WO2010044425A1 - エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 - Google Patents

エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 Download PDF

Info

Publication number
WO2010044425A1
WO2010044425A1 PCT/JP2009/067789 JP2009067789W WO2010044425A1 WO 2010044425 A1 WO2010044425 A1 WO 2010044425A1 JP 2009067789 W JP2009067789 W JP 2009067789W WO 2010044425 A1 WO2010044425 A1 WO 2010044425A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
etfe
solution
tetrafluoroethylene copolymer
temperature
Prior art date
Application number
PCT/JP2009/067789
Other languages
English (en)
French (fr)
Inventor
健 射矢
中野 貴志
智行 藤田
森澤 義富
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN2009801414548A priority Critical patent/CN102186909B/zh
Priority to EP09820603A priority patent/EP2338933B1/en
Priority to JP2010533914A priority patent/JPWO2010044425A1/ja
Publication of WO2010044425A1 publication Critical patent/WO2010044425A1/ja
Priority to US13/071,720 priority patent/US20110178193A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/32Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising halogenated hydrocarbons as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/082Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/22Specific non-solvents or non-solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0544Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0892Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms containing monomers with other atoms than carbon, hydrogen or oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen

Definitions

  • the present invention relates to a method for producing an ethylene / tetrafluoroethylene copolymer porous material and an ethylene / tetrafluoroethylene copolymer porous material obtained by the production method.
  • porous bodies such as porous films and porous hollow fibers made of a resin such as a polyolefin-based resin have a desired fine pore and are widely used in various fields because they are inexpensive and lightweight.
  • separation of fine particles in cleaning chemicals and gases in semiconductor manufacturing processes aseptic separation of brewed products, removal of viruses in blood products, blood dialysis, seawater desalination, etc.
  • Examples include battery separators.
  • the fluororesin porous body is excellent in chemical resistance, solvent resistance, heat resistance, and other characteristics, and thus has been studied as a filter material.
  • fluororesins that have been put into practical use as porous bodies are polytetrafluoroethylene (hereinafter sometimes abbreviated as PTFE) and vinylidene fluoride-based resin (hereinafter sometimes abbreviated as PVDF). is there.
  • a highly porous PTFE film having fine pores is obtained by mixing a PTFE fine powder obtained by emulsion polymerization with a liquid lubricant (auxiliary) and pressing it into a predetermined shape. It is manufactured by stretching in the major axis direction to make it porous and fired.
  • Highly porous PTFE films are used in clinical medicine fields such as blood component analysis, serum and sterilization of injections, semiconductor industry fields such as removal of fine particles in LSI cleaning water and cleaning chemicals, and public health fields such as air pollution tests. Widely used as a filter.
  • the highly porous PTFE film has high water and oil repellency, and its micropores have a property of passing water vapor but blocking water droplets. It is also widely used in the field of general waterproof clothing.
  • the porous PTFE material is relatively soft due to its material, the creep resistance is not sufficient, and there is a problem that when wound, the porous material is deformed, the pores are crushed and the filterability is lowered.
  • PTFE has a very high melt viscosity, and there is a problem that melt molding such as extrusion molding and injection molding used in polyolefin resins is difficult. Therefore, the form of the PTFE porous body is limited to a film form or the like, and a special processing technique is required to form an arbitrary form according to the application, for example, a form of a hollow fiber or the like.
  • the porous body made from PVDF is excellent in chemical resistance compared with polyolefin resin, it has the fault of being easily attacked by some chemicals.
  • the porous body made of PVDF has insufficient alkali resistance, and there is a problem that a strong alkaline chemical cannot be used for cleaning the porous body.
  • Patent Documents 1, 2, and 3 disclose a method for producing a porous body made of an ethylene / tetrafluoroethylene copolymer (hereinafter sometimes abbreviated as ETFE).
  • ETFE ethylene / tetrafluoroethylene copolymer
  • the present invention provides a method for easily producing a porous body of an ethylene / tetrafluoroethylene copolymer having excellent chemical resistance and filtration performance and high heat resistance in a wide range of porosity, and a method for producing the same It aims at providing the ethylene / tetrafluoroethylene copolymer porous body obtained by this.
  • the present invention provides a method for producing an ethylene / tetrafluoroethylene copolymer porous body and an ethylene / tetrafluoroethylene copolymer porous body having the following configuration.
  • An ethylene / tetrafluoroethylene copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is obtained at 300 ° C. or lower in a solvent capable of dissolving the ethylene / tetrafluoroethylene copolymer.
  • a process for producing an ethylene / tetrafluoroethylene copolymer porous material comprising:
  • the predetermined concentration in the step (A) is a mass ratio of the ethylene / tetrafluoroethylene copolymer to the solvent indicated by the ethylene / tetrafluoroethylene copolymer / the solvent in the solution. 15/85 to 65/35, The method for producing an ethylene / tetrafluoroethylene copolymer porous material according to the above [1] or [2].
  • the solvent is at least one selected from the group consisting of a fluorine-containing aromatic compound, an aliphatic compound having at least one carbonyl group, and a hydrofluoroalkyl ether.
  • Cooling in the step (C) allows the extrudate immediately after the step (B) to pass through a dry section having a length of 0.1 to 100 mm, 0 ° C. or more and a phase separation temperature of the solution or less. Then, the method for producing a porous ethylene / tetrafluoroethylene copolymer according to the above [7], which is carried out by introducing it into the cooling liquid.
  • a wide range of ethylene / tetrafluoroethylene copolymer porous bodies containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene having excellent chemical resistance and filtration performance can be obtained. It can be easily obtained within the range of porosity. Moreover, the obtained porous body is a porous body having various shapes within a wide range of porosity, and has excellent separation performance.
  • FIG. 2 is a scanning electron micrograph (100,000 times) of the surface of the ETFE porous film of the present invention obtained in Example 1.
  • FIG. 2 is a scanning electron micrograph (10,000 magnifications) of a cross section of an ETFE hollow fiber of the present invention obtained in Example 2.
  • FIG. 2 is a scanning electron micrograph (magnified 30,000 times) of the ETFE hollow fiber cross section of the present invention obtained in Example 3.
  • FIG. 4 is a scanning electron micrograph (10,000 magnifications) of a cross section of the ETFE hollow fiber of the present invention obtained in Example 4.
  • FIG. 2 is a scanning electron micrograph (25,000 times) of a cross section of an ETFE hollow fiber of the present invention obtained in Example 5.
  • FIG. 4 is a scanning electron micrograph (10,000 magnifications) of a cross section of an ETFE hollow fiber of the present invention obtained in Example 6.
  • the manufacturing method of the porous body of the ethylene / tetrafluoroethylene copolymer containing the repeating unit based on ethylene of this invention and the repeating unit based on tetrafluoroethylene is demonstrated.
  • the ethylene / tetrafluoroethylene copolymer may be abbreviated as “ETFE”.
  • ETFE is more specifically, ethylene. Is a term used for an ethylene / tetrafluoroethylene copolymer containing a repeating unit based on and a repeating unit based on tetrafluoroethylene.
  • ETFE containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is dissolved in a solvent capable of dissolving the ETFE at 300 ° C. or lower, and the phase separation temperature of the resulting solution is 300 ° C. or lower.
  • a step (A) of obtaining a solution by dissolving at a predetermined concentration at the above temperature, and a step of molding the solution at a temperature not higher than 300 ° C. and not lower than the phase separation temperature of the solution B
  • ETFE in the present invention is not particularly limited as long as it is ETFE containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene.
  • ETFE a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene
  • TFE tetrafluoroethylene
  • examples include ETFE as a repeating unit.
  • the molar ratio of the repeating unit based on TFE / the repeating unit based on ethylene is preferably 70/30 to 30/70, more preferably 65/35 to 40/60, and most preferably 60/40. Up to 40/60.
  • ETFE in the present invention may contain a repeating unit based on another monomer in addition to the repeating unit based on TFE and ethylene.
  • a group, X represents a fluorine atom or a trifluoromethyl group, m represents an integer of 0 to 5), and perfluor
  • monomers that may be included in ETFE in the present invention include monomers having a crosslinkable functional group in addition to the above-mentioned comonomers.
  • monomers having a crosslinkable functional group include itaconic anhydride, maleic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, and the like.
  • the ETFE contains repeating units based on other monomers
  • the content is preferably 30 mol% or less, more preferably 0.1 to 15 mol%, based on all repeating units of ETFE, Most preferably, it is 0.2 to 10 mol%.
  • the melt index value (hereinafter referred to as MI) of an ethylene / tetrafluoroethylene copolymer such as ETFE is 0.5 to 40 (unit: g / 10 min), preferably 1 to 30.
  • MI is a measure of melt moldability. When it is large, the molecular weight of ETFE is small, and when it is small, the molecular weight of ETFE is large. If the MI is too large, the viscosity of the solution tends to decrease and the hollow shape cannot be maintained, or the strength of the porous body after molding tends to decrease. If the MI is too small, the viscosity of the solution becomes too high and the moldability tends to be inferior. MI is measured by the method prescribed in ASTM D3159-98.
  • the shape of ETFE when ETFE is dissolved in a solvent is preferable because a powder can be dissolved in a short time, but other shapes such as pellets can also be used.
  • ETFE in the present invention it is possible to use a copolymer obtained by copolymerizing ethylene, TFE, and other monomers which may optionally be contained by a usual method.
  • the polymerization method include solution polymerization, suspension polymerization, emulsion polymerization, bulk polymerization and the like.
  • ETFE in this invention what is obtained as a commercial item can also be used.
  • ETFE Asahi Glass Co., Ltd .: Fluon (registered trademark) ETFE Series, Fluon (registered trademark) LM Series, Daikin Industries, Ltd .: Neoflon (registered trademark), Dyneon: Dyneon (registered trademark)
  • ETFE manufactured by DuPont: Tefzel (registered trademark)
  • the melting point of ETFE in the present invention is not particularly limited, but is preferably 130 ° C. to 275 ° C., more preferably 140 ° C. to 265 ° C., and most preferably 150 ° C. to 260 ° C. from the viewpoints of solubility, strength and the like. It is.
  • one of these ETFEs can be used alone, or two or more of them can be used as a mixture.
  • step (A) in the production method of the present invention the ETFE is dissolved in a solvent capable of dissolving at 300 ° C. or lower, the ETFE is at a temperature of 300 ° C. or lower, and a temperature equal to or higher than the phase separation temperature of the obtained solution.
  • step (A) in the production method of the present invention the ETFE is dissolved in a solvent capable of dissolving at 300 ° C. or lower, the ETFE is at a temperature of 300 ° C. or lower, and a temperature equal to or higher than the phase separation temperature of the obtained solution.
  • This is a step of obtaining a solution by dissolving to a concentration.
  • the solvent used in the step (A) in the production method of the present invention is not particularly limited as long as it is a solvent that can dissolve the ETFE at a temperature of 300 ° C. or lower, but at a temperature not higher than the melting point of ETFE to be dissolved in the solvent.
  • a solvent capable of dissolving 1% by mass or more of ETFE with respect to the amount of the solvent is preferable.
  • the amount capable of dissolving ETFE is more preferably 5% by mass or more, and most preferably 10 to 90% by mass.
  • Such a solvent is preferably one or more solvents selected from the group consisting of fluorine-containing aromatic compounds, aliphatic compounds having one or more carbonyl groups, and hydrofluoroalkyl ethers. These solvents are solvents that cannot dissolve ETFE at room temperature, but can dissolve ETFE at least at a temperature lower than the melting point of ETFE to form an ETFE solution having an appropriate viscosity.
  • the fluorine-containing aromatic compound used in the present invention preferably has a melting point of 230 ° C. or lower, more preferably 200 ° C. or lower, and further preferably ⁇ 50 to 180 ° C. When the melting point is within this range, the handleability when dissolving ETFE is excellent.
  • the fluorine content in the fluorine-containing aromatic compound ((fluorine atom weight ⁇ number of fluorine atoms in molecule) ⁇ 100 / molecular weight) is preferably 5 to 75% by mass, more preferably 9 to 75% by mass. 12 to 75% by mass is more preferable. When in this range, the solubility of ETFE is excellent.
  • fluorine-containing aromatic compounds include fluorine-containing benzonitrile, fluorine-containing benzoic acid and esters thereof, fluorine-containing polycyclic aromatic compounds, fluorine-containing nitrobenzene, fluorine-containing phenylalkyl alcohol, fluorine-containing phenol and Its ester, fluorine-containing aromatic ketone, fluorine-containing aromatic ether, fluorine-containing aromatic sulfonyl compound, fluorine-containing pyridine compound, fluorine-containing aromatic carbonate, perfluoroalkyl-substituted benzene, perfluorobenzene, benzoic acid polyfluoroalkyl ester, phthalate And polyfluoroalkyl esters of acids and aryl esters of trifluoromethanesulfonic acid.
  • fluorine-containing aromatic compound used as the solvent in the present invention fluorine-containing benzonitrile, fluorine-containing benzoic acid and its ester, fluorine-containing polycyclic aromatic compound, fluorine-containing nitrobenzene, fluorine-containing phenylalkyl alcohol , Fluorinated phenols and esters thereof, fluorinated aromatic ketones, fluorinated aromatic ethers, fluorinated aromatic sulfonyl compounds, fluorinated pyridine compounds, fluorinated aromatic carbonates, perfluoroalkyl-substituted benzenes, perfluorobenzenes, and benzoic acid poly
  • fluorine-containing aromatic compound used as the solvent in the present invention fluorine-containing benzonitrile, fluorine-containing benzoic acid and its ester, fluorine-containing polycyclic aromatic compound, fluorine-containing nitrobenzene, fluorine-containing phenylalkyl alcohol , Fluorinated
  • fluorine-containing aromatic compounds more preferred compounds include pentafluorobenzonitrile, 2,3,4,5-tetrafluorobenzonitrile, 2,3,5,6-tetrafluorobenzonitrile, 2, 4,5-trifluorobenzonitrile, 2,4,6-trifluorobenzonitrile, 3,4,5-trifluorobenzonitrile, 2,3-difluorobenzonitrile, 2,4-difluorobenzonitrile, 2,5 -Difluorobenzonitrile, 2,6-difluorobenzonitrile, 3,4-difluorobenzonitrile, 3,5-difluorobenzonitrile, 4-fluorobenzonitrile, 3,5-bis (trifluoromethyl) benzonitrile, 2- (Trifluoromethyl) benzonitrile, 3- (trifluoromethyl) benzene Zonitrile, 4- (trifluoromethyl) benzonitrile, 2- (trifluoromethoxy) benzon
  • the aliphatic compound having one or more carbonyl groups used as a solvent in the production method of the present invention preferably has a melting point of 220 ° C. or lower, more preferably 50 ° C. or lower, and still more preferably ⁇ 50 to 20 ° C.
  • the boiling point of the aliphatic compound having one or more carbonyl groups is preferably the same as or higher than the temperature at which the carbonyl group-containing aliphatic compound dissolves the ETFE.
  • an aliphatic compound having a boiling point of the carbonyl group-containing aliphatic compound equal to or lower than the dissolution temperature is also applicable.
  • “Spontaneously generated pressure” refers to the pressure that a mixture of solvent and ETFE naturally exhibits in a closed container.
  • ETFE and the above carbonyl group-containing aliphatic compound are heated to a predetermined temperature in a sealed container to obtain a transparent and uniform solution.
  • the heating temperature is preferably not higher than the melting point of ETFE, and preferably 30 ° C. or lower than the melting point of ETFE.
  • the possibility of dissolution depends only on the type and temperature of the aliphatic compound used, and is not related to the pressure. Therefore, if the mixture of the aliphatic compound and ETFE reaches a predetermined temperature, the pressure at that time is not particularly limited. When using an aliphatic compound having a lower boiling point, the spontaneously generated pressure increases.
  • the boiling point of the carbonyl group-containing aliphatic compound to be used is preferably room temperature or higher, and 50 ° C. or higher. Is more preferable, and 80 ° C. or higher is most preferable.
  • the upper limit of the boiling point of the carbonyl group-containing aliphatic compound is not particularly limited, but when used for forming a thin film by coating or the like, it is preferably 220 ° C. or lower from the viewpoint of easiness of drying.
  • the aliphatic compound having one or more carbonyl groups is preferably a cyclic ketone having 3 to 10 carbon atoms, a ketone such as a chain ketone, a chain ester, an ester such as a glycol monoether monoester, And at least one selected from the group consisting of carbonates.
  • the number of carbonyl groups is preferably 1 or 2.
  • the molecular structure of the aliphatic compound having one or more carbonyl groups is not particularly limited.
  • the carbon skeleton may be linear, branched, or cyclic, and the main chain or carbonization constituting the side chain may be used.
  • -Etheric oxygen may be present between carbon bonds, and a part of hydrogen atoms bonded to carbon atoms may be substituted with a halogen atom such as a fluorine atom.
  • a halogen atom such as a fluorine atom.
  • a carbonyl group-containing aliphatic compound used in the present invention a cyclic ketone is more preferable. These may be used alone or in combination of two or more.
  • carbonyl group-containing aliphatic compound in the present invention include the following compounds.
  • cyclic ketone examples include cyclopentanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-ethylcyclohexanone, 2,6-dimethylcyclohexanone, 3,3,5-trimethylcyclohexanone, 4-tert-butylcyclohexanone, Examples include cycloheptanone and isophorone.
  • chain ketone examples include acetone, methyl ethyl ketone, 2-pentanone, methyl isopropyl ketone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 2-octanone, 2-nonanone, diisobutyl ketone, 2-decanone and the like.
  • chain ester examples include ethyl formate, isopentyl formate, methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, hexyl acetate, cyclohexyl acetate, 2-ethylhexyl acetate, ethyl butyrate, butyl butyrate, pentyl butyrate Bis (2,2,2-trifluoroethyl) adipate, methyl cyclohexanecarboxylate, 2,2,2-trifluoroethyl cyclohexanecarboxylate, ethyl perfluoropentanoate and the like.
  • Examples of monoether monoesters of the glycols include 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 1-methoxy-2-acetoxypropane, 1-ethoxy-2-acetoxypropane, 3-acetic acid 3- Examples thereof include methoxybutyl and 3-methoxy-3-methylbutyl acetate.
  • carbonate examples include bis (2,2,3,3-tetrafluoropropyl) carbonate, bis (2,2,2-trifluoroethyl) carbonate, diethyl carbonate, propylene carbonate, and the like.
  • hydrofluoroalkyl ether used as a solvent in the production method of the present invention examples include 1,1,1,2,3,3-hexafluoro-4- (1,1,2,3,3,3 -Hexafluoropropoxy) pentane, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4- (trifluoromethyl) pentane and the like.
  • the hydrofluoroalkyl ether used in the present invention is 1,1,1,2,3,3-hexafluoro-4- (1,1,2,3,3,3-hexafluoropropoxy). Pentane is preferred.
  • the above solvents may be used alone or in combination of two or more.
  • the speed of phase separation may be controlled.
  • a solvent that does not dissolve or swell ETFE up to the melting point of ETFE or the boiling point of a liquid is defined as a non-solvent.
  • a non-solvent may be contained in the ETFE solution as long as the solubility of ETFE is not impaired.
  • the ETFE non-solvent include aromatic compounds not containing fluorine atoms, alcohols, and the like. Of these, aromatic compounds containing no fluorine atom, such as benzonitrile, acetophenone, nitrobenzene, and methyl benzoate, are preferably used in the production method of the present invention.
  • the mixing ratio in the case where the ETFE solution contains a non-solvent together with a solvent capable of dissolving ETFE alone is a solvent / non-solvent (mass ratio) capable of dissolving ETFE alone. 9/1 to 1/9 is preferable, and 7/3 to 3/7 is more preferable.
  • the ETFE solution contains a non-solvent in combination with a solvent capable of dissolving ETFE alone
  • a mixture of a solvent capable of dissolving ETFE and a non-solvent alone is referred to as a “solvent”.
  • the concentration of the ETFE solution prepared in the step (A) is 15/85 to 15/85 to the mass ratio of ETFE to the solvent represented by “ETFE / solvent” in the ETFE solution.
  • the ratio is preferably 65/35, more preferably 20/80 to 60/40, and most preferably 25/75 to 55/45.
  • the mass ratio of ETFE to the solvent in the ETFE solution is within this range, a hollow fiber having high strength and elongation characteristics can be easily obtained.
  • the content of ETFE in the ETFE solution is too large, the porosity of the produced hollow fiber is reduced, and the water permeability may be lowered.
  • the viscosity of the ETFE solution in the temperature range not higher than 300 ° C. and not lower than the phase separation temperature of the ETFE solution is preferably 1 to 10000 Pa ⁇ s, more preferably 5 to 5000 Pa ⁇ s, most preferably 10 to 1000 Pa ⁇ s. preferable.
  • the viscosity of the ETFE solution is set to an orifice having a diameter of 1 mm and a length of 10 mm in a melt fluidity measuring apparatus “Capillograph” having a furnace inner diameter of 9.55 mm manufactured by Toyo Seiki Seisakusho Co., Ltd. It is the value of the viscosity measured by extruding at the above temperature and the piston speed of 10 mm / min.
  • the viscosity of the ETFE solution is within this range, it is easy to form the ETFE solution into a shape such as a hollow fiber in the next step (B).
  • the ETFE solution produced in this step (A) contains a powder having a primary particle diameter of 10 nm to 1 ⁇ m.
  • the powder may be an organic powder or an inorganic powder as long as it can be dissolved and removed from the solidified ETFE product obtained in step (C) with a removal solvent.
  • the inorganic powder is preferably used. Is used.
  • the ETFE porous body obtained by the production method of the present invention tends to have a porous structure having a uniform pore size. It is also possible to increase the porosity in the resulting ETFE porous body by dissolving and removing the powder with a removal solvent. Furthermore, since the ETFE solution obtained in the step (A) is imparted with an appropriate viscosity by the addition of powder, it is easy to form into a shape such as a hollow fiber in the next step (B).
  • the primary particle size of the powder is more preferably 10 nm to 0.5 ⁇ m, and further preferably 30 nm to 0.3 ⁇ m.
  • any conventionally known powder can be used and is not particularly limited.
  • Specific examples include anhydrous silica, talc, clay, kaolin, mica, zeolite, calcium carbonate, barium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, magnesium sulfate, zinc oxide, calcium oxide, magnesium oxide, titanium oxide, and hydroxide.
  • examples thereof include inorganic powders such as aluminum, magnesium hydroxide, and calcium phosphate.
  • anhydrous silica is preferable from the viewpoint of good dispersibility with respect to ETFE and removal with an alkali.
  • the content of the powder in the ETFE solution is not particularly limited as long as it does not interfere with the solubility of ETFE and the moldability of the ETFE solution.
  • the content of the powder is preferably 50 parts by mass or less, more preferably 0 to 30% by mass with respect to 100 parts by mass of the total amount of ETFE and the solvent.
  • the removal solvent used when removing the powder from the solidified molded product of ETFE after the step (C) or in parallel with the step (C) is any solvent that dissolves the powder but does not dissolve the ETFE. There is no particular limitation.
  • the powder is soluble in acid, hydrochloric acid, sulfuric acid or the like is used, and when the powder is soluble in alkali, an aqueous alkali solution such as caustic soda or caustic potash is used.
  • the ETFE solution in the present invention is obtained by the step (A) of dissolving ETFE in the above solvent at a temperature of 300 ° C. or lower to a predetermined concentration.
  • the lower limit of the solution preparation temperature in step (A) is the phase separation temperature of the solution at the predetermined concentration.
  • a mixture containing at least two kinds of compounds, here ETFE and a solvent is separated into two phases at a temperature below the phase separation temperature, and thus does not form a uniform solution. That is, the solution can be produced only at a temperature higher than the phase separation temperature.
  • the temperature of the obtained ETEF solution is 300 degrees C or less, and is the temperature more than the phase separation temperature of the said solution.
  • the temperature at which ETFE dissolves in the above-mentioned solvent that is, the dissolution temperature varies depending on the type of solvent, the solution composition, etc.
  • the vertical axis indicates the temperature
  • the horizontal axis indicates the concentration ratio of ETFE and the solvent
  • the ETFE and solvent at each temperature It is preferable to optimize by the phase diagram in which the concentration of the two-phase coexistence with is plotted. If the temperature at which ETFE is dissolved in the solvent is too high in the production method of the present invention, ETFE is thermally deteriorated and the solvent is volatilized or thermally deteriorated. If the temperature is lower than the phase separation temperature in the solution, ETFE does not dissolve in the solvent.
  • the temperature at which ETFE is dissolved in the solvent in the step (A) is preferably a temperature 5 to 100 ° C. higher than the phase separation temperature of the solution to be produced, and more preferably 20 ° C. to the phase separation temperature.
  • the temperature is 50 ° C higher.
  • the upper limit of the said melting temperature in the manufacturing method of this invention is 300 degreeC, it should be below the melting
  • the dissolution when ETFE is dissolved in the solvent, conditions other than temperature are not particularly limited, and it is usually preferable to carry out under normal pressure. However, depending on the type of ETFE and the solvent used, when the boiling point of the solvent is lower than the dissolution temperature, the dissolution may be carried out under pressure in a pressure vessel, for example, about 0.01 to 1 MPa.
  • the dissolution time depends on the ETFE used, the type of solvent, the shape of the ETFE, the concentration of the ETFE solution to be prepared, and the like.
  • the phase separation temperature is also called a cloud point (cloud point), and when a solution of a certain concentration is maintained at a temperature higher than that temperature, the solute (ETFE in the present invention) and the solvent are mixed. It becomes a uniform one-phase solution, but below the cloud point is the temperature at which phase separation occurs.
  • the ETFE solution is brought to a temperature state equal to or lower than the phase separation temperature, it is separated into two phases of a solvent-containing and ETFE-rich phase and an ETFE-containing and solvent-rich phase.
  • ETFE is fixed in a ETFE-rich phase, and a porous precursor is formed.
  • the heat transfer rate in the ETFE solution is assumed to be 100 times faster than the diffusion rate of the solvent / non-solvent. If the cooling temperature is sufficiently lower than the crystallization temperature, the thickness of the porous body usually provided is 10 ⁇ m. At ⁇ 1 mm, phase separation / solidification occurs throughout the ETFE almost instantaneously after the cooling of the ETFE solution starts.
  • a stirrer usually used for preparing various solutions can be used without particular limitation.
  • a stirring device specifically, a homomixer, a Henschel mixer, a Banbury mixer, a batch-type kneading device such as a pressure kneader, a pressure vessel with a stirring device, or a kneading device such as an extruder or a kneader.
  • a stirring device specifically, a homomixer, a Henschel mixer, a Banbury mixer, a batch-type kneading device such as a pressure kneader, a pressure vessel with a stirring device, or a kneading device such as an extruder or a kneader.
  • a pressure vessel equipped with the stirring device for example, a device such as an autoclave with a stirrer is used, and the shape of the stirring blade is a marine propeller blade, paddle blade, anchor blade, turbine blade Etc. are used.
  • the ETFE solution is 300 ° C. or lower through the following step (B) until reaching step (C). It is maintained at a temperature equal to or higher than the phase separation temperature.
  • the production of the ETFE solution and the molding of the ETFE solution should be performed continuously using the above-mentioned devices having both kneading and extrusion functions such as a single-screw or twin-screw extruder and a kneader. Is advantageous.
  • the holding temperature of the ETFE solution may be the same as or different from the temperature at the time of preparation of the solution, that is, at the time of dissolution, as long as the temperature is not higher than 300 ° C. and higher than the phase separation temperature of the solution.
  • an apparatus having both functions of kneading and extrusion for example, a uniaxial or biaxial extruder
  • components such as ETFE, solvent, and optionally added powder are quantitatively uniaxially or biaxially separated from independent feeders.
  • An ETFE solution can be manufactured by supplying to a screw extruder and kneading in an extruder.
  • addition of arbitrary components, such as the said powder may be performed by mixing with a solvent or ETFE previously.
  • the step (B) is a step of forming the ETFE solution obtained in the step (A) at a temperature of 300 ° C. or lower and a phase separation temperature of the solution or higher to obtain a molded product.
  • a method usually used for forming a solution can be used without particular limitation as a method for forming an ETFE solution.
  • an extrusion means for example, a single-screw or twin-screw extruder, is used to discharge the ETFE solution from a discharge port and extrude into a hollow fiber or film.
  • a general coating film forming method such as coating or spray coating the ETFE solution on the surface of the substrate can be used.
  • extrusion molding is preferably used as a molding means of the ETFE solution in the step (B) from the viewpoint that it can be continuously molded instead of a batch type.
  • a double-tube type die or a triple-tube type die for spinning a hollow fiber can be used as a die for the discharge port.
  • a slit-shaped base may be used.
  • the molding temperature of the ETFE solution in the step (B), specifically, the temperature of the base of the discharge port in the case of extrusion molding, the coating liquid temperature in the coating film forming method, etc. are the ETFE solution in the above step (A).
  • the temperature range is from the phase separation temperature of the used ETFE solution to 300 ° C., and preferably from the phase separation temperature of the solution to the melting point of ETFE.
  • the molding temperature and the melting temperature may be the same or different, but the melting temperature is preferably set to a temperature higher than the molding temperature from the viewpoint that the melting is performed uniformly in a short time.
  • the ETFE solution when the ETFE solution is extruded into a hollow fiber shape using a double annular die, the ETFE solution is extruded from the outer annular portion, and at the same time, the gas or liquid as the hollow forming material is injected into the inner annular portion. Extrude from.
  • the ETFE solution is extruded from the central annular part, and at the same time, the gas or liquid as the hollow forming material is extruded from the inner annular part, and the gas or liquid is similarly extruded from the outer annular part.
  • the solvent is prevented from volatilizing from the surface of the hollow fiber.
  • step (B) the molded product of the ETFE solution molded as described above in the temperature range from the phase separation temperature of the ETFE solution to 300 ° C. is obtained by the following step (C). Cooled below the phase separation temperature.
  • the ETFE solution molded product having a temperature equal to or higher than the phase separation temperature obtained in the step (B) is cooled to a temperature lower than the phase separation temperature of the solution. It is a step of solidifying the ETFE.
  • the cooling temperature of the ETFE solution molding is not particularly limited as long as it is not higher than the phase separation temperature of the ETFE solution to be cooled, but is preferably 20 ° C. or higher than the phase separation temperature of the ETFE solution, more preferably the phase separation temperature.
  • the temperature is 50 ° C. or more lower.
  • the lower limit of the cooling temperature of the ETFE solution molded product is not particularly limited, but is preferably ⁇ 10 ° C., more preferably 0 ° C. from the viewpoint of handling of the cooling medium.
  • the ETFE porous body has a structure in which ETFE forms a spherical structure or a network structure by the operation of cooling and solidifying in the step (C), and these structures are connected to each other and have voids therebetween. Is manufactured.
  • a gas or a liquid may be used as a cooling medium in the step (C).
  • the gas for cooling is not particularly limited as long as it is a gas that is not reactive with ETFE and the solvent at the above cooling temperature, but preferably air or nitrogen gas can be used.
  • the cooling liquid is not particularly limited as long as it is a liquid that is not reactive with ETFE and the solvent at the above cooling temperature.
  • the ETFE solution molding immediately after molding in the step (B) is cooled, the ETFE solution molding is performed. Those having a boiling point higher than the temperature of the product and not dissolving ETFE at that temperature are preferred.
  • Specific examples of such a cooling liquid include 2,6-difluorobenzonitrile, isophorone, silicone oil, water, and the like, and preferably silicone oil.
  • the cooling method of the step (C) is specifically an ETFE solution that is discharged from a discharge port and formed into a hollow fiber shape or a film shape.
  • a method of cooling by directing the liquid directly to a cooling bath filled with a cooling liquid can be mentioned.
  • the solvent is volatilized from the outer surface of the ETFE solution molding, and the concentration of ETFE is increased, thereby suppressing the formation of a dense layer on the outer surface of the finally obtained porous body. This is preferable.
  • the ETFE solution molding is introduced into the cooling liquid immediately after molding. Is preferable.
  • the cooling medium for forming the hollow portion may be the same or different from the cooling liquid used in the cooling bath, and the air Or a gas such as nitrogen gas.
  • These cooling media are not particularly limited and may be appropriately selected depending on the properties of the target hollow fiber, etc., but the solvent for the ETFE solution, the cooling liquid used in the cooling bath, and the hollow portion forming If the cooling medium is the same kind, it is highly convenient in recovering the solvent in the production process and is preferable from the viewpoint of the production process.
  • the cooling liquid is preferably a liquid having a boiling point higher than the molding temperature of the ETFE solution molding, in this case, the temperature of the die, and does not dissolve ETFE near that temperature.
  • the cooling liquid may be used depending on the structure of the extruder to be used, it may be possible to use a cooling liquid whose boiling point is lower than the temperature of the ETFE solution molding, and the cooling liquid is appropriately selected according to the structure of the extruder to be used. It is possible.
  • the ETFE solution molded product is dried at 0 ° C. or more and below the phase separation temperature of the solution (air traveling portion or air). It is also possible to use a cooling method in which the ETFE solution molded product is cooled below its phase separation temperature to solidify the ETFE by passing it through a cooling bath filled with a cooling liquid. is there.
  • the length of the dry part is preferably 0.1 to 100 mm, more preferably 0.1 to 50 mm, and most preferably 0.1 to 30 mm.
  • the passing time of the dry part is preferably 0.1 to 10 seconds, more preferably 0.1 to 5 seconds, although it depends on the shape and size of the ETFE solution molding.
  • the passage time of the dry part of the ETFE solution molded product extruded using an extruder or the like can be adjusted by controlling the extrusion speed, the winding speed, etc. of the apparatus.
  • a dense layer is appropriately formed on the outer surface of the ETFE solution molded product, and fouling resistance is expected to be improved. It is preferable when it is used for a porous body, for example, for chemical treatment. If the dry part is made longer than 100 mm, the solvent volatilizes more than necessary from the outer surface of the ETFE solution molding and the concentration of ETFE increases, so an excessively dense layer is formed on the outer surface of the finally obtained porous body. Is done. In addition, in order to adjust the formation degree of a dense layer, you may devise so that the atmosphere of an aerial travel part may be maintained at fixed temperature and humidity.
  • the temperature of the dry part is not particularly limited as long as it is equal to or lower than the phase separation temperature of the ETFE solution to be cooled.
  • cooling liquid used in the cooling bath when the dry part is provided is not particularly limited, but water, ethanol, acetone, hexane and the like are preferably used. Of these, water is particularly preferred.
  • the ETFE porous body is produced by sequentially performing the above-described step (A), step (B) and step (C).
  • the ETFE solidified product solidified in the cooling medium of the cooling bath has a structure in which ETFE forms a spherical structure or a network structure, and these structures are connected and have voids therebetween. It is an ETFE porous body.
  • the ETFE porous material obtained by solidifying in the cooling medium in the step (C) is in a state containing a solvent phase-separated from ETFE solution in the voids.
  • This solvent may be extracted in the cooling bath in step (C), but may be extracted in that step by providing an extraction step (D) separately. In terms of simplicity, it is preferable that cooling and extraction are performed in parallel in the cooling bath in the step (C).
  • the ETFE porous body obtained above contains powder
  • extraction of these powder is performed as needed.
  • the removal solvent is not particularly limited as long as it dissolves powder and does not dissolve ETFE.
  • the powder is soluble in acid, hydrochloric acid, sulfuric acid or the like is used, and when the powder is soluble in alkali, an aqueous alkali solution such as caustic soda or caustic potash is used.
  • the powder is extracted by immersing the ETFE porous material containing the powder in a removal medium for dissolving the powder under conditions of temperature and time appropriately selected. Is done. After removing the powder from the ETFE porous body, it may be washed with water and dried as necessary.
  • a step of further stretching the ETFE porous body obtained above by a known method may be provided.
  • the ETFE porous body is stretched at a temperature of about 80 to 130 ° C., for example, a part of the spherical structure and the aggregate of ETFE molecules that connect the spherical structure and the spherical structure are uniformly stretched, and there are many fine and elongated pores. It is formed.
  • the obtained stretched porous material has improved water permeability and the like while maintaining the strong elongation characteristics.
  • the ETFE porous body of the present invention can be obtained by the method for producing an ETFE porous body of the present invention having the steps (A) to (C) or the steps (A) to (D). .
  • the ETFE porous body of the present invention can be formed into any shape that can be produced by the production method of the present invention, for example, a hollow fiber shape, a tube shape, a sheet shape, or a film shape.
  • the porosity is preferably 20 to 90%, and the average pore diameter of the micropores is preferably 0.01 to 20 ⁇ m.
  • the porosity is more preferably 40 to 85%, and most preferably 60 to 80%. When the porosity is within this range, the porous body has high strength and high permeability for substances such as water permeability.
  • the porosity is also preferably controlled by the content of ETFE in the ETFE solution used in the production method of the present invention. When it is desired to obtain a high porosity, the ETFE content is decreased, and when a low porosity is desired, the content is increased.
  • the average pore diameter of the fine pores of the ETFE porous body is more preferably 0.01 to 10 ⁇ m, and most preferably 0.01 to 5 ⁇ m. When the average pore diameter is within this range, high water permeability and separation performance can be obtained when the porous body is used for turbidity or removal of microorganisms, for example.
  • the porosity is 40 to 85% and the average pore diameter of the micropores is 0.01 to 5 ⁇ m.
  • the average pore diameter of the fine pores of the porous body refers to the average pore diameter of the through holes of the porous material measured based on the bubble point method according to JIS K3832.
  • the average pore diameter can be easily measured using a general measuring device such as a palm porometer manufactured by PMI.
  • the average pore diameter can be adjusted depending on the cooling rate of the ETFE solution molding, the type of cooling medium used for cooling, and the like. In order to obtain a large average pore diameter, a medium having a large cooling rate and a large heat capacity is used for the cooling bath. Further, when it is desired to obtain a small average pore diameter, a medium having a small cooling rate and a small heat capacity is used for the cooling bath.
  • the pore diameter of the pores is easy to control and narrow compared to other methods such as the conventional stretching method.
  • a porous body having a pore size distribution can be obtained in various shapes and high porosity.
  • the ETFE porous body obtained by the production method of the present invention has such a homogeneous porous structure, it has a high mechanical strength in the same manner as a resin porous body obtained by a general phase separation method. Strength can be expected.
  • the melt index value (MI) of ETFE and the pore size distribution / average pore size of the fluorocopolymer porous material were measured by the following methods.
  • melt index value (MI) The melt index value (MI) of ETFE was measured at 297 ° C. using a melt indexer (manufactured by Takara Kogyo Co., Ltd.) in accordance with ASTM D3159-98.
  • the average pore size and pore size distribution of the fine pores in the porous body of ETFE were measured using a pore size distribution measuring instrument (PMI, manufactured by PMI) based on the bubble point method in accordance with ASTM F316-86 and JIS K3832.
  • Example 1 Preparation of ETFE porous film by thermally induced phase separation method
  • ETFE a film-like ETFE porous body was produced by the following method.
  • 30 g of ETFE (Asahi Glass Co., Ltd .: Fluon (registered trademark) LM-720AP, melting point: 225 ° C., melt index value: 18.7 (297 ° C.), hereinafter referred to as “ETFE1”) in a glass separable flask.
  • 170 g of 2,6-difluorobenzonitrile was heated to 185 ° C. with stirring to obtain a uniform solution (the concentration of ETFE 1 was 15% by mass).
  • a 4 cm square glass plate was immersed in this solution, and then pulled up to coat the glass plate with the solution.
  • the glass plate after being pulled up was rapidly cooled by a water bath.
  • the obtained glass plate coated with the ETFE1 solution was immersed in acetone for 12 hours to sufficiently elute and wash the solvent (2,6-difluorobenzonitrile), and then dried under reduced pressure at room temperature for 1 hour. Subsequently, the coating film was peeled from the glass plate to obtain an ETFE1 film (thickness: 300 ⁇ m).
  • the ETFE1 film obtained above was confirmed to have a porous structure by observation using a scanning electron microscope.
  • the 100,000 times photograph of the scanning electron microscope of the surface of the ETFE1 film obtained is shown in FIG.
  • the pore size of the ETFE1 porous film was a pore size distribution of 0.06 to 2.0 ⁇ m, and the average pore size was 1.5 ⁇ m. Further, the porosity of the ETFE1 porous film was estimated to be 85% by the method of calculating the volume fraction from the addition amount of resin and solvent and the specific gravity.
  • Example 2 Preparation of ETFE porous hollow fiber by thermally induced phase separation method
  • a uniform and transparent 2,6-difluorobenzonitrile solution (concentration of ETFE1 of 30% by mass) of ETFE1 produced at a temperature of 200 ° C. was cooled and solidified.
  • the obtained ETFE1 molded product was finely crushed and extruded into a hollow fiber (inner diameter: 2 mm, outer diameter: 3 mm) at 180 ° C. using a capillary flow tester (manufactured by Toyo Seiki Seisakusho) equipped with a hollow fiber capillary, and air-cooled. It was cooled rapidly.
  • the obtained hollow fiber was immersed in acetone for 24 hours to extract the solvent (2,6-difluorobenzonitrile) and then dried.
  • FIG. 2 shows a 10,000 times photograph of a scanning electron microscope of the obtained ETFE1 hollow fiber cross section.
  • the pore diameter of the porous hollow fiber of ETFE1 was a pore diameter distribution of 0.06 to 0.086 ⁇ m, and the average pore diameter was 0.07 ⁇ m. Further, the porosity of the ETFE1 porous hollow fiber was 72%.
  • Example 3 Preparation of ETFE porous hollow fiber by heat-induced phase separation method ETFE using a compound kneading extruder IMC-1973 (made by Imoto Seisakusho Co., Ltd.) having a double tubular die for hollow fiber extrusion molding A porous hollow fiber was produced. First, 150 g of ETEF1 and 150 g of 2,6-difluorobenzonitrile were put into a composite kneading extruder and mixed at a temperature of 200 ° C. to prepare an ETFE1 solution (the concentration of ETFE1 was 50% by mass).
  • the ETFE1 solution was extruded in the form of a hollow fiber into air at room temperature from the above-mentioned double tubular cap set at 200 ° C., and the hollow fiber was cooled to the cooling water layer at 20 ° C. while cooling with air. It was immersed in a layer and solidified to obtain a hollow fiber shaped product.
  • the cooling distance from the base to the cooling water tank, that is, the air gap was 10 mm.
  • the obtained hollow fiber-like molded product was immersed in acetone at 60 ° C. for 1 hour in a pressure vessel to extract the solvent (2,6-difluorobenzonitrile) and then dried.
  • FIG. 3 shows a 30,000 times photograph of a scanning electron microscope of the obtained ETFE1 hollow fiber cross section.
  • the pore diameter of the porous hollow fiber of ETFE1 was a pore diameter distribution of 0.04 to 0.1 ⁇ m, and the average pore diameter was 0.06 ⁇ m. Further, the porosity of the ETFE1 porous hollow fiber was 56%.
  • Example 4 Preparation of ETFE porous hollow fiber by heat-induced phase separation method The same as Example 3 except that the distance from the die of the composite kneading extruder to the cooling water tank, that is, the air gap was changed to 50 mm. Then, a hollow fiber made of ETFE1 was formed.
  • FIG. 4 shows a 10,000 times photograph of a scanning electron microscope of the obtained ETFE1 hollow fiber cross section.
  • the pore diameter of the porous hollow fiber of ETFE1 was a pore diameter distribution of 0.04 to 0.06 ⁇ m, and the average pore diameter was 0.043 ⁇ m. Further, the porosity of the ETFE1 porous hollow fiber was 52%.
  • Example 5 Preparation of ETFE porous hollow fiber by heat-induced phase separation method Using the composite kneading extruder used in Example 3 above, 120 g of ETEF1 and 180 g of isophorone were mixed at a temperature of 190 ° C. An ETFE solution was prepared. Thereafter, the temperature of the double tubular die of the composite kneading extruder was set to 180 ° C., the distance from the die of the extruder to the cooling bath, and the air gap was changed to 20 mm in the same manner as in Example 3 above. A hollow fiber made of ETFE1 was molded.
  • FIG. 5 shows a 25,000 times photograph of a scanning electron microscope of the cross section of the obtained ETFE1 hollow fiber.
  • the pore diameter of the porous hollow fiber of ETFE1 was a pore diameter distribution of 0.04 to 0.06 ⁇ m, and the average pore diameter was 0.057 ⁇ m.
  • the porosity of the ETFE1 porous hollow fiber was 68%.
  • ETFE2 melting point: 190 ° C., melt index value: : 149 (297 ° C.), hereinafter referred to as “ETFE2”), hollow fibers were formed.
  • Example 3 Using the composite kneading extruder used in Example 3, 90 g of ETFE2 and 270 g of 2,6-difluorobenzonitrile were mixed at a temperature of 145 ° C. to prepare a solution of ETFE2. Then, the temperature of the double tubular die of the composite kneading extruder is 145 ° C., the cooling medium inside the hollow fiber is water of 50 ° C., the distance from the die of the extruder to the cooling bath, and the air gap is 20 mm, respectively. A hollow fiber made of ETFE2 was formed in the same manner as in Example 3 except for the change.
  • FIG. 6 shows a 10,000 times photograph of a scanning electron microscope of the obtained ETFE2 hollow fiber cross section.
  • the pore diameter of the porous hollow fiber of ETFE2 was a pore diameter distribution of 0.24 to 0.26 ⁇ m, and the average pore diameter was 0.25 ⁇ m.
  • the porosity of the ETFE2 porous hollow fiber was 75%.
  • the ETFE3 composition was molded using a capillary flow tester (manufactured by Toyo Seiki Seisakusho) with a hollow fiber capillary to obtain a hollow fiber molded product (inner diameter: 2 mm, outer diameter: 3 mm).
  • the obtained hollow fiber-shaped molded product was immersed in a 15% by mass potassium hydroxide aqueous solution at 90 ° C. for 2 hours to extract a part of anhydrous silica to obtain a hollow fiber.
  • Tensilon with a thermostatic chamber (Orientec Co., Ltd.) was used to preheat the hollow fiber at 115 ° C.
  • porous hollow made of ETFE3 A thread (inner diameter: 1.3 mm, outer diameter: 1.7 mm) was obtained.
  • the porous hollow fiber made of ETFE3 obtained above had a pore size distribution of 0.13 to 0.25 ⁇ m and an average pore size of 0.25 ⁇ m.
  • the porosity of the porous hollow fiber was 67%.
  • ETFE4 Fluon (registered trademark) C-88AX, melting point: 260 ° C., melt index value: 3.8 (300 ° C.), glass transition temperature: 93 ° C., hereinafter referred to as “ETFE4”) 1800 g of polyvinylidene fluoride (manufactured by Kureha: KF polymer T- # 1100 (trade name)) as a solvent-soluble resin, and anhydrous silica (manufactured by Nippon Aerosil Co., Ltd .: AEROSILOX 50 (trade name)) as primary particles 750 g having an average particle diameter of 40 nm) was melt-kneaded at a molding temperature of 280 ° C. using a twin screw extruder to obtain pellets.
  • the mass ratio of ETFE4 / polyvinylidene fluoride / anhydrous silica in the obtained pellet was 32
  • the pellets obtained above were melt-kneaded at a resin temperature of 280 ° C. using a 30 mm single-screw extruder, and melt-extruded in an electric wire coating extruder equipped with a die having an outer diameter of 2.9 mm ⁇ and an inner diameter of 2.0 mm ⁇ . And cooled in a water bath. Thereafter, the core wire was drawn out to obtain a hollow tubular molded product (tube) as a molded body having an outer diameter of 1.5 mm ⁇ and an inner diameter of 0.9 mm ⁇ . The obtained hollow tubular molded product is cut into a predetermined size, and then immersed in N, N-dimethylformamide (a solvent of polyvinylidene fluoride) heated to 65 ° C.
  • N, N-dimethylformamide a solvent of polyvinylidene fluoride
  • this hollow tubular molded product contains Polyvinylidene fluoride was extracted.
  • the obtained hollow tube was further immersed in a 15% by mass KOH aqueous solution heated to 80 ° C. for 2 hours to extract anhydrous silica.
  • the extracted hollow tube was washed with water and preliminarily dried (preliminary heat treatment) at 80 ° C. for 24 hours to obtain a porous hollow tube of ETFE4.
  • This porous hollow tube was heat-treated at 230 ° C. for 24 hours using a hot-air gear oven to obtain a product porous hollow tube. This heat treatment temperature of 230 ° C.
  • the porosity of the porous hollow fiber made of ETFE4 thus obtained was 45%.
  • the ETFE porous body can be easily produced in a wider porosity range than the conventional method, and the pore diameter A porous body with a sharp distribution can be created.
  • the ethylene / tetrafluoroethylene copolymer porous body containing the repeating unit based on ethylene and the repeating unit based on tetrafluoroethylene of the present invention has high porosity, uniform pore diameter, high strength, precision Suitable for applications such as filtration membranes and separation membranes such as ultrafiltration membranes. Excellent chemical resistance, excellent heat resistance, and high mechanical strength, so it can be used for water treatment such as drinking water, water purification, sewage treatment and human waste treatment, membrane separation activated sludge treatment, wastewater treatment, and wastewater treatment. It can be used as a separator for secondary batteries. Specific examples include a water treatment membrane, a separation hollow fiber, a water treatment hollow fiber, a secondary battery separator, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)

Abstract

 優れた耐薬品性と濾過性能を備え、かつ高い耐熱性を有する、エチレン/テトラフルオロエチレン共重合体多孔体を幅広い空孔率の範囲で簡便に製造する方法およびこれにより得られたエチレン/テトラフルオロエチレン共重合体多孔体の提供。  エチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体を、300℃以下で前記エチレン/テトラフルオロエチレン共重合体を溶解しうる溶媒に、300℃以下の温度で所定の濃度となるように溶解させて溶液を得る工程と、前記溶液を成形して成形物とする工程と、前記成形物を前記溶液の相分離温度以下の温度に冷却して前記エチレン/テトラフルオロエチレン共重合体を凝固させる工程とを有するエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。

Description

エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体
 本発明は、エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびその製造方法により得られたエチレン/テトラフルオロエチレン共重合体多孔体に関する。
 従来、ポリオレフィン系樹脂等の樹脂からなる、多孔質フィルムや多孔質中空糸等の多孔体は、所望の微細孔を有し、かつ安価、軽量であることから様々な分野で広く使用されている。例えば、半導体製造工程における洗浄用薬品や気体中の微粒子の分離、醸造品の無菌分離、血液製剤中のビールス除去、血液の透析、海水の脱塩等の精密な濾過膜や分離膜として、または電池のセパレータ等が挙げられる。
 なかでもフッ素樹脂多孔体は、耐薬品性、耐溶剤性、耐熱性等の特性に優れることから、フィルター材料等として、多くの検討がなされている。現在、多孔体として実用化されているフッ素樹脂は、ポリテトラフルオロエチレン(以下、PTFEと略記することもある。)、およびフッ化ビニリデン系樹脂(以下、PVDFと略記することもある。)である。
 微細孔を有する高多孔質のPTFEフィルムは、乳化重合によリ得られるPTFEのファインパウダーに液状潤滑剤(助剤)を混合して押し固めた後、所定の形状に押出し、この押出成形品を長軸方向に延伸して多孔化し焼成して製造される。高多孔質PTFEフィルムは、血液成分分析、血清、注射薬の除菌等臨床医学分野、LSIの洗浄水や洗浄薬品中の微粒子除去等の半導体産業分野、大気汚染検査等の公衆衛生分野等でフィルターとして広く使用されている。また、高多孔質PTFEフィルムは、高い撥水・撥油性を有し、かつ、その微細孔が水蒸気は通すが水滴は遮蔽する特性を有するので、通気性防水布として、産業分野のみならず、一般の防水衣料の分野でも広く使用されている。
 しかしながら、PTFEの多孔体は、その材質に由来して比較的軟質であるため、耐クリープ性が充分でなく、巻回すると多孔体が変形し孔が潰れて濾過性が低下するという問題がある。また、PTFEは、溶融粘度が極めて高く、ポリオレフィン系樹脂で用いられている押出成形、射出成形等の溶融成形が困難であるという問題もある。そのため、PTFE多孔体の形態は、フィルム状等に限定され、用途に応じた任意の形態、例えば中空糸等の形態とすることは、特殊な加工技術が必要となる。
 また、PVDF製の多孔体は、ポリオレフィン系樹脂と比較して耐薬品性は優れるものの、一部の薬品に容易に侵されるという欠点がある。特に、PVDF製の多孔体は、耐アルカリ性が不十分であり、多孔体の洗浄に強アルカリ性薬品を使用できないという問題がある。
 特許文献1、2および3には、エチレン/テトラフルオロエチレン共重合体(以下、ETFEと略記することもある。)製の多孔体の製造方法が、開示されている。これらの方法で得られるETFE多孔体の空孔率を高くしようとすると機械的強度が低くなるという問題点があった。また、特許文献3の製造方法では、ETFE多孔体、特に高い空孔率のETFE多孔体を得るには、工程が煩雑であり、より簡便な製造方法が求められていた。
特公昭63-11370号公報 特許第3265678号公報 特開2008-13615号公報
 本発明は、優れた耐薬品性と濾過性能を備え、かつ高い耐熱性を有する、エチレン/テトラフルオロエチレン共重合体の多孔体を幅広い空孔率の範囲で簡便に製造する方法およびその製造方法により得られたエチレン/テトラフルオロエチレン共重合体多孔体を提供することを目的とする。
 本発明は、以下の構成を有するエチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体を提供する。
 [1]エチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体を、前記エチレン/テトラフルオロエチレン共重合体を溶解しうる溶媒に、300℃以下かつ得られる溶液の相分離温度以上の温度で所定の濃度となるように溶解して溶液を得る工程(A)と、
 前記溶液を300℃以下かつ前記溶液の相分離温度以上の温度で成形して成形物とする工程(B)と、
 前記溶液の相分離温度以上の温度の成形物を前記溶液の相分離温度以下の温度に冷却して前記エチレン/テトラフルオロエチレン共重合体を凝固させる工程(C)と、
 を有することを特徴とするエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [2]前記工程(A)における溶解が、前記溶液の相分離温度以上かつ前記エチレン/テトラフルオロエチレン共重合体の融点以下の温度で行われる上記[1]に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [3]前記工程(A)における所定の濃度が、前記溶液中の、前記エチレン/テトラフルオロエチレン共重合体/前記溶媒で示される前記溶媒に対する前記エチレン/テトラフルオロエチレン共重合体の質量割合として、15/85~65/35である上記[1]または[2]に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [4]前記工程(C)における冷却を、冷却用液体中で行うことを特徴とする上記[1]~[3]のいずれかに記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [5]前記溶媒が、含フッ素芳香族化合物、カルボニル基を1個以上有する脂肪族化合物、および、ハイドロフルオロアルキルエーテルからなる群から選ばれる少なくとも一種である上記[1]~[4]のいずれかに記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [6]前記工程(A)において、前記溶液が、一次粒子径が10nm~1μmの粉体を含有する上記[1]~[5]のいずれかに記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [7]前記工程(B)が、前記溶液を押出成形物として吐出することで行われる上記[4]~[6]のいずれかに記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [8]前記工程(C)における冷却が、前記工程(B)直後の前記押出成形物を、長さ0.1~100mm、0℃以上かつ前記溶液の相分離温度以下の乾式部に通過させ、ついで前記冷却用液体に導入して行うことからなる上記[7]に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [9]前記冷却用液体が、エチレン/テトラフルオロエチレン共重合体の非溶媒である上記[4]、[7]または[8]に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [10]さらに前記溶媒の抽出工程(D)を有する、上記[1]~[9]のいずれかに記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
 [11]上記[1]~[10]のいずれかに記載の製造方法で得られた、形状がフィルムまたは中空糸であることを特徴とするエチレン/テトラフルオロエチレン共重合体多孔体。
 [12]空孔率が20~90%であり、微細孔の平均孔径が0.01~20μmである、上記[11]に記載のエチレン/テトラフルオロエチレン共重合体多孔体。
 本発明の製造方法によれば、優れた耐薬品性と濾過性能を備えた、エチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体多孔体を、幅広い空孔率の範囲で容易に得ることができる。また、得られた多孔体は、幅広い空孔率の範囲で種々の形状を有する多孔体であり、優れた分離性能を有する。
実施例1で得られた本発明のETFE多孔フィルム表面の走査型電子顕微鏡写真(10万倍)である。 実施例2で得られた本発明のETFE中空糸断面の走査型電子顕微鏡写真(1万倍)である。 実施例3で得られた本発明のETFE中空糸断面の走査型電子顕微鏡写真(3万倍)である。 実施例4で得られた本発明のETFE中空糸断面の走査型電子顕微鏡写真(1万倍)である。 実施例5で得られた本発明のETFE中空糸断面の走査型電子顕微鏡写真(2.5万倍)である。 実施例6で得られた本発明のETFE中空糸断面の走査型電子顕微鏡写真(1万倍)である。
 以下、本発明の実施の形態を詳細に説明する。
 まず、本発明のエチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体の多孔体の製造方法について説明する。ここで、上述のように、本明細書においてエチレン/テトラフルオロエチレン共重合体は、「ETFE」と略記することもあるが、本明細書において「ETFE」とは、より具体的には、エチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体に対して用いられる用語である。
 本発明の製造方法は、エチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するETFEを、300℃以下で前記ETFEを溶解しうる溶媒に、300℃以下かつ得られる溶液の相分離温度以上の温度で所定の濃度となるように溶解して溶液を得る工程(A)と、前記溶液を300℃以下かつ前記溶液の相分離温度以上の温度で成形して成形物とする工程(B)と、前記溶液の相分離温度以上の温度の成形物を前記溶液の相分離温度以下の温度に冷却して前記ETFEを凝固させる工程(C)と、を有することを特徴とする。
 本発明におけるETFEとしては、エチレンに基づく繰り返し単位と、テトラフルオロエチレンに基づく繰り返し単位とを含有するETFEであれば、他に特に制限はない。このような含フッ素共重合体の例として具体的には、エチレンに基づく繰返し単位とテトラフルオロエチレン(以下、TFEと略記することもある。)に基づく繰返し単位とを共重合体中の主な繰返し単位とするETFE等が挙げられる。
 本発明におけるETFEとしては、TFEに基づく繰返し単位/エチレンに基づく繰返し単位のモル比が、好ましくは70/30~30/70、より好ましくは65/35~40/60、最も好ましくは60/40~40/60のものが挙げられる。
 また、本発明におけるETFEにおいては、TFEおよびエチレンに基づく繰返し単位の他に、その他の単量体に基づく繰返し単位を含んでいてもよい。その他の単量体としては、CF2=CFCl、CF2=CH2などのフルオロエチレン類(ただし、TFEを除く。);CF2=CFCF3、CF2=CHCF3などのフルオロプロピレン類;CF3CF2CH=CH2、CF3CF2CF2CF2CH=CH2、CF3CF2CF2CF2CF=CH2、CF2HCF2CF2CF=CH2などの炭素数が2~12のフルオロアルキル基を有する(ポリフルオロアルキル)エチレン類;Rf(OCFXCF2)mOCF=CF2(式中Rfは、炭素数1~6のペルフルオロアルキル基、Xは、フッ素原子またはトリフルオロメチル基、mは、0~5の整数を表す。)、CF2=CFCF2OCF=CF2、CF2=CF(CF)2OCF=CF2などのペルフルオロビニルエーテル類;CH3OC(=O)CF2CF2CF2OCF=CF2やFSO2CF2CF2OCF(CF3)CF2OCF=CF2などの、容易にカルボン酸基やスルホン酸基に変換可能な基を有するペルフルオロビニルエーテル類;プロピレンなどの炭素数3個のC3オレフィン、ブチレン、イソブチレンなどの炭素数4個のC4オレフィン等のオレフィン(ただし、エチレンを除く。)類などが挙げられる。これらの共単量体(コモノマー)は、単独でまたは二種以上組み合わせ使用してもよい。
 本発明におけるETFEが含んでもよいその他の単量体として、上記の共単量体に加えて、架橋性の官能基を有する単量体が挙げられる。このような単量体として、無水イタコン酸、無水マレイン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物等が挙げられる。
 前記ETFEがその他の単量体に基づく繰返し単位を含有する場合は、その含有割合は、ETFEの全繰返し単位に対して、好ましくは30モル%以下、より好ましくは0.1~15モル%、最も好ましくは0.2~10モル%である。
 本発明におけるETFE等のエチレン/テトラフルオロエチレン共重合体のメルトインデックス値(以下、MIという。)は、0.5~40(単位:g/10min)、好ましくは1~30である。MIは、溶融成形性の尺度であり、大きいとETFEの分子量は小さく、小さいとETFEの分子量は大きい。MIが大きすぎると、溶液の粘度が低下し、中空形状を維持できなくなったり、成形後の多孔体の強度が低下するという傾向がある。また、MIが小さすぎても、溶液の粘度が高くなりすぎて成形性に劣る傾向となる。なお、MIは、ASTM D3159-98に規定される方法により測定される。
 本発明の製造方法においてETFEを溶媒に溶解させる際のETFEの形状は、粉末状のものが短時間で溶解できることから好ましいが、ペレット状等、その他の形状でも用いることができる。
 本発明におけるETFEは、エチレンとTFEおよび、さらに任意に含んでいてもよいその他の単量体とを通常の方法で共重合させたものを用いることが可能である。重合方法としては、溶液重合、懸濁重合、乳化重合、塊状重合等が挙げられる。
 本発明におけるETFEとしては、商業品目として得られるものを用いることもできる。市販品として、例えば、ETFEについては、旭硝子社製:Fluon(登録商標)ETFE Series、Fluon(登録商標)LM Series、ダイキン工業社製:ネオフロン(登録商標)、Dyneon社製:Dyneon(登録商標)ETFE、DuPont社製:Tefzel(登録商標)等の市販品が挙げられる。また、本発明におけるETFEの融点としては、特に限定されないが、溶解性、強度等の点から、好ましくは130℃~275℃、より好ましくは140℃~265℃、最も好ましくは150℃~260℃である。
 本発明の製造方法においては、これらETFEの一種を単独で、あるいは二種以上を混合物として用いることが可能である。
<工程(A)>
 本発明の製造方法における工程(A)は、上記ETFEを300℃以下で溶解しうる溶媒に、上記ETFEを300℃以下の温度でありかつ得られる溶液の相分離温度以上の温度で、所定の濃度となるように溶解させて溶液を得る工程である。
 本発明の製造方法において工程(A)で用いる溶媒は、300℃以下の温度で上記ETFEを溶解しうる溶媒であれば特に制限されないが、この溶媒に溶解させるETFEの融点以下の温度で、そのETFEを該溶媒の量に対して1質量%以上溶解できる溶媒が好ましい。ETFEを溶解できる量は、5質量%以上がより好ましく、10~90質量%が最も好ましい。
 このような溶媒としては、含フッ素芳香族化合物、カルボニル基を1個以上有する脂肪族化合物、および、ハイドロフルオロアルキルエーテルからなる群から選ばれる一種以上の溶媒が好ましい。これらの溶媒は、常温では上記ETFEを溶解できないが、少なくともETFEの融点より低い温度でETFEを溶解でき、適度な粘度を有するETFE溶液を形成できる溶媒である。
 上記本発明に用いる含フッ素芳香族化合物は、融点が230℃以下であることが好ましく、融点はより好ましくは200℃以下であり、さらに好ましくは-50~180℃である。融点がこの範囲にあるとETFEを溶解する時の取扱い性に優れる。また、含フッ素芳香族化合物中のフッ素含有量((フッ素原子量×分子中のフッ素原子数)×100/分子量)は、5~75質量%であることが好ましく、9~75質量%がより好ましく、12~75質量%がさらに好ましい。この範囲にあると、ETFEの溶解性に優れる。
 このような含フッ素芳香族化合物として、具体的には、含フッ素ベンゾニトリル、含フッ素安息香酸およびそのエステル、含フッ素多環芳香族化合物、含フッ素ニトロベンゼン、含フッ素フェニルアルキルアルコール、含フッ素フェノールおよびそのエステル、含フッ素芳香族ケトン、含フッ素芳香族エーテル、含フッ素芳香族スルホニル化合物、含フッ素ピリジン化合物、含フッ素芳香族カーボネート、ペルフルオロアルキル置換ベンゼン、ペルフルオロベンゼン、安息香酸のポリフルオロアルキルエステル、フタル酸のポリフルオロアルキルエステルおよびトリフルオロメタンスルホン酸のアリールエステル等が挙げられる。
 これらのうちでも、本発明において上記溶媒として用いる含フッ素芳香族化合物としては、含フッ素ベンゾニトリル、含フッ素安息香酸およびそのエステル、含フッ素多環芳香族化合物、含フッ素ニトロベンゼン、含フッ素フェニルアルキルアルコール、含フッ素フェノールおよびそのエステル、含フッ素芳香族ケトン、含フッ素芳香族エーテル、含フッ素芳香族スルホニル化合物、含フッ素ピリジン化合物、含フッ素芳香族カーボネート、ペルフルオロアルキル置換ベンゼン、ペルフルオロベンゼン、安息香酸のポリフルオロアルキルエステル、フタル酸のポリフルオロアルキルエステルおよびトリフルオロメタンスルホン酸のアリールエステルからなる群から選ばれる一種以上が好ましく、少なくとも2つ以上のフッ素原子を有する含フッ素ベンゾニトリル、含フッ素安息香酸およびそのエステル、含フッ素多環芳香族化合物、含フッ素ニトロベンゼン、含フッ素フェニルアルキルアルコール、含フッ素フェノールのエステル、含フッ素芳香族ケトン、含フッ素芳香族エーテル、含フッ素芳香族スルホニル化合物、含フッ素ピリジン化合物、含フッ素芳香族カーボネート、ペルフルオロアルキル置換ベンゼン、ペルフルオロベンゼン、安息香酸のポリフルオロアルキルエステル、フタル酸のポリフルオロアルキルエステルおよびトリフルオロメタンスルホン酸のアリールエステルからなる群から選ばれる一種以上がより好ましい。
 このような含フッ素芳香族化合物のうちでも、さらに好ましい化合物として、ペンタフルオロベンゾニトリル、2,3,4,5-テトラフルオロベンゾニトリル、2,3,5,6-テトラフルオロベンゾニトリル、2,4,5-トリフルオロベンゾニトリル、2,4,6-トリフルオロベンゾニトリル、3,4,5-トリフルオロベンゾニトリル、2,3-ジフルオロベンゾニトリル、2,4-ジフルオロベンゾニトリル、2,5-ジフルオロベンゾニトリル、2,6-ジフルオロベンゾニトリル、3,4-ジフルオロベンゾニトリル、3,5-ジフルオロベンゾニトリル、4-フルオロベンゾニトリル、3,5-ビス(トリフルオロメチル)ベンゾニトリル、2-(トリフルオロメチル)ベンゾニトリル、3-(トリフルオロメチル)ベンゾニトリル、4-(トリフルオロメチル)ベンゾニトリル、2-(トリフルオロメトキシ)ベンゾニトリル、3-(トリフルオロメトキシ)ベンゾニトリル、4-(トリフルオロメトキシ)ベンゾニトリル、(3-シアノフェニル)サルファ ペンタフルオリド、(4-シアノフェニル)サルファ ペンタフルオリド、ペンタフルオロ安息香酸、ペンタフルオロ安息香酸エチル、2,4-ジフルオロ安息香酸メチル、3-(トリフルオロメチル)安息香酸メチル、4-(トリフルオロメチル)安息香酸メチル、3,5-ビス(トリフルオロメチル)安息香酸メチル、ペルフルオロビフェニル、ペルフルオロナフタレン、ペンタフルオロニトロベンゼン、2,4-ジフルオロニトロベンゼン、(3-ニトロフェニル)サルファ ペンタフルオリド、ペンタフルオロベンジルアルコール、1-(ペンタフルオロフェニル)エタノール、酢酸ペンタフルオロフェニル、プロパン酸ペンタフルオロフェニル、ブタン酸ペンタフルオロフェニル、ペンタン酸ペンタフルオロフェニル、ペルフルオロベンゾフェノン、2,3,4,5,6-ペンタフルオロベンゾフェノン、2’,3’,4’,5’,6’-ペンタフルオロアセトフェノン、3’,5’-ビス(トリフルオロメチル)アセトフェノン、3’-(トリフルオロメチル)アセトフェノン、2,2,2-トリフルオロアセトフェノン、ペンタフルオロアニソール、3,5-ビス(トリフルオロメチル)アニソール、デカフルオロジフェニルエーテル、4-ブロモ-2,2’,3,3’,4’,5,5’,6,6’-ノナフルオロジフェニルエーテル、ペンタフルオロフェニルスルホニルクロリド、ペンタフルオロピリジン、3-シアノ-2,5,6-トリフルオロピリジン、ビス(ペンタフルオロフェニル)カーボネート、ベンゾトリフルオリド、4-クロロベンゾトリフルオリド、1,3-ビス(トリフルオロメチル)ベンゼン、ヘキサフルオロベンゼン、安息香酸2,2,2-トリフルオロエチル、安息香酸2,2,3,3-テトラフルオロプロピル、安息香酸2,2,3,3,3-ペンタフルオロプロピル、安息香酸3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチル、フタル酸ビス(2,2,2-トリフルオロエチル)、トリフルオロメタンスルホン酸4-アセチルフェニル等が挙げられる。
 また、上記本発明の製造方法に溶媒として用いるカルボニル基を1個以上有する脂肪族化合物は、融点が220℃以下であることが好ましく、融点はより好ましくは50℃以下であり、さらに好ましくは-50~20℃である。また、上記カルボニル基を1個以上有する脂肪族化合物の沸点は、該カルボニル基含有脂肪族化合物が上記ETFEを溶解する温度と同じか、これより高いことが好ましい。ただし、本発明において、上記ETFEの溶解を自然発生圧力下で行う場合には、カルボニル基含有脂肪族化合物の沸点が、溶解温度以下の脂肪族化合物も適用可能である。「自然発生圧力」とは、溶媒とETFEの混合物が密閉容器中で自然に示す圧力を指す。
 本発明においては、ETFEと上記カルボニル基含有脂肪族化合物を密閉容器内で所定温度に加熱することにより透明で均一な溶液となる。加熱温度は、ETFEの融点以下、好ましくは、該ETFEの融点よりも30℃以上低い温度が好ましい。溶解の可否は、使用する脂肪族化合物の種類と温度にのみ依存し、圧力には関係しない。したがって、該脂肪族化合物とETFEの混合物が、所定の温度に到達すれば、その際の圧力は、特に制限はない。より低沸点の脂肪族化合物を使用する場合には、自然発生圧力が大きくなるため、安全性、利便性の観点から、用いるカルボニル基含有脂肪族化合物の沸点は、室温以上が好ましく、50℃以上がより好ましく、80℃以上が最も好ましい。また、上記カルボニル基含有脂肪族化合物の沸点の上限は、特に制限されないが、コーティングによる薄膜形成等に用いる場合には、乾燥しやすさ等の観点から220℃以下が好ましい。
 上記1個以上のカルボニル基を有する脂肪族化合物として、好ましくは、炭素数3~10の環状ケトン、鎖状ケトン等のケトン類、鎖状エステル、グリコール類のモノエーテルモノエステル等のエステル類、およびカーボネート類からなる群から選ばれる一種以上が好ましい。また、カルボニル基の数は、1個または2個が好ましい。上記1個以上のカルボニル基を有する脂肪族化合物の分子構造は特に制限されず、例えば、炭素骨格は直鎖、分岐、環状のいずれであってもよく、主鎖、または側鎖を構成する炭化-炭素結合間にエーテル性酸素を有していてもよく、炭素原子に結合する水素原子の一部がフッ素原子等のハロゲン原子で置換されていてもよい。これらのうちでも、本発明に用いる上記カルボニル基含有脂肪族化合物としては環状ケトンがより好ましい。これらは一種を単独で用いてもよく、二種以上を併用してもよい。
 本発明における前記カルボニル基含有脂肪族化合物として、さらに好ましい化合物として具体的には、以下の化合物が挙げられる。
 上記環状ケトンとしては、シクロペンタノン、シクロヘキサノン、2-メチルシクロヘキサノン、3-メチルシクロヘキサノン、4-エチルシクロヘキサノン、2,6-ジメチルシクロヘキサノン、3,3,5-トリメチルシクロヘキサノン、4-tert-ブチルシクロヘキサノン、シクロヘプタノン、イソホロン等が挙げられる。
 上記鎖状ケトンとしては、アセトン、メチルエチルケトン、2-ペンタノン、メチルイソプロピルケトン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、2-オクタノン、2-ノナノン、ジイソブチルケトン、2-デカノン等が挙げられる。
 上記鎖状エステルとしては、ギ酸エチル、ギ酸イソペンチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、酢酸ヘキシル、酢酸シクロヘキシル、酢酸2-エチルヘキシル、酪酸エチル、酪酸ブチル、酪酸ペンチル、アジピン酸ビス(2,2,2-トリフルオロエチル)、シクロヘキサンカルボン酸メチル、シクロヘキサンカルボン酸2,2,2-トリフルオロエチル、ペルフルオロペンタン酸エチル等が挙げられる。
 上記グリコール類のモノエーテルモノエステルとしては、酢酸2-メトキシエチル、酢酸2-エトキシエチル、酢酸2-ブトキシエチル、1-メトキシ-2-アセトキシプロパン、1-エトキシ-2-アセトキシプロパン、酢酸3-メトキシブチル、酢酸3-メトキシ-3-メチルブチル等が挙げられる。
 上記カーボネートとしては、ビス(2,2,3,3-テトラフルオロプロピル)カーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、ジエチルカーボネート、プロピレンカーボネート等が挙げられる。
 上記本発明の製造方法に溶媒として用いるハイドロフルオロアルキルエーテルとして、具体的には、1,1,1,2,3,3-ヘキサフルオロ-4-(1,1,2,3,3,3-ヘキサフルオロプロポキシ)ペンタン、1,1,1,2,2,3,4,5,5,5-デカフルオロ-3-メトキシ-4-(トリフルオロメチル)ペンタン等が挙げられる。これらのうちでも、本発明に用いるハイドロフルオロアルキルエーテルとしては、1,1,1,2,3,3-ヘキサフルオロ-4-(1,1,2,3,3,3-ヘキサフルオロプロポキシ)ペンタンが好ましい。
 上記溶媒は、一種単独で用いてもよく、二種以上を併用してもよい。二種以上を用いると相分離の速さを制御することができる場合がある。
 本発明において、ETFEの融点または液体の沸点まで、ETFEを溶解も膨潤もしない溶媒を非溶媒と定義する。本発明の製造方法においは、ETFEの溶解性を損なわない範囲内で、ETFE溶液中に非溶媒を含有させてもよい。
 上記ETFEの非溶媒として具体的には、フッ素原子を含まない芳香族化合物、アルコール類等が挙げられる。これらのうちでも本発明の製造方法において好ましくは、ベンゾニトリル、アセトフェノン、ニトロベンゼン、安息香酸メチル等のフッ素原子を含まない芳香族化合物が用いられる。また、本発明の製造方法において、上記ETFE溶液が上記単独でETFEを溶解可能な溶媒と共に非溶媒を含有する場合の混合割合は、単独でETFEを溶解可能な溶媒/非溶媒(質量比)として、9/1~1/9が好ましく、7/3~3/7がより好ましい。
 なお、本発明の製造方法においてETFE溶液が、上記単独でETFEを溶解可能な溶媒と組合わせて非溶媒を含む場合、単独でETFEを溶解可能な溶媒と非溶媒との混合物を「溶媒」という。
 本発明の製造方法において、工程(A)で作製されるETFE溶液の濃度としては、該ETFE溶液中の「ETFE/溶媒」で表される溶媒に対するETFEの質量割合で示すと、15/85~65/35となる割合が好ましく、より好ましくは20/80~60/40、最も好ましくは25/75~55/45となる割合である。
 ETFE溶液中のETFEと溶媒の質量割合がこの範囲にあれば、高い強伸度特性を有する中空糸が得られやすい。一方、ETFE溶液中のETFEの含有量が多すぎると製造した中空糸の空孔率が小さくなり、透水性能が低下する場合がある。
 上記300℃以下であってETFE溶液の相分離温度以上である温度範囲におけるETFE溶液の粘度としては、1~10000Pa・sが好ましく、5~5000Pa・sがより好ましく、10~1000Pa・sが最も好ましい。
 ここで、ETFE溶液の粘度は、東洋精機製作所社製の炉内径9.55mmの溶融流動性測定装置「キャピログラフ」に直径1mm、長さ10mmのオリフィスをセットし、上記300℃以下かつ相分離温度以上の温度で、ピストンスピード10mm/分の条件で押し出し測定した粘度の値である。ETFE溶液の粘度が、この範囲にあると、次の工程(B)においてETFE溶液を中空糸等の形状に成形することが容易である。
 また、本発明の製造方法において、本工程(A)で作製されるETFE溶液が、一次粒子径が10nm~1μmの粉体を含有することも好ましい。粉体としては、工程(C)で得られるETFEの凝固成形物から、除去溶媒で溶解除去できる粉体であれば、有機粉体でも無機粉体でもよいが、本発明において好ましくは無機粉体が用いられる。
 ETFE溶液がこのような粉体を含有すると、本発明の製造方法において得られるETFE多孔体が均一な孔径を有する多孔質構造となり易い。また、該粉体を除去溶媒で溶解除去することにより、得られるETFE多孔体中の空孔率を増加させることも可能である。さらに、粉体の添加により工程(A)で得られるETFE溶液は適度な粘度を付与されることから、次の工程(B)において中空糸等の形状に成形しやすくなる。該粉体の一次粒子径は、10nm~0.5μmがより好ましく、30nm~0.3μmがさらに好ましい。
 上記粉体としては、従来公知のものがいずれも使用可能であり、特に限定するものではない。具体例としては、無水シリカ、タルク、クレー、カオリン、マイカ、ゼオライト、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、硫酸マグネシウム、酸化亜鉛、酸化カルシウム、酸化マグネシウム、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、リン酸カルシウム等の無機粉体が挙げられる。これらのなかでも、ETFEに対する分散性がよく、アルカリで除去ができるという観点から無水シリカが好ましい。
 ETFE溶液における粉体の含有量としては、ETFEの溶解性やETFE溶液の成形性に支障を生じない範囲であればよく、特に限定されない。粉体の含有量は、上記ETFEと溶媒の合計量100質量部に対して50質量部以下が好ましく、0~30質量%がより好ましい。粉体の含有量が多すぎると、ETFE溶液の粘度が高くなり、フィルム形状への成形には好ましくない。
 工程(C)の後に、または工程(C)と並行してETFEの凝固成形物から粉体を除去する際に用いる除去溶媒としては、粉体を溶解するが、ETFEを溶解しないものであれば特に限定されない。粉体が酸に可溶な場合には塩酸や硫酸等が用いられ、粉体がアルカリに可溶な場合には苛性ソーダ、苛性カリ等のアルカリ水溶液が用いられる。
 本発明におけるETFE溶液は、上記溶媒にETFEを300℃以下の温度で所定の濃度に溶解する工程(A)により得られる。ここで、工程(A)における溶液作製の温度の下限は、前記所定の濃度におけるその溶液の相分離温度である。以下に説明する通り少なくとも二種の化合物、ここではETFEと溶媒を含む混合物は、相分離温度以下では二相に分離をするため、均一な溶液の状態とはならない。つまり、溶液の作製は相分離温度以上の温度でのみ可能となる。また得られるETEF溶液の温度は、300℃以下であり前記溶液の相分離温度以上の温度である。
 上記溶媒にETFEが溶解する温度、すなわち溶解温度は、溶媒の種類や溶液組成等によって異なり、縦軸に温度を取り、横軸にETFEと溶媒の濃度比を取り、各温度でのETFEと溶媒との二相共存の濃度をプロットした相図によって最適化することが好ましい。本発明の製造方法においてETFEを溶媒に溶解させる温度を高くしすぎると、ETFEが熱劣化するとともに、溶媒が揮散したり、また熱劣化するので好ましくない。また、その溶液における相分離温度より低いとETFEが溶媒に溶解しない。工程(A)においてETFEの溶媒への溶解を行う温度は、好ましくは、作製される溶液の相分離温度より5℃~100℃高い温度であり、より好ましくは、前記相分離温度より20℃~50℃高い温度である。また、本発明の製造方法における上記溶解温度の上限は、300℃であるが、樹脂の結晶化のし易さや、溶媒の揮散性等の観点から、溶解されるETFEの融点以下であることが好ましい。
 本発明の工程(A)において、上記溶媒にETFEを溶解する際、温度以外の条件は特に限定されるものではなく、通常は常圧下に実施することが好ましい。ただし、用いるETFEや溶媒の種類によっては、溶媒の沸点が溶解温度より低い場合等には、耐圧容器中で加圧下、例えば0.01~1MPa程度の条件下で溶解を実施してもよい。溶解時間は、用いるETFEや溶媒の種類、ETFEの形状、作製しようとするETFE溶液の濃度等により左右される。
 ここで、相分離温度とは、クラウドポイント(曇点)とも呼ばれ、ある濃度の溶液がその温度よりも高い温度に維持されている場合は、溶質(本発明においてはETFE)と溶媒とが均一な一相の溶液となるが、クラウドポイント以下では相分離する温度である。一般に、ETFE溶液を相分離温度以下の温度状態にすれば、溶媒を含有しETFEが濃厚な相と、ETFEを含有し溶媒が濃厚な相の2相に分離する。さらに、用いるETFEの結晶化温度以下では、ETFEが濃厚な相中においてETFEが固定化され、多孔体の前駆体が形成される。ETFE溶液中の伝熱速度は、溶媒・非溶媒の拡散速度よりも100倍以上速いとされ、冷却温度を結晶化温度より十分に低くとれば、通常供される多孔体の厚さである10μm~1mmにおいて、ETFE溶液の冷却開始後ほぼ瞬時にETFE全体にわたり相分離・固化が起こる。
 工程(A)における溶媒へのETFEの溶解には、通常各種溶液の作製に用いられる撹拌装置を、特に制限なく用いることができる。より短時間で溶解させ、均一な溶液を得るためには、溶媒とETFE、さらに任意に添加される粉体等の成分をよく撹拌する必要がある。このような撹拌装置として、具体的には、ホモミキサー、ヘンシェルミキサー、バンバリーミキサーや、加圧ニーダーといったバッチ式の混練装置、撹拌装置のついた圧力容器等、あるいは、押出機、ニーダー等の混練・押出の両機能を有する装置を挙げることができる。加圧下に溶解する場合には、前記撹拌装置のついた圧力容器、例えば、撹拌機付きオートクレーブ等の装置が用いられ、撹拌翼の形状としては、マリンプロペラ翼、パドル翼、アンカー翼、タービン翼等が用いられる。
 本発明のETFE多孔体の製造方法においては、ETFEを溶媒に溶解した後、以下の工程(B)を経て工程(C)に至るまで、ETFE溶液は300℃以下でありかつ上記このETFE溶液における相分離温度以上の温度に保持される。これを考慮すれば、上記装置のうちで一軸や二軸の押出機、ニーダー等の混練・押出の両機能を有する装置を用いて、ETFE溶液の作製、ETFE溶液の成形を連続的に行うことが有利である。
 なお、前記ETFE溶液の保持温度は、300℃以下かつ前記溶液の相分離温度以上の温度であれば、上記溶液作製時すなわち溶解時の温度と同じでも、異なっていてもよい。
 混練・押出の両機能を有する装置、例えば、一軸または二軸押出機を用いた場合、ETFEと溶媒、さらに任意に添加される粉体等の成分を各々独立したフィーダーから定量的に一軸または二軸押出機に供給し、押出機中で混練することで、ETFE溶液を製造することができる。なお、上記粉体等の任意成分の添加は、予め、溶媒またはETFEに混合することで行われてもよい。
<工程(B)>
 工程(B)は、上記工程(A)で得られたETFE溶液を300℃以下かつ前記溶液の相分離温度以上の温度で成形して成形物とする工程である。
 本発明の製造方法における工程(B)では、通常溶液を成形するのに用いられる方法を、ETFE溶液の成形方法として特に制限なく用いることが可能である。このようなETFE溶液の成形方法として、具体的には、押出手段、例えば、一軸または二軸押出機を用いて、吐出口からETFE溶液を吐出して中空糸状あるいはフィルム状に押出成形する方法や、ETFE溶液をフィルム状に成形するために基体表面にETFE溶液をコーティング、スプレー塗布する等の一般的な塗膜形成方法等が挙げられる。
 なお、本発明の製造方法においては、工程(B)のETFE溶液の成形手段として、バッチ式ではなく、連続して成形できるという観点から、押出成形が好ましく用いられる。成形手段として押出成形を用いて、ETFE溶液を中空糸状に成形する場合には、吐出口の口金として中空糸紡糸用の二重管式口金あるいは三重管式口金等を用いることが可能である。また、同様にETFE溶液を平膜状に成形する場合は、スリット状の口金を用いればよい。
 ここで、工程(B)におけるETFE溶液の成形温度、具体的には、押出成形の場合の吐出口の口金の温度、塗膜形成方法における塗液温度等は、上記工程(A)においてETFE溶液を作製する際の溶解温度と同様、用いるETFE溶液の相分離温度から300℃までの温度範囲であり、好ましくは前記溶液の相分離温度からETFEの融点までの範囲である。なお、成形温度と溶解温度が同じであっても異なっていてもよいが、溶解温度は、溶解を短時間に均一に行うという点から、成形温度より高い温度に設定することが好ましい。
 工程(B)において、二重環状口金を用いてETFE溶液を中空糸状に押出成形する場合には、外側環状部からETFE溶液を押出すと同時に、中空形成材としての気体または液体を内側環状部から押し出す。三重環状口金を用いる場合には、中央環状部からETFE溶液を押出すと同時に、中空形成材としての気体または液体を内側環状部から押し出し、外側環状部からも同様に気体または液体を押し出すことで、中空糸の表面から溶媒が揮発するのを抑制する。このような操作によって、早期に相分離が行われ、中空糸の外表面に緻密層が形成されることを抑制できることが期待できる。
 本発明の製造方法においては、工程(B)で、ETFE溶液の相分離温度から300℃までの温度範囲で上記のようにして成形されたETFE溶液の成形物は、次の工程(C)により相分離温度以下に冷却される。
<工程(C)>
 本発明のETFEの多孔体の製造方法における工程(C)は、上記工程(B)で得られた相分離温度以上の温度のETFE溶液成形物を、前記溶液の相分離温度以下に冷却して前記ETFEを凝固させる工程である。前記ETFE溶液成形物の冷却温度としては、冷却されるETFE溶液の相分離温度以下であれば特に制限されないが、好ましくは、ETFE溶液の相分離温度より20℃以上、より好ましくは該相分離温度より50℃以上低い温度である。また、前記ETFE溶液成形物の冷却温度の下限としては、特に制限されないが、冷却媒体の取り扱い性の観点から-10℃が好ましく、0℃がより好ましい。
 本発明の製造方法においては、工程(C)の冷却固化の操作によって、ETFEが球状構造や網目状構造を形成するとともに、これらの構造が連結されて、その間に空隙を有する構造のETFE多孔体が製造される。
 工程(C)における冷却媒体としては、気体を用いてもよく、液体を用いてもよい。例えば、中空糸の内側と外側で気体と液体を使用するというように、これらを組合せて用いてもよい。冷却用の気体としては、上記冷却温度でETFEと溶媒に反応性のない気体であれば特に限定されないが、好適には空気や窒素ガスを用いることができる。冷却用液体としては、上記冷却温度でETFEと溶媒に反応性のない液体であれば特に限定されないが、工程(B)における成形直後のETFE溶液成形物を冷却する場合には、前記ETFE溶液成形物の温度よりも高い沸点を有し、その温度でETFEを溶解しないものが好ましい。このような冷却用液体として、具体的には、2,6-ジフルオロベンゾニトリル、イソホロン、シリコンオイル、水等が挙げられ、好ましくは、シリコンオイルが挙げられる。
 上記工程(B)において、成形手段として押出成形を用いた場合には、工程(C)の冷却方法として、具体的には、吐出口から吐出されて中空糸状あるいはフィルム状に成形されたETFE溶液を、直接、冷却用液体が充填された冷却浴に導くことで、冷却を行う方法が挙げられる。この冷却方法によれば、ETFE溶液成形物の外表面から溶媒が揮発してETFEの濃度が高くなって、最終的に得られる多孔体の外表面に緻密層が形成されることを抑制することができ、好ましい。なお、本発明においては上記押出成形以外の成形方法を用いた場合でも、多孔体外表面への緻密層形成を抑制するために、成形直後にETFE溶液成形物を冷却用液体に導入することが同様に好ましい。
 この場合、上記二重環状口金を用いて押出成形された中空糸状のETFE溶液においては、中空部形成用の冷却媒体は、上記冷却浴に用いる冷却用液体と同一または異なった液体でもよく、空気や窒素ガス等の気体であってもよい。これら冷却媒体は、特に制限されるものではなく、目的とする中空糸の特性等に応じて適宜選択すればよいが、ETFE溶液の溶媒、冷却浴に用いる冷却用液体、および中空部形成用の冷却媒体が同一種であれば、製造過程における溶媒の回収等で利便性が高く、製造工程の観点から好ましい。上記三重環状口金を用いて押出成形された中空糸状のETFE溶液を冷却する場合の、ETFE溶液の溶媒、内側環状部から押し出される中空部形成用の冷却媒体、および外側環状部から押し出される冷却用媒体についても同様なことがいえる。
 なお、この場合においても冷却用液体は、上記ETFE溶液成形物の成形温度、この場合においては口金の温度、よりも高い沸点を有し、ETFEをその温度付近で溶解しない液体が好ましい。ここで、用いる押出機の構造によっては、沸点が前記ETFE溶液成形物の温度よりも低い冷却用液体の使用が可能な場合もあり、用いる押出機の構造に応じて冷却用液体を適宜選択することが可能である。
 また、本発明の製造方法の工程(C)においては、前記工程(B)の直後に、ETFE溶液成形物を、0℃以上かつ前記溶液の相分離温度以下の乾式部(空中走行部またはエアギャップともいう)を通過させ、その後、冷却用液体が充填された冷却浴に導くことで、ETFE溶液成形物をその相分離温度以下に冷却してETFEを凝固させる冷却方法を用いることも可能である。上記乾式部の長さとしては、0.1~100mmが好ましく、0.1~50mmがより好ましく、0.1~30mmが最も好ましい。また、乾式部の通過時間としては、ETFE溶液成形物の形状、大きさ等にもよるが、0.1~10秒であることが好ましく、0.1~5秒であることがより好ましく、0.1~2秒であることが最も好ましい。なお、押出機等を用いて押出成形されたETFE溶液成形物の乾式部の通過時間は、装置の押出速度や巻き取り速度等を制御することで調整することができる。
 このように、上記範囲の乾式部(空中走行部)を設けるとETFE溶液成形物の外表面に緻密層が適度に形成され、耐ファウリング性が向上することが期待されるため、得られるETFE多孔体の用途、例えば、薬液処理等に用いる場合には、好ましい。上記乾式部を100mmより長くすると、ETFE溶液成形物の外表面から溶媒が必要以上に揮発してETFEの濃度が高くなるため、最終的に得られる多孔体の外表面に過剰な緻密層が形成される。なお、緻密層の形成度合いを調整するために、空中走行部の雰囲気を一定の温湿度に保つような工夫をしてもよい。例えば、調温・調湿された気体を定量送風したり、紡糸口金と冷却浴の間を囲い込み、吐出したETFE溶液と外気とが直接触れないようにすることも可能である。このような乾式部の温度としては、冷却されるETFE溶液の相分離温度以下であれば特に制限されない。
 また、上記乾式部を設けた場合の、冷却浴に用いる冷却用液体としては、特に制限されないが、水、エタノール、アセトン、ヘキサン等が好ましく用いられる。これらのうちでも水が特に好ましい。
 本発明のETFE多孔体の製造方法においては、上記工程(A)、工程(B)および工程(C)を順に実行することによりETFE多孔体が製造される。上記工程(C)において、冷却浴の冷却用媒体中で凝固したETFE凝固物は、ETFEが球状構造や網目状構造を形成するとともに、これらの構造が連結されて、その間に空隙を有する構造のETFE多孔体である。
 なお、工程(C)の冷却用媒体中で凝固して得られるETFE多孔体は、その空隙中にETFE溶液からETFEと相分離した溶媒を含有する状態にある。この溶媒は、工程(C)において上記冷却浴中で抽出されてもよいが、これとは別に抽出工程(D)を設けてその工程で抽出されてもよい。簡便性からいえば、上記工程(C)において上記冷却浴中で、冷却と抽出が並行して行われることが好ましい。
 上記ETFE多孔体の空隙中にある溶媒の抽出には、ETFEを溶解する溶媒に対して相溶性があり、かつETFEの溶解性が低い溶媒である、高級アルコール、アセトン、上記工程(A)で説明したETFEの非溶媒などの単独または混合溶媒、を用いることが好ましい。これらのうちでも、抽出媒体としてETFEの非溶媒を用いることがより好ましい。したがって、上記工程(C)において上記冷却浴中で、冷却と抽出を並行して行う場合には、冷却用液体としてはETFEの非溶媒を用いることが好ましい。抽出の方法としては、抽出媒体を50~90℃程度の温度に調整し、この媒体に上記凝固したETFE多孔体を浸漬する方法が好ましい。また、この溶媒の抽出は、後述の延伸を行う場合においても、延伸中、延伸前後のいずれに行ってもよい。
 また、上記で得られたETFE多孔体が粉体を含有している場合は、必要に応じてこれらの粉体の抽出を行う。
 除去溶媒としては、粉体を溶解し、ETFEを溶解しないものであれば特に限定されない。粉体が酸に可溶な場合には塩酸や硫酸等が用いられ、粉体がアルカリに可溶な場合には苛性ソーダ、苛性カリ等のアルカリ水溶液が用いられる。粉体の抽出は、例えば、ETFE溶解溶媒の抽出工程後、粉体を含有するETFE多孔体を、該粉体を溶解する除去媒体に、適宜選択された温度・時間の条件で、浸漬することにより行われる。ETFE多孔体からの粉体の除去後、必要に応じて水洗、乾燥を行ってもよい。
 本発明においては、ETFE多孔体の孔径を大きくしたり、空孔率を高めるために、上記で得られたETFE多孔体をさらに公知の方法で延伸する工程を設けてもよい。ETFE多孔体を例えば、80~130℃程度の温度で延伸した場合、球状構造の一部および球状構造と球状構造を連結するETFE分子の凝集体が均質に延伸され、微細で細長い細孔が多数形成される。得られた延伸多孔体は、強伸度特性を維持したまま透水性能等が向上する。
 本発明においては、上記工程(A)~工程(C)または上記工程(A)~工程(D)を有する本発明のETFE多孔体の製造方法により、本発明のETFE多孔体を得ることができる。この様な本発明のETFE多孔体は、上述の通り、前記本発明の製造方法において製造可能な形状、例えば、中空糸状、チューブ状、シート状、フィルム状等の任意の形状に成形し得る。
 本発明のETFE多孔体において、空孔率は20~90%が好ましく、微細孔の平均孔径は0.01~20μmが好ましい。
 空孔率は、40~85%がより好ましく、60~80%が最も好ましい。空孔率がこの範囲にあると多孔体は、高強度でかつ透水性能等の物質の透過性能が高くなる。
 上記空孔率は、本発明の製造方法に用いるETFE溶液中の、ETFEの含有量により制御することも好ましい。高い空孔率を得たい場合には、ETFEの含有量を低くし、低い空孔率を得たい場合には、高くする。
 ETFE多孔体の微細孔の平均孔径は、0.01~10μmがより好ましく、0.01~5μmが最も好ましい。平均孔径がこの範囲にあると該多孔体を例えば除濁や微生物の除去に用いた際に、高い透水性能および分離性能を得ることができる。
 本発明のETFE多孔体において、空孔率が40~85%であり、かつ微細孔の平均孔径は0.01~5μmであるのが特に好ましい。
 本明細書で用いる多孔体の微細孔の平均孔径とは、JIS K3832によるバブルポイント法に基づいて測定される多孔質材料の貫通孔の平均細孔径をいう。平均孔径は、PMI社製パームポロメータ等の一般的な測定装置を用いて容易に測定できる。
 平均孔径は、ETFE溶液成形物の冷却速度、冷却に用いる冷却用媒体の種類等により調整することが可能である。大きい平均孔径を得たい場合には、冷却速度を大きく、熱容量の大きな媒体を冷却浴に使用する。また、小さい平均孔径を得たい場合には、冷却速度を小さく、熱容量の小さな媒体を冷却浴に使用する。
 本発明の製造方法により上記熱誘起による相分離法を用いてETFE多孔体の製造を行うと、従来技術である延伸法など他の方法と比較して、細孔の孔径を制御し易く、狭い孔径分布を持つ多孔体を多様な形状および高空孔率で得ることができる。また、本発明の製造方法により得られるETFE多孔体は、このような均質な多孔質構造を有することから、一般的な相分離法で得られる樹脂多孔体と同様に機械的強度の点でも高強度が期待できる。
 以下に、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、ETFEのメルトインデックス値(MI)、含フッ素共重合体多孔体の孔径分布・平均孔径は、以下の方法により測定した。
(メルトインデックス値(MI))
 ETFEのメルトインデックス値(MI)は、ASTM D3159-98に準拠し、メルトインデクサー(タカラ工業社製)を用いて、297℃で測定した。
(平均孔径、孔径分布)
 ETFEの多孔体における微細孔の平均孔径、孔径分布は、ASTM F316-86、JIS K3832に準拠したバブルポイント法による細孔径分布測定器(PMI社製、パームポロメータ)を用いて測定した。
 [実施例1](ETFE多孔質フィルムの熱誘起相分離法による作製)
 ETFE溶液を用いて、フィルム状のETFE多孔体を以下に示す方法で作製した。
 ガラス製セパラブルフラスコ中で、ETFE(旭硝子社製:Fluon(登録商標)LM-720AP、融点:225℃、メルトインデックス値:18.7(297℃)、以下、「ETFE1」という。)の30g、2,6-ジフルオロベンゾニトリル170gを撹拌しながら185℃に加熱し、均一な溶液を得た(ETFE1の濃度15質量%)。この溶液に、4cm角のガラス板を浸漬した後、引き上げて、該ガラス板に該溶液をコーティングした。引き上げ後のガラス板は、水浴により急冷した。得られたETFE1溶液がコーティングされたガラス板を、アセトンに12時間浸漬して充分に前記溶媒(2,6-ジフルオロベンゾニトリル)を溶出、洗浄した後、室温で1時間減圧乾燥した。ついで、塗膜をガラス板から剥離して、ETFE1のフィルム(厚さ300μm)を得た。
 上記で得られたETFE1のフィルムは、走査型電子顕微鏡を用いた観察により、多孔質構造であることが確認された。図1に得られたETFE1フィルム表面の走査型電子顕微鏡の10万倍写真を示す。該ETFE1多孔質フィルムの細孔径は、0.06~2.0μmの孔径分布であり、平均細孔径は1.5μmであった。また、該ETFE1多孔質フィルムの空孔率は、樹脂と溶媒の添加量と比重から体積分率を計算する方法で85%と概算された。
 [実施例2](ETFE多孔質中空糸の熱誘起相分離法による作製)
 温度200℃で作製したETFE1の均一で透明な2,6-ジフルオロベンゾニトリル溶液(ETFE1の濃度30質量%)を冷却固化した。得られたETFE1成形物を、細かく砕き、中空糸状キャピラリーを備えたキャピラリーフローテスター(東洋精機製作所社製)を用いて180℃で中空糸(内径:2mm、外径:3mm)状に押し出し、空冷により急冷した。得られた中空糸をアセトンに24時間浸漬して前記溶媒(2,6-ジフルオロベンゾニトリル)を抽出した後、乾燥した。
 得られた中空糸を液体窒素中で凍結、割断し、その断面を走査型電子顕微鏡により観察し、多孔質構造を確認した。図2に、得られたETFE1中空糸断面の走査型電子顕微鏡の1万倍写真を示す。該ETFE1の多孔質中空糸の細孔径は、0.06~0.086μmの孔径分布であり、平均細孔径は0.07μmであった。また、該ETFE1多孔質中空糸の空孔率は72%であった。
 [実施例3]ETFE多孔質中空糸の熱誘起相分離法による作製
 中空糸押出成形用の二重管状口金を有する複合型混練押出機IMC-1973型(井元製作所社製)を使用してETFE多孔質中空糸を製造した。まず、複合型混練押出機にETEF1の150gと、2,6-ジフルオロベンゾニトリルの150gを投入し、温度200℃で混合してETFE1溶液(ETFE1の濃度50質量%)を作製した。その後、ETFE1溶液を200℃に温度設定された上記二重管状口金より常温の空気中に中空糸状に押し出し、中空糸内部を空気で冷却しながら、20℃の冷却用水層まで搬送し、冷却用水層に漬けて凝固させ中空糸状成形物を得た。なお、口金から冷却用水槽までの冷却用の距離、すなわちエアギャップは10mmであった。得られた中空糸状成形物を耐圧容器中で60℃のアセトンに1時間浸漬して前記溶媒(2,6-ジフルオロベンゾニトリル)を抽出した後、乾燥した。
 得られた中空糸を液体窒素中で凍結、割断し、その断面を走査型電子顕微鏡により観察し、多孔質構造を確認した。図3に、得られたETFE1中空糸断面の走査型電子顕微鏡の3万倍写真を示す。該ETFE1の多孔質中空糸の細孔径は、0.04~0.1μmの孔径分布であり、平均細孔径は0.06μmであった。また、該ETFE1多孔質中空糸の空孔率は56%であった。
 [実施例4]ETFE多孔質中空糸の熱誘起相分離法による作製
 複合型混練押出機の口金から冷却用水槽までの距離、すなわちエアギャップを50mmに変更した以外は、上記実施例3と同様にしてETFE1からなる中空糸を成形した。
 得られた中空糸を液体窒素中で凍結、割断し、その断面を走査型電子顕微鏡により観察したところ、多孔質構造および表面に球晶が発達していることが確認できた。図4に、得られたETFE1中空糸断面の走査型電子顕微鏡の1万倍写真を示す。該ETFE1の多孔質中空糸の細孔径は、0.04~0.06μmの孔径分布であり、平均細孔径は、0.043μmであった。また、該ETFE1多孔質中空糸の空孔率は52%であった。
 [実施例5]ETFE多孔質中空糸の熱誘起相分離法による作製
 上記実施例3で用いた複合型混練押出機を用いて、ETEF1の120gと、イソホロンの180gを、温度190℃で混合しETFE溶液を作製した。その後、複合型混練押出機の二重管状口金の温度を180℃に、該押出機の口金から冷却浴までの距離、エアギャップを20mmにそれぞれ変更した以外は上記実施例3と同様にして、ETFE1からなる中空糸を成形した。
 得られた中空糸を液体窒素中で凍結、割断し、その断面を走査型電子顕微鏡により観察したところ、多孔質構造が発達していることが確認できた。図5に、得られたETFE1中空糸断面の走査型電子顕微鏡の2.5万倍写真を示す。該ETFE1の多孔質中空糸の細孔径は、0.04~0.06μmの孔径分布であり、平均細孔径は、0.057μmであった。また、該ETFE1多孔質中空糸の空孔率は68%であった。
 [実施例6]ETFE多孔質中空糸の熱誘起相分離法による作製
 ETFEとして、共重合組成が、TFEに基づく繰返し単位/エチレンに基づく繰返し単位/ヘキサフルオロプロピレンに基づく繰返し単位/CH2=CH(CF2)4Fに基づく繰返し単位/無水イタコン酸に基づく繰返し単位=48.1/42.7/8.2/0.8/0.2(モル%)のETFE(融点:190℃、メルトインデックス値:149(297℃)、以下、「ETFE2」という。)を使用して中空糸の成形を行った。
 上記実施例3で用いた複合型混練押出機を用いて、ETFE2の90gと、2,6-ジフルオロベンゾニトリルの270gを、温度145℃で混合し、ETFE2の溶液を作製した。その後、複合型混練押出機の二重管状口金の温度を145℃に、中空糸内部の冷却媒体を50℃の水に、該押出機の口金から冷却浴までの距離、エアギャップを20mmにそれぞれ変更した以外は上記実施例3と同様にしてETFE2からなる中空糸を成形した。
 得られた中空糸を液体窒素中で凍結、割断し、その断面を走査型電子顕微鏡により観察したところ、多孔質構造および表面に球晶が発達していることが確認できた。図6に、得られたETFE2中空糸断面の走査型電子顕微鏡の1万倍写真を示す。該ETFE2の多孔質中空糸の細孔径は、0.24~0.26μmの孔径分布であり、平均細孔径は、0.25μmであった。また、該ETFE2多孔質中空糸の空孔率は75%であった。
 [比較例1]
 ETFE(旭硝子社製:Fluon(登録商標)LM740A、融点:225℃、メルトインデックス値:37(297℃)、以下、「ETFE3」という。)の13.0g(30質量%)および無水シリカ(アドマテックス社製、アドマファインSOC3(商品名)、一次粒子の平均粒子径:900nm)の30.4g(70質量%)を、ラボプラスミルを用い、300℃で10分間溶融混練し、ETFE3組成物を得た。ETFE3組成物を、中空糸状キャピラリーを備えたキャピラリーフローテスター(東洋精機製作所社製)を用いて成形し、中空糸状成形物(内径:2mm、外径:3mm)を得た。得られた中空糸状成形物を、90℃の15質量%の水酸化カリウム水溶液に2時間浸漬して無水シリカの一部を抽出し、中空糸を得た。恒温槽付きテンシロン(オリエンテック社製)を用い、中空糸を115℃で10分間予熱した後、500mm/分で長さ方向に引張り、2.5倍の延伸を行い、ETFE3からなる多孔質中空糸(内径:1.3mm、外径:1.7mm)を得た。
 上記で得られたETFE3からなる多孔質中空糸の細孔径は、0.13~0.25μmの孔径分布であり、平均細孔径は、0.25μmであった。また、多孔質中空糸の空孔率は67%であった。
 [比較例2]
 ETFE(旭硝子社製:Fluon(登録商標)C-88AX、融点:260℃、メルトインデックス値:3.8(300℃)、ガラス転移温度:93℃、以下、「ETFE4」という。)の1200gと、溶媒可溶性樹脂として、ポリフッ化ビニリデン(クレハ社製:KFポリマーT-#1100(商品名)))の1800g、無機微粉体として無水シリカ(日本アエロジル社製:AEROSILOX50(商品名)、1次粒子平均粒子径40nm)の750gを、二軸押出機を用いて成形温度280℃で溶融混練して、ペレットを得た。なお、得られたペレットにおける、ETFE4/ポリフッ化ビニリデン/無水シリカの質量比は、32/48/20であった。
 上記で得られたペレットを30mm単軸押出機を用いて、樹脂温度280℃で溶融混練し、外径2.9mmφ、内径2.0mmφのダイを取り付けた電線被覆用押出装置にて、溶融押出しを行い、水槽で冷却を行った。その後、芯線を引き抜き、外径1.5mmφ、内径0.9mmφの成形体としての中空管状成形物(チューブ)を得た。得られた中空管状成形物は、所定寸法に切断した後、65℃に加温したN,N-ジメチルホルムアミド(ポリフッ化ビニリデンの溶媒)に10時間浸漬して、この中空管状成形物が含有するポリフッ化ビニリデンを抽出した。次いで、得られた中空管を、さらに80℃に加温した15質量%のKOH水溶液に2時間浸漬して無水シリカを抽出した。抽出処理された中空管を、水洗し、80℃において、24時間予備乾燥(予備熱処理)して、ETFE4の多孔質中空管を得た。この多孔質中空管を、熱風式ギアオーブンを使用して230℃で24時間の熱処理を行い製品多孔質中空管が得られた。この熱処理温度230℃は、ETFE4のガラス転移温度Tg(90℃)以上で、融点Tm(260℃)より低い温度として選択されたものである。このようにして得られたETFE4からなる多孔質中空糸の空孔率は45%であった。
 上記実施例1~6および比較例1~2により明らかなように、本発明の製造方法によれば、ETFE多孔体を従来の方法に比べて幅広い空孔率の範囲で簡便に製造でき、孔径分布もシャープな多孔体を作成できる。
 本発明のエチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体の多孔体は、空孔率が高く、細孔径が均一で、高強度であり、精密濾過膜、限外濾過膜などの分離膜等の用途に適する。優れた耐薬品性と優れた耐熱性を有し、機械的強度も高い為、飲料水、浄水、下水処理やし尿処理、膜分離活性汚泥処理、排水処理、廃液処理といった水処理用途や、二次電池のセパレーター等に使用できる。具体例としては、水処理用膜、分離用中空糸、水処理用中空糸、二次電池セパレーター等が挙げられる。

 なお、2008年10月16日に出願された日本特許出願2008-266936号及び2009年7月1日に出願された日本特許出願2009-156741号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  エチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体を、300℃以下で前記エチレン/テトラフルオロエチレン共重合体を溶解しうる溶媒に、300℃以下かつ得られる溶液の相分離温度以上の温度で所定の濃度となるように溶解して溶液を得る工程(A)と、
     前記溶液を300℃以下かつ前記溶液の相分離温度以上の温度で成形して成形物とする工程(B)と、
     前記溶液の相分離温度以上の温度の成形物を前記溶液の相分離温度以下の温度に冷却して前記エチレン/テトラフルオロエチレン共重合体を凝固させる工程(C)と、
     を有することを特徴とするエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  2.  前記工程(A)における溶解が、前記溶液の相分離温度以上かつ前記エチレン/テトラフルオロエチレン共重合体の融点以下の温度で行われる請求項1に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  3.  前記工程(A)における所定の濃度が、前記溶液中の、前記エチレン/テトラフルオロエチレン共重合体/前記溶媒で示される前記溶媒に対する前記エチレン/テトラフルオロエチレン共重合体の質量割合として、15/85~65/35である請求項1または2に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  4.  前記工程(C)における冷却を、冷却用液体中で行うことを特徴とする請求項1~3のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  5.  前記溶媒が、含フッ素芳香族化合物、カルボニル基を1個以上有する脂肪族化合物、および、ハイドロフルオロアルキルエーテルからなる群から選ばれる少なくとも一種である請求項1~4のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  6.  前記工程(A)において、一次粒子径が10nm~1μmの粉体を含有するように前記溶液を作製することを特徴とする請求項1~5のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  7.  前記工程(B)が、前記溶液を押出成形物として吐出することで行われる請求項4~6のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  8.  前記工程(C)における冷却が、前記工程(B)直後の前記押出成形物を、長さ0.1~100mm、0℃以上かつ前記溶液の相分離温度以下の乾式部に通過させ、ついで前記冷却用液体に導入して行うことからなる請求項7に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  9.  前記冷却用液体が、エチレン/テトラフルオロエチレン共重合体の非溶媒である請求項4、7または8に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  10.  さらに前記溶媒の抽出工程(D)を有する、請求項1~9のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
  11.  請求項1~10のいずれか1項に記載の製造方法で得られた、形状がフィルムまたは中空糸であることを特徴とするエチレン/テトラフルオロエチレン共重合体多孔体。
  12.  空孔率が20~90%であり、微細孔の平均孔径が0.01~20μmである、請求項11に記載のエチレン/テトラフルオロエチレン共重合体多孔体。
PCT/JP2009/067789 2008-10-16 2009-10-14 エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 WO2010044425A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801414548A CN102186909B (zh) 2008-10-16 2009-10-14 乙烯/四氟乙烯共聚物多孔体的制造方法及乙烯/四氟乙烯共聚物多孔体
EP09820603A EP2338933B1 (en) 2008-10-16 2009-10-14 Process for producing porous ethylene/tetrafluoroethylene copolymer and porous ethylene/tetrafluoroethylene copolymer
JP2010533914A JPWO2010044425A1 (ja) 2008-10-16 2009-10-14 エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体
US13/071,720 US20110178193A1 (en) 2008-10-16 2011-03-25 Process for producing ethylene/tetrafluoroethylene copolymer porous material, and ethylene/tetrafluoroethylene copolymer porous material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008266936 2008-10-16
JP2008-266936 2008-10-16
JP2009156741 2009-07-01
JP2009-156741 2009-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/071,720 Continuation US20110178193A1 (en) 2008-10-16 2011-03-25 Process for producing ethylene/tetrafluoroethylene copolymer porous material, and ethylene/tetrafluoroethylene copolymer porous material

Publications (1)

Publication Number Publication Date
WO2010044425A1 true WO2010044425A1 (ja) 2010-04-22

Family

ID=42106588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067789 WO2010044425A1 (ja) 2008-10-16 2009-10-14 エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体

Country Status (7)

Country Link
US (1) US20110178193A1 (ja)
EP (1) EP2338933B1 (ja)
JP (1) JPWO2010044425A1 (ja)
KR (1) KR20110079617A (ja)
CN (1) CN102186909B (ja)
TW (1) TW201026761A (ja)
WO (1) WO2010044425A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120108723A1 (en) * 2009-07-01 2012-05-03 Asahi Glass Company, Limited Fluorocopolymer composition and its production process
WO2012074114A1 (ja) 2010-12-03 2012-06-07 旭硝子株式会社 電荷保持媒体の製造方法
WO2012074115A1 (ja) 2010-12-03 2012-06-07 旭硝子株式会社 電荷保持媒体
WO2013015385A1 (ja) 2011-07-28 2013-01-31 旭硝子株式会社 エレクトレットおよびその製造方法、ならびに静電誘導型変換素子
WO2013024886A1 (ja) * 2011-08-17 2013-02-21 旭硝子株式会社 含フッ素共重合体組成物、コーティング用組成物、塗膜を有する物品、及び成形品
US10975483B2 (en) 2015-03-18 2021-04-13 Asahi Kasei Kabushiki Kaisha Diaphragm for alkaline water electrolysis, alkaline water electrolysis device, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011068129A1 (ja) * 2009-12-03 2013-04-18 旭硝子株式会社 含フッ素共重合体ナノコンポジットの製造方法
CN103183884B (zh) * 2011-12-28 2015-07-15 山东东岳高分子材料有限公司 含氟微孔膜及其制备方法
CN103187549B (zh) * 2011-12-28 2015-04-22 山东东岳高分子材料有限公司 适用于锂离子电池的隔膜及其制备方法
CA2908503C (en) * 2013-04-01 2021-12-21 Petroliam Nasional Berhad Polysulfone membrane having high selectivity
US9932429B2 (en) * 2014-07-29 2018-04-03 W. L. Gore & Associates, Inc. Method for producing porous articles from alternating poly(ethylene tetrafluoroethylene) and articles produced therefrom
CN108686520A (zh) * 2018-06-12 2018-10-23 漳州龙文琪睿生物科技有限公司 一种血液透析膜原材料的制备方法
CN112898662B (zh) * 2021-01-21 2023-07-04 优唯新材料科技有限公司 一种特氟龙改性聚乙烯护套料及其制备方法
CN113799407B (zh) * 2021-09-23 2024-01-12 莱州结力工贸有限公司 用于免拆洗过滤设备的抗菌驻极体的制作方法
CN113736134B (zh) * 2021-11-08 2022-02-22 国家电投集团氢能科技发展有限公司 改性膨体聚四氟乙烯、其制备方法、复合离子交换膜及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152739A (ja) * 1984-12-27 1986-07-11 Asahi Chem Ind Co Ltd エチレン−テトラフルオロエチレン共重合体多孔膜の製造方法
JPS62106808A (ja) * 1985-11-01 1987-05-18 Asahi Chem Ind Co Ltd エチレン―テトラフルオロエチレン共重合体多孔膜
JPH02196835A (ja) * 1988-08-05 1990-08-03 Hoechst Celanese Corp 強度特性に優れたハロゲン化重合体微孔質膜の製造
JPH05192988A (ja) * 1991-11-06 1993-08-03 Daikin Ind Ltd エチレンーテトラフルオロエチレン共重合体中空管の製造方法
JP3265678B2 (ja) 1993-02-12 2002-03-11 ダイキン工業株式会社 エチレンーテトラフルオロエチレン共重合体多孔膜の製造方法
JP2005097367A (ja) * 2003-09-22 2005-04-14 Inoac Corp フッ素ゴムを含むミクロ多孔体およびその製造方法
JP2008013615A (ja) 2006-07-04 2008-01-24 Asahi Glass Co Ltd フッ素樹脂多孔体の製造方法
JP2008266936A (ja) 2007-04-18 2008-11-06 Taisei Corp グラウトの比率制御方法及びその装置
JP2009156741A (ja) 2007-12-27 2009-07-16 Konica Minolta Medical & Graphic Inc 開口封止部材、開口封止方法、マイクロ検査チップおよび開口封止治具

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412960A (en) * 1945-03-19 1946-12-24 Du Pont Fluid compositions containing copolymers of tetrafluoroethylene and ethylene
US2484483A (en) * 1945-07-26 1949-10-11 Du Pont Polytetrafluoroethylene dispersions
US2448952A (en) * 1945-07-26 1948-09-07 Du Pont Method for obtaining dispersions of polytetrafluoroethylene-ethylene copolymers
CA1068458A (en) * 1975-07-17 1979-12-25 Hiroshi Mano Process for producing porous materials
GB2168981B (en) * 1984-12-27 1988-07-06 Asahi Chemical Ind Porous fluorine resin membrane and process for preparation thereof
DE3631561A1 (de) * 1986-09-17 1988-03-31 Hoechst Ag Loesungen von fluorpolymeren und deren verwendung
DE3744392A1 (de) * 1987-12-29 1989-07-13 Hoechst Ag Loesungen von copolymeren des typs tetrafluorethylen/ethylen
US5409997A (en) * 1993-11-01 1995-04-25 E. I. Du Pont De Nemours And Company Thermally-stable melt processible fluoropolymer compositions and process
US6921482B1 (en) * 1999-01-29 2005-07-26 Mykrolis Corporation Skinned hollow fiber membrane and method of manufacture
ITMI20010421A1 (it) * 2001-03-01 2002-09-02 Ausimont Spa Membrane porose semipermeabili di fluoropolimeri semicristallini
US7247238B2 (en) * 2002-02-12 2007-07-24 Siemens Water Technologies Corp. Poly(ethylene chlorotrifluoroethylene) membranes
JP4857560B2 (ja) * 2002-09-30 2012-01-18 旭硝子株式会社 固体高分子型燃料電池用電解質膜の製造方法
US7351338B2 (en) * 2003-03-13 2008-04-01 Kureha Corporation Porous membrane of vinylidene fluoride resin and process for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152739A (ja) * 1984-12-27 1986-07-11 Asahi Chem Ind Co Ltd エチレン−テトラフルオロエチレン共重合体多孔膜の製造方法
JPS6311370B2 (ja) 1984-12-27 1988-03-14 Asahi Chemical Ind
JPS62106808A (ja) * 1985-11-01 1987-05-18 Asahi Chem Ind Co Ltd エチレン―テトラフルオロエチレン共重合体多孔膜
JPH02196835A (ja) * 1988-08-05 1990-08-03 Hoechst Celanese Corp 強度特性に優れたハロゲン化重合体微孔質膜の製造
JPH05192988A (ja) * 1991-11-06 1993-08-03 Daikin Ind Ltd エチレンーテトラフルオロエチレン共重合体中空管の製造方法
JP3265678B2 (ja) 1993-02-12 2002-03-11 ダイキン工業株式会社 エチレンーテトラフルオロエチレン共重合体多孔膜の製造方法
JP2005097367A (ja) * 2003-09-22 2005-04-14 Inoac Corp フッ素ゴムを含むミクロ多孔体およびその製造方法
JP2008013615A (ja) 2006-07-04 2008-01-24 Asahi Glass Co Ltd フッ素樹脂多孔体の製造方法
JP2008266936A (ja) 2007-04-18 2008-11-06 Taisei Corp グラウトの比率制御方法及びその装置
JP2009156741A (ja) 2007-12-27 2009-07-16 Konica Minolta Medical & Graphic Inc 開口封止部材、開口封止方法、マイクロ検査チップおよび開口封止治具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2338933A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120108723A1 (en) * 2009-07-01 2012-05-03 Asahi Glass Company, Limited Fluorocopolymer composition and its production process
EP2450406A1 (en) * 2009-07-01 2012-05-09 Asahi Glass Company, Limited Fluorine-containing copolymer composition and method for producing same
EP2450406A4 (en) * 2009-07-01 2013-01-02 Asahi Glass Co Ltd FLUORINE CONTAINING COPOLYMER COMPOSITION AND METHOD FOR PRODUCING THE SAME
WO2012074114A1 (ja) 2010-12-03 2012-06-07 旭硝子株式会社 電荷保持媒体の製造方法
WO2012074115A1 (ja) 2010-12-03 2012-06-07 旭硝子株式会社 電荷保持媒体
US9427777B2 (en) 2010-12-03 2016-08-30 Asahi Glass Company, Limited Process for producing charge retention medium
WO2013015385A1 (ja) 2011-07-28 2013-01-31 旭硝子株式会社 エレクトレットおよびその製造方法、ならびに静電誘導型変換素子
WO2013024886A1 (ja) * 2011-08-17 2013-02-21 旭硝子株式会社 含フッ素共重合体組成物、コーティング用組成物、塗膜を有する物品、及び成形品
US10975483B2 (en) 2015-03-18 2021-04-13 Asahi Kasei Kabushiki Kaisha Diaphragm for alkaline water electrolysis, alkaline water electrolysis device, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis

Also Published As

Publication number Publication date
CN102186909B (zh) 2013-04-10
EP2338933B1 (en) 2013-03-20
EP2338933A4 (en) 2012-04-04
TW201026761A (en) 2010-07-16
EP2338933A1 (en) 2011-06-29
JPWO2010044425A1 (ja) 2012-03-15
KR20110079617A (ko) 2011-07-07
CN102186909A (zh) 2011-09-14
US20110178193A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2010044425A1 (ja) エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体
JP5626269B2 (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP2012525966A (ja) フッ素系中空糸膜およびその製造方法
JP6760359B2 (ja) 親水化剤、親水化剤を含む組成物及び高分子多孔質膜
WO1996017676A1 (fr) Procede de preparation d'une membrane en polyether ether cetone
WO2014208592A1 (ja) 組成物、高分子多孔質膜及び親水化剤
JP2011225659A (ja) 親水化されたエチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体
Huang et al. Fabrication and properties of poly (tetrafluoroethylene-co-hexafluoropropylene) hollow fiber membranes
WO2015141653A1 (ja) 複合分離膜
WO2015041119A1 (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JP5050499B2 (ja) 中空糸膜の製造方法および中空糸膜
JP4271750B2 (ja) 微多孔膜及びその製造方法
JP4978829B2 (ja) フッ素樹脂多孔体の製造方法
JP4781691B2 (ja) 多孔質膜およびその製造方法
JP2016183301A (ja) 水処理用ポリフッ化ビニリデン多孔膜及び水処理用ポリフッ化ビニリデン多孔膜の製造方法
EP3130390B1 (en) Ptfe/pfsa additive blended membrane
JP2008062227A (ja) 製膜原液、多孔膜及び多孔膜の製造方法
JP2015058418A (ja) 高分子多孔質膜及び高分子多孔質膜の製造方法
JPS5916503A (ja) ポリフツ化ビニリデン系樹脂多孔中空糸膜及びその製造方法
JP5968982B2 (ja) 中空糸膜製造用高分子樹脂組成物、中空糸膜の製造方法及び中空糸膜
CN114269459A (zh) 包含聚芳醚砜和聚芳醚酮共混物的膜及其制造方法
JPH08126825A (ja) 濾過膜の熱安定化方法
Jayan et al. Fluoropolymer nanocomposite membranes for gas separation applications
EP3763434A1 (en) Membrane and method for manufacturing thereof
CN115920669A (zh) 一种全氟中空纤维多孔膜的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141454.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533914

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117005526

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009820603

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE