WO2018155041A1 - 油井用高強度ステンレス継目無鋼管およびその製造方法 - Google Patents

油井用高強度ステンレス継目無鋼管およびその製造方法 Download PDF

Info

Publication number
WO2018155041A1
WO2018155041A1 PCT/JP2018/001868 JP2018001868W WO2018155041A1 WO 2018155041 A1 WO2018155041 A1 WO 2018155041A1 JP 2018001868 W JP2018001868 W JP 2018001868W WO 2018155041 A1 WO2018155041 A1 WO 2018155041A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
content
mass
stainless steel
Prior art date
Application number
PCT/JP2018/001868
Other languages
English (en)
French (fr)
Inventor
祐一 加茂
正雄 柚賀
江口 健一郎
石黒 康英
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18758356.2A priority Critical patent/EP3561131B1/en
Priority to BR112019017105-3A priority patent/BR112019017105B1/pt
Priority to CN201880012878.3A priority patent/CN110312816A/zh
Priority to RU2019126391A priority patent/RU2716438C1/ru
Priority to JP2018526260A priority patent/JP6399259B1/ja
Priority to MX2019010035A priority patent/MX2019010035A/es
Priority to US16/487,203 priority patent/US11306369B2/en
Publication of WO2018155041A1 publication Critical patent/WO2018155041A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength stainless steel seamless pipe suitable for use in oil or gas wells (hereinafter simply referred to as oil wells) for crude oil or natural gas, and more particularly to carbon dioxide (CO 2 ), chlorine ions (Cl ⁇ ), Excellent in carbon dioxide corrosion resistance in extremely severe corrosive environments at high temperatures, and high-temperature sulfide stress corrosion cracking resistance (SCC resistance) in environments containing hydrogen sulfide (H 2 S)
  • SSC resistance high-strength stainless steel seamless steel pipe that is excellent in sulfide stress cracking resistance (SSC resistance) at room temperature and suitable for oil wells.
  • “high strength” means yield strength: strength of 125 ksi class, that is, strength of yield strength of 862 MPa or more.
  • 13Cr martensitic stainless steel pipes are often used as oil well pipes used for mining in environmental oil fields and gas fields containing carbon dioxide (CO 2 ), chlorine ions (Cl ⁇ ), and the like. Furthermore, recently, the use of improved 13Cr martensitic stainless steels with a reduced content of 13Cr martensitic stainless steel and increased Ni, Mo, etc. has been expanded.
  • Patent Document 1 describes an improved martensitic stainless steel (steel pipe) in which the corrosion resistance of 13Cr martensitic stainless steel (steel pipe) is improved.
  • the stainless steel (steel pipe) described in Patent Document 1 is by weight, C: 0.005-0.05%, Si: 0.05-0.5%, Mn: 0.1-1.0%, P: 0.025% or less, S: 0.015% or less , Cr: 10-15%, Ni: 4.0-9.0%, Cu: 0.5-3%, Mo: 1.0-3%, Al: 0.005-0.2%, N: 0.005-0.1%, the balance being Fe and Consists of inevitable impurities, Ni equivalent (Nieq) satisfies 40C + 34N + Ni + 0.3Cu-1.1Cr-1.8Mo ⁇ -10 and consists of tempered martensite phase, martensite phase, residual austenite phase, tempered martensite phase and martensite It is a martensitic stainless steel excellent in corrosion resistance and sulfide stress
  • Patent Document 1 has a problem that the desired corrosion resistance cannot be sufficiently secured stably under such a high-temperature corrosive environment.
  • Patent Document 3 describes a high-strength stainless steel pipe for oil wells having high toughness and excellent corrosion resistance.
  • C 0.04% or less
  • Si 0.50% or less
  • Mn 0.20 to 1.80%
  • P 0.03% or less
  • S 0.005% or less
  • Cr 15.5 to 17.5 %
  • Ni 2.5 to 5.5%
  • V 0.20% or less
  • Mo 1.5 to 3.5%
  • W 0.50 to 3.0%
  • Al 0.05% or less
  • N 0.15% or less
  • Cr, Mo, W, C are specific relational expressions
  • Ni, N are specific relational expressions
  • Mo, W are specific relational expressions.
  • a steel pipe having a composition that satisfies each of the requirements and a structure containing a martensite phase as a base phase and a ferrite phase containing 10 to 50% by volume is obtained. Accordingly, CO 2, Cl - wherein the further can stably produce oil well high strength stainless steel exhibits sufficient corrosion resistance even in a severe corrosive environment of high temperature containing H 2 S.
  • Patent Document 4 discloses a high-strength stainless steel pipe excellent in resistance to sulfide stress cracking and high-temperature carbon dioxide gas corrosion.
  • C 0.05% or less
  • Si 1.0% or less
  • S less than 0.002%
  • Cr more than 16% and 18% or less
  • Mo more than 2% and 3% or less
  • Cu 1 to 3.5%
  • Ni 3% to less than 5%
  • Al 0.001 to 0.1%
  • Mn 1% or less
  • N 0.05% or less
  • Mn and N Has a composition containing so as to satisfy the specific relationship, a martensite phase as a main component, a ferrite phase having a volume ratio of 10 to 40%, and a structure containing a residual ⁇ phase having a volume ratio of 10% or less.
  • the stainless steel pipe has high strength and has sufficient corrosion resistance even in a high-temperature carbon dioxide environment of 200 ° C., and has sufficient sulfide stress cracking resistance even when the environmental gas temperature drops, and has excellent corrosion resistance. It becomes.
  • Patent Document 5 C: 0.05% or less, Si: 0.5% or less, Mn: 0.01 to 0.5%, P: 0.04% or less, S: 0.01% or less, Cr: more than 16.0 to 18.0% by mass , Ni: more than 4.0 to 5.6%, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.0%, Al: 0.001 to 0.10%, N: 0.050% or less, Cr, Cu, Ni, Mo is a specific relationship
  • Mn, Ni, Cu, (Cr + Mo) has a composition that satisfies a specific relationship, and includes a martensite phase and a ferrite phase with a volume ratio of 10 to 40%.
  • the phase has a structure having a length of 50 ⁇ m in the thickness direction from the surface, and a ratio of crossing a plurality of virtual line segments arranged in a line in a range of 200 ⁇ m at a pitch of 10 ⁇ m is greater than 85%, Oil well stainless steel having a yield strength of 758 MPa or more is described. As a result, the oil well stainless steel has excellent corrosion resistance in a high temperature environment and excellent SCC resistance at room temperature.
  • Patent Document 6 includes mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.15 to 1.0%, P: 0.030% or less, S: 0.005% or less, Cr: 15.5 to 17.5%, Ni: 3.0 to 6.0%, Mo: 1.5 to 5.0%, Cu: 4.0% or less, W: 0.1 to 2.5%, N: 0.15% or less, ⁇ 5.9 ⁇ (7.82 + 27C ⁇ 0.91Si + 0.21Mn ⁇ 0.9Cr + Ni ⁇ 1.1 Mo + 0.2Cu + 11N) ⁇ 13.0, Cu + Mo + 0.5W ⁇ 5.8, and Cu + Mo + W + Cr + 2Ni ⁇ 34.5.
  • oil well steel pipes have high strength, excellent low temperature toughness, high temperature, and include CO 2 , Cl ⁇ , and H 2 S. Excellent carbon dioxide corrosion resistance even in severe corrosive environments, and also has excellent sulfide stress corrosion cracking resistance (SCC resistance) and sulfide stress cracking resistance (SSC resistance) It has been demanded to maintain corrosion resistance.
  • SCC resistance sulfide stress corrosion cracking resistance
  • SSC resistance sulfide stress cracking resistance
  • Patent Documents 2 to 5 have not yet been sufficient for realizing both excellent low-temperature toughness and SSC resistance in an environment where the H 2 S partial pressure is high. .
  • the steel pipe material is heated to improve hot workability before drilling, but if the heating temperature is too high, the crystal grains become coarse and a high low temperature toughness value cannot be obtained. If the low temperature toughness is low, there is a problem that it cannot be used in cold regions. On the other hand, if the heating temperature is too low, cracks and cracks that occur in the pipe forming process due to insufficient ductility occur on the inner and outer surfaces of the steel pipe. There is a problem that sufficient SSC resistance is not exhibited as a result of concentration due to retention and further corrosion. Further, even with the technique described in Patent Document 6, a high low temperature toughness value has not been obtained.
  • the present invention solves the problems of the prior art, has high strength, exhibits excellent low temperature toughness, and has excellent carbon dioxide gas corrosion resistance even in the severe corrosive environment as described above. Furthermore, it aims at providing the high strength stainless steel seamless steel pipe for oil wells which was excellent in corrosion resistance, and had the outstanding sulfide stress corrosion cracking resistance and the outstanding sulfide stress cracking resistance, and its manufacturing method.
  • high strength here refers to the case where the yield strength is 125 ksi (862 MPa) or more.
  • excellent in low temperature toughness means that a V-notch test piece (10 mm thickness) is collected in accordance with the provisions of JIS ⁇ Z 2242, a Charpy impact test is conducted, and the absorbed energy at ⁇ 40 ° C. The case of 100J or more shall be said.
  • Example carbon dioxide corrosion resistance refers to a test solution held in an autoclave: 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., 30 atmospheres CO 2 gas atmosphere). When the piece is immersed and the immersion period is 336 hours, the corrosion rate is 0.125 mm / y or less.
  • excellent sulfide stress corrosion cracking resistance refers to a test solution retained in an autoclave: 20% by mass NaCl aqueous solution (liquid temperature: 100 ° C., 30 atm CO 2 gas, 0.1 atm H 2 S atmosphere), the test piece is immersed in an aqueous solution adjusted to pH 3.3 by adding an aqueous solution containing acetic acid and sodium acetate, the immersion period is 720 hours, and 100% of the yield stress is applied stress In addition, the test specimen after the test shall not be cracked.
  • excellent sulfide stress cracking resistance refers to a test solution retained in an autoclave: 20% by mass NaCl aqueous solution (liquid temperature: 25 ° C., 0.9 atm CO 2 gas, 0.1 atm H 2 2 S atmosphere) is added with an aqueous solution containing acetic acid and sodium acetate, and the test piece is immersed in an aqueous solution adjusted to pH 3.5. The immersion period is 720 hours, and 90% of the yield stress is added as additional stress. In this case, the test piece after the test is not cracked.
  • the present inventors diligently studied various factors affecting low temperature toughness at ⁇ 40 ° C. for stainless steel pipes having various Cr-containing compositions from the viewpoint of corrosion resistance.
  • a composite structure containing, in volume ratio, a martensite phase of more than 45% as a main phase, a ferrite phase of 10 to 45% as a second phase, and a residual austenite phase of 30% or less, and a high temperature of up to 200 °C, CO 2, Cl - , further high-temperature corrosion environment containing H 2 S, and CO 2, Cl -, more corrosive atmosphere and, and yield strength near the stress including H 2 S
  • the hot workability is improved by making the composition containing B a certain amount or more, and even if the heating temperature of the steel pipe material when manufacturing the seamless steel pipe as described later is 1200 ° C. or less, it causes defects. It has been found that since grain growth during heating can be suppressed without impairing ductility, a fine structure can be obtained and low-temperature toughness is improved.
  • the left side of the formula (1) is obtained by the present inventors as an index indicating the tendency of the ferrite phase to be formed, and the present inventors have determined that the alloying element satisfies the formula (1). It has been found that adjusting the amount and type is important for realizing a desired composite structure.
  • Cu, Mo, W, Cr, and Ni are expressed by the following formula (2): Cu + Mo + W + Cr + 2Ni ⁇ 34.5 (2) (Here, Cu, Mo, W, Cr, Ni: content of each element (mass%))
  • the present inventors have found that by adjusting and containing so as to satisfy the above, excessive formation of retained austenite is suppressed, and desired high strength and sulfide stress cracking resistance can be ensured.
  • the heating temperature of the steel pipe material before drilling is set to 1200 ° C. or less, it has been found that Charpy absorbed energy at ⁇ 40 ° C. exhibits excellent low temperature toughness of 100 J or more.
  • the present inventors consider that, in addition to excellent carbon dioxide gas corrosion resistance, by combining the composition, excellent sulfide stress corrosion cracking resistance and excellent sulfide stress cracking resistance can be combined as follows. Yes.
  • the ferrite phase is a phase excellent in pit resistance (pitting corrosion resistance), and the ferrite phase is deposited in a layered manner in the rolling direction, that is, in the tube axis direction. For this reason, the laminar structure becomes parallel to the load stress direction of the sulfide stress cracking test and sulfide stress corrosion cracking test, and the crack progresses so as to divide the lamellar structure. Improved SSC and SCC resistance.
  • carbon dioxide gas corrosion resistance can be ensured by reducing C to 0.05% by mass or less, including Cr at 14.5% by mass or more, Ni by 3.0% by mass or more, and Mo by 2.7% by mass or more.
  • the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. [1] By mass% C: 0.05% or less, Si: 0.5% or less, Mn: 0.15-1.0%, P: 0.030% or less, S: 0.005% or less, Cr: 14.5-17.5%, Ni: 3.0-6.0%, Mo: 2.7-5.0%, Cu: 0.3-4.0%, W: 0.1-2.5%, V: 0.02 to 0.20%, Al: 0.10% or less, N: 0.15% or less B: 0.0005-0.0100% C, Si, Mn, Cr, Ni, Mo, Cu, and N satisfy the following formula (1), and Cu, Mo, W, Cr, and Ni satisfy the following formula (2), and the balance Having a composition consisting of Fe and inevitable impurities, By volume ratio, it has a structure containing martensite phase: more than 45% as the main phase, ferrite phase: 10-45% as the second phase, and residual austenite phase: 30% or less, by
  • the composition further contains one or more selected from Nb: 0.02 to 0.50%, Ti: 0.02 to 0.16%, Zr: 0.02 to 0.50% by mass%
  • Nb 0.02 to 0.50%
  • Ti 0.02 to 0.16%
  • Zr 0.02 to 0.50% by mass%
  • the composition in addition to the above-mentioned composition, in addition, by mass%, REM: 0.001 to 0.05%, Ca: 0.001 to 0.005%, Sn: 0.05 to 0.20%, Mg: 0.0002 to 0.01% or
  • the composition further contains one or more selected from Ta: 0.01 to 0.1%, Co: 0.01 to 1.0%, and Sb: 0.01 to 1.0% by mass%.
  • [5] A method for producing a high-strength stainless steel seamless pipe for oil wells according to any one of [1] to [4], For oil wells where the steel pipe material is heated at a heating temperature of 1200 ° C or less and hot-worked to form a seamless steel pipe of a predetermined shape, and after the hot-working, the seamless steel pipe is sequentially quenched and tempered. Manufacturing method of high-strength stainless steel seamless pipe.
  • the present invention has high strength, exhibits excellent low temperature toughness, has excellent carbon dioxide corrosion resistance even in the severe corrosive environment as described above, and has excellent sulfide stress resistance.
  • a high-strength stainless steel seamless pipe having corrosion cracking resistance and excellent resistance to sulfide stress cracking can be produced.
  • the high-strength stainless steel seamless pipe for oil wells of the present invention is in mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.15-1.0%, P: 0.030% or less, S: 0.005% or less, Cr: 14.5 to 17.5%, Ni: 3.0 to 6.0%, Mo: 2.7 to 5.0%, Cu: 0.3 to 4.0%, W: 0.1 to 2.5%, V: 0.02 to 0.20%, Al: 0.10% or less, N: 0.15%
  • B: 0.0005 to 0.0100% is contained, and C, Si, Mn, Cr, Ni, Mo, Cu, and N satisfy the following formula (1), and Cu, Mo, W, Cr, and Ni are the following: (2)
  • the formulas are adjusted so as to satisfy each, have a composition comprising the balance Fe and inevitable impurities, have a yield strength of 862 MPa or more, and absorb energy at -40 ° C.
  • the seamless steel pipe is regarded as the same grain as grains within a crystal orientation difference of 15 ° by backscattered electron diffraction (EBSD)
  • EBSD backscattered electron diffraction
  • C 0.05% or less C is an important element that increases the strength of martensitic stainless steel. In the present invention, it is preferable to contain 0.005% or more in order to ensure the desired strength. On the other hand, if C exceeds 0.05%, the carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance deteriorate. Therefore, the C content is 0.05% or less. Preferably, the C content has a lower limit of 0.005% and an upper limit of 0.04%. More preferably, the C content has a lower limit of 0.005% and an upper limit of 0.02%.
  • Si 0.5% or less
  • Si is an element that acts as a deoxidizer. This effect can be obtained with a Si content of 0.1% or more.
  • Si content exceeds 0.5%, the hot workability decreases. For this reason, Si content shall be 0.5% or less.
  • the Si content has a lower limit of 0.2% and an upper limit of 0.3%.
  • Mn 0.15-1.0%
  • Mn is an element that increases the strength of steel. In order to secure a desired strength, Mn content of 0.15% or more is required in the present invention. On the other hand, when Mn is contained exceeding 1.0%, toughness is lowered. Therefore, the Mn content is 0.15 to 1.0%.
  • the Mn content has a lower limit of 0.20% and an upper limit of 0.5%. More preferably, the lower limit of the Mn content is 0.20% and the upper limit is 0.4%.
  • P 0.030% or less P decreases the corrosion resistance such as carbon dioxide corrosion resistance, pitting corrosion resistance, and sulfide stress cracking resistance. Therefore, in the present invention, P is preferably reduced as much as possible, and 0.030% or less is acceptable. . Therefore, the P content is 0.030% or less. Preferably, the P content is 0.020% or less. More preferably, the P content is 0.015% or less.
  • S 0.005% or less
  • S is an element that significantly reduces hot workability and hinders stable operation of the pipe manufacturing process, and is preferably reduced as much as possible. If it is 0.005% or less, pipe manufacturing in the normal process is possible. It becomes. For this reason, S content shall be 0.005% or less. Preferably, the S content is 0.002% or less. More preferably, the S content is 0.0015% or less.
  • Cr 14.5-17.5%
  • Cr is an element that contributes to the improvement of corrosion resistance by forming a protective film.
  • the present invention needs to contain 14.5% or more of Cr.
  • the Cr content exceeding 17.5% not only prevents the ferrite fraction from becoming too high to ensure the desired high strength, but also causes intermetallic compounds to precipitate during tempering and lowers the low temperature toughness.
  • the Cr content is 14.5 to 17.5%.
  • the Cr content has a lower limit of 15.0% and an upper limit of 17.0%. More preferably, the Cr content has a lower limit of 15.0% and an upper limit of 16.5%.
  • Ni 3.0-6.0%
  • Ni is an element having an action of strengthening the protective film and improving the corrosion resistance. Ni also increases the strength of the steel by solid solution strengthening. Such an effect can be obtained with a Ni content of 3.0% or more.
  • the Ni content is set to 3.0 to 6.0%.
  • the Ni content has a lower limit of 3.5% and an upper limit of 5.5%. More preferably, the Ni content has a lower limit of 4.0% and an upper limit of 5.5%.
  • Mo 2.7-5.0%
  • Mo is an element that increases resistance to pitting corrosion due to Cl ⁇ and low pH, and improves sulfide stress cracking resistance and sulfide stress corrosion cracking resistance.
  • it is necessary to contain Mo of 2.7% or more.
  • Mo is an expensive element. If a large amount of Mo exceeds 5.0%, an intermetallic compound precipitates, and the toughness and pitting resistance deteriorate. Therefore, the Mo content is 2.7 to 5.0%.
  • the Mo content has a lower limit of 3.0% and an upper limit of 5.0%. More preferably, the Mo content has a lower limit of 3.3% and an upper limit of 4.7%.
  • Cu 0.3-4.0%
  • Cu is an important element that strengthens the protective film and suppresses hydrogen intrusion into the steel and improves resistance to sulfide stress cracking and resistance to sulfide stress corrosion. In order to obtain such an effect, it is necessary to contain 0.3% or more of Cu. On the other hand, if Cu content exceeds 4.0%, grain boundary precipitation of CuS is caused and hot workability and corrosion resistance are lowered. Therefore, the Cu content is set to 0.3 to 4.0%.
  • the Cu content has a lower limit of 1.5% and an upper limit of 3.5%. More preferably, the Cu content has a lower limit of 2.0% and an upper limit of 3.0%.
  • W 0.1-2.5%
  • W is an extremely important element that contributes to improving the strength of steel and further improves the resistance to sulfide stress corrosion cracking and sulfide stress cracking.
  • W is combined with Mo to improve sulfide stress cracking resistance.
  • the W content is 0.1 to 2.5%.
  • the W content has a lower limit of 0.8% and an upper limit of 1.2%. More preferably, the lower limit of the W content is 1.0% and the upper limit is 1.2%.
  • V 0.02 to 0.20%
  • V is an element that improves the strength of steel by precipitation strengthening. Such an effect is acquired by containing V 0.02% or more.
  • the V content exceeds 0.20%, toughness decreases. Therefore, the V content is 0.02 to 0.20%.
  • the V content has a lower limit of 0.04% and an upper limit of 0.08%. More preferably, the V content has a lower limit of 0.05% and an upper limit of 0.07%.
  • Al 0.10% or less
  • Al is an element that acts as a deoxidizer. Such an effect is acquired by containing Al 0.001% or more.
  • Al content shall be 0.10% or less.
  • the Al content has a lower limit of 0.01% and an upper limit of 0.06%. More preferably, the Al content has a lower limit of 0.02% and an upper limit of 0.05%.
  • N 0.15% or less
  • N is an element that remarkably improves pitting corrosion resistance. Such an effect becomes remarkable when the N content is 0.01% or more.
  • the N content is 0.15% or less.
  • the N content is 0.07% or less. More preferably, the N content is 0.05% or less.
  • B 0.0005-0.0100% B contributes to an increase in strength and also contributes to an improvement in hot workability. In order to acquire such an effect, it is preferable to contain B 0.0005% or more. On the other hand, if B is contained in an amount exceeding 0.0100%, not only the effect of improving the hot workability is almost not exhibited, but also the low temperature toughness is lowered. For this reason, the B content is set to 0.0005 to 0.0100%. Preferably, the B content has a lower limit of 0.0010% and an upper limit of 0.008%. More preferably, the B content has a lower limit of 0.0015% and an upper limit of 0.007%.
  • the specific component is set to the specific content as described above, and C, Si, Mn, Cr, Ni, Mo, Cu, and N are made to satisfy the following formula (1), Cu, Mo, W, Cr, Ni should satisfy the following formula (2).
  • the above components are basic components, and the remainder other than the above components is composed of Fe and inevitable impurities.
  • one or more elements selected from Nb: 0.02 to 0.50%, Ti: 0.02 to 0.16%, Zr: 0.02 to 0.50% are selected as necessary as the selection element.
  • Nb 0.02 to 0.50%
  • Ti 0.02 to 0.16%
  • Zr 0.02 to 0.50%
  • Ti, and Zr are all elements that contribute to increasing strength. , And can be selected and contained as necessary.
  • Nb contributes to the above-mentioned increase in strength and further contributes to the improvement of toughness. In order to ensure such an effect, it is preferable to contain Nb by 0.02% or more. On the other hand, when Nb is contained exceeding 0.50%, toughness falls. For this reason, when Nb is contained, the Nb content is set to 0.02 to 0.50%.
  • TiTi contributes to the above-mentioned increase in strength and further contributes to the improvement of resistance to sulfide stress cracking. In order to acquire such an effect, it is preferable to contain Ti 0.02% or more. On the other hand, if the Ti content exceeds 0.16%, coarse precipitates are formed, and the toughness and sulfide stress corrosion cracking resistance are reduced. Therefore, when Ti is contained, the Ti content is 0.02 to 0.16%.
  • Zr contributes to the above-described increase in strength and further contributes to the improvement of resistance to sulfide stress corrosion cracking. In order to obtain such an effect, it is preferable to contain 0.02% or more of Zr. On the other hand, if the Zr content exceeds 0.50%, the toughness decreases. Therefore, if contained, the Zr content is 0.02 to 0.50%.
  • REM 0.001 to 0.05%
  • Ca 0.001 to 0.005%
  • Sn 0.05 to 0.20%
  • Mg 0.0002 to 0.01% or more selected from REM, Ca, Sn, Mg
  • REM is an element that contributes to the improvement of resistance to sulfide stress corrosion cracking, and can be selected and contained as necessary.
  • REM is 0.05%
  • Ca is 0.005%
  • Sn is 0.20%
  • Mg exceeds 0.01%, but the effect is saturated and the effect corresponding to the content cannot be expected.
  • the REM content is 0.001 to 0.05%
  • the Ca content is 0.001 to 0.005%
  • the Sn content is 0.05 to 0.20%
  • Mg content is 0.0002 to 0.01%.
  • Ta 0.01 to 0.1%
  • Co 0.01 to 1.0%
  • Sb 0.01 to 1.0%
  • Ta, Co, and Sb are all resistant to carbon dioxide gas (CO 2 corrosion resistance) ), Sulfide stress cracking resistance and sulfide stress corrosion cracking resistance, and can be selected and contained as necessary.
  • Co increases the Ms point and contributes to an increase in strength.
  • Ta is 0.01% or more
  • Co is 0.01% or more
  • Sb is 0.01% or more.
  • the content exceeds 0.1% for Ta, 1.0% for Co, and 1.0% for Sb, the effect is saturated and an effect commensurate with the content cannot be expected. Therefore, when contained, the Ta content is 0.01 to 0.1%, the Co content is 0.01 to 1.0%, and the Sb content is 0.01 to 1.0%.
  • the high-strength stainless steel seamless steel pipe for oil wells of the present invention has the above-described composition, and further has a volume ratio of martensite phase (tempered martensite phase) as the main phase (base phase): more than 45%, second phase As a ferrite phase: 10 to 45% and a retained austenite phase: 30% or less.
  • the base phase is a martensite phase (tempered martensite phase) in order to ensure a desired high strength, and the volume ratio is more than 45%.
  • desired corrosion resistance carbon dioxide corrosion resistance, sulfide stress cracking resistance (SSC resistance) and sulfide stress corrosion cracking resistance (SCC resistance)
  • SSC resistance sulfide stress cracking resistance
  • SCC resistance sulfide stress corrosion cracking resistance
  • the ferrite phase as the second phase is in the range of 10 to 45% by volume.
  • the ferrite phase is 20-40%.
  • a residual austenite phase with a volume ratio of 30% or less is precipitated. Due to the presence of residual austenite phase, ductility and toughness are improved. When the volume ratio exceeds 30% and the amount of retained austenite phase becomes large, the desired high strength cannot be secured.
  • the residual austenite phase is 5% to 30% by volume.
  • the specimen for tissue observation was corroded with Villera reagent (a reagent in which picric acid, hydrochloric acid and ethanol were mixed in a ratio of 2 g, 10 ml and 100 ml, respectively).
  • tissue is imaged with a scanning electron microscope (magnification: 1000 times), and the structure fraction (volume%) of a ferrite phase is calculated using an image analyzer.
  • the X-ray diffraction test piece is ground and polished so that the cross section (C cross section) perpendicular to the tube axis direction becomes the measurement surface, and the amount of retained austenite ( ⁇ ) is measured using the X-ray diffraction method. .
  • the fraction of the martensite phase is the remainder other than the ferrite phase and the retained austenite phase.
  • the high-strength stainless steel seamless steel pipe for oil wells of the present invention is a ferrite when inspecting a continuous region of 100 mm 2 when grains having a crystal orientation difference of 15 ° or less are regarded as the same grain by backscattered electron diffraction (EBSD)
  • the maximum crystal grain size of the grains is 500 ⁇ m or less. If the maximum crystal grain size of the ferrite grains exceeds 500 ⁇ m, the number of crystal grain boundaries that are an obstacle to crack growth decreases, and the desired low-temperature toughness cannot be obtained. Therefore, in the present invention, the crystal grain size of the steel pipe is set to 500 ⁇ m or less.
  • the maximum crystal grain size of the ferrite grains is preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less.
  • the maximum crystal grain size was determined to be the same ferrite grain by conducting an analysis in which continuous grains of 100 mm 2 were considered as grains having a crystal orientation difference of 15 ° or less by backscattered electron diffraction (EBSD).
  • the maximum diameter in the range can be determined as the crystal grain size of the crystal, and the largest value among the crystal grain sizes of all the crystals in the range of 100 mm 2 can be adopted.
  • the maximum crystal grain size of ferrite grains measured by the EBSD can be 500 ⁇ m or less. it can.
  • the steel pipe material is heated at a heating temperature of 1200 ° C. or less, subjected to hot working to obtain a seamless steel pipe having a predetermined shape, and after hot working, The seamless steel pipe is sequentially subjected to quenching treatment and tempering treatment.
  • High-strength stainless steel seamless steel pipes for oil wells are generally manufactured by perforating steel pipe materials (such as billets) by the Mannesmann-plug mill method or the Mannesmann-Mandrel mill method, which are commonly known pipe making methods.
  • the temperature of the steel pipe material at the time of drilling is low, defects such as dents, perforations, and cracks due to a decrease in ductility are likely to occur, so the steel pipe material is heated to a temperature that can ensure sufficient ductility.
  • the crystal grains grow coarsely.
  • the final product also has a structure having coarse crystal grains, and an excellent low temperature toughness value cannot be obtained.
  • the hot workability is improved by using a composition containing B in a certain amount or more, and even when the heating temperature of the steel pipe material is 1200 ° C. or less, the ductility that causes defects is not impaired. Therefore, a fine structure can be obtained and an excellent low temperature toughness value can be obtained.
  • a preferred method for producing a high-strength stainless steel seamless pipe for oil wells according to the present invention will be described in order from the starting material.
  • a stainless steel seamless steel pipe having the above composition is used as a starting material.
  • the manufacturing method of the stainless steel seamless steel pipe as the starting material is not particularly limited except for the heating temperature of the steel pipe material described above.
  • the molten steel having the above composition is melted by a conventional melting method such as a converter and used as a steel pipe material such as a billet by a conventional method such as a continuous casting method or an ingot-bundling rolling method.
  • a conventional melting method such as a converter
  • these steel pipe materials are heated to a temperature of 1200 ° C. or less, and are subjected to hot working using a Mannesmann-plug mill method or a Mannesmann-Mandrel mill method, which is a generally known tube forming method, to form a tube.
  • a seamless steel pipe having the above-described composition having a desired dimension.
  • the heating temperature of the steel pipe material needs to be 1200 ° C. or less, preferably 1180 ° C. or less, more preferably 1150 ° C. or less.
  • the heating temperature is less than 1050 ° C, the workability of the steel material becomes considerably low, and even with the steel of the present invention, it becomes difficult to produce pipes without causing external scratches. It is preferable that the temperature is 1100 ° C. or higher.
  • the seamless steel pipe is preferably cooled to room temperature at a cooling rate higher than that of air cooling.
  • the structure which makes a steel pipe structure a base phase a martensite phase is securable.
  • it is good also as a seamless steel pipe by the hot extrusion by a press system.
  • cooling rate over air cooling is 0.05 ° C./s or more
  • room temperature refers to 40 ° C. or less.
  • the steel pipe is further heated to a heating temperature of 850 ° C. or higher and then cooled to a temperature of 50 ° C. or lower at a cooling rate higher than air cooling. Apply quenching treatment. Thereby, it can be set as the seamless steel pipe of the structure
  • cooling rate over air cooling is 0.05 ° C./s or more
  • room temperature refers to 40 ° C. or less.
  • the heating temperature in the quenching process is less than 850 ° C., the desired high strength cannot be ensured.
  • the heating temperature for the quenching treatment is preferably 1150 ° C. or less from the viewpoint of preventing the coarsening of the structure. More preferably, the lower limit is 900 ° C and the upper limit is 1100 ° C.
  • the seamless steel pipe subjected to the quenching treatment is subjected to a tempering treatment in which it is heated to a tempering temperature not higher than the Ac 1 transformation point and cooled (cooled).
  • a tempering treatment that is heated to a tempering temperature below the Ac 1 transformation point and cooled, the structure is composed of a tempered martensite phase, a ferrite phase, and a residual austenite phase (residual ⁇ phase). Is done.
  • a high strength stainless steel seamless steel pipe having desired high strength, high toughness, and excellent corrosion resistance is obtained.
  • the tempering temperature exceeds the Ac 1 transformation point and becomes a high temperature, as-quenched martensite is generated, and desired high strength, high toughness, and excellent corrosion resistance cannot be ensured.
  • the tempering temperature is 700 ° C. or lower, preferably 550 ° C. or higher.
  • Molten steel with the composition shown in Table 1 is melted in a converter, cast into billets (steel pipe material) by a continuous casting method, the steel pipe material is heated, and the outer diameter is formed by hot working using a model seamless rolling mill. It was made into a seamless steel pipe of 83.8mm x wall thickness 12.7mm and air-cooled. At this time, the heating temperature of the steel pipe material before hot working is as shown in Table 2.
  • a specimen material was cut out from the obtained seamless steel pipe, heated under the conditions shown in Table 2, and then quenched. And the tempering process which heats on the conditions shown in Table 2, and air-cools was given.
  • a specimen for tissue observation is collected from the specimen material subjected to quenching and tempering treatment in this way, and the specimen for tissue observation is collected in a ratio of 2 g, 10 ml and 100 ml of Villera reagent (picric acid, hydrochloric acid and ethanol, respectively).
  • the structure was corroded with a reagent mixed in (1) and the structure was imaged with a scanning electron microscope (1000 times), and the structure fraction (volume%) of the ferrite phase was calculated using an image analyzer.
  • the retained austenite phase structure fraction was measured using an X-ray diffraction method.
  • Test specimens are taken from the specimen material that has been quenched and tempered, and the X-ray diffraction intensity of ⁇ (220) plane and ⁇ (211) plane is measured by X-ray diffraction.
  • Formula ⁇ (volume ratio) 100 / (1+ (I ⁇ R ⁇ / I ⁇ R ⁇ ))
  • I ⁇ ⁇ integrated strength
  • I ⁇ ⁇ integrated strength
  • I ⁇ ⁇ integrated strength
  • R ⁇ converted using crystallographic theoretical calculated value of ⁇ : ⁇ .
  • the fraction of the martensite phase was calculated as the remainder other than these phases.
  • API arc-shaped tensile test specimens are collected from the quenched and tempered specimen specimens and subjected to tensile tests in accordance with API regulations.
  • Tensile properties yield strength YS, tensile strength TS
  • a V-notch test piece (10 mm thick) is collected from a specimen material that has been quenched and tempered in accordance with the provisions of JIS Z 2242, subjected to a Charpy impact test, and absorbed at -40 ° C. Energy was determined and toughness was evaluated.
  • a corrosion test piece having a thickness of 3.0 mm, a width of 30 mm, and a length of 40 mm was prepared by machining from a specimen material subjected to quenching and tempering treatment, and a corrosion test was performed.
  • the corrosion test was carried out by immersing the test piece in a test solution retained in an autoclave: 20 mass% NaCl aqueous solution (liquid temperature: 200 ° C., CO 2 gas atmosphere of 30 atm), and the immersion period was 336 hours. .
  • mass was measured and the corrosion rate computed from the weight loss before and behind a corrosion test was calculated
  • the presence or absence of pitting corrosion on the surface of the test piece was observed using a magnifier with a magnification of 10 times for the test piece after the corrosion test.
  • the presence of pitting means the case where the diameter is 0.2 mm or more.
  • test piece in the shape of C was manufactured by machining according to NACE TM TM0177 Method C from the quenched and tempered steel pipe, and the SSC resistance test was performed. Note that grinding and polishing are not performed on the curved surface corresponding to the inner and outer surfaces of the steel pipe.
  • a four-point bending test piece having a thickness of 3 mm, a width of 15 mm, and a length of 115 mm was sampled from the quenched and tempered test piece material and subjected to an SCC resistance test and an SSC resistance test.
  • the SCC (sulfide stress corrosion cracking resistance) test is performed on a test solution held in an autoclave: 20% by mass NaCl aqueous solution (liquid temperature: 100 ° C, H 2 S: 0.1 atm, CO 2 : 30 atm).
  • the test piece was immersed in an aqueous solution adjusted to pH: 3.3 by adding an aqueous solution containing acetic acid and sodium acetate, the immersion period was 720 hours, and 100% of the yield stress was added as additional stress. did. About the test piece after a test, the presence or absence of a crack was observed.
  • SSC sulfur stress cracking resistance test includes acetic acid and sodium acetate in test solution: 20% by mass NaCl aqueous solution (liquid temperature: 25 ° C, H 2 S: 0.1 atm, CO 2 : 0.9 atm)
  • the test piece was immersed in an aqueous solution adjusted to pH: 3.5 by adding an aqueous solution to be immersed, the immersion period was set to 720 hours, and 90% of the yield stress was added as an additional stress.
  • Both Examples present invention yield strength: and more high strength 862MPa, absorbed energy at -40 ° C.: and more high toughness 100 J, CO 2, Cl - corrosion resistance in high temperature corrosive environments that 200 ° C. containing ( Excellent carbon dioxide gas corrosion resistance), no cracking (SSC, SCC) in an environment containing H 2 S, and excellent sulfide stress cracking resistance and sulfide stress corrosion cracking resistance. It is a strength stainless steel seamless pipe.
  • comparative examples out of the scope of the present invention include desired high strength, low temperature toughness, carbon dioxide corrosion resistance, sulfide stress cracking resistance (SSC resistance), and sulfide stress corrosion cracking resistance (SCC resistance). I didn't get at least one of them.
  • Steel pipe No. 23 (steel No. W) had a Mo content of less than 2.7% by mass, and therefore could not obtain desired SSC resistance and SCC resistance.
  • Steel tube No. 24 (steel No. X) has a Cr content of over 17.5 mass% and a ferrite phase of over 45%, so the yield strength YS is less than 862 MPa, and vE-40 is 100 J Was less than.
  • Steel pipe No. 25 (steel No. Y) had a yield of YS of less than 862 MPa because the Ni content was more than 6.0% by mass.
  • Steel pipe No. 26 (steel No. Z) has a Mo content of over 5.0% by mass, so vE-40 is less than 100J, pitting corrosion occurs, and the desired SSC resistance and SCC resistance are obtained. I could't.
  • Steel pipe No. 27 (steel No. AA) had a Cu content exceeding 4.0% by mass, and thus could not obtain desired SSC resistance and SCC resistance.
  • Steel tube No. 28 (steel No. AB) had a Cr content of less than 14.5% by mass, pitting corrosion occurred, and the desired SSC resistance and SCC resistance could not be obtained.
  • Steel pipe No. 29 (steel No. AC) had a Cu content of less than 0.3% by mass, and could not obtain desired SSC resistance and SCC resistance.
  • Steel pipe No. 30 (steel No. AD) had a V content of less than 0.02 mass% and a yield strength YS of less than 862 MPa.
  • Steel pipe No. 31 (steel No. AE) has a W content of less than 0.1% by mass, yield strength YS of less than 862MPa, pitting corrosion, and desired SSC and SCC resistance. I could't.
  • Steel pipe No. 32 (steel No. AF) had a B content of more than 0.0100% by mass, so vE-40 was less than 100J.
  • Steel pipe No. 33 (steel No. AG) has a B content of less than 0.0005% by mass, so that hot workability is insufficient and scratches occur in the pipe making process, and the desired SSC resistance cannot be obtained. .
  • Steel tube No. 36 had a heating temperature exceeding 1200 ° C., the maximum crystal grain size of ferrite grains was over 500 ⁇ m, and vE-40 was less than 100J.
  • Steel pipe No. 37 had a Si content of more than 0.5% by mass, lacked hot workability and caused scratches in the pipe making process, and the desired SSC resistance was not obtained.
  • Steel pipe No. 38 had an Mn content of more than 1.0 mass% and a vE-40 of less than 100J.
  • Steel pipe No. 39 had an Mn content of less than 0.15% by mass and a yield strength YS of less than 862 MPa.
  • Steel pipe No. 40 had a Cr content of less than 14.5% by mass, and could not obtain desired carbon dioxide corrosion resistance, pitting corrosion resistance, SSC resistance, and SCC resistance.
  • Steel pipe No. 41 has a Ni content of less than 3.0% by mass, a yield strength of YS of less than 862 MPa, and desired carbon dioxide corrosion resistance, pitting corrosion resistance, SSC resistance and SCC resistance. There wasn't.
  • Steel pipe No. 42 had a Mo content of less than 2.7% by mass, and could not obtain the desired SSC resistance and SCC resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

優れた低温靭性、耐炭酸ガス腐食性、耐硫化物応力腐食割れ性、耐硫化物応力割れ性を備えた油井用高強度ステンレス継目無鋼管の提供。 質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.15~1.0%、P:0.030%以下、S:0.005%以下、Cr:14.5~17.5%、Ni:3.0~6.0%、Mo:2.7~5.0%、Cu:0.3~4.0%、W:0.1~2.5%、V:0.02~0.20%、Al:0.10%以下、N:0.15%以下、B:0.0005~0.0100%含有し、C、Si、Mn、Cr、Ni、Mo、Cu、Nが特定式、Cu、Mo、W、Cr、Niが他の特定式を満足し、残部Fe及び不可避的不純物からなり、マルテンサイト相:45%超、フェライト相:10~45%、残留オーステナイト相:30%以下有し、後方散乱電子回折(EBSD)により結晶方位差15°以内の粒を同一粒とみなした時に100mm2の連続した領域を検査した際のフェライト粒の最大結晶粒径を500μm以下とし、降伏強さを862MPa以上にする。

Description

油井用高強度ステンレス継目無鋼管およびその製造方法
 本発明は、原油あるいは天然ガスの油井、ガス井(以下、単に油井と称する)等に用いて好適な、高強度ステンレス継目無鋼管に係り、とくに炭酸ガス(CO2)、塩素イオン(Cl)を含み、高温の極めて厳しい腐食環境下での耐炭酸ガス腐食性に優れ、硫化水素(H2S)を含む環境下における、高温での耐硫化物応力腐食割れ性(耐SCC性)と常温での耐硫化物応力割れ性(耐SSC性)にも優れ、油井用として好適な高強度ステンレス継目無鋼管に関する。なお、ここでいう「高強度」とは、降伏強さ:125ksi級の強度、すなわち降伏強さが862MPa以上の強度をいうものとする。
 近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇という観点から、従来省みられなかったような高深度の油田や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んになっている。このような油田、ガス田は一般に深度が極めて高く、またその雰囲気も高温でかつ、CO2、Cl、さらにH2Sを含む厳しい腐食環境となっている。このような環境下で使用される油井用鋼管には、高強度で、かつ優れた耐食性(耐炭酸ガス腐食性、耐硫化物応力腐食割れ性および耐硫化物応力割れ性)を兼ね備えた材質を有することが要求される。
 従来、炭酸ガス(CO2)、塩素イオン(Cl)等を含む環境の油田、ガス田では、採掘に使用する油井管として13Crマルテンサイト系ステンレス鋼管が多く使用されている。さらに、最近では13Crマルテンサイト系ステンレス鋼のCを低減し、Ni、Mo等を増加させた成分系の改良型13Crマルテンサイト系ステンレス鋼の使用も拡大している。
 例えば、特許文献1には、13Crマルテンサイト系ステンレス鋼(鋼管)の耐食性を改善した、改良型マルテンサイト系ステンレス鋼(鋼管)が記載されている。特許文献1に記載されたステンレス鋼(鋼管)は、重量%で、C:0.005~0.05%、Si:0.05~0.5%、Mn:0.1~1.0%、P:0.025%以下、S:0.015%以下、Cr:10~15%、Ni:4.0~9.0%、Cu:0.5~3%、Mo:1.0~3%、Al:0.005~0.2%、N:0.005~0.1%を含有し、残部がFeおよび不可避的不純物からなり、Ni当量(Nieq)が40C+34N+Ni+0.3Cu-1.1Cr-1.8Mo≧-10を満足するとともに焼戻しマルテンサイト相、マルテンサイト相、残留オーステナイト相からなり、焼戻しマルテンサイト相とマルテンサイト相の合計の分率が60%以上90%以下、残りが残留オーステナイト相である、耐食性、耐硫化物応力腐食割れ性に優れたマルテンサイト系ステンレス鋼である。これにより、湿潤炭酸ガス環境および湿潤硫化水素環境における耐食性と耐硫化物応力腐食割れ性が向上する。
 また、最近では、更なる高温(200℃までの高温)の腐食環境下での油井の開発が進められている。しかし、特許文献1に記載された技術では、このような高温の腐食環境下では、安定して所望の耐食性を十分に確保できないという問題があった。
 そこで、このような高温での腐食環境下で使用できる、耐食性、耐硫化物応力腐食割れ性に優れた油井用鋼管が要望され、種々のマルテンサイト系ステンレス鋼管が提案されている。
 例えば、特許文献2には、mass%で、C:0.005~0.05%、Si:0.05~0.5%、Mn:0.2~1.8%、P:0.03%以下、S:0.005%以下、Cr:15.5~18%、Ni:1.5~5%、Mo:1~3.5%、V:0.02~0.2%、N:0.01~0.15%、O:0.006%以下を含有し、Cr、Ni、Mo、Cu、Cが特定の関係式を満足し、さらに、Cr、Mo、Si、C、Mn、Ni、Cu、Nが特定の関係式を満足するように含有する組成を有し、さらにマルテンサイト相をベース相とし、フェライト相を体積率で10~60%、あるいはさらに体積率でオーステナイト相を30%以下含有する組織を有する耐食性に優れた高強度ステンレス鋼管が記載されている。これにより、CO2、Clを含む230℃までの高温の厳しい腐食環境下においても十分な耐食性を有し、高強度さらには高靭性の油井用ステンレス鋼管を安定して製造できる。
 また、特許文献3には、高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管が記載されている。特許文献3に記載された技術では、mass%で、C:0.04%以下、Si:0.50%以下、Mn:0.20~1.80%、P:0.03%以下、S:0.005%以下、Cr:15.5~17.5%、Ni:2.5~5.5%、V:0.20%以下、Mo:1.5~3.5%、W:0.50~3.0%、Al:0.05%以下、N:0.15%以下、O:0.006%以下を含み、かつCr、Mo、W、Cが特定の関係式を、またCr、Mo、W、Si、C、Mn、Cu、Ni、Nが特定の関係式を、さらにMo、Wが特定の関係式を、それぞれ満足するように含有する組成と、さらにマルテンサイト相をベース相とし、フェライト相を体積率で10~50%を含有する組織とを有する鋼管とする。これにより、CO2、Clを含み、さらにH2Sを含む高温の厳しい腐食環境下においても十分な耐食性を示す油井用高強度ステンレス鋼管を安定して製造できる。
 また、特許文献4には、耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管が記載されている。特許文献4に記載された技術では、質量%で、C:0.05%以下、Si:1.0%以下、S:0.002%未満、Cr:16%超18%以下、Mo:2%超3%以下、Cu:1~3.5%、Ni:3%以上5%未満、Al:0.001~0.1%、O:0.01%以下を含み、かつMn:1%以下、N:0.05%以下の領域で、MnとNが特定の関係を満足するように含有する組成と、マルテンサイト相を主体とし、体積率で10~40%のフェライト相と、体積率で10%以下の残留γ相を含む組織とを有する鋼管とする。これにより、高強度で、さらに200℃という高温の炭酸ガス環境でも十分な耐食性を有し、環境ガス温度が低下したときでも、十分な耐硫化物応力割れ性を有する、耐食性に優れたステンレス鋼管となる。
 また、特許文献5には、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超~18.0%、Ni:4.0超~5.6%、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、Cr、Cu、Ni、Moが特定の関係を満足し、さらに、(C+N)、Mn、Ni、Cu、(Cr+Mo)が特定の関係を満足する組成を有し、マルテンサイト相と体積率で10~40%のフェライト相とを含み、フェライト相が、表面から厚さ方向に50μmの長さを有し、10μmピッチで200μmの範囲に1列に配列された複数の仮想線分と交差する割合が85%よりも多い組織を有し、758MPa以上の耐力を有する油井用ステンレス鋼が記載されている。これにより、高温環境で優れた耐食性を有し、常温での耐SCC性に優れた油井用ステンレス鋼となる。
 また、特許文献6には、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.15~1.0%、P:0.030%以下、S:0.005%以下、Cr:15.5~17.5%、Ni:3.0~6.0%、Mo:1.5~5.0%、Cu:4.0%以下、W:0.1~2.5%、N:0.15%以下を、-5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≧13.0、Cu+Mo+0.5W≧5.8、Cu+Mo+W+Cr+2Ni≦34.5を満足するように含有する。これにより、200℃までの高温でかつ、CO2、Clを含む高温環境下における優れた耐炭酸ガス腐食性、さらにH2Sを含む腐食環境下で優れた耐硫化物応力割れ性、優れた耐硫化物応力腐食割れ性を兼備する、優れた耐食性を有する高強度ステンレス継目無鋼管を製造できる。
特開平10-1755号公報 特開2005-336595号公報 特開2008-81793号公報 国際公開WO 2010/050519号 国際公開WO 2010/134498号 特開2015-110822号公報
 最近の、厳しい腐食環境の油田やガス田等の開発に伴い、油井用鋼管には、高強度と、優れた低温靭性と、高温で、かつ、CO2、Cl、さらにH2Sを含む厳しい腐食環境下においても、優れた耐炭酸ガス腐食性とを有し、さらに、優れた耐硫化物応力腐食割れ性(耐SCC性)および耐硫化物応力割れ性(耐SSC性)を兼備する、耐食性を保持することが要望されるようになっている。
 しかしながら、特許文献2~5に記載された技術によってもなお、優れた低温靭性とH2S分圧が高い環境下における耐SSC性との双方の実現について、十分であるとはまだ言えなかった。その要因として、鋼管素材は穿孔前に熱間加工性を上げるために加熱されるが、加熱温度が高すぎると結晶粒が粗大化し、高い低温靭性値が得られない。低温靭性が低いと寒冷地で使用できないという問題がある。一方、加熱温度が低すぎると、延性の不足により造管過程で生じる亀裂や割れが鋼管内外面に生じ、このような鋼管が油井にて使用された場合には、腐食性イオンが傷内部に滞留さらには腐食の進行により濃縮した結果、十分な耐SSC性が発揮されないという問題がある。また、特許文献6に記載された技術でも、高い低温靭性値を得られていなかった。
 そこで、本発明は、かかる従来技術の問題を解決し、高強度であるとともに、優れた低温靭性を示し、かつ上記したような厳しい腐食環境下においても、優れた耐炭酸ガス腐食性を有し、さらに、優れた耐硫化物応力腐食割れ性および優れた耐硫化物応力割れ性を兼ね備えた、耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法を提供することを目的とする。
 なお、ここでいう「高強度」とは、降伏強さ:125ksi(862MPa)以上を有する場合をいうものとする。
 また、ここでいう「低温靭性に優れる」とは、JIS Z 2242の規定に準拠して、Vノッチ試験片(10mm厚)を採取し、シャルピー衝撃試験を実施し、-40℃における吸収エネルギーが100J以上の場合をいうものとする。
 また、ここでいう「優れた耐炭酸ガス腐食性」とは、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:200℃、30気圧のCO2ガス雰囲気)中に、試験片を浸漬し、浸漬期間を336時間として実施した場合の腐食速度が0.125mm/y以下の場合をいうものとする。
 また、ここでいう「優れた耐硫化物応力腐食割れ性」とは、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:100℃、30気圧のCO2ガス、0.1気圧のH2S雰囲気)に、酢酸および酢酸ナトリウムを含有する水溶液を加えてpH:3.3に調節した水溶液中に、試験片を浸漬し、浸漬期間を720時間として、降伏応力の100%を付加応力として付加し、試験後の試験片に割れが発生しない場合をいうものとする。
 また、ここでいう「優れた耐硫化物応力割れ性」とは、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:25℃、0.9気圧のCO2ガス、0.1気圧のH2S雰囲気)に酢酸および酢酸ナトリウムを含有する水溶液を加えて、pH:3.5に調節した水溶液中に、試験片を浸漬し、浸漬期間を720時間として、降伏応力の90%を付加応力として付加し、試験後の試験片に割れが発生しない場合をいうものとする。
 本発明者らは、上記した目的を達成するために、耐食性の観点から各種のCr含有組成のステンレス鋼管について、さらに-40℃での低温靭性に及ぼす各種要因について鋭意検討した。その結果、組織を、体積率で、主相として45%超のマルテンサイト相、第二相として10~45%のフェライト相、30%以下の残留オーステナイト相を含有する複合組織とすることにより、200℃までの高温でかつ、CO2、Cl、さらにH2Sを含む高温腐食環境下、およびCO2、Cl、さらにH2Sを含む腐食雰囲気中でかつ降伏強さ近傍の応力が負荷される環境下において、優れた耐炭酸ガス腐食性を有し、さらに高温での優れた耐硫化物応力腐食割れ性を兼備する高強度ステンレス継目無鋼管とすることができた。
 さらにBを一定量以上含有する組成とすることにより熱間加工性が改善され、後述するように継目無鋼管を製造する際の鋼管素材の加熱温度を1200℃以下としても、欠陥の要因となる延性を損なうことなく加熱時の粒成長を抑制することができるため、微細な組織を得られ、低温靭性が向上することを知見した。
 本発明者らの更なる検討によれば、14.5質量%以上のCr含有組成において、組織を、所望の複合組織とするためには、まず、C、Si、Mn、Cr、Ni、Mo、Cu、Nを次(1)式
 -5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≧13.0‥‥(1)
(ここで、C、Si、Mn、Cr、Ni、Mo、Cu、N:各元素の含有量(質量%))
を満足するように、調整して含有させることが肝要になることを見出した。なお、(1)式の左辺は、フェライト相の生成傾向を示す指数として本発明者らが実験的に求めたものであり、本発明者らは、(1)式を満足させるように合金元素量、種類を調整することが、所望の複合組織を実現するために重要となることを見出した。
 さらに、Cu、Mo、W、Cr、Niを次(2)式
      Cu+Mo+W+Cr+2Ni ≦ 34.5  ‥‥(2)
  (ここで、Cu、Mo、W、Cr、Ni:各元素の含有量(質量%))
を満足するように調整して含有させることにより、残留オーステナイトの過剰な生成が抑制され、所望の高強度と耐硫化物応力割れ性を確保できることを見出した。
 さらに、継目無鋼管を製造する際の、穿孔前の鋼管素材の加熱温度を1200℃以下とすれば、-40℃におけるシャルピー吸収エネルギーが100J以上という優れた低温靭性を示すことを見出した。
 なお、14.5質量%以上の高Cr含有組成とし、さらにマルテンサイト相を主体とし、第二相がフェライト相、さらに残留オーステナイト相である複合組織とし、さらにCr、Mo、Wを一定量以上含有する組成とすることにより、優れた耐炭酸ガス腐食性に加えて、優れた耐硫化物応力腐食割れ性および優れた耐硫化物応力割れ性を兼備できることについて、本発明者らはつぎのように考えている。
 フェライト相は、耐ピット性(耐孔食性)に優れる相であり、しかも、フェライト相が圧延方向に、すなわち管軸方向に層状に析出する。このため、層状組織が硫化物応力割れ試験、硫化物応力腐食割れ試験の負荷応力方向と平行する方向となり、割れが層状組織を分断するように進展することから、割れの進展が抑制され、耐SSC性、耐SCC性が向上する。
 なお、優れた耐炭酸ガス腐食性は、Cを0.05質量%以下に低減し、Crを14.5質量%以上、Niを3.0質量%以上、Moを2.7質量%以上含む組成とすることにより確保できる。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
[1]質量%で、
 C :0.05%以下、         Si:0.5%以下、
 Mn:0.15~1.0%、        P :0.030%以下、
 S :0.005%以下、        Cr:14.5~17.5%、
 Ni:3.0~6.0%、         Mo:2.7~5.0%、
 Cu:0.3~4.0%、         W :0.1~2.5%、
 V :0.02~0.20%、        Al:0.10%以下、
 N :0.15%以下、         B:0.0005~0.0100%
を含有し、C、Si、Mn、Cr、Ni、Mo、Cu、Nが下記(1)式を満足し、さらにCu、Mo、W、Cr、Niが下記(2)式を満足し、残部Feおよび不可避的不純物からなる組成を有し、
 体積率で、主相としてマルテンサイト相:45%超、第二相としてフェライト相:10~45%、残留オーステナイト相:30%以下を含有する組織を有し、後方散乱電子回折(EBSD)により結晶方位差15°以内の粒を同一粒とみなした時に、100mm2の連続した領域を検査した際のフェライト粒の最大結晶粒径が500μm以下である、降伏強さが862MPa以上である油井用高強度ステンレス継目無鋼管。
                    記
  -5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≧13.0‥‥(1)
 式(1)中、C、Si、Mn、Cr、Ni、Mo、Cu、N:各元素の含有量(質量%)
  Cu+Mo+W+Cr+2Ni ≦ 34.5  ‥‥(2)
 式(2)中、Cu、Mo、W、Cr、Ni:各元素の含有量(質量%)
[2]前記組成に加えてさらに、質量%で、Nb:0.02~0.50%、Ti:0.02~0.16%、Zr:0.02~0.50%のうちから選ばれた1種または2種以上を含有する前記[1]に記載の油井用高強度ステンレス継目無鋼管。
[3]前記組成に加えてさらに、質量%で、REM:0.001~0.05%、Ca:0.001~0.005%、Sn:0.05~0.20%、Mg:0.0002~0.01%のうちから選ばれた1種または2種以上を含有することを特徴とする前記[1]または[2]に記載の油井用高強度ステンレス継目無鋼管。
[4]前記組成に加えてさらに、質量%で、Ta:0.01~0.1%、Co:0.01~1.0%、Sb:0.01~1.0%のうちから選ばれた1種または2種以上を含有する前記[1]~[3]のいずれかに記載の油井用高強度ステンレス継目無鋼管。
[5]前記[1]~[4]のいずれか1項に記載の油井用高強度ステンレス継目無鋼管の製造方法であり、
 鋼管素材を、1200℃以下の加熱温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、前記熱間加工後に、前記継目無鋼管に焼入れ処理および焼戻処理を順次施す油井用高強度ステンレス継目無鋼管の製造方法。
 本発明によれば、高強度であるとともに、優れた低温靭性を示し、かつ上記したような厳しい腐食環境下においても、優れた耐炭酸ガス腐食性を有し、さらに、優れた耐硫化物応力腐食割れ性および優れた耐硫化物応力割れ性を兼ね備えた高強度ステンレス継目無鋼管を製造できる。
 本発明の油井用高強度ステンレス継目無鋼管は、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.15~1.0%、P:0.030%以下、S:0.005%以下、Cr:14.5~17.5%、Ni:3.0~6.0%、Mo:2.7~5.0%、Cu:0.3~4.0%、W:0.1~2.5%、V:0.02~0.20%、Al:0.10%以下、N:0.15%以下、B:0.0005~0.0100%を含有し、かつC、Si、Mn、Cr、Ni、Mo、Cu、Nが下記(1)式を満足し、さらにCu、Mo、W、Cr、Niが次(2)式を、それぞれ満足するように調整して含有し、残部Feおよび不可避的不純物からなる組成を有し、降伏強さが862MPa以上であり、シャルピー衝撃試験による-40℃における吸収エネルギーが100J以上である。
-5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≧13.0‥‥(1)
(ここで、C、Si、Mn、Cr、Ni、Mo、Cu、N:各元素の含有量(質量%))
     Cu+Mo+W+Cr+2Ni ≦ 34.5  ‥‥(2)
 (ここで、Cu、Mo、W、Cr、Ni:各元素の含有量(質量%))
 また、継目無鋼管を製造する際の鋼管素材の加熱温度が1200℃以下であり、継目無鋼管は後方散乱電子回折(EBSD)により結晶方位差15°以内の粒を同一粒とみなした時に、100mm2の連続した領域を検査した際のフェライト粒の最大粒径が500μm以下である。
 まず、本発明の鋼管の組成限定理由について説明する。以下、特に断わらないかぎり、質量%は単に%と記す。
 C:0.05%以下
 Cは、マルテンサイト系ステンレス鋼の強度を増加させる重要な元素である。本発明では、所望の強度を確保するために0.005%以上含有することが好ましい。一方、0.05%を超えてCを含有すると、耐炭酸ガス腐食性、耐硫化物応力腐食割れ性が低下する。このため、C含有量は0.05%以下とする。好ましくは、C含有量は下限が0.005%であり上限が0.04%である。より好ましくは、C含有量は下限が0.005%であり上限が0.02%である。
 Si:0.5%以下
 Siは、脱酸剤として作用する元素である。この効果は0.1%以上のSiの含有で得られる。一方、0.5%を超えるSiの含有は、熱間加工性が低下する。このため、Si含有量は0.5%以下とする。好ましくは、Si含有量は下限が0.2%であり上限が0.3%である。
 Mn:0.15~1.0%
 Mnは、鋼の強度を増加させる元素であり、所望の強度を確保するために、本発明では0.15%以上のMnの含有を必要とする。一方、1.0%を超えてMnを含有すると、靭性が低下する。このため、Mn含有量は0.15~1.0%とする。好ましくは、Mn含有量は下限が0.20%であり上限が0.5%である。より好ましくは、Mn含有量は下限が0.20%であり上限が0.4%である。
 P:0.030%以下
 Pは、耐炭酸ガス腐食性、耐孔食性および耐硫化物応力割れ性等の耐食性を低下させるため、本発明ではできるだけ低減することが好ましく、0.030%以下であれば許容できる。このため、P含有量は0.030%以下とする。好ましくは、P含有量は0.020%以下である。より好ましくは、P含有量は0.015%以下である。
 S:0.005%以下
 Sは、熱間加工性を著しく低下させ、パイプ製造工程の安定操業を阻害する元素であり、できるだけ低減することが好ましく、0.005%以下であれば通常工程のパイプ製造が可能となる。このため、S含有量は0.005%以下とする。好ましくは、S含有量は0.002%以下である。より好ましくは、S含有量は0.0015%以下である。
 Cr:14.5~17.5%
 Crは、保護皮膜を形成して耐食性向上に寄与する元素であり、所望の耐食性を確保するために、本発明では14.5%以上のCrの含有を必要とする。一方、17.5%を超えるCrの含有は、フェライト分率が高くなりすぎて所望の高強度を確保できなくなるだけでなく、焼き戻し時に金属間化合物が析出し、低温靭性が低下する。このため、Cr含有量は14.5~17.5%とする。好ましくは、Cr含有量は下限が15.0%であり上限が17.0%である。より好ましくは、Cr含有量は下限が15.0%であり上限が16.5%である。
 Ni:3.0~6.0%
 Niは、保護皮膜を強固にして耐食性を向上させる作用を有する元素である。また、Niは、固溶強化で鋼の強度を増加させる。このような効果は、3.0%以上のNiの含有で得られる。一方、6.0%を超えるNiの含有は、マルテンサイト相の安定性が低下し強度が低下する。このため、Ni含有量は3.0~6.0%とする。好ましくは、Ni含有量は下限が3.5%であり上限が5.5%である。より好ましくは、Ni含有量は下限が4.0%であり上限が5.5%である。
 Mo:2.7~5.0%
 Moは、Clや低pHによる孔食に対する抵抗性を増加させ、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める元素であり、本発明では2.7%以上のMoの含有を必要とする。2.7%未満のMoの含有では、苛酷な腐食環境下での耐食性が十分であるとはいえない。一方、Moは高価な元素であり、5.0%を超える多量のMoの含有は、金属間化合物が析出し、靭性、耐孔食性が低下する。このため、Mo含有量は2.7~5.0%とする。好ましくは、Mo含有量は下限が3.0%であり上限が5.0%である。より好ましくは、Mo含有量は下限が3.3%であり上限が4.7%である。
 Cu:0.3~4.0%
 Cuは、保護皮膜を強固にして鋼中への水素侵入を抑制し、耐硫化物応力割れ性および耐硫化物応力腐食割れ性を高める重要な元素である。このような効果を得るためには、0.3%以上のCuを含有することが必要である。一方、4.0%を超えるCuの含有は、CuSの粒界析出を招き熱間加工性や耐食性が低下する。このため、Cu含有量は0.3~4.0%とする。好ましくは、Cu含有量は下限が1.5%であり上限が3.5%である。より好ましくは、Cu含有量は下限が2.0%であり上限が3.0%である。
 W:0.1~2.5%
 Wは、鋼の強度向上に寄与するとともに、さらに耐硫化物応力腐食割れ性、耐硫化物応力割れ性を向上させる極めて重要な元素である。Wは、Moと複合して含有することにより耐硫化物応力割れ性を向上させる。このような効果を得るためには、Wを0.1%以上含有する必要がある。一方、2.5%を超える多量のWの含有は、金属間化合物が析出し、靭性を低下させる。このため、W含有量は0.1~2.5%とする。好ましくは、W含有量は下限が0.8%であり上限が1.2%である。より好ましくは、W含有量は下限が1.0%であり上限が1.2%である。
 V:0.02~0.20%
 Vは、析出強化により鋼の強度を向上させる元素である。このような効果は、Vを0.02%以上含有することで得られる。一方、0.20%を超えるVの含有は、靭性が低下する。このため、V含有量は0.02~0.20%とする。好ましくは、V含有量は下限が0.04%であり上限が0.08%である。より好ましくは、V含有量は下限が0.05%であり上限が0.07%である。
 Al:0.10%以下
 Alは、脱酸剤として作用する元素である。このような効果は、Alを0.001%以上含有することで得られる。一方、0.10%を超えて多量にAlを含有すると、酸化物量が多くなりすぎて、靭性が低下する。このため、Al含有量は0.10%以下とする。好ましくは、Al含有量は下限が0.01%であり上限が0.06%である。より好ましくは、Al含有量は下限が0.02%であり上限が0.05%である。
 N:0.15%以下
 Nは、耐孔食性を著しく向上させる元素である。このような効果は、0.01%以上のNの含有で顕著となる。一方、0.15%を超えてNを含有すると、種々の窒化物を形成し靭性が低下する。このようなことから、N含有量は0.15%以下とする。好ましくは、N含有量は0.07%以下である。より好ましくは、N含有量は0.05%以下である。
 B:0.0005~0.0100%
 Bは、強度増加に寄与するとともに、さらに熱間加工性の改善にも寄与する。このような効果を得るためには、Bを0.0005%以上含有することが好ましい。一方、0.0100%を超えてBを含有させても、熱間加工性を改善効果がほぼ現出しなくなるだけではなく、低温靭性が低下する。このため、B含有量は0.0005~0.0100%とする。好ましくは、B含有量は下限が0.0010%であり上限が0.008%である。より好ましくは、B含有量は下限が0.0015%であり上限が0.007%である。
 本発明では、上記のように特定の成分を特定の含有量としつつ、C、Si、Mn、Cr、Ni、Mo、Cu、Nについては、以下の(1)式を満足するようにし、さらにCu、Mo、W、Cr、Niを以下の(2)式を満足するようにする。
 -5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≧13.0‥‥(1)
 式(1)中、C、Si、Mn、Cr、Ni、Mo、Cu、N:各元素の含有量(質量%)
 (1)式の左辺は、フェライト相の生成傾向を示す指数として求めたものであり、(1)式に示された合金元素を(1)式が満足するように調整して含有すれば、マルテンサイト相とフェライト相、あるいはさらに残留オーステナイト相からなる複合組織を安定して実現することができる。このため、本発明では、(1)式を満足するように、各合金元素量を調整する。なお、(1)式に記載される合金元素を含有しない場合には、(1)式の左辺値は、当該元素の含有量を零%として扱うものとする。
 Cu+Mo+W+Cr+2Ni ≦ 34.5  ‥‥(2)
 式(2)中、Cu、Mo、W、Cr、Ni:各元素の含有量(質量%)
 (2)式の左辺は、残留オーステナイトの生成傾向を示す指数として、本発明者らが新たに導出したものである。(2)式の左辺値が、34.5を超えて大きくなると、残留オーステナイトが過剰となり、所望の高強度を確保できなくなるうえ、耐硫化物応力割れ性、耐硫化物応力腐食割れ性が低下する。このため、本発明では、Cu、Mo、W、Cr、Niを(2)式を満足するように調整する。なお、(2)式の左辺値は、32.5以下とすることが好ましい。より好ましくは31以下である。
 上記した成分が基本の成分であり、上記成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、O(酸素):0.01%以下が許容できる。
 また、本発明では、選択元素として、必要に応じて選択してNb:0.02~0.50%、Ti:0.02~0.16%、Zr:0.02~0.50%のうちから選ばれた1種または2種以上、および/または、REM:0.001~0.05%、Ca:0.001~0.005%、Sn:0.05~0.20%、Mg:0.0002~0.01%のうちから選ばれた1種または2種以上、および/または、Ta:0.01~0.1%、Co:0.01~1.0%、Sb:0.01~1.0%のうちから選ばれた1種または2種以上、を含有できる。
 Nb:0.02~0.50%、Ti:0.02~0.16%、Zr:0.02~0.50%のうちから選ばれた1種または2種以上
 Nb、Ti、Zrは、いずれも、強度増加に寄与する元素であり、必要に応じて選択して含有できる。
 Nbは、上記した強度増加に寄与するとともに、さらに靭性向上にも寄与する。このような効果を確保するためには、Nbを0.02%以上含有することが好ましい。一方、0.50%を超えてNbを含有すると、靭性が低下する。このため、含有する場合には、Nb含有量は0.02~0.50%とする。
 Tiは、上記した強度増加に寄与するとともに、さらに耐硫化物応力割れ性の改善にも寄与する。このような効果を得るためには、Tiを0.02%以上含有することが好ましい。一方、0.16%を超えてTiを含有すると、粗大な析出物が生成し靭性および耐硫化物応力腐食割れ性が低下する。このため、含有する場合には、Ti含有量は0.02~0.16%とする。
 Zrは、上記した強度増加に寄与するとともに、さらに耐硫化物応力腐食割れ性の改善にも寄与する。このような効果を得るためには、Zrを0.02%以上含有することが好ましい。一方、0.50%を超えてZrを含有すると、靭性が低下する。このため、含有する場合には、Zr含有量は0.02~0.50%とする。
 REM:0.001~0.05%、Ca:0.001~0.005%、Sn:0.05~0.20%、Mg:0.0002~0.01%のうちから選ばれた1種または2種以上
 REM、Ca、Sn、Mgはいずれも、耐硫化物応力腐食割れ性の改善に寄与する元素であり、必要に応じて選択して含有できる。このような効果を確保するためには、REMは0.001%以上、Caは0.001%以上、Snは0.05%以上、Mgは0.0002%以上含有することが好ましい。一方、REMは0.05%、Caは0.005%、Snは0.20%、Mgは0.01%を超えてそれぞれ含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、含有する場合には、REM含有量は0.001~0.05%、Ca含有量は0.001~0.005%、Sn含有量は0.05~0.20%、Mg含有量は0.0002~0.01%とする。
 Ta:0.01~0.1%、Co:0.01~1.0%、Sb:0.01~1.0%のうちから選ばれた1種または2種以上
 Ta、Co、Sbはいずれも耐炭酸ガス腐食性(耐CO2腐食性)、耐硫化物応力割れ性および耐硫化物応力腐食割れ性の改善に寄与する元素であり、必要に応じて選択して含有できる。さらに、CoはMs点を高め、強度増加にも寄与する。このような効果を確保するためには、Taは0.01%以上、Coは0.01%以上、Sbは0.01%以上含有することが好ましい。一方、Taは0.1%、Coは1.0%、Sbは1.0%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなる。このため、含有する場合には、Ta含有量は0.01~0.1%、Co含有量は0.01~1.0%、Sb含有量は0.01~1.0%とする。
 つぎに、本発明の油井用高強度ステンレス継目無鋼管の組織限定理由について説明する。
 本発明の油井用高強度ステンレス継目無鋼管は、上記した組成を有し、さらに体積率で、主相(ベース相)としてマルテンサイト相(焼戻マルテンサイト相):45%超、第二相としてフェライト相:10~45%、残留オーステナイト相:30%以下を含有する組織を有する。
 本発明の継目無鋼管では、所望の高強度を確保するために、ベース相はマルテンサイト相(焼戻マルテンサイト相)とし、体積率で45%超とする。そして、本発明では所望の耐食性(耐炭酸ガス腐食性、耐硫化物応力割れ性(耐SSC性)および耐硫化物応力腐食割れ性(耐SCC性))を確保するために、少なくとも第二相として体積率で10~45%のフェライト相を析出させて、マルテンサイト相(焼戻マルテンサイト相)とフェライト相との二相組織とする。これにより、層状組織が管軸方向に形成され、割れの進展が抑制される。フェライト相が10%未満では、上記した層状組織が形成されず、所望の耐食性向上が得られない。一方、フェライト相が45%を超えて多量に析出すると、所望の高強度を確保できなくなる。このようなことから、第二相としてのフェライト相は体積率で10~45%の範囲とする。好ましくは、フェライト相は20~40%である。
 また、第二相としてフェライト相に加えて、体積率で30%以下の残留オーステナイト相を析出させる。残留オーステナイト相の存在により、延性、靭性が向上する。体積率で30%を超えて残留オーステナイト相が多量になると、所望の高強度を確保できなくなる。好ましくは、残留オーステナイト相は体積率で5%以上30%以下である。
 本発明の継目無鋼管の上記の組織の測定としては、まず、組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(倍率:1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(体積%)を算出する。
 そして、X線回折用試験片を、管軸方向に直交する断面(C断面)が測定面となるように、研削、研磨し、X線回折法を用いて残留オーステナイト(γ)量を測定する。残留オーステナイト量は、γの(220)面、αの(211)面、の回折X線積分強度を測定し、次式
 γ(体積率)=100/(1+(IαRγ/IγRα))
 (ここで、Iα:αの積分強度、Rα:αの結晶学的理論計算値、Iγ:γの積分強度、Rγ:γの結晶学的理論計算値)
を用いて換算する。
 また、マルテンサイト相の分率は、フェライト相、残留オーステナイト相以外の残部とする。
 さらに、本発明の油井用高強度ステンレス継目無鋼管は、後方散乱電子回折(EBSD)により結晶方位差15°以内の粒を同一粒とみなした時に100mm2の連続した領域を検査した際のフェライト粒の最大結晶粒径が500μm以下である。フェライト粒の最大結晶粒径が500μm超であると、亀裂進展の障害である結晶粒界の存在数が少なくなるため、所望の低温靭性を得られなくなる。よって、本発明では、鋼管の上記結晶粒径を500μm以下とする。フェライト粒の最大結晶粒径は、好ましくは400μm以下であり、より好ましくは350μm以下である。
 なお、上記の最大結晶粒径は、後方散乱電子回折(EBSD)により結晶方位差15°以内の粒を同一粒とみなす分析を100mm2の連続した領域について実施し、同一フェライト粒と判定された範囲の最大直径をその結晶の結晶粒径とし、100mm2の範囲内の全結晶の結晶粒径のうち最も大きい値を採用することで決定できる。また、本発明では、後述するように、熱間加工前の鋼管素材を1200℃以下の加熱温度に加熱することで、前記EBSDで測定したフェライト粒の最大結晶粒径を500μm以下にすることができる。
 つぎに、本発明の油井用高強度ステンレス継目無鋼管の製造方法について説明する。本発明の油井用高強度ステンレス継目無鋼管の製造方法としては、鋼管素材を、1200℃以下の加熱温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、熱間加工後に、前記継目無鋼管に焼入れ処理および焼戻処理を順次施すことを特徴とする。
 油井用高強度ステンレス継目無鋼管は一般に、通常公知の造管方法であるマンネスマン-プラグミル方式あるいはマンネスマン-マンドレルミル方式により、鋼管素材(ビレットなど)を穿孔することで製造される。穿孔時の鋼管素材の温度が低いと、延性の低下による凹みや穴あき、割れといった欠陥が生じやすいため、鋼管素材は十分な延性を確保できる温度まで加熱される。しかし、高温で加熱すると結晶粒が粗大に成長し、その結果最終的な製品も粗大な結晶粒を有する組織となり、優れた低温靭性値が得られない。
 この点、本発明ではBを一定量以上含有する組成とすることにより熱間加工性が改善され、鋼管素材の加熱温度を1200℃以下としても、欠陥の要因となる延性を損なうことなく加熱時の粒成長を抑制することが出来るため、微細な組織を得られ、優れた低温靭性値が得られる。
 つぎに、本発明の油井用高強度ステンレス継目無鋼管の好ましい製造方法について、出発素材から順に説明する。まず本発明では、上記した組成を有するステンレス継目無鋼管を出発素材とする。出発素材であるステンレス継目無鋼管の製造方法は、前述した鋼管素材の加熱温度以外は特に限定しない。
 上記した組成の溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法、造塊-分塊圧延法等、通常の方法でビレット等の鋼管素材とすることが好ましい。ついで、これら鋼管素材を1200℃以下の温度に加熱し、通常公知の造管方法である、マンネスマン-プラグミル方式、あるいはマンネスマン-マンドレルミル方式の造管工程を用いて、熱間加工して造管し、所望寸法の上記した組成を有する継目無鋼管とする。この熱間加工の際、上記した欠陥の生成を抑制するための延性向上を目的に高温に加熱すると結晶粒が粗大に成長し、最終製品の低温靭性が低下する。そのため、鋼管素材の加熱温度は1200℃以下とする必要があり、好ましくは1180℃以下であり、より好ましくは1150℃以下である。また、加熱温度が1050℃未満となると鋼材の加工性が相当低くなり、本発明鋼をもってしても外面傷を生じることなく造管することが困難になるため、鋼管素材の加熱温度は1050℃以上であることが好ましく、より好ましくは、1100℃以上である。
 造管後、継目無鋼管は、空冷以上の冷却速度で室温まで冷却することが好ましい。これにより、鋼管組織をマルテンサイト相をベース相とする組織を確保できる。なお、プレス方式による熱間押出で継目無鋼管としてもよい。
 ここで、「空冷以上の冷却速度」とは、0.05℃/s以上であり、「室温」とは、40℃以下のことを指す。
 造管後の空冷以上の冷却速度で室温まで冷却する冷却に引続き、本発明では、さらに鋼管を850℃以上の加熱温度に加熱したのち、空冷以上の冷却速度で50℃以下の温度まで冷却する焼入れ処理を施す。これにより、マルテンサイト相をベース相とし、適正量のフェライト相を含む組織の継目無鋼管とすることができる。ここで、「空冷以上の冷却速度」とは、0.05℃/s以上であり、「室温」とは、40℃以下のことを指す。
 焼入れ処理の加熱温度が850℃未満では、所望の高強度を確保することができない。なお、焼入れ処理の加熱温度は、組織の粗大化を防止する観点から1150℃以下とすることが好ましい。より好ましくは下限が900℃であり上限が1100℃である。
 ついで、焼入れ処理を施された継目無鋼管には、Ac1変態点以下の焼戻温度に加熱し冷却(放冷)する焼戻処理を施す。Ac1変態点以下の焼戻温度に加熱し冷却される焼戻処理を施されることにより、組織は焼戻マルテンサイト相、フェライト相、さらには残留オーステナイト相(残留γ相)からなる組織とされる。これにより、所望の高強度と、さらには高靭性、優れた耐食性を有する高強度ステンレス継目無鋼管となる。焼戻温度がAc1変態点を超えて、高温となると、焼入れままのマルテンサイトが生成し、所望の高強度と、さらには高靭性、優れた耐食性を確保できなくなる。なお、焼戻温度は700℃以下、好ましくは550℃以上とすることがより好ましい。
 以下、さらに実施例に基づき、本発明を説明する。
 表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でビレット(鋼管素材)に鋳造し、鋼管素材を加熱し、モデルシームレス圧延機を用いる熱間加工により造管し、外径83.8mm×肉厚12.7mmの継目無鋼管とし、空冷した。このとき、熱間加工前の鋼管素材の加熱温度は表2に示す通りである。
 得られた継目無鋼管から、試験片素材を切り出し、表2に示す条件で加熱したのち、冷却する焼入れ処理を施した。そして、さらに表2に示す条件で加熱し空冷する焼戻処理を施した。
 このように焼入れ-焼戻処理を施された試験片素材から、組織観察用試験片を採取し、組織観察用試験片をビレラ試薬(ピクリン酸、塩酸およびエタノールをそれぞれ2g、10mlおよび100mlの割合で混合した試薬)で腐食して走査型電子顕微鏡(1000倍)で組織を撮像し、画像解析装置を用いて、フェライト相の組織分率(体積%)を算出した。
 また、残留オーステナイト相組織分率は、X線回折法を用いて測定した。焼入れ-焼戻処理を施された試験片素材から測定用試験片を採取し、X線回折によりγの(220)面、αの(211)面、の回折X線積分強度を測定し、次式
 γ(体積率)=100/(1+(IαRγ/IγRα))
ここで、Iα:αの積分強度
    Rα:αの結晶学的理論計算値
    Iγ:γの積分強度
    Rγ:γの結晶学的理論計算値
を用いて換算した。なお、マルテンサイト相の分率はこれらの相以外の残部として算出した。
 また、後方散乱電子回折(EBSD)により結晶方位差15°以内の粒を同一粒とみなす分析を100mm2の連続した領域について実施し、同一フェライト粒と判定された範囲の最大直径を結晶粒径とし、100mm2の範囲内の全結晶の結晶粒径のうち最も大きい値を最大結晶粒径とした。
 また、焼入れ-焼戻処理を施された試験片素材から、API弧状引張試験片を採取し、APIの規定に準拠して引張試験を実施し引張特性(降伏強さYS、引張強さTS)を求めた。また、焼入れ-焼戻処理を施された試験片素材から、JIS Z 2242の規定に準拠して、Vノッチ試験片(10mm厚)を採取し、シャルピー衝撃試験を実施し、-40℃における吸収エネルギーを求め、靭性を評価した。
 さらに、焼入れ-焼戻処理を施された試験片素材から、厚さ3.0mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、腐食試験を実施した。
 腐食試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:200℃、30気圧のCO2ガス雰囲気)中に、試験片を浸漬し、浸漬期間を336時間として実施した。試験後の試験片について、質量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。また、腐食試験後の試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。なお、孔食有りは、直径:0.2mm以上の場合をいう。
 さらに、焼入れ-焼戻処理を施された鋼管から、NACE TM0177 Method Cに準拠して、Cの形をした試験片を機械加工によって作製し、耐SSC試験を実施した。なお、鋼管内外面に相当する曲面に対しては研削や研磨は行っていない。
 また、焼入れ-焼戻処理された試験片素材から、機械加工により、厚さ3mm×幅15mm×長さ115mmの4点曲げ試験片を採取し、耐SCC試験および耐SSC試験を実施した。
 耐SCC(耐硫化物応力腐食割れ)試験は、オートクレーブ中に保持された試験液:20質量%NaCl水溶液(液温:100℃、H2S:0.1気圧、CO2:30気圧の雰囲気)に、酢酸および酢酸ナトリウムを含有する水溶液を加えて、pH:3.3に調整した水溶液中に、試験片を浸漬し、浸漬期間を720時間として、降伏応力の100%を付加応力として付加して、実施した。試験後の試験片について、割れの有無を観察した。
 耐SSC(耐硫化物応力割れ)試験は、試験液:20質量%NaCl水溶液(液温:25℃、H2S:0.1気圧、CO2:0.9気圧の雰囲気)に、酢酸および酢酸ナトリウムを含有する水溶液を加えてpH:3.5に調整した水溶液中に、試験片を浸漬し、浸漬期間を720時間として、降伏応力の90%を付加応力として付加して、実施した。
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明例はいずれも、降伏強さ:862MPa以上の高強度と、-40℃における吸収エネルギー:100J以上の高靭性と、CO2、Clを含む200℃という高温の腐食環境下における耐食性(耐炭酸ガス腐食性)に優れ、さらにH2Sを含む環境下で割れ(SSC、SCC)の発生もなく、優れた耐硫化物応力割れ性および耐硫化物応力腐食割れ性を兼備し、高強度ステンレス継目無鋼管となっている。
 一方、本発明の範囲を外れる比較例は、所望の高強度、低温靭性、耐炭酸ガス腐食性、耐硫化物応力割れ性(耐SSC性)、耐硫化物応力腐食割れ性(耐SCC性)のうちの少なくともいずれかを得られなかった。
 鋼管No.23(鋼No.W)は、Mo含有量が2.7質量%未満であるため、所望の耐SSC性及び耐SCC性を得られなかった。
 鋼管No.24(鋼No.X)は、Cr含有量が17.5質量%超であり、また、フェライト相が45%超であるため、降伏強さYSが862MPa未満であり、vE-40が100J未満であった。
 鋼管No.25(鋼No.Y)は、Ni含有量が6.0質量%超であるため、降伏強さYSが862MPa未満であった。
 鋼管No.26(鋼No.Z)は、Mo含有量が5.0質量%超であるため、vE-40が100J未満であり、孔食が発生し、所望の耐SSC性及び耐SCC性を得られなかった。
 鋼管No.27は(鋼No.AA)は、Cu含有量が4.0質量%超であるため、所望の耐SSC性及び耐SCC性を得られなかった。
 鋼管No.28(鋼No.AB)は、Cr含有量が14.5質量%未満であり、孔食が発生し、所望の耐SSC性及び耐SCC性を得られなかった。
 鋼管No.29(鋼No.AC)は、Cu含有量が0.3質量%未満であり、所望の耐SSC性及び耐SCC性を得られなかった。
 鋼管No.30(鋼No.AD)は、V含有量が0.02質量%未満であり、降伏強さYSが862MPa未満であった。
 鋼管No.31(鋼No.AE)は、W含有量が0.1質量%未満であり、降伏強さYSが862MPa未満であり、孔食が発生し、所望の耐SSC性及び耐SCC性を得られなかった。
 鋼管No.32(鋼No.AF)は、B含有量が0.0100質量%超であるため、vE-40が100J未満であった。
 鋼管No.33(鋼No.AG)は、B含有量が0.0005質量%未満であるため、熱間加工性が不足し造管過程において傷が発生し、所望の耐SSC性が得られなかった。
 鋼管No.36は、加熱温度が1200℃を超えており、フェライト粒の最大結晶粒径が500μm超であり、vE-40が100J未満であった。
 鋼管No.37は、Si含有量が0.5質量%超であり、熱間加工性が不足し造管過程において傷が発生し、所望の耐SSC性が得られなかった。
 鋼管No.38は、Mn含有量が1.0質量%超であり、vE-40が100J未満であった。
 鋼管No.39は、Mn含有量が0.15質量%未満であり、降伏強さYSが862MPa未満であった。
 鋼管No.40は、Cr含有量が14.5質量%未満であり、所望の耐炭酸ガス腐食性、耐孔食性、耐SSC性及び耐SCC性を得られなかった。
 鋼管No.41は、Ni含有量が3.0質量%未満であり、降伏強さYSが862MPa未満であるとともに、所望の耐炭酸ガス腐食性、耐孔食性、耐SSC性及び耐SCC性を得られなかった。
 鋼管No.42は、Mo含有量が2.7質量%未満であり、所望の耐SSC性及び耐SCC性を得られなかった。

Claims (5)

  1.  質量%で、
     C :0.05%以下、         Si:0.5%以下、
     Mn:0.15~1.0%、        P :0.030%以下、
     S :0.005%以下、        Cr:14.5~17.5%、
     Ni:3.0~6.0%、         Mo:2.7~5.0%、
     Cu:0.3~4.0%、         W :0.1~2.5%、
     V :0.02~0.20%、        Al:0.10%以下、
     N :0.15%以下、         B:0.0005~0.0100%、
    を含有し、C、Si、Mn、Cr、Ni、Mo、Cu、Nが下記(1)式を満足し、さらにCu、Mo、W、Cr、Niが下記(2)式を満足し、残部Feおよび不可避的不純物からなる組成を有し、
     体積率で、主相としてマルテンサイト相:45%超、第二相としてフェライト相:10~45%、残留オーステナイト相:30%以下を含有する組織を有し、後方散乱電子回折(EBSD)により結晶方位差15°以内の粒を同一粒とみなした時に、100mm2の連続した領域を検査した際のフェライト粒の最大結晶粒径が500μm以下である、降伏強さが862MPa以上である油井用高強度ステンレス継目無鋼管。
                        記
      -5.9×(7.82+27C-0.91Si+0.21Mn-0.9Cr+Ni-1.1Mo+0.2Cu+11N)≧13.0‥‥(1)
     式(1)中、C、Si、Mn、Cr、Ni、Mo、Cu、N:各元素の含有量(質量%)
      Cu+Mo+W+Cr+2Ni ≦ 34.5  ‥‥(2)
     式(2)中、Cu、Mo、W、Cr、Ni:各元素の含有量(質量%)
  2.  前記組成に加えてさらに、質量%で、Nb:0.02~0.50%、Ti:0.02~0.16%、Zr:0.02~0.50%のうちから選ばれた1種または2種以上を含有する請求項1に記載の油井用高強度ステンレス継目無鋼管。
  3.  前記組成に加えてさらに、質量%で、REM:0.001~0.05%、Ca:0.001~0.005%、Sn:0.05~0.20%、Mg:0.0002~0.01%のうちから選ばれた1種または2種以上を含有する請求項1または2に記載の油井用高強度ステンレス継目無鋼管。
  4.  前記組成に加えてさらに、質量%で、Ta:0.01~0.1%、Co:0.01~1.0%、Sb:0.01~1.0%のうちから選ばれた1種または2種以上を含有する請求項1~3のいずれかに記載の油井用高強度ステンレス継目無鋼管。
  5.  請求項1~4のいずれか1項に記載の油井用高強度ステンレス継目無鋼管の製造方法であり、
     鋼管素材を、1200℃以下の加熱温度で加熱し、熱間加工を施して所定形状の継目無鋼管とし、前記熱間加工後に、前記継目無鋼管に焼入れ処理および焼戻処理を順次施す油井用高強度ステンレス継目無鋼管の製造方法。
PCT/JP2018/001868 2017-02-24 2018-01-23 油井用高強度ステンレス継目無鋼管およびその製造方法 WO2018155041A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18758356.2A EP3561131B1 (en) 2017-02-24 2018-01-23 High strength seamless stainless steel pipe for oil well and production method therefor
BR112019017105-3A BR112019017105B1 (pt) 2017-02-24 2018-01-23 Tubo de aço inoxidável sem costura de alta resistência para produtos tubulares petrolíferos e método de produção do mesmo
CN201880012878.3A CN110312816A (zh) 2017-02-24 2018-01-23 油井用高强度不锈钢无缝钢管及其制造方法
RU2019126391A RU2716438C1 (ru) 2017-02-24 2018-01-23 Бесшовная высокопрочная труба из нержавеющей стали нефтепромыслового сортамента и способ её изготовления
JP2018526260A JP6399259B1 (ja) 2017-02-24 2018-01-23 油井用高強度ステンレス継目無鋼管およびその製造方法
MX2019010035A MX2019010035A (es) 2017-02-24 2018-01-23 Tubo sin costura de acero inoxidable de alta resistencia para productos tubulares de region petrolifera, y metodo para la produccion del mismo.
US16/487,203 US11306369B2 (en) 2017-02-24 2018-01-23 High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-033009 2017-02-24
JP2017033009 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155041A1 true WO2018155041A1 (ja) 2018-08-30

Family

ID=63252576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001868 WO2018155041A1 (ja) 2017-02-24 2018-01-23 油井用高強度ステンレス継目無鋼管およびその製造方法

Country Status (8)

Country Link
US (1) US11306369B2 (ja)
EP (1) EP3561131B1 (ja)
JP (1) JP6399259B1 (ja)
CN (1) CN110312816A (ja)
AR (1) AR111060A1 (ja)
MX (1) MX2019010035A (ja)
RU (1) RU2716438C1 (ja)
WO (1) WO2018155041A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021187331A1 (ja) * 2020-03-19 2021-09-23
JPWO2021187330A1 (ja) * 2020-03-19 2021-09-23
WO2022009598A1 (ja) 2020-07-06 2022-01-13 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法
WO2024209843A1 (ja) * 2023-04-06 2024-10-10 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321389B1 (en) 2015-07-10 2020-10-14 JFE Steel Corporation High strength seamless stainless steel pipe and manufacturing method therefor
BR112018015713B1 (pt) * 2016-02-08 2021-11-16 Jfe Steel Corporation Tubulaqao de aqo inoxidavel sem emenda de alta resistencia para poqo de oleo e metodo para fabricar a mesma
BR112018068914B1 (pt) * 2016-03-29 2022-02-15 Jfe Steel Corporation Tubo de aço inoxidável sem costura de alta resistência para poço de óleo
RU2698233C1 (ru) 2016-07-27 2019-08-23 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочная бесшовная труба из нержавеющей стали для трубных изделий нефтепромыслового сортамента и способ ее производства
US11230756B2 (en) 2016-09-02 2022-01-25 Jfe Steel Corporation Ferritic stainless steel
US11261512B2 (en) * 2016-09-02 2022-03-01 Jfe Steel Corporation Ferritic stainless steel
MX2019008377A (es) 2017-01-13 2019-09-16 Jfe Steel Corp Tubo de acero inoxidable sin soldadura de alta resistencia y metodo de fabricacion del mismo.
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
CN110462079B (zh) 2017-03-30 2021-07-13 杰富意钢铁株式会社 铁素体系不锈钢
EP3604589A4 (en) * 2017-05-26 2020-04-29 JFE Steel Corporation FERRITIC STAINLESS STEEL
MX2020001801A (es) 2017-08-15 2020-03-20 Jfe Steel Corp Tubo sin costura de acero inoxidable de alta resistencia para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo.
WO2019065116A1 (ja) * 2017-09-29 2019-04-04 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
MX2020002836A (es) 2017-09-29 2020-07-22 Jfe Steel Corp Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo.
WO2020202957A1 (ja) 2019-03-29 2020-10-08 Jfeスチール株式会社 ステンレス継目無鋼管
CN115807190A (zh) * 2022-11-28 2023-03-17 攀钢集团攀枝花钢铁研究院有限公司 一种输油用高强度耐腐蚀不锈钢无缝管及其制造方法
WO2024113654A1 (zh) * 2023-04-21 2024-06-06 达力普石油专用管有限公司 一种耐腐蚀高韧性石油套管及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101755A (ja) 1996-04-15 1998-01-06 Nippon Steel Corp 耐食性、耐硫化物応力腐食割れに優れたマルテンサイトステンレス鋼及びその製造方法
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2008081793A (ja) 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
WO2010050519A1 (ja) 2008-10-30 2010-05-06 住友金属工業株式会社 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管
WO2010134498A1 (ja) 2009-05-18 2010-11-25 住友金属工業株式会社 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
WO2014097628A1 (ja) * 2012-12-21 2014-06-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2016132403A1 (ja) * 2015-02-20 2016-08-25 Jfeスチール株式会社 高強度継目無厚肉鋼管およびその製造方法
WO2017138050A1 (ja) * 2016-02-08 2017-08-17 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145452A (ja) 1993-11-19 1995-06-06 Nippon Steel Corp 溶接性に優れた強靭高耐銹性ステンレス鋼
US5778714A (en) * 1995-05-19 1998-07-14 Nkk Corporation Method for manufacturing seamless pipe
KR100676659B1 (ko) 2002-06-14 2007-01-31 제이에프이 스틸 가부시키가이샤 내열성 페라이트계 스테인리스강 및 그 제조 방법
WO2004001082A1 (ja) 2002-06-19 2003-12-31 Jfe Steel Corporation 油井用ステンレス鋼管およびその製造方法
US7520942B2 (en) 2004-09-22 2009-04-21 Ut-Battelle, Llc Nano-scale nitride-particle-strengthened high-temperature wrought ferritic and martensitic steels
JP5487689B2 (ja) 2009-04-06 2014-05-07 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
AU2011246246B2 (en) 2010-04-28 2013-09-05 Nippon Steel Corporation High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
JP5640762B2 (ja) 2011-01-20 2014-12-17 Jfeスチール株式会社 油井用高強度マルテンサイト系ステンレス継目無鋼管
MX354334B (es) * 2012-03-26 2018-02-26 Nippon Steel & Sumitomo Metal Corp Acero inoxidable para pozos de petróleo y tuberías de acero inoxidable para pozos de petróleo.
JP5488643B2 (ja) * 2012-05-31 2014-05-14 Jfeスチール株式会社 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP5924256B2 (ja) 2012-06-21 2016-05-25 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
WO2014112353A1 (ja) 2013-01-16 2014-07-24 Jfeスチール株式会社 油井用ステンレス継目無鋼管およびその製造方法
JP6075349B2 (ja) 2013-10-08 2017-02-08 Jfeスチール株式会社 フェライト系ステンレス鋼
JP6102798B2 (ja) 2014-02-28 2017-03-29 Jfeスチール株式会社 リールバージ敷設に優れるラインパイプ用マルテンサイト系ステンレス鋼管の製造方法
CN106414785B (zh) 2014-05-21 2018-10-09 杰富意钢铁株式会社 油井用高强度不锈钢无缝钢管及其制造方法
JP6159775B2 (ja) 2014-10-31 2017-07-05 新日鐵住金ステンレス株式会社 耐排ガス凝縮水腐食性とろう付け性に優れたフェライト系ステンレス鋼及びその製造方法
JP6237873B2 (ja) 2014-11-19 2017-11-29 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管
JP6202010B2 (ja) 2015-01-16 2017-09-27 Jfeスチール株式会社 高強度2相ステンレス継目無鋼管の製造方法
JP6341125B2 (ja) 2015-03-17 2018-06-13 Jfeスチール株式会社 2相ステンレス継目無鋼管の製造方法
EP3321389B1 (en) 2015-07-10 2020-10-14 JFE Steel Corporation High strength seamless stainless steel pipe and manufacturing method therefor
JP6156609B1 (ja) * 2016-02-08 2017-07-05 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
ES2922626T3 (es) 2016-03-29 2022-09-19 Jfe Steel Corp Chapa de acero inoxidable ferrítico utilizada para soldadura TIG
US10930940B2 (en) 2016-06-10 2021-02-23 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
US10763517B2 (en) 2016-06-10 2020-09-01 Jfe Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
CN106282845A (zh) * 2016-08-31 2017-01-04 浙江恒源钢业有限公司 一种耐腐蚀无缝不锈钢管及其制备方法
US11261512B2 (en) 2016-09-02 2022-03-01 Jfe Steel Corporation Ferritic stainless steel
US11230756B2 (en) 2016-09-02 2022-01-25 Jfe Steel Corporation Ferritic stainless steel
MX2019008377A (es) 2017-01-13 2019-09-16 Jfe Steel Corp Tubo de acero inoxidable sin soldadura de alta resistencia y metodo de fabricacion del mismo.
US20200002779A1 (en) 2017-01-26 2020-01-02 Jfe Steel Corporation Hot-rolled ferritic stainless steel sheet and method for manufacturing same
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
EP3604589A4 (en) 2017-05-26 2020-04-29 JFE Steel Corporation FERRITIC STAINLESS STEEL
MX2020001801A (es) 2017-08-15 2020-03-20 Jfe Steel Corp Tubo sin costura de acero inoxidable de alta resistencia para productos tubulares de region petrolifera, y metodo para la fabricacion del mismo.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH101755A (ja) 1996-04-15 1998-01-06 Nippon Steel Corp 耐食性、耐硫化物応力腐食割れに優れたマルテンサイトステンレス鋼及びその製造方法
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2008081793A (ja) 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管
WO2010050519A1 (ja) 2008-10-30 2010-05-06 住友金属工業株式会社 耐硫化物応力割れ性と耐高温炭酸ガス腐食に優れた高強度ステンレス鋼管
WO2010134498A1 (ja) 2009-05-18 2010-11-25 住友金属工業株式会社 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
WO2014097628A1 (ja) * 2012-12-21 2014-06-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
JP2015110822A (ja) 2012-12-21 2015-06-18 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
WO2016132403A1 (ja) * 2015-02-20 2016-08-25 Jfeスチール株式会社 高強度継目無厚肉鋼管およびその製造方法
WO2017138050A1 (ja) * 2016-02-08 2017-08-17 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561131A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021187331A1 (ja) * 2020-03-19 2021-09-23
JPWO2021187330A1 (ja) * 2020-03-19 2021-09-23
WO2021187330A1 (ja) * 2020-03-19 2021-09-23 Jfeスチール株式会社 ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2021187331A1 (ja) * 2020-03-19 2021-09-23 Jfeスチール株式会社 ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
JP7156537B2 (ja) 2020-03-19 2022-10-19 Jfeスチール株式会社 ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
JP7156536B2 (ja) 2020-03-19 2022-10-19 Jfeスチール株式会社 ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2022009598A1 (ja) 2020-07-06 2022-01-13 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法
WO2024209843A1 (ja) * 2023-04-06 2024-10-10 Jfeスチール株式会社 ステンレス継目無鋼管およびその製造方法

Also Published As

Publication number Publication date
RU2716438C1 (ru) 2020-03-12
US11306369B2 (en) 2022-04-19
EP3561131A4 (en) 2019-12-25
JP6399259B1 (ja) 2018-10-03
BR112019017105A2 (pt) 2020-04-14
CN110312816A (zh) 2019-10-08
AR111060A1 (es) 2019-05-29
JPWO2018155041A1 (ja) 2019-02-28
US20190376157A1 (en) 2019-12-12
MX2019010035A (es) 2019-09-26
EP3561131A1 (en) 2019-10-30
EP3561131B1 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6399259B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6304460B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6766887B2 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6226081B2 (ja) 高強度ステンレス継目無鋼管およびその製造方法
JP5967066B2 (ja) 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
JP5924256B2 (ja) 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
WO2017138050A1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
EP3508596B1 (en) Dual-phase stainless seamless steel pipe and method of production thereof
JP6156609B1 (ja) 油井用高強度ステンレス継目無鋼管およびその製造方法
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
WO2021187330A1 (ja) ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
WO2021187331A1 (ja) ステンレス継目無鋼管およびステンレス継目無鋼管の製造方法
EP4234725A1 (en) High-strength stainless steel seamless pipe for oil well, and method for producing same
JP4470617B2 (ja) 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
JP6819837B1 (ja) ステンレス継目無鋼管
JP7226571B2 (ja) ステンレス継目無鋼管およびその製造方法
JP6915761B1 (ja) ステンレス継目無鋼管およびその製造方法
WO2022224640A1 (ja) ステンレス鋼管およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526260

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018758356

Country of ref document: EP

Effective date: 20190723

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019017105

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019017105

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190816