JP6237873B2 - 油井用高強度ステンレス継目無鋼管 - Google Patents

油井用高強度ステンレス継目無鋼管 Download PDF

Info

Publication number
JP6237873B2
JP6237873B2 JP2016503261A JP2016503261A JP6237873B2 JP 6237873 B2 JP6237873 B2 JP 6237873B2 JP 2016503261 A JP2016503261 A JP 2016503261A JP 2016503261 A JP2016503261 A JP 2016503261A JP 6237873 B2 JP6237873 B2 JP 6237873B2
Authority
JP
Japan
Prior art keywords
less
steel pipe
stainless steel
content
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016503261A
Other languages
English (en)
Other versions
JPWO2016079920A1 (ja
Inventor
江口 健一郎
健一郎 江口
石黒 康英
康英 石黒
鈴木 健史
健史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2016079920A1 publication Critical patent/JPWO2016079920A1/ja
Application granted granted Critical
Publication of JP6237873B2 publication Critical patent/JP6237873B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、原油あるいは天然ガスの油井、ガス井(以下、単に油井とも称する)等に用いて好適な、高強度ステンレス継目無鋼管に係り、とくに炭酸ガス(CO2)、塩素イオン(Cl)を含み高温の厳しい腐食環境下や、硫化水素(H2S)を含む環境下等における、耐食性の向上に関する。
近年、近い将来に予想されるエネルギー資源の枯渇という観点から、従来、省みられなかったような、高深度の油田や、硫化物等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んに行われている。このような油田やガス田では、一般に深度が極めて深く、またその雰囲気も高温でかつCO2、Cl、さらにはH2Sを含む厳しい腐食環境となっている。このような環境下で使用される油井用鋼管には、高強度でかつ優れた耐食性を兼備した材質を有することが要求される。
従来、CO2、Cl等を含む環境下にある油田やガス田では、採掘に使用する油井管として13Crマルテンサイト系ステンレス鋼管が一般的に使用されてきた。しかし、最近では、更なる高温(200℃までの高温)の腐食環境下にある油井の開発が進められ、このような環境下では、13Crマルテンサイト系ステンレス鋼では耐食性が不足するという場合があった。このため、このような環境下でも使用できる、優れた耐食性を有する油井用鋼管が要望されていた。
このような要望に対し、例えば、特許文献1には、質量%で、C:0.005〜0.05%、Si:0.05〜0.5%、Mn:0.2〜1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5〜18%、Ni:1.5〜5%、Mo:1〜3.5%、V:0.02〜0.2%、N:0.01〜0.15%、O:0.006%以下を含有し、Cr、Ni、Mo、CuおよびCが特定の関係式を満足し、さらにCr、Mo、Si、C、Mn、Ni、CuおよびNが特定の関係式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有し、さらにマルテンサイト相をベース相とし、フェライト相を体積率で10〜60%、あるいはさらにオーステナイト相を体積率で30%以下含有する組織を有する、耐食性に優れた高強度ステンレス鋼管が記載されている。これにより、CO2、Clを含む230℃までの高温の厳しい腐食環境においても十分な耐食性を示し、降伏強さ:654MPa(95ksi)を超える高強度とさらには高靭性を有する油井用ステンレス鋼管を安定して製造できるとしている。
また、特許文献2には、高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管が記載されている。特許文献2に記載された技術では、質量%で、C:0.04%以下、Si:0.50%以下、Mn:0.20〜1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5〜17.5%、Ni:2.5〜5.5%、V:0.20%以下、Mo:1.5〜3.5%、W:0.50〜3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を含み、かつCr、Mo、WおよびCが特定の関係を、また、Cr、Mo、W、Si、C、Mn、Cu、NiおよびNが特定の関係を、さらにMoおよびWが特定の関係を、それぞれ満足するように含有し、残部Feおよび不可避的不純物からなる組成と、マルテンサイト相をベース相とし、フェライト相を体積率で10〜50%を含有する組織とを有する鋼管とする。これにより、降伏強さ:654MPa(95ksi)を超える高強度を有し、CO2、Cl、さらにHSを含む高温の厳しい腐食環境においても十分な耐食性を示す油井用高強度ステンレス鋼管を安定して製造できるとしている。
また、特許文献3には、耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管が記載されている。特許文献3に記載された技術では、質量%で、C:0.05%以下、Si:1.0%以下、Cr:16%超え18%以下、Mo:2%超え3%以下、Cu:1〜3.5%、Ni:3%以上5%未満、Al:0.001〜0.1%、O:0.01%以下を含み、かつMn:1%以下、N:0.05%以下の領域で、MnとNが特定の関係を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、マルテンサイト相を主体として、体積率で10〜40%のフェライト相と、体積率で10%以下の残留オーステナイト(γ)相を含む組織とを有する鋼管とする。これにより、降伏強さ:758MPa(110ksi)以上の高強度で、さらに200℃という高温の炭酸ガス環境下でも十分な耐食性を有し、環境ガス温度が低下したときでも、十分な耐硫化物応力割れ性を有する耐食性に優れたステンレス鋼管となるとしている。
また、特許文献4には、油井用ステンレス鋼管が記載されている。特許文献4に記載された技術では、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01〜0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超〜18.0%、Ni:4.0超〜5.6%、Mo:1.6〜4.0%、Cu:1.5〜3.0%、Al:0.001〜0.10%、N:0.050%以下を含有し、Cr、Cu、NiおよびMoが特定の関係を満足し、さらに、(C+N)、Mn、Ni、Cuおよび(Cr+Mo)が特定の関係を満足し、残部Feおよび不可避的不純物からなる組成と、マルテンサイト相と体積率で10〜40%のフェライト相とを含み、表面から厚さ方向に50μmの長さを有し、10μmピッチで200μmの範囲に1列に配列された複数の仮想線分と、フェライト相が交差する割合が85%より多い組織とを有し、0.2%耐力:758MPa以上の高強度を有する油井用ステンレス鋼管とする。これにより、150〜250℃の高温環境で優れた耐食性を有し、常温での耐硫化物応力腐食割れ性に優れた油井用ステンレス鋼管となるとしている。
また、特許文献5には、高靭性で耐食性に優れた油井用高強度ステンレス鋼管が記載されている。特許文献5に記載された技術では、質量%で、C:0.04%以下、Si:0.50%以下、Mn:0.20〜1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5〜17.5%、Ni:2.5〜5.5%、V:0.20%以下、Mo:1.5〜3.5%、W:0.50〜3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を含有し、Cr、Mo、WおよびCが特定の関係を満足し、Cr、Mo、W、Si、C、Mn、Cu、NiおよびNが、また、MoおよびWが、それぞれ特定の関係を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有し、最も大きい結晶粒において、粒内の任意の2点間の距離が200μm以下である組織を有する鋼管とする。これにより、降伏強さ:654MPa(95ksi)を超える高強度で、優れた靭性を有し、CO2、Cl、さらにH2Sを含む170℃以上の高温腐食環境下において、十分な耐食性を示すとしている。
また、特許文献6には、油井用高強度マルテンサイト系ステンレス継目無鋼管が記載されている。特許文献6に記載された技術では、質量%で、C:0.01%以下、Si:0.5%以下、Mn:0.1〜2.0%、P:0.03%以下、S:0.005%以下、Cr:15.5超17.5%以下、Ni:2.5〜5.5%、Mo:1.8〜3.5%、Cu:0.3〜3.5%、V:0.20%以下、Al:0.05%以下、N:0.06%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、好ましくは体積率で15%以上のフェライト相あるいはさらに25%以下の残留オーステナイト相を含み、残部が焼戻マルテンサイト相からなる組織を有する継目無鋼管としている。なお、W:0.25〜2.0%、および/または、Nb:0.20%以下、を含有してもよいとしている。これにより、降伏強さ:655MPa以上862MPa以下の高強度と降伏比:0.90以上の引張特性を有し、CO2、Cl等、さらにはH2Sを含む、170℃以上の高温の厳しい腐食環境においても十分な耐食性(耐炭酸ガス腐食性、耐硫化物応力腐食割れ性)を有する高強度マルテンサイト系ステンレス鋼管を、安定して製造できるとしている。
特開2005−336595号公報 特開2008−81793号公報 国際公開WO 2010/050519号 国際公開WO 2010/134498号 特開2010−209402号公報 特開2012−149317号公報
しかし、最近の、厳しい腐食環境の油田やガス田等の開発に伴い、油井用鋼管に対しては、降伏強さ:862MPa(125ksi)以上という高強度を有し、さらに200℃以上という高温で、かつCO2、Cl、さらにはH2Sを含む厳しい腐食環境下においても、優れた耐炭酸ガス腐食性、優れた耐硫化物応力腐食割れ性および優れた耐硫化物応力割れ性とを兼ね備えた、優れた耐食性を保持することが要望されるようになっている。
しかしながら、特許文献1〜6に記載された技術では、耐食性向上のために、合金元素を多量に含有させている。そのため、これらの技術では、Ms変態点が低くなり、上記したような、降伏強さ:125ksi級という高強度を、優れた耐食性とともに安定して確保できないという問題があった。
なお、特許文献3に記載された技術では、MnとNとの特定の関係を満足させるために実質的にNを著しく低減することを必要とし、製造コストの高騰を招くという問題があった。また、特許文献3に記載された高強度ステンレス鋼管は、厳しい腐食環境下では耐食性が低下し、適用できないという問題もある。
本発明は、かかる従来技術の問題を解決し、高強度で、かつ高温の厳しい腐食環境下においても、優れた耐炭酸ガス腐食性、優れた耐硫化物応力腐食割れ性および優れた耐硫化物応力割れ性を兼ね備えた、耐食性に優れた油井用高強度ステンレス継目無鋼管を提供することを目的とする。なお、ここでいう「高強度」とは、降伏強さYS:125ksi(862MPa)級以上の強度を有する場合をいう。
また、ここで言う「優れた耐炭酸ガス腐食性」とは、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:200℃、30気圧のCO2ガス雰囲気)中に、試験片を浸漬し、浸漬時間を336時間として実施した場合の腐食速度が0.127mm/y以下の場合をいうものとする。
また、ここでいう「優れた耐硫化物応力腐食割れ性」とは、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:100℃、30気圧のCO2ガス、0.1気圧のH2S雰囲気)に、酢酸+酢酸Naを加えてpH:3.3に調整した水溶液中に、試験片を浸漬し、浸漬時間を720時間とし、降伏応力の100%を負荷応力として負荷し、試験後の試験片に割れが発生しない場合をいうものとする。
また、ここでいう「優れた耐硫化物応力割れ性」とは、試験液:20質量%NaCl水溶液(液温:25℃、0.9気圧のCO2ガス、0.1気圧のH2S雰囲気)に、酢酸+酢酸Naを加えてpH:3.5に調整した水溶液中に、試験片を浸漬し、浸漬時間を720時間とし、降伏応力の90%を負荷応力として負荷し、試験後の試験片に割れが発生しない場合をいうものとする。
本発明者らは、上記した目的を達成するために、17%Crマルテンサイト系ステンレス継目無鋼管について、高強度と耐食性とをバランスよく、かつ安定して得るために、Ms変態点に及ぼす各種合金元素の影響を鋭意考究した。その結果、WおよびNbを必須成分として含有し、さらにNb、C、NおよびMnが、次(1)式
Nb−6C−2N−0.04Mn≧−0.145 ‥‥(1)
(ここで、Nb、C、NおよびMn:各元素の含有量(質量%))
を満足するように、調整して含有することにより、厳しい腐食環境下においても優れた耐食性を保持し、しかも所望の強度を安定して得られることを知見した。(1)式は、本発明者らが、実験的に求めたものであり、(1)式を満足するようにNb、C、NおよびMn量を調整することが、Ms変態点を低くすることなく所望の強度、さらには優れた耐食性とを、安定して得るうえで重要となることを知見した。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.012〜0.05%、Si:1.0%以下、Mn:0.1〜0.5%、P:0.05%以下、S:0.005%未満、Cr:16.0%超え18.0%以下、Mo:2.0%超え4.0%以下、Ni:3.0%以上5.0%未満、Cu:0.5〜2.0%、W:0.01〜3.0%、Nb:0.02〜0.5%、Al:0.001〜0.1%、N:0.012〜0.07%、O:0.01%以下を含み、かつ、Nb、C、NおよびMnを次(1)式
Nb−6C−2N−0.04Mn≧−0.145 ‥‥(1)
(ここで、Nb、C、N、Mn:各元素の含有量(質量%))
を満足するように含み、残部Feおよび不可避的不純物からなる組成を有し、体積率で50%以上の焼戻マルテンサイト相と、体積率で20〜40%のフェライト相と、体積率で10%以下の残留オーステナイト相と、からなる組織を有し、降伏強さYS:862MPa以上である油井用高強度ステンレス継目無鋼管。
(2)(1)において、前記組成に加えてさらに、質量%で、V:0.5%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.0001〜0.0050%のうちから選ばれた1種または2種以上を含有する油井用高強度ステンレス継目無鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.01%以下のうちから選ばれた1種または2種を含有する油井用高強度ステンレス継目無鋼管。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ta:0.01〜0.1%、Co:0.01〜1.0%のうちから選ばれた1種または2種を含有する油井用高強度ステンレス継目無鋼管。
(5)(1)ないし(4)のいずれかにおいて、前記組成に加えてさらに、質量%で、Sn:0.20%以下、Mg:0.0002〜0.01%のうちから選ばれた1種または2種を含有する油井用高強度ステンレス継目無鋼管。
本発明によれば、降伏強さ:862MPa以上の高強度と、200℃以上という高温で、かつCO2、Cl、さらにはH2Sを含む厳しい腐食環境下においても、優れた耐炭酸ガス腐食性、優れた耐硫化物応力腐食割れ性および優れた耐硫化物応力割れ性とを兼ね備えた、耐食性に優れた油井用高強度ステンレス継目無鋼管を、容易にかつ安定して得ることができ、産業上格段の効果を奏する。
本発明の油井用高強度ステンレス継目無鋼管は、質量%で、C :0.012〜0.05%、Si:1.0%以下、Mn:0.1〜0.5%、P :0.05%以下、S :0.005%未満、Cr:16.0%超え18.0%以下、Mo:2.0%超え4.0%以下、Ni:3.0%以上5.0%未満、Cu:0.5〜2.0%、W :0.01〜3.0%、Nb:0.02〜0.5%、Al:0.001〜0.1%、N :0.012〜0.07%、O :0.01%以下を含み、かつ、Nb、C、NおよびMnについて、式として、Nb−6C−2N−0.04Mn≧−0.145(ここで、Nb、C、NおよびMnは、各元素の含有量(質量%)である。)を満足するように含み、残部Feおよび不可避的不純物からなる組成を有し、体積率で50%超えの焼戻マルテンサイト相と、体積率で20〜40%のフェライト相と、体積率で10%以下の残留オーステナイト相と、からなる組織を有し、降伏強さYS:862MPa以上である。
先ず、本発明の継目無鋼管の組成限定理由について説明する。以下、とくに断わらない限り組成における質量%は、単に%で記す。
C:0.012〜0.05%
Cは、Ms点を低下させるとともに、炭化物を形成し耐食性を低下させる元素である。このため、C含有量は0.05%以下に低減する必要がある。一方、C含有量の0.012%未満までの低減は、精錬コストの高騰を招く。このため、C含有量は0.012〜0.05%に限定した。なお、好ましくは、C含有量は0.020〜0.040%である。
Si:1.0%以下
Siは、脱酸剤として作用する元素であり、このような効果を得るためには0.005%以上Siを含有することが望ましい。一方、1.0%を超える多量のSiの含有は、熱間加工性が低下する。このため、Si含有量は1.0%以下に限定した。なお、好ましくは、Si含有量は0.1〜0.6%である。さらに好ましくは、Si含有量は0.10〜0.30%である。
Mn:0.1〜0.5%
Mnは、マルテンサイト系ステンレス鋼の強度を増加させる元素であり、所望の強度を確保するために0.1%以上のMnの含有を必要とする。一方、0.5%を超えてMnを含有すると、靭性が低下する。このため、Mn含有量は0.1〜0.5%の範囲に限定した。さらに好ましくは、Mn含有量は0.15〜0.30%である。
P:0.05%以下
Pは、耐炭酸ガス腐食性、耐硫化物応力割れ性等の耐食性を低下させる元素であり、本発明ではできるだけ低減することが好ましいが、P含有量は0.05%以下であれば許容できる。このようなことから、P含有量は0.05%以下に限定した。なお、好ましくは、P含有量は0.02%以下である。
S:0.005%未満
Sは、熱間加工性を著しく低下させ、継目無鋼管製造工程の安定操業を阻害する元素であり、できるだけ低減することが好ましいが、S含有量が0.005%未満であれば、通常工程での継目無鋼管製造が可能となる。このようなことから、S含有量は0.005%未満に限定した。なお、好ましくは、S含有量は0.002%以下である。
Cr:16.0%超え18.0%以下
Crは、保護皮膜を形成して耐食性向上に寄与する元素であり、16.0%以下では所望の耐食性を確保することができないため16.0%超えのCrの含有を必要とする。一方、18.0%を超えるCrの含有は、フェライト分率が高くなりすぎて、所望の強度を確保できなくなる。このため、Cr含有量は16.0%超え18.0%以下の範囲に限定した。好ましくは、Cr含有量は16.2〜17.5%である。
Mo:2.0%超え4.0%以下
Moは、保護膜を安定化させて、Clや低pHによる孔食に対する抵抗性を増加させ、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める元素である。このような効果を得るためには、2.0%超えのMoを含有する必要がある。一方、Moは高価な元素であり、4.0%を超えるMoの含有は、材料コストの高騰を招くとともに、靭性、耐硫化物応力腐食割れ性の低下を招く。このため、Mo含有量は2.0%超え4.0%以下に限定した。さらに好ましくは、Mo含有量は2.2〜3.0%である。
Ni:3.0%以上5.0%未満
Niは、保護皮膜を強固にして耐食性向上に寄与する元素である。また、Niは、固溶強化により鋼の強度を増加させる。このような効果は、3.0%以上のNiの含有で顕著になる。一方、5.0%以上のNiの含有は、マルテンサイト相の安定性が低下し、強度が低下する。このため、Ni含有量は3.0%以上5.0%未満に限定した。なお、好ましくは、Ni含有量は3.5〜4.5%である。
Cu:0.5〜2.0%
Cuは、保護皮膜を強固にして鋼中への水素侵入を抑制し、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める元素である。このような効果を得るためには、0.5%以上の含有を必要とする。一方、2.0%を超えてCuを含有しても、効果が飽和し、含有量に見合う効果が期待できないため、経済的に不利となる。このため、Cu含有量は0.5〜2.0%の範囲に限定した。なお、好ましくは、Cu含有量は0.5〜1.5%である。
W:0.01〜3.0%
Wは、鋼の強度向上に寄与するとともに、保護皮膜を安定化させて、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める、本発明では重要な元素である。Wは、Moと複合して含有することにより、とくに耐硫化物応力割れ性を顕著に向上させる。このような効果を得るためには、0.01%以上のWの含有を必要とする。一方、3.0%を超える多量のWの含有は、靭性を低下させる。このため、Wは0.01〜3.0%の範囲に限定した。なお、好ましくは、W含有量は0.5〜2.0%である。さらに好ましくは、W含有量は0.8〜1.2%である。
Nb:0.02〜0.5%
Nbは、C、Nを炭窒化物として固定し、Ms点に影響する固溶C、固溶Nを低減し、Ms点の低下を抑制して高強度化に寄与する重要な元素である。このような効果を得るためには0.02%以上のNbの含有を必要とする。一方、0.5%を超える多量のNbの含有は、靭性、耐硫化物応力腐食割れ性の低下を招く。このため、Nb含有量は0.02〜0.5%の範囲に限定した。なお、好ましくは、Nb含有量は0.02〜0.3%である。さらに好ましくは、Nb含有量は0.10〜0.20%である。
Al:0.001〜0.1%
Alは、脱酸剤として作用する元素である。このような効果を得るためには、0.001%以上のAlの含有を必要とする。一方、0.1%を超えてAlを含有すると、酸化物量が増加し清浄度が低下し、靭性が低下する。このため、Al含有量は0.001〜0.1%の範囲に限定した。なお、好ましくは、Al含有量は0.01〜0.07%である。
N:0.012〜0.07%
Nは、Ms点に影響する元素であり、Ms点の低下を抑制する観点から低減することが望ましい。しかし、N含有量の0.012%未満の低減は精錬コストを高騰させる。また、一方、0.07%を超えてNを含有すると、窒化物を形成して靭性を低下させる。このため、N含有量は0.012〜0.07%に限定した。なお、好ましくは、N含有量は0.02〜0.06%である。
O:0.01%以下
Oは、鋼中では酸化物として存在するため、各種特性に悪影響を及ぼす。このため、本発明では、できるだけO含有量を低減することが望ましい。とくに、0.01%を超えてOを含有すると、熱間加工性、耐食性、靭性が低下する。このため、O含有量は0.01%以下に限定した。好ましくは、O含有量は0.006%以下である。
本発明では、上記した成分のうち、Nb、C、NおよびMnは、上記した範囲内でかつ、次(1)式
Nb−6C−2N−0.04Mn≧−0.145 ‥‥(1)
(ここで、Nb、C、NおよびMn:各元素の含有量(質量%))
を満足するように調整して含有する。
Nb、C、NおよびMnの含有量が、(1)式を満足しない場合にはMs変態点が低くなって、残留オーステナイト量が増加し、所望の強度を安定して得ることができない。このため、本発明では、Nb、C、NおよびMnの含有量を、上記した各成分の範囲内でかつ(1)式を満足するように調整することとした。
上記した成分以外の残部は、Feおよび不可避的不純物である。
本発明では上記した組成に加えてさらに、必要に応じて選択元素として、V:0.5%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.0001〜0.0050%のうちから選ばれた1種または2種以上、および/または、Ca:0.0050%以下、REM:0.01%以下のうちから選ばれた1種または2種、および/または、Ta:0.01〜0.1%、Co:0.01〜1.0%のうちから選ばれた1種または2種、および/または、Sn:0.20%以下、Mg:0.0002〜0.01%のうちから選ばれた1種または2種、を含有してもよい。
V:0.5%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.0001〜0.0050%のうちから選ばれた1種または2種以上
V、Ti、ZrおよびBはいずれも、強度を増加させる元素であり、必要に応じて選択して1種以上、含有することができる。V、Ti、ZrおよびBは、上記した効果に加えて、耐硫化物応力割れ性を改善する効果も有する。このような効果を得るためには、V:0.01%以上、Ti:0.005%以上、Zr:0.01%以上、B:0.0001%以上、それぞれ含有することが望ましいが、V:0.5%、Ti:0.3%、Zr:0.2%、B:0.0050%を、それぞれ超えて含有すると、靭性が低下する。このため、含有する場合には、V:0.5%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.0001〜0.0050%の範囲に限定することが好ましい。
Ca:0.0050%以下、REM:0.01%以下のうちから選ばれた1種または2種
CaおよびREMはいずれも、硫化物の形態制御を介して耐硫化物応力腐食割れ性の改善に寄与する元素であり、必要に応じて1種または2種含有できる。このような効果を得るためには、Ca:0.0001%以上、REM:0.001%以上含有することが望ましい。一方、Ca:0.0050%、REM:0.01%を、それぞれ超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、含有する場合には、Ca:0.0050%以下、REM:0.01%以下にそれぞれ、限定することが好ましい。
Ta:0.01〜0.1%、Co:0.01〜1.0%のうちから選ばれた1種または2種
TaおよびCoはいずれも、強度を向上させる元素であり、必要に応じて1種または2種を選択して含有できる。このような効果を得るためには、Ta:0.01%以上、Co:0.01%以上含有することが好ましい。一方、Ta:0.1%、Co:1.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、含有する場合には、Ta:0.01〜0.1%、Co:0.01〜1.0%の範囲にそれぞれ、限定することが好ましい。
Sn:0.20%以下、Mg:0.0002〜0.01%のうちから選ばれた1種または2種
SnおよびMgはいずれも、耐食性を向上させる元素であり、必要に応じて1種または2種を選択して含有できる。このような効果を得るためには、Sn:0.01%以上、Mg:0.0002%以上含有することが望ましい。一方、Sn:0.20%、Mg:0.01%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなる。このため、含有する場合には、Sn:0.20%以下、Mg:0.0002〜0.01%の範囲にそれぞれ、限定することが好ましい。
つぎに、本発明の油井用高強度ステンレス継目無鋼管の組織限定理由について説明する。
本発明の継目無鋼管は、上記した組成を有し、主相として体積率で50%以上の焼戻マルテンサイト相と、体積率で20〜40%のフェライト相と、体積率で10%以下の残留オーステナイト相とからなる組織を有する。
本発明の継目無鋼管では、所望の強度を確保するため、焼戻マルテンサイト相を主相として体積率で50%以上とする。そして、本発明では、少なくとも第二相としてフェライト相を体積率で20%以上析出させる。これにより、割れの進展を抑制でき、所望の耐食性を確保することができる。一方、40%を超えて多量のフェライト相が析出すると、強度が低下し、所望の強度を確保できなくなる。このため、フェライト相は体積率で20〜40%の範囲に限定した。
さらに、本発明では、第二相としてフェライト相に加えて残留オーステナイト相を体積率で10%以下析出させる。残留オーステナイト相の存在により、延性および靭性が向上する。このような効果を得るためには、1%以上析出させることが望ましい。一方、10%を超える残留オーステナイト相の多量析出は、所望の強度を確保できなくなる。このため、残留オーステナイト相は体積率で10%以下に限定した。なお、好ましくは、残留オーステナイト相は体積率で4〜8%である。
なお、前述したような本発明における、体積率で、50%以上の焼戻マルテンサイト相と、20〜40%のフェライト相と、10%以下の残留オーステナイト相とを有する組織の測定については、まず、試験片素材から、管軸方向断面が観察面となるように組織観察用試験片を採取し、組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合)で腐食して走査型電子顕微鏡(1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(体積%)を算出する。そして、この試験片素材から、C断面が測定面となるようにX線回折用試験片を採取し、残留オーステナイト相分率をX線回折法を用いて測定する。X線回折によりγの(220)面、αの(211)面、の回折X線積分強度を測定し、次式
γ(体積率)=100/(1+(IαRγ/IγRα))
(ここで、Iα:αの積分強度、Rα:αの結晶額的理論計算値、Iγ:γの積分強度、Rγ:γの結晶額的理論計算値)
を用いて換算する。また、焼戻マルテンサイト相の体積率はこれらの相以外の残部として算出することができる。
また、本発明のこの組織は、特定の成分組成とすることや、特定温度での焼戻処理を行うことや、特定温度での焼入処理を行うこと等により制御することができる。
つぎに、本発明の油井用高強度ステンレス継目無鋼管の好ましい製造方法について説明する。
本発明では、上記した組成を有するステンレス継目無鋼管を出発素材とする。
出発素材の製造方法は、とくに限定する必要はなく、通常公知の継目無鋼管の製造方法がいずれも適用できる。この出発素材の好ましい製造方法について以下に、説明する。
上記した組成の溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法等の通常の鋳造方法等でビレット等の鋼管素材とすることができる。ついで、これら鋼管素材を加熱し、マンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式の熱間造管工程を経て、上記した組成で所望の寸法を有する継目無鋼管とし、出発素材とすることができる。なお、プレス方式による熱間押出で継目無鋼管としてもなんら問題はない。
なお、造管後、空冷以上の冷却速度で室温まで冷却する。これにより、鋼管の組織をマルテンサイト相を主相(体積率で50%以上)とする組織とすることができる。
本発明では、造管後の冷却に引続き、焼入れ処理と焼戻処理を施すことが好ましい。
焼入れ処理は、出発素材を、加熱温度:850℃以上に加熱したのち、空冷以上の冷却速度で50℃以下の冷却停止温度まで冷却する処理とすることが好ましい。加熱温度が850℃未満と低すぎると、所望の強度を確保できない場合がある。これは、加熱時にマルテンサイトからオーステナイトへの逆変態がおこらなくなり、冷却時にオーステナイトからマルテンサイトへの変態がおこらなくためである。一方、加熱温度が1150℃を超えて高温となると、結晶粒が粗大化する場合がある。このため、焼入れ処理の加熱温度は850〜1150℃に限定することが好ましい。なお、より好ましくは900〜1050℃である。
焼戻処理は、焼入れ処理を施された継目無鋼管に、焼戻温度:500〜650℃に加熱し、放冷あるいは空冷する処理とすることが好ましい。焼戻温度が500℃未満では、低温すぎて所望の焼戻効果が期待できなくなる場合がある。一方、650℃を超える高温では、焼入れままのマルテンサイト相が生成し、所望の強度、靭性、さらには優れた耐食性の全てを満足させることはできなくなる場合がある。なお、焼戻温度は550〜600℃とすることがより好ましい。なお、上記の焼入れ処理の加熱温度と焼戻し温度とは、鋼管外表面の温度のことを指す。
以上説明したように、特定条件下で焼入れ処理および焼戻処理を施すことにより、継目無鋼管の組織は、特定の体積率の焼戻マルテンサイト相、フェライト相および残留オーステナイト相を有する組織となる。これにより、高強度、高靭性および優れた耐食性を有する油井用ステンレス継目無鋼管となる。
以下、さらに実施例に基づき、本発明を説明する。
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でビレット(鋼管素材)に鋳造し、モデルシームレス圧延機を用いて造管し、継目無鋼管(外径83.8mmφ×肉厚15.0mm)とした。なお、造管後、空冷した。
得られた継目無鋼管から、試験片素材を切り出し、表2に示す温度に加熱し、加熱後水冷する焼入れ処理を行い、表2に示す冷却停止温度まで冷却した後、直ちに表2に示す温度に加熱し、加熱後空冷する焼戻処理を施した。
焼入れ処理および焼戻処理を施された試験片素材(継目無鋼管)から、試験片を採取し、組織観察、引張試験、衝撃試験および耐食性試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
得られた試験片素材から、管軸方向断面が観察面となるように組織観察用試験片を採取した。得られた組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合)で腐食して走査型電子顕微鏡(1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(体積%)を算出した。
また、得られた試験片素材から、C断面が測定面となるようにX線回折用試験片を採取し、残留オーステナイト相分率をX線回折法を用いて測定した。X線回折によりγの(220)面、αの(211)面、の回折X線積分強度を測定し、次式
γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度
Rα:αの結晶額的理論計算値
Iγ:γの積分強度
Rγ:γの結晶額的理論計算値
を用いて換算した。
なお、焼戻マルテンサイト相の分率はこれらの相以外の残部として算出した。
(2)引張試験
得られた試験片素材から、管軸方向が引張方向となるように、API弧状引張試験片(strip specimen specified by API standard 5CT)を採取し、APIの規定に準拠して引張試験を実施し引張特性(降伏強さYS、引張強さTS)を求めた。
(3)衝撃試験
得られた試験片素材から、JIS Z 2242の規定に準拠して、試験片長手方向が管軸方向と直交する方向となるように、Vノッチ試験片(5mm厚)を採取し、シャルピー衝撃試験を実施した。試験温度は、−10℃とし、−10℃における衝撃値vE−10(J/cm2)を求め、靭性を評価した。なお、試験片は各3本とし、得られた値の算術平均を当該鋼管の衝撃値(J/cm2)とした。
(4)耐食性試験
得られた試験片素材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、炭酸ガス腐食試験を実施した。
炭酸ガス腐食試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:200℃、30気圧のCO2ガス雰囲気)中に、試験片を浸漬し、浸漬期間を14日間(336時間)として実施した。試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。腐食速度が0.127mm/y以下の場合が合格である。また、腐食試験後の試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。なお、孔食有りは、直径:0.2mm以上の場合をいう。孔食無しの場合が合格である。
さらに、得られた試験片素材から、NACE TM0177 Method Aに準拠して、丸棒状の試験片(直径:6.4mmφ)を機械加工によって作製し、耐硫化物応力割れ試験(耐SSC試験)を実施した。
また、得られた試験片素材から、機械加工により、厚さ3mm×幅15mm×長さ115mmの4点曲げ試験片を採取し、EFC17に準拠して、耐硫化物応力腐食割れ試験(耐SCC試験)を実施した。
耐SCC試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:100℃、H2S:0.1気圧、CO2:30気圧の雰囲気)に酢酸+酢酸Naを加えて、pH:3.3に調整した水溶液中に、試験片を浸漬し、浸漬期間を720時間として、降伏応力の100%を負荷応力として負荷して、実施した。試験後の試験片について、割れの有無を観察した。割れが無い場合が合格である。
耐SSC試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:25℃、H2S:0.1気圧、CO2:0.9気圧の雰囲気)に酢酸+酢酸Naを加えてpH:3.5に調整した水溶液中に、試験片を浸漬し、浸漬期間を720時間として、降伏応力の90%を負荷応力として負荷して、実施した。試験後の試験片について割れの有無を観察した。割れが無い場合が合格である。
得られた結果を表3に示す。
Figure 0006237873
Figure 0006237873
Figure 0006237873
本発明例はいずれも、降伏強さ:862MPa以上の高強度と、−10℃における衝撃値vE−10:50J/cm2以上の高靭性と、CO2、Clを含む200℃という高温の腐食環境下における耐食性(耐炭酸ガス腐食性)に優れ、さらにH2Sを含む環境下で割れ(SSC、SCC)の発生もなく、優れた耐硫化物応力割れ性および耐硫化物応力腐食割れ性を兼備する高強度ステンレス継目無鋼管となっている。一方、本発明の範囲を外れる比較例は、Cu、W、Nb、前述した(1)式、残留オーステナイトの体積率の少なくともいずれか1つが本発明の範囲から外れており、所望の強度、耐硫化物応力割れ性(耐SSC性)、耐硫化物応力腐食割れ性(耐SCC性)の少なくともいずれか1つが劣っていた。

Claims (5)

  1. 質量%で、
    C :0.012〜0.05%、 Si:1.0%以下、
    Mn:0.1〜0.5%、 P :0.05%以下、
    S :0.005%未満、 Cr:16.0%超え18.0%以下、
    Mo:2.0%超え4.0%以下、 Ni:3.0%以上5.0%未満、
    Cu:0.5〜2.0%、 W :0.8〜1.2%、
    Nb:0.02〜0.5%、 Al:0.001〜0.1%、
    N :0.012〜0.07%、 O :0.01%以下
    を含み、かつ、Nb、C、NおよびMnを下記(1)式を満足するように含み、残部Feおよび不可避的不純物からなる組成を有し、体積率で50%以上の焼戻マルテンサイト相と、体積率で20〜40%のフェライト相と、体積率で10%以下の残留オーステナイト相と、からなる組織を有し、降伏強さYS:862MPa以上である油井用高強度ステンレス継目無鋼管。

    Nb−6C−2N−0.04Mn≧−0.145 ‥‥(1)
    ここで、Nb、C、NおよびMn:各元素の含有量(質量%)
  2. 前記組成に加えてさらに、質量%で、V:0.5%以下、Ti:0.3%以下、Zr:0.2%以下、B:0.0001〜0.0050%のうちから選ばれた1種または2種以上を含有する請求項1に記載の油井用高強度ステンレス継目無鋼管。
  3. 前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.01%以下のうちから選ばれた1種または2種を含有する請求項1または2に記載の油井用高強度ステンレス継目無鋼管。
  4. 前記組成に加えてさらに、質量%で、Ta:0.01〜0.1%、Co:0.01〜1.0%のうちから選ばれた1種または2種を含有する請求項1ないし3のいずれかに記載の油井用高強度ステンレス継目無鋼管。
  5. 前記組成に加えてさらに、質量%で、Sn:0.20%以下、Mg:0.0002〜0.01%のうちから選ばれた1種または2種を含有する請求項1ないし4のいずれかに記載の油井用高強度ステンレス継目無鋼管。
JP2016503261A 2014-11-19 2015-10-13 油井用高強度ステンレス継目無鋼管 Active JP6237873B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014234626 2014-11-19
JP2014234626 2014-11-19
PCT/JP2015/005175 WO2016079920A1 (ja) 2014-11-19 2015-10-13 油井用高強度ステンレス継目無鋼管

Publications (2)

Publication Number Publication Date
JPWO2016079920A1 JPWO2016079920A1 (ja) 2017-04-27
JP6237873B2 true JP6237873B2 (ja) 2017-11-29

Family

ID=56013500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016503261A Active JP6237873B2 (ja) 2014-11-19 2015-10-13 油井用高強度ステンレス継目無鋼管

Country Status (3)

Country Link
JP (1) JP6237873B2 (ja)
AR (1) AR102674A1 (ja)
WO (1) WO2016079920A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112492A1 (en) * 2015-06-29 2017-01-04 Vallourec Oil And Gas France Corrosion resistant steel, method for producing said steel and its use thereof
EP3456852B1 (en) * 2016-07-27 2022-03-23 JFE Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method for producing the same
MX2019008377A (es) * 2017-01-13 2019-09-16 Jfe Steel Corp Tubo de acero inoxidable sin soldadura de alta resistencia y metodo de fabricacion del mismo.
CN110312816A (zh) 2017-02-24 2019-10-08 杰富意钢铁株式会社 油井用高强度不锈钢无缝钢管及其制造方法
JP7111253B2 (ja) * 2019-10-01 2022-08-02 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法
JP6915761B1 (ja) * 2019-10-01 2021-08-04 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法
WO2021246118A1 (ja) * 2020-06-02 2021-12-09 Jfeスチール株式会社 二相ステンレス鋼および二相ステンレス継目無鋼管

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109222B2 (ja) * 2003-08-19 2012-12-26 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP4893196B2 (ja) * 2006-09-28 2012-03-07 Jfeスチール株式会社 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
WO2013146046A1 (ja) * 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
JP5875933B2 (ja) * 2012-05-07 2016-03-02 株式会社神戸製鋼所 二相ステンレス鋼材および二相ステンレス鋼管
JP5488643B2 (ja) * 2012-05-31 2014-05-14 Jfeスチール株式会社 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP6045256B2 (ja) * 2012-08-24 2016-12-14 エヌケーケーシームレス鋼管株式会社 高強度高靭性高耐食マルテンサイト系ステンレス鋼

Also Published As

Publication number Publication date
AR102674A1 (es) 2017-03-15
JPWO2016079920A1 (ja) 2017-04-27
WO2016079920A1 (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6399259B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
JP6766887B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
US11072835B2 (en) High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same
JP5924256B2 (ja) 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
JP5967066B2 (ja) 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP5861786B2 (ja) 油井用ステンレス継目無鋼管およびその製造方法
JP6384636B1 (ja) 高強度ステンレス継目無鋼管およびその製造方法
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
JP5487689B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
WO2017138050A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6156609B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP5446335B2 (ja) 油井用高強度ステンレス鋼管の評価方法
JP2007332442A (ja) 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
WO2019225281A1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2019225280A1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP2006016637A (ja) 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
JP7207557B2 (ja) 油井管用ステンレス継目無鋼管およびその製造方法
JP5040215B2 (ja) 拡管性に優れる油井用ステンレス鋼管
JP6747628B1 (ja) 二相ステンレス鋼、継目無鋼管、および二相ステンレス鋼の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250