素侵入を抑制し、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める元素である。さらに、Cuは、残留オーステナイト相の安定度を向上させる元素である。このような効果を得るためには、Cuは0.5%以上の含有を必要とする。一方、Cuが3.5%を超える含有は、CuSの粒界析出を招き、熱間加工性を低下させる。このため、Cuの含有量は0.5~3.5%の範囲とする。Cuの含有量は、好ましくは0.7%以上である。Cuの含有量は、好ましくは3.0%以下である。Cuの含有量は、より好ましくは0.8%以上である。Cuの含有量は、より好ましくは2.8%以下である。
 Ni:3.0%以上5.0%未満
 Niは、保護皮膜を強固にして耐食性向上に寄与する元素である。また、Niは、固溶強化により鋼の強度を増加させる元素である。さらに、Niは、残留オーステナイト相の安定度を向上させる元素である。このような効果は、Niを3.0%以上含有することで顕著になる。一方、Niが5.0%以上の含有は、マルテンサイト相の安定性が低下し、強度が低下する。このため、Niの含有量は3.0%以上5.0%未満とする。Niの含有量は、好ましくは3.5%以上である。Niの含有量は、好ましくは4.5%以下である。Niの含有量は、より好ましくは3.7%以上である。Niの含有量は、より好ましくは4.3%以下である。
 W:0.01~3.0%
 Wは、鋼の強度向上に寄与する。これとともに、Wは、保護皮膜を安定化させて、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める元素である。そのため、Wは、本発明では重要な元素である。また、Wは、Moと複合して含有することにより、とくに耐硫化物応力割れ性を顕著に向上させる。さらに、Wは、残留オーステナイト相の安定度を向上させる元素である。このような効果を得るためには、0.01%以上のWの含有を必要とする。一方、Wが3.0%を超える多量の含有は、低温靭性を低下させる。このため、Wの含有量は0.01~3.0%の範囲とする。Wの含有量は、好ましくは0.5%以上である。Wの含有量は、好ましくは2.0%以下である。Wの含有量は、より好ましくは0.8%以上である。Wの含有量は、より好ましくは1.3%以下である。
 Nb:0.01~0.5%
 Nbは、C、Nと結合しNb炭窒化物(Nb析出物)として析出し、降伏強さYSの向上に寄与する。そのため、Nbは、本発明では重要な元素である。このような効果を得るためには、0.01%以上のNbの含有を必要とする。一方、0.5%を超えるNbの含有は、残留オーステナイト相の安定化に寄与するC、Nを炭窒化物として固定し、残留オーステナイト相を不安定化する。また、0.5%を超えるNbの含有は、低温靭性および耐硫化物応力割れ性の低下を招く。このため、Nb含有量は0.01~0.5%とする。Nb含有量は、好ましくは0.05%以上である。Nb含有量は、好ましくは0.2%以下である。Nb含有量は、より好ましくは、0.07%以上である。Nb含有量は、より好ましくは0.15%以下である。
 Al:0.001~0.1%
 Alは、脱酸剤として作用する元素である。このような効果を得るためには、Alは0.001%以上の含有を必要とする。一方、0.1%を超えてAlを多量に含有すると、酸化物量が増加し、清浄度が低下し、低温靭性が低下する。このため、Alの含有量は0.001~0.1%の範囲とする。Alの含有量は、好ましくは0.01%以上である。Alの含有量は、好ましくは0.07%以下である。Alの含有量は、より好ましくは0.02%以上である。Alの含有量は、より好ましくは0.04%以下である。
 N:0.012~0.07%
 Nは、耐孔食性を向上させる。さらに、Nは、オーステナイト安定化熱処理にて残留オーステナイト相中に拡散し、残留オーステナイト相の安定度を向上させる重要な元素である。このような効果を得るためには、Nは0.012%以上を含有する必要がある。しかし、Nは、0.07%以上含有すると、窒化物を形成して低温靭性を低下させる。このため、Nの含有量は0.012~0.07%の範囲とする。Nの含有量は、好ましくは0.02%以上である。Nの含有量は、好ましくは0.06%以下である。Nの含有量は、より好ましくは0.03%以上である。Nの含有量は、より好ましくは0.055%以下である。
 O:0.01%以下
 O(酸素)は、鋼中では酸化物として存在するため、各種特性に悪影響を及ぼす。このため、本発明では、Oはできるだけ低減することが望ましい。とくに、Oの含有量が0.01%を超えると、熱間加工性、耐食性、低温靭性が低下する。このため、Oの含有量は0.01%以下とする。Oの含有量は、好ましくは0.006%以下であり、より好ましくは0.003%以下である。
 残部はFeおよび不可避的不純物である。
 以上の成分が基本の成分であり、この基本成分で本発明の高強度ステンレス継目無鋼管は目的とする特性が得られる。本発明では、上記の基本成分に加えて、必要に応じて下記の選択元素を含有することができる。
 Ti:0.3%以下、V:0.5%以下、Zr:0.2%以下、Co:1.4%以下、Ta:0.1%以下、B:0.0100%以下のうちから選ばれた1種または2種以上
 Ti、V、Zr、Co、Ta、Bはいずれも、強度を増加させる元素として有用であり、必要に応じて選択して1種または2種以上を含有することができる。Ti、V、Zr、Co、Ta、Bは、上記した効果に加えて、耐硫化物応力割れ性を改善する効果も有する。このような効果を得るためには、Ti:0.001%以上、V:0.01%以上、Zr:0.01%以上、Co:0.01%以上、Ta:0.01%以上、B:0.0003%以上のうちから選ばれた1種または2種以上を含有することが望ましい。一方、Ti:0.3%、V:0.5%、Zr:0.2%、Co:1.4%、Ta:0.1%、B:0.0100%を、それぞれ超えて含有すると、低温靭性が低下する。このため、Ti、V、Zr、Co、Ta、Bを含有する場合には、Ti、V、Zr、Co、Ta、Bの含有量を、それぞれTi:0.3%以下、V:0.5%以下、Zr:0.2%以下、Co:1.4%以下、Ta:0.1%以下、B:0.0100%以下とすることが好ましい。Ti、V、Zr、Co、Ta、Bの含有量は、より好ましくは、Ti:0.1%以下、V:0.1%以下、Zr:0.1%以下、Co:0.1%以下、Ta:0.05%以下、B:0.0050%以下である。また、Ti、V、Zr、Co、Ta、Bの含有量は、より好ましくはTi:0.003%以上、V:0.03%以上、Zr:0.03%以上、Co:0.06%以上、Ta:0.03%以上、B:0.0010%以上である。
 Ca:0.0005~0.0050%、REM:0.001~0.01%のうちから選ばれた1種または2種
 Ca、REM(希土類金属)はいずれも、硫化物の形態制御を介して耐硫化物応力腐食割れ性の改善に寄与する元素として有用であり、必要に応じて1種または2種を含有することができる。このような効果を得るためには、Ca:0.0005%以上、REM:0.001%以上のうちから選ばれた1種または2種を含有することが望ましい。一方、Ca:0.0050%、REM:0.01%を、それぞれ超えて含有しても、上記の効果が飽和し、含有量に見合う上記の効果が期待できなくなる。このため、Ca、REMを含有する場合には、それぞれCa:0.0005~0.0050%、REM:0.001~0.01%とすることが好ましい。より好ましくは、それぞれCa:0.0020~0.0040%、REM:0.002~0.009%とする。
 次に、本発明の高強度ステンレス継目無鋼管の組織と、その限定理由について説明する。なお、以下の体積率は、鋼板組織全体に対する体積率とする。
 本発明の高強度ステンレス継目無鋼管は、上記した組成を有し、さらに焼戻マルテンサイト相を主相とし、体積率で20~40%のフェライト相と、体積率で25%以下の残留オーステナイト相とからなる複合組織を有する。なお、ここで、「主相」とは、体積率で40%を超えて占有する相をいう。さらに、本発明では、上記の残留オーステナイト相中の、C、Cr、Ni、Mo、N、Wおよび、Cuが後述する式(1)を満足する組織を有する。
 本発明の高強度ステンレス継目無鋼管は、本発明における所望の高強度を確保するため、焼戻マルテンサイト相を主相とする。
 そして、本発明では、少なくとも第二相としてフェライト相を体積率で20%以上析出させる。これにより、腐食割れの進展を抑制でき、所望の耐食性(耐炭酸ガス腐食性、耐硫化物応力腐食割れ性および耐硫化物応力割れ性)を確保することができる。一方、40%を超えて多量のフェライト相が析出すると、強度が低下し、所望の高強度を確保できなくなるとともに、耐硫化物応力腐食割れ性、耐硫化物応力割れ性が低下する。このため、フェライト相は体積率で20~40%の範囲とする。なお、好ましくは、フェライト相は体積率で23%以上である。好ましくは、フェライト相は体積率で35%以下である。
 さらに、本発明では、第三相として、第二相のフェライト相に加えて、残留オーステナイト相を体積率で25%以下析出させる。残留オーステナイト相の存在により、延性および、低温靭性が向上する。このような効果を得るためには、残留オーステナイト相を体積率で5%以上析出させることが望ましい。一方、体積率で25%を超える残留オーステナイト相の多量析出は、所望の高強度を確保できなくなる。このため、残留オーステナイト相は体積率で25%以下とする。好ましくは、残留オーステナイト相は体積率で5%以上である。好ましくは、残留オーステナイト相は体積率で20%以下である。なお、焼戻マルテンサイト相、オーステナイト相および、フェライト相の体積率は、後述する実施例に記載の方法にて測定することができる。
 また、本発明の高強度ステンレス継目無鋼管は、残留オーステナイト相中の各元素を、以下の式(1)を満足するように含有する必要がある。これにより、シャルピー試験中の試験片の変形に伴う残留オーステナイト相の加工誘起変態を抑制し、優れた低温靭性を得ることができる。
Md30=1148-1775C-44Cr-39Ni-37Mo-698N-15W-13Cu≦-10・・・式(1)
 ここで、C、Cr、Ni、Mo、N、Wおよび、Cuは、残留オーステナイト相中の各元素の含有量(質量%)を示す。含まない元素の場合は、式中の元素記号を0として計算する。
式(1)のMd30点とは、30%の引張変形を与えた際に、組織の50%がマルテンサイト変態する温度であり、この値が小さいと残留オーステナイト相が加工に伴う加工誘起マルテンサイト変態を起こし難いことを表す指標である。式(1)の係数は、本発明者らが新たに求めたものである。式(1)の値が-10.0(℃)を超えて大きくなると、残留オーステナイトが加工誘起変態した焼入れままマルテンサイトが増えるため、本発明の目的とする低温靭性を確保することができない。なお、式(1)のMd30の値は、-14.0℃以下とすることが好ましい。
 なお、上記した残留オーステナイト相中の各元素は、後述の実施例に記載の方法で求めた。例えば、管軸方向断面が観察面となるように組織観察用の試験片を採取し、EBSP解析(Electron Back Scattering Pattern)にて残留オーステナイトを識別し、この識別された相に対して、FE-EPMA(Field Emission Electron Probe Micro Analyzer:
電界放出型電子プローブマイクロアナライザ)にて各サンプル20点測定を行い、得られた化学組成の定量値を平均した値を、その鋼の残留オーステナイト相中の化学組成とする。
 次に、本発明の高強度ステンレス継目無鋼管の製造方法について説明する。
 本発明の高強度ステンレス継目無鋼管の製造方法は、鋼管素材を加熱する加熱工程と、前記加熱工程で加熱された前記鋼管素材に熱間造管を施して継目無鋼管とする熱間造管工程と、前記熱間造管工程で得られた前記継目無鋼管を冷却する冷却工程と、前記冷却工程で冷却された前記継目無鋼管を、焼入れ処理し、次いでオーステナイト安定化熱処理し、次いで焼戻処理する熱処理工程と、を有する。
 本発明では、上記した組成を有する鋼管素材を出発素材とする。使用する鋼管素材の製造方法は、とくに限定する必要はなく、通常公知の鋼管素材の製造方法がいずれも適用できる。鋼管素材の製造方法としては、例えば、上記した組成を有する溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法、造塊-分塊圧延法等の通常公知の鋳造方法等でビレット等の鋳片(鋼管素材)とする方法が好ましい。なお、鋼管素材の製造方法は、これに限定されない。また、鋳片にさらに熱間圧延を施して、所望の寸法形状とした鋼片を、鋼管素材としてもなんら問題はない。
 次いで、得られた鋼管素材を加熱し、マンネスマン-プラグミル方式あるいはマンネスマン-マンドレルミル方式等の熱間造管工程を用いて熱間造管を施し、上記した組成で所望の寸法を有する継目無鋼管とする。なお、熱間造管として、プレス方式による熱間押出により継目無鋼管を製造してもよい。
 加熱工程における加熱温度T(℃)は、1100~1300℃の範囲とする。加熱温度Tが1100℃未満では、熱間加工性が低下し、造管時に疵が発生する。一方、加熱温度Tが1300℃を超えて高温になると、フェライト単相となり、結晶粒が粗大化する。そのため、その後に後述の焼入れ処理を行っても、低温靭性が低下する。よって、加熱温度Tは1100~1300℃の範囲の温度とする。好ましくは、加熱温度Tは1210~1290℃の範囲の温度とする。
 なお、加熱工程の加熱時間は、特に限定されないが、生産性の観点から、例えば15分~2時間が好ましい。より好ましくは、加熱工程の加熱時間は30分~1時間である。
 熱間造管工程における熱間造管は、所望の寸法の継目無鋼管が製造できればよく、とくにその製造条件を規定する必要はなく、常用の製造条件がいずれも適用可能である。
 造管後、得られた継目無鋼管は、冷却工程において冷却される。冷却工程における冷却条件は、特に限定する必要はない。本発明の組成範囲であれば、熱間造管後、空冷程度の平均冷却速度で室温まで冷却することにより、継目無鋼管の組織としてマルテンサイト相を主相とする組織とすることができる。
 本発明では、冷却工程に続き、熱処理工程として、焼入れ処理、オーステナイト安定化熱処理および焼戻処理からなる熱処理を施す。
 焼入れ処理は、冷却工程で冷却された継目無鋼管を、加熱温度:850~1150℃の範囲の焼入温度に加熱した後、空冷以上、好ましくは0.05℃/s以上の平均冷却速度で継目無鋼管の表面温度が50℃以下0℃超えの冷却停止温度まで冷却する処理とする。
 焼入れ処理の加熱温度(焼入温度)が850℃未満であると、マルテンサイトのオーステナイトへの逆変態が起こりにくくなり、また焼入温度から冷却停止温度までの冷却時にオーステナイトからマルテンサイトへの変態が起こりにくくなる。このため、所望の高強度を確保できないおそれがある。一方、焼入温度が1150℃を超えて高温になると、結晶粒が粗大化しやすくなり、低温靭性が低下するおそれがある。このため、焼入温度は850~1150℃とする。より好ましくは、焼入温度は900~1000℃である。本発明では、焼入れ処理での保持時間は、材料内の温度を均一にする観点から、5min以上とすることが好ましい。焼入れ処理での保持時間が5min未満では、所望の組織の均一化が達成できないおそれがある。より好ましくは、焼入れ処理での保持時間は10min以上とする。また、焼入れ処理での保持時間は210min以下が好ましい。
 焼入れ処理の平均冷却速度が0.05℃/s未満では、粗大な炭窒化物や金属間化合物が析出するため、低温靭性及び耐食性が著しく低下する。なお、平均冷却速度の上限は、特に限定する必要はない。ここで、平均冷却速度とは、焼入温度から焼入れ処理の冷却停止温度までの範囲における冷却速度の平均をいう。また、焼入れ処理の冷却停止温度が50℃超えでは、強度に寄与するマルテンサイト量が低減するため、強度が著しく低下する。よって、焼入れ処理の冷却停止温度は50℃以下とする。より好ましくは40℃以下0℃超えである。
 本発明では、焼入れ処理の加熱温度を上記した範囲内とすることにより、フェライト相の体積率を適正範囲内に調整しやすくなる。なお、焼入れ処理の冷却停止温度を低くしすぎると、残留オーステナイト相量を適正範囲内に調整することが難しくなる。
 オーステナイト安定化熱処理は、本発明にとって極めて重要な工程である。すなわち、焼入れ処理が施された継目無鋼管に、加熱温度:200~500℃の範囲の温度に加熱し、冷却する処理とする。
 オーステナイト安定化熱処理を行うことで、焼入マルテンサイト中のオーステナイト生成元素であり、拡散係数の大きいCおよび、Nが残留オーステナイト中に拡散する。これにより、残留オーステナイトのMd30点を下げ、低温靭性値が向上する。オーステナイト安定化熱処理の加熱温度が200℃未満では、Cおよび、Nの残留オーステナイトへの拡散が不十分であるため、所望の低温靭性値を得ることができない。一方、オーステナイト安定化熱処理の加熱温度が500℃以上だと、Cおよび、Nが炭窒化物として析出し、残留オーステナイトを安定化させるために有効なCおよび、N量が低減する。このため、所望の低温靭性値を得ることができない。したがって、オーステナイト安定化熱処理の加熱温度は200~500℃の範囲とする。好ましくは、オーステナイト安定化熱処理の加熱温度は250~450℃の範囲である。本発明では、オーステナイト安定化熱処理での保持時間は、材料内の温度を均一にする観点から、5min以上とすることが好ましい。オーステナイト安定化熱処理での保持時間が5min未満では、所望の組織の均一化が達成できない。より好ましくは、オーステナイト安定化熱処理での保持時間は20min以上とする。また、オーステナイト安定化熱処理での保持時間は210min以下が好ましい。なお、オーステナイト安定化熱処理における冷却とは、200~500℃の温度域から室温まで、空冷以上の平均冷却速度で冷却することをいう。好ましくは、オーステナイト安定化熱処理における平均冷却速度は0.05℃/s以上である。
 焼戻処理は、オーステナイト安定化処理が施された継目無鋼管に、加熱温度:500~650℃の範囲の焼戻温度に加熱し、冷却する処理とする。
 焼戻処理の加熱温度(焼戻温度)が500℃未満では、低温すぎて所望の焼戻効果が期待できなくなるおそれがある。一方、焼戻温度が650℃を超える高温では、焼入れままのマルテンサイト相が生成し、所望の高強度、低温靭性、優れた耐食性を兼備させることができなくなるおそれがある。このため、焼戻温度は500~650℃の範囲とする。好ましくは、焼戻温度は550~630℃の範囲である。本発明では、焼戻処理での保持時間は、材料内の温度を均一にする観点から、5min以上とすることが好ましい。焼戻処理での保持時間が5min未満では、所望の組織の均一化が達成できない。より好ましくは、焼戻処理での保持時間は20min以上とする。また、焼戻処理での保持時間は210min以下が好ましい。なお、焼戻処理における冷却とは、焼戻温度から室温まで、空冷以上の平均冷却速度で冷却することをいう。好ましくは、焼戻処理における平均冷却速度は0.05℃/s以上である。
 本発明では、上記した熱処理(焼入れ処理、オーステナイト安定化熱処理、および焼戻処理)を施すことにより、継目無鋼管の組織は、焼戻マルテンサイト相を主相とし、フェライト相、残留オーステナイト相からなる複合組織となる。これにより、所望の高強度と、さらには低温靭性、優れた耐食性を有する高強度ステンレス継目無鋼管とすることができる。
 以下、本発明を実施例により説明する。なお、本発明は以下の実施例に限定されない。
 本実施例では、表1および表2に示す組成の溶鋼を転炉で溶製し、連続鋳造法でビレット(鋳片:鋼管素材)に鋳造した。得られた鋼管素材(鋳片)に、表3および表4に示す加熱温度Tで加熱する加熱工程を施した。なお、加熱温度Tでの保持時間は、表3および表4に示す時間とした。
 次いで、上記加熱工程で加熱された鋼管素材は、モデルシームレス圧延機を用いる熱間加工により造管(熱間造管)し、継目無鋼管(外径83.8mmφ×肉厚12.7mm)とした。なお、造管後、継目無鋼管を空冷した。
 次いで、得られた継目無鋼管から、試験片素材を切り出し、表3および表4に示す条件で加熱した後、水冷する焼入処理を施し、続けて、表3および表4に示す条件で加熱した後、空冷するオーステナイト安定化熱処理を施した。さらに続けて、表3および表4に示す条件で加熱した後、空冷する焼戻処理を施した。すなわち、この試験片素材は、継目無鋼管に対して焼入れ処理、オーステナイト安定化熱処理および焼き戻し処理を施したものに相当する。
 そして、得られたこれらの試験片素材から、組織観察用試験片を採取し、組織観察、残留オーステナイト相中の組成定量評価、引張試験、シャルピー衝撃試験、耐食性試験を行った。なお、耐食性試験として、腐食試験、耐硫化物応力腐食割れ試験(耐SCC試験)、耐硫化物応力割れ試験(耐SSC試験)を行った。試験方法は次の通りとした。
 (1)組織観察
 得られた試験片素材から、管軸方向断面が観察面となるように組織観察用の試験片を採取した。
 フェライト相の体積率は、観察面を走査型電子顕微鏡で観察することにより求めた。上述の組織観察用の試験片をビレラ試薬(エタノール100mL、塩酸10mL、ピクリン酸2gの混合液)で腐食して走査型電子顕微鏡(1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の面積率の平均値を算出し、これを体積率(%)とした。
 また、残留オーステナイト相の体積率は、X線回折法を用いて測定した。上述の試験片素材から管軸方向に直交する断面(C断面)が測定面となるようにX線回折用試験片を採取し、X線回折により残留オーステナイト相(γ)の(220)面、フェライト相(α)の(211)面、の回折X線積分強度を測定した。残留オーステナイト相の体積率は、次式
 γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度
    Rα:αの結晶額的理論計算値
    Iγ:γの積分強度
    Rγ:γの結晶額的理論計算値
を用いて換算した。
 なお、マルテンサイト相の体積率は、これらの相以外の残部として算出した。
 (2)残留オーステナイト相中の組成定量評価
 上述の組織観察を行ったものと同様の試験片に対して、EBSP解析(Electron Back Scattering Pattern)にて残留オーステナイトを識別した。残留オーステナイトとして識別された相に対して、FE-EPMA(電界放出型電子プローブマイクロアナライザ)にて各サンプル20点測定を行い、得られた化学組成の定量値を平均した値を、その鋼の残留オーステナイト相中の化学組成とした。なお、化学組成は表5および表6に示す。
 (3)引張特性
 上述の試験片素材から、管軸方向が引張方向となるように、API 5CT弧状引張試験片を採取し、API 5CTの規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS)を求めた。なお、「API」とはAmerican Petroleum Instituteの略である。本発明では、降伏強度は、758MPa以上を合格と評価した。
 (4)シャルピー衝撃試験
 上述の試験片素材から、JIS Z 2242の規定に準拠して、試験片長手方向が管軸方向となるように、Vノッチ試験片(10mm厚)を採取し、シャルピー衝撃試験を実施した。試験温度は、-10℃および-40℃とし、-10℃における吸収エネルギーvE-10および-40℃における吸収エネルギーvE-40をそれぞれ求め、靭性を評価した。なお、試験片は各3本とし、得られた値の算術平均値を算出し、高強度ステンレス継目無鋼管の吸収エネルギー(J)とした。本発明では、vE-10:80J以上を合格と評価した。
 (5)腐食試験(耐炭酸ガス腐食試験)
 上述の試験片素材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、腐食試験を実施し、耐炭酸ガス腐食性を評価した。
 腐食試験は、オートクレーブ中に保持された試験液:20mass%NaCl水溶液(液温:200℃、30気圧のCOガス雰囲気)中に、腐食試験片を浸漬し、浸漬期間を14日間(336時間)として実施した。試験前後の腐食試験片の質量を測定し、その差から腐食速度を算出した。本発明では、腐食速度が0.125mm/y以下の場合を合格と評価した。
 (6)耐硫化物応力割れ試験(耐SSC試験)
 上述の試験片素材から、NACE TM0177 Method Aに準拠して、丸棒状の試験片(直径:6.4mmφ)を機械加工によって作製し、耐硫化物応力割れ試験(耐SSC試験)を実施した。ここで「NACE」とは、National Association of Corrosion Engineeringの略である。
 耐SSC試験は、オートクレーブ中に保持された試験液:20mass%NaCl水溶液(液温:25℃、HS:0.1気圧、CO:0.9気圧の雰囲気)に酢酸+酢酸Naを加えてpH:3.5に調整した水溶液中に、試験片を浸漬し、浸漬期間を720時間として、降伏応力の90%を負荷応力として負荷して、実施した。試験後の試験片について割れの有無を観察した。本発明では、試験後の試験片に割れが発生しない場合を合格と評価した。なお、表5および表6では、割れが発生しない場合を記号○で示し、割れが発生する場合を記号×で示した。
 (7)耐硫化物応力腐食割れ試験(耐SCC試験)
 上述の試験片素材から、機械加工により、厚さ3mm×幅15mm×長さ115mmの4点曲げ試験片を採取し、EFC17に準拠して、耐硫化物応力腐食割れ試験(耐SCC試験)を実施した。ここで「EFC」とは、European Federal of Corrosionの略である。
 耐SCC試験は、オートクレーブ中に保持された試験液:20mass%NaCl水溶液(液温:100℃、HS:0.1気圧、CO:30気圧の雰囲気)に酢酸+酢酸Naを加えて、pH:3.3に調整した水溶液中に、試験片を浸漬し、浸漬期間を720時間として、降伏応力の100%を負荷応力として負荷して、実施した。試験後の試験片について、割れの有無を観察した。本発明では、試験後の試験片に割れが発生しない場合を合格と評価した。なお、表5および表6では、割れが発生しない場合を記号○で示し、割れが発生する場合を記号×で示した。
 以上により得られた結果を表5および表6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明例はいずれも、降伏強さ:758MPa以上の高強度と、-10℃における吸収エネルギー:80J以上の低温靭性を有する。また、本発明例は、COおよび、Clを含む200℃という高温の腐食環境下における耐食性(耐炭酸ガス腐食性)に優れ、さらにHSを含む環境下で割れ(SSC、SCC)の発生もなく、優れた耐硫化物応力割れ性および耐硫化物応力腐食割れ性を兼備する高強度ステンレス継目無鋼管となっている。一方、本発明の範囲を外れる比較例は、本発明の目的とする強度、低温靭性、耐炭酸ガス腐食性、耐硫化物応力割れ性(耐SSC性)、および耐硫化物応力腐食割れ性(耐SCC性)のいずれか1つ以上が劣っていた。

Claims (6)

  1.  質量%で、
    C :0.012~0.05%、
    Si:1.0%以下、
    Mn:0.1~0.5%、
    P :0.05%以下、
    S :0.005%以下、
    Cr:16.0%超え18.0%以下、
    Mo:2.0%超え3.0%以下、
    Cu:0.5~3.5%、
    Ni:3.0%以上5.0%未満、
    W :0.01~3.0%、
    Nb:0.01~0.5%、
    Al:0.001~0.1%、
    N :0.012~0.07%、
    O :0.01%以下
    を含有し、残部Feおよび不可避的不純物からなる組成を有し、
    焼戻マルテンサイト相を主相とし、体積率で20~40%のフェライト相と25%以下の残留オーステナイト相からなり、
    前記残留オーステナイト相中の、C、Cr、Ni、Mo、N、W、Cuが式(1)を満足する組織を有する高強度ステンレス継目無鋼管。
    Md30=1148-1775C-44Cr-39Ni-37Mo-698N-15W-13Cu≦-10・・・式(1)
    ここで、C、Cr、Ni、Mo、N、W、Cuは、残留オーステナイト相中の各元素の含有量(質量%)を示す。含まない元素の場合は、式中の元素記号を0として計算する。
  2.  前記組成は、さらに、質量%で、
    Ti:0.3%以下、
    V:0.5%以下、
    Zr:0.2%以下、
    Co:1.4%以下、
    Ta:0.1%以下、
    B:0.0100%以下
    のうちから選ばれた1種または2種以上を含有する請求項1に記載の高強度ステンレス継目無鋼管。
  3.  前記組成は、さらに、質量%で、
    Ca:0.0005~0.0050%、
    REM:0.001~0.01%
    のうちから選ばれた1種または2種を含有する請求項1または2に記載の高強度ステンレス継目無鋼管。
  4.  質量%で、
    C :0.012~0.05%、
    Si:1.0%以下、
    Mn:0.1~0.5%、
    P :0.05%以下、
    S :0.005%以下、
    Cr:16.0%超え18.0%以下、
    Mo:2.0%超え3.0%以下、
    Cu:0.5~3.5%、
    Ni:3.0%以上5.0%未満、
    W :0.01~3.0%、
    Nb:0.01~0.5%、
    Al:0.001~0.1%、
    N :0.012~0.07%、
    O :0.01%以下
    を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼管素材を、
    1100~1300℃の範囲の加熱温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、
     前記熱間加工後に、前記継目無鋼管を850~1150℃の範囲の焼入温度に加熱し、
    0.05℃/s以上の平均冷却速度で前記継目無鋼管の表面温度が50℃以下0℃超えの冷却停止温度まで冷却する焼入れ処理を施し、
     次いで200~500℃の範囲の温度に加熱し、空冷するオーステナイト安定化熱処理を施し、
     次いで500~650℃の範囲の焼戻温度に加熱する焼戻処理を施す高強度ステンレス継目無鋼管の製造方法。
  5.  前記組成は、さらに、質量%で、
    Ti:0.3%以下、
    V:0.5%以下、
    Zr:0.2%以下、
    Co:1.4%以下、
    Ta:0.1%以下、
    B:0.0100%以下
    のうちから選ばれた1種または2種以上を含有する請求項4に記載の高強度ステンレス継目無鋼管の製造方法。
  6.  前記組成は、さらに、質量%で、
    Ca:0.0005~0.0050%、
    REM:0.001~0.01%
    のうちから選ばれた1種または2種を含有する請求項4または5に記載の高強度ステンレス継目無鋼管の製造方法。
PCT/JP2017/043775 2017-01-13 2017-12-06 高強度ステンレス継目無鋼管およびその製造方法 WO2018131340A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2019008377A MX2019008377A (es) 2017-01-13 2017-12-06 Tubo de acero inoxidable sin soldadura de alta resistencia y metodo de fabricacion del mismo.
JP2018516099A JP6384636B1 (ja) 2017-01-13 2017-12-06 高強度ステンレス継目無鋼管およびその製造方法
US16/477,393 US11268161B2 (en) 2017-01-13 2017-12-06 High strength seamless stainless steel pipe and method for producing same
BR112019013803A BR112019013803A2 (pt) 2017-01-13 2017-12-06 tubo de aço inoxidável sem costura de alta resistência e método de produção do mesmo
EP17890889.3A EP3569724B1 (en) 2017-01-13 2017-12-06 High strength seamless stainless steel pipe and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017003970 2017-01-13
JP2017-003970 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131340A1 true WO2018131340A1 (ja) 2018-07-19

Family

ID=62840465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043775 WO2018131340A1 (ja) 2017-01-13 2017-12-06 高強度ステンレス継目無鋼管およびその製造方法

Country Status (7)

Country Link
US (1) US11268161B2 (ja)
EP (1) EP3569724B1 (ja)
JP (1) JP6384636B1 (ja)
AR (1) AR110828A1 (ja)
BR (1) BR112019013803A2 (ja)
MX (1) MX2019008377A (ja)
WO (1) WO2018131340A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200571A1 (ja) * 2020-04-01 2021-10-07
WO2022009598A1 (ja) * 2020-07-06 2022-01-13 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法
EP3916120A4 (en) * 2019-03-29 2022-02-16 JFE Steel Corporation SEAMLESS STAINLESS STEEL PIPE
EP4012053A4 (en) * 2019-10-01 2022-10-12 JFE Steel Corporation SEAMLESS STAINLESS STEEL PIPE AND METHOD OF PRODUCTION THEREOF
EP4012054A4 (en) * 2019-10-01 2022-10-12 JFE Steel Corporation SEAMLESS STAINLESS STEEL PIPE AND METHOD OF MAKING THE SAME

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
US11085095B2 (en) * 2016-02-08 2021-08-10 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe
MX2018011883A (es) * 2016-03-29 2018-12-17 Jfe Steel Corp Tubo de acero inoxidable sin soldadura de alta resistencia para articulos tubulares para la industria del petroleo.
JP6304460B1 (ja) 2016-07-27 2018-04-04 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2018043310A1 (ja) * 2016-09-02 2018-03-08 Jfeスチール株式会社 フェライト系ステンレス鋼
EP3508597A4 (en) 2016-09-02 2019-09-04 JFE Steel Corporation FERRITIC STAINLESS STEEL
EP3569724B1 (en) 2017-01-13 2022-02-02 JFE Steel Corporation High strength seamless stainless steel pipe and production method therefor
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
JP6274372B1 (ja) 2017-03-30 2018-02-07 Jfeスチール株式会社 フェライト系ステンレス鋼
WO2018216236A1 (ja) * 2017-05-26 2018-11-29 Jfeスチール株式会社 フェライト系ステンレス鋼

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2008081793A (ja) 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
JP2008297602A (ja) * 2007-05-31 2008-12-11 Jfe Steel Kk 拡管性に優れる油井用ステンレス鋼管およびその製造方法
WO2010050519A1 (ja) 2008-10-30 2010-05-06 住友金属工業株式会社 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管
JP2010209402A (ja) 2009-03-10 2010-09-24 Jfe Steel Corp 高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管
WO2010134498A1 (ja) 2009-05-18 2010-11-25 住友金属工業株式会社 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
JP2012149317A (ja) 2011-01-20 2012-08-09 Jfe Steel Corp 油井用高強度マルテンサイト系ステンレス継目無鋼管
WO2013146046A1 (ja) 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP2015110822A (ja) * 2012-12-21 2015-06-18 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP2016033237A (ja) * 2014-07-31 2016-03-10 Jfeスチール株式会社 低温靭性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
WO2016079920A1 (ja) * 2014-11-19 2016-05-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管
WO2016079922A1 (ja) * 2014-11-18 2016-05-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
JP2016132821A (ja) * 2015-01-22 2016-07-25 Jfeスチール株式会社 低温靭性に優れた高強度ステンレス厚鋼板およびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7806993B2 (en) 2002-06-14 2010-10-05 Jfe Steel Corporation Heat-resistant ferritic stainless steel and method for production thereof
JP4363327B2 (ja) 2002-06-19 2009-11-11 Jfeスチール株式会社 油井用ステンレス鋼管およびその製造方法
US7520942B2 (en) 2004-09-22 2009-04-21 Ut-Battelle, Llc Nano-scale nitride-particle-strengthened high-temperature wrought ferritic and martensitic steels
JP5487689B2 (ja) 2009-04-06 2014-05-07 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
JP5924256B2 (ja) 2012-06-21 2016-05-25 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
JP6075349B2 (ja) 2013-10-08 2017-02-08 Jfeスチール株式会社 フェライト系ステンレス鋼
FI125466B (en) 2014-02-03 2015-10-15 Outokumpu Oy DUPLEX STAINLESS STEEL
BR102014005015A8 (pt) * 2014-02-28 2017-12-26 Villares Metals S/A aço inoxidável martensítico-ferrítico, produto manufaturado, processo para a produção de peças ou barras forjadas ou laminadas de aço inoxidável martensítico-ferrítico e processo para a produção de tudo sem costura de aço inoxidável martensítico-ferrítico
JP6102798B2 (ja) 2014-02-28 2017-03-29 Jfeスチール株式会社 リールバージ敷設に優れるラインパイプ用マルテンサイト系ステンレス鋼管の製造方法
JP6159775B2 (ja) 2014-10-31 2017-07-05 新日鐵住金ステンレス株式会社 耐排ガス凝縮水腐食性とろう付け性に優れたフェライト系ステンレス鋼及びその製造方法
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
US11085095B2 (en) 2016-02-08 2021-08-10 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe
EP3438310B1 (en) 2016-03-29 2022-06-29 JFE Steel Corporation Ferritic stainless steel sheet used for tig welding
ES2828351T3 (es) 2016-06-10 2021-05-26 Jfe Steel Corp Chapa de acero inoxidable para separadores de celda de combustible y método de producción para la misma
EP3470539B1 (en) 2016-06-10 2020-06-17 JFE Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
WO2018043310A1 (ja) 2016-09-02 2018-03-08 Jfeスチール株式会社 フェライト系ステンレス鋼
EP3508597A4 (en) 2016-09-02 2019-09-04 JFE Steel Corporation FERRITIC STAINLESS STEEL
EP3569724B1 (en) 2017-01-13 2022-02-02 JFE Steel Corporation High strength seamless stainless steel pipe and production method therefor
EP3556880A4 (en) 2017-01-26 2019-12-04 JFE Steel Corporation HOT-ROLLED FERRINGELSTAHLBLECH AND MANUFACTURING METHOD THEREFOR
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
WO2018216236A1 (ja) 2017-05-26 2018-11-29 Jfeスチール株式会社 フェライト系ステンレス鋼
BR112020003067A2 (pt) 2017-08-15 2020-08-25 Jfe Steel Corporation tubo sem costura de aço inoxidável de alta resistência para produtos tubulares petrolíferos do país, e processo para a fabricação do mesmo

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2008081793A (ja) 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
JP2008297602A (ja) * 2007-05-31 2008-12-11 Jfe Steel Kk 拡管性に優れる油井用ステンレス鋼管およびその製造方法
WO2010050519A1 (ja) 2008-10-30 2010-05-06 住友金属工業株式会社 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管
JP2010209402A (ja) 2009-03-10 2010-09-24 Jfe Steel Corp 高靱性でかつ耐食性に優れた油井用高強度ステンレス鋼管
WO2010134498A1 (ja) 2009-05-18 2010-11-25 住友金属工業株式会社 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
JP2012149317A (ja) 2011-01-20 2012-08-09 Jfe Steel Corp 油井用高強度マルテンサイト系ステンレス継目無鋼管
WO2013146046A1 (ja) 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP2015110822A (ja) * 2012-12-21 2015-06-18 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP2016033237A (ja) * 2014-07-31 2016-03-10 Jfeスチール株式会社 低温靭性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
WO2016079922A1 (ja) * 2014-11-18 2016-05-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管の製造方法
WO2016079920A1 (ja) * 2014-11-19 2016-05-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管
JP2016132821A (ja) * 2015-01-22 2016-07-25 Jfeスチール株式会社 低温靭性に優れた高強度ステンレス厚鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569724A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3916120A4 (en) * 2019-03-29 2022-02-16 JFE Steel Corporation SEAMLESS STAINLESS STEEL PIPE
EP4012053A4 (en) * 2019-10-01 2022-10-12 JFE Steel Corporation SEAMLESS STAINLESS STEEL PIPE AND METHOD OF PRODUCTION THEREOF
EP4012054A4 (en) * 2019-10-01 2022-10-12 JFE Steel Corporation SEAMLESS STAINLESS STEEL PIPE AND METHOD OF MAKING THE SAME
JPWO2021200571A1 (ja) * 2020-04-01 2021-10-07
WO2021200571A1 (ja) * 2020-04-01 2021-10-07 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
CN115298346A (zh) * 2020-04-01 2022-11-04 杰富意钢铁株式会社 油井用高强度不锈钢无缝钢管及其制造方法
JP7201094B2 (ja) 2020-04-01 2023-01-10 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
CN115298346B (zh) * 2020-04-01 2023-10-20 杰富意钢铁株式会社 油井用高强度不锈钢无缝钢管及其制造方法
WO2022009598A1 (ja) * 2020-07-06 2022-01-13 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法
JPWO2022009598A1 (ja) * 2020-07-06 2022-01-13
JP7226571B2 (ja) 2020-07-06 2023-02-21 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法

Also Published As

Publication number Publication date
MX2019008377A (es) 2019-09-16
BR112019013803A2 (pt) 2020-01-21
JP6384636B1 (ja) 2018-09-05
US20190368001A1 (en) 2019-12-05
EP3569724A1 (en) 2019-11-20
EP3569724A4 (en) 2019-12-25
AR110828A1 (es) 2019-05-08
US11268161B2 (en) 2022-03-08
EP3569724B1 (en) 2022-02-02
JPWO2018131340A1 (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6384636B1 (ja) 高強度ステンレス継目無鋼管およびその製造方法
US11286548B2 (en) High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
JP6399259B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
US11072835B2 (en) High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same
JP5967066B2 (ja) 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP5924256B2 (ja) 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
WO2017138050A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP5861786B2 (ja) 油井用ステンレス継目無鋼管およびその製造方法
WO2018181404A1 (ja) マルテンサイトステンレス鋼材
JP6156609B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2011136175A1 (ja) 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
JP7201094B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7226675B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7315097B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP7156537B2 (ja) ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
CN114450430A (zh) 不锈钢无缝钢管及其制造方法
JP7226571B2 (ja) ステンレス継目無鋼管およびその製造方法
JP7347714B1 (ja) 油井用高強度ステンレス継目無鋼管
WO2023053743A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516099

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013803

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017890889

Country of ref document: EP

Effective date: 20190813

ENP Entry into the national phase

Ref document number: 112019013803

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190703