WO2010044425A1 - エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 - Google Patents
エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 Download PDFInfo
- Publication number
- WO2010044425A1 WO2010044425A1 PCT/JP2009/067789 JP2009067789W WO2010044425A1 WO 2010044425 A1 WO2010044425 A1 WO 2010044425A1 JP 2009067789 W JP2009067789 W JP 2009067789W WO 2010044425 A1 WO2010044425 A1 WO 2010044425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ethylene
- etfe
- solution
- tetrafluoroethylene copolymer
- temperature
- Prior art date
Links
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 title claims abstract description 74
- 239000005977 Ethylene Substances 0.000 title claims abstract description 74
- 229920001577 copolymer Polymers 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 title claims abstract description 10
- 239000002904 solvent Substances 0.000 claims abstract description 103
- 238000005191 phase separation Methods 0.000 claims abstract description 52
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000012510 hollow fiber Substances 0.000 claims description 72
- 239000011148 porous material Substances 0.000 claims description 71
- 238000004519 manufacturing process Methods 0.000 claims description 63
- 238000001816 cooling Methods 0.000 claims description 44
- 229910052731 fluorine Inorganic materials 0.000 claims description 39
- 239000011737 fluorine Substances 0.000 claims description 35
- 239000000843 powder Substances 0.000 claims description 35
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 34
- 238000000465 moulding Methods 0.000 claims description 26
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 23
- 150000007824 aliphatic compounds Chemical class 0.000 claims description 18
- 239000000110 cooling liquid Substances 0.000 claims description 18
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 15
- 238000000605 extraction Methods 0.000 claims description 12
- 238000004090 dissolution Methods 0.000 claims description 11
- 150000001491 aromatic compounds Chemical class 0.000 claims description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 239000011164 primary particle Substances 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 2
- 235000012438 extruded product Nutrition 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 12
- 238000001914 filtration Methods 0.000 abstract description 4
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 239
- 239000000243 solution Substances 0.000 description 127
- 239000010408 film Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000007788 liquid Substances 0.000 description 15
- -1 polytetrafluoroethylene Polymers 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 13
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 13
- 238000009826 distribution Methods 0.000 description 13
- 150000002148 esters Chemical class 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 12
- 238000001125 extrusion Methods 0.000 description 12
- 238000004898 kneading Methods 0.000 description 12
- 238000009835 boiling Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- BNBRIFIJRKJGEI-UHFFFAOYSA-N 2,6-difluorobenzonitrile Chemical compound FC1=CC=CC(F)=C1C#N BNBRIFIJRKJGEI-UHFFFAOYSA-N 0.000 description 9
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 9
- 239000002826 coolant Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 description 9
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000005711 Benzoic acid Substances 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 7
- 235000010233 benzoic acid Nutrition 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 125000001153 fluoro group Chemical group F* 0.000 description 7
- ZQBFAOFFOQMSGJ-UHFFFAOYSA-N hexafluorobenzene Chemical class FC1=C(F)C(F)=C(F)C(F)=C1F ZQBFAOFFOQMSGJ-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003513 alkali Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 229920006358 Fluon Polymers 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- 235000011118 potassium hydroxide Nutrition 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- QPJVMBTYPHYUOC-UHFFFAOYSA-N Methyl benzoate Natural products COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 150000008365 aromatic ketones Chemical class 0.000 description 3
- 150000007860 aryl ester derivatives Chemical class 0.000 description 3
- 150000008378 aryl ethers Chemical class 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 150000001555 benzenes Chemical class 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 150000003997 cyclic ketones Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920005672 polyolefin resin Polymers 0.000 description 3
- 238000002145 thermally induced phase separation Methods 0.000 description 3
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 3
- GETTZEONDQJALK-UHFFFAOYSA-N (trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC=C1 GETTZEONDQJALK-UHFFFAOYSA-N 0.000 description 2
- RRZIJNVZMJUGTK-UHFFFAOYSA-N 1,1,2-trifluoro-2-(1,2,2-trifluoroethenoxy)ethene Chemical class FC(F)=C(F)OC(F)=C(F)F RRZIJNVZMJUGTK-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 2-octanone Chemical compound CCCCCCC(C)=O ZPVFWPFBNIEHGJ-UHFFFAOYSA-N 0.000 description 2
- POSWICCRDBKBMH-UHFFFAOYSA-N 3,3,5-trimethylcyclohexan-1-one Chemical compound CC1CC(=O)CC(C)(C)C1 POSWICCRDBKBMH-UHFFFAOYSA-N 0.000 description 2
- SYBYTAAJFKOIEJ-UHFFFAOYSA-N 3-Methylbutan-2-one Chemical compound CC(C)C(C)=O SYBYTAAJFKOIEJ-UHFFFAOYSA-N 0.000 description 2
- UJBOOUHRTQVGRU-UHFFFAOYSA-N 3-methylcyclohexan-1-one Chemical compound CC1CCCC(=O)C1 UJBOOUHRTQVGRU-UHFFFAOYSA-N 0.000 description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- ZAJNGDIORYACQU-UHFFFAOYSA-N decan-2-one Chemical compound CCCCCCCCC(C)=O ZAJNGDIORYACQU-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- AOGQPLXWSUTHQB-UHFFFAOYSA-N hexyl acetate Chemical compound CCCCCCOC(C)=O AOGQPLXWSUTHQB-UHFFFAOYSA-N 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- 229940095102 methyl benzoate Drugs 0.000 description 2
- ZQWPRMPSCMSAJU-UHFFFAOYSA-N methyl cyclohexanecarboxylate Chemical compound COC(=O)C1CCCCC1 ZQWPRMPSCMSAJU-UHFFFAOYSA-N 0.000 description 2
- VKCYHJWLYTUGCC-UHFFFAOYSA-N nonan-2-one Chemical compound CCCCCCCC(C)=O VKCYHJWLYTUGCC-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- MXDFLRGXFKNZEY-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl) butanoate Chemical compound CCCC(=O)OC1=C(F)C(F)=C(F)C(F)=C1F MXDFLRGXFKNZEY-UHFFFAOYSA-N 0.000 description 1
- FRBSRNLPOOEDIS-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl) pentanoate Chemical compound CCCCC(=O)OC1=C(F)C(F)=C(F)C(F)=C1F FRBSRNLPOOEDIS-UHFFFAOYSA-N 0.000 description 1
- IIEADPHIKASKSV-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl) propanoate Chemical compound CCC(=O)OC1=C(F)C(F)=C(F)C(F)=C1F IIEADPHIKASKSV-UHFFFAOYSA-N 0.000 description 1
- RUMMIUOXQGFCEP-UHFFFAOYSA-N (4-acetylphenyl) trifluoromethanesulfonate Chemical compound CC(=O)C1=CC=C(OS(=O)(=O)C(F)(F)F)C=C1 RUMMIUOXQGFCEP-UHFFFAOYSA-N 0.000 description 1
- QKAGYSDHEJITFV-UHFFFAOYSA-N 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)pentane Chemical compound FC(F)(F)C(F)(F)C(F)(OC)C(F)(C(F)(F)F)C(F)(F)F QKAGYSDHEJITFV-UHFFFAOYSA-N 0.000 description 1
- TZMQCOROQZMJIS-UHFFFAOYSA-N 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)pentane Chemical compound FC(F)(F)C(F)C(F)(F)C(C)OC(F)(F)C(F)C(F)(F)F TZMQCOROQZMJIS-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- JDCMOHAFGDQQJX-UHFFFAOYSA-N 1,2,3,4,5,6,7,8-octafluoronaphthalene Chemical compound FC1=C(F)C(F)=C(F)C2=C(F)C(F)=C(F)C(F)=C21 JDCMOHAFGDQQJX-UHFFFAOYSA-N 0.000 description 1
- QJHMHZVVRVXKOY-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenoxy)benzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1OC1=C(F)C(F)=C(F)C(F)=C1F QJHMHZVVRVXKOY-UHFFFAOYSA-N 0.000 description 1
- ONUFSRWQCKNVSL-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenyl)benzene Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F ONUFSRWQCKNVSL-UHFFFAOYSA-N 0.000 description 1
- ZRQUIRABLIQJRI-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-methoxybenzene Chemical compound COC1=C(F)C(F)=C(F)C(F)=C1F ZRQUIRABLIQJRI-UHFFFAOYSA-N 0.000 description 1
- INUOFQAJCYUOJR-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-nitrobenzene Chemical compound [O-][N+](=O)C1=C(F)C(F)=C(F)C(F)=C1F INUOFQAJCYUOJR-UHFFFAOYSA-N 0.000 description 1
- SJBBXFLOLUTGCW-UHFFFAOYSA-N 1,3-bis(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=CC(C(F)(F)F)=C1 SJBBXFLOLUTGCW-UHFFFAOYSA-N 0.000 description 1
- WYUNHWKTLDBPLE-UHFFFAOYSA-N 1-(2,3,4,5,6-pentafluorophenyl)ethanol Chemical compound CC(O)C1=C(F)C(F)=C(F)C(F)=C1F WYUNHWKTLDBPLE-UHFFFAOYSA-N 0.000 description 1
- FBGHCYZBCMDEOX-UHFFFAOYSA-N 1-(2,3,4,5,6-pentafluorophenyl)ethanone Chemical compound CC(=O)C1=C(F)C(F)=C(F)C(F)=C1F FBGHCYZBCMDEOX-UHFFFAOYSA-N 0.000 description 1
- MCYCSIKSZLARBD-UHFFFAOYSA-N 1-[3,5-bis(trifluoromethyl)phenyl]ethanone Chemical compound CC(=O)C1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 MCYCSIKSZLARBD-UHFFFAOYSA-N 0.000 description 1
- ABXGMGUHGLQMAW-UHFFFAOYSA-N 1-[3-(trifluoromethyl)phenyl]ethanone Chemical compound CC(=O)C1=CC=CC(C(F)(F)F)=C1 ABXGMGUHGLQMAW-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- HQZFGUOTUIHWLR-UHFFFAOYSA-N 1-methoxy-3,5-bis(trifluoromethyl)benzene Chemical compound COC1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 HQZFGUOTUIHWLR-UHFFFAOYSA-N 0.000 description 1
- KZJRKRQSDZGHEC-UHFFFAOYSA-N 2,2,2-trifluoro-1-phenylethanone Chemical compound FC(F)(F)C(=O)C1=CC=CC=C1 KZJRKRQSDZGHEC-UHFFFAOYSA-N 0.000 description 1
- 229940087189 2,2,2-trifluoroacetophenone Drugs 0.000 description 1
- GMYUKHZXDVBIQE-UHFFFAOYSA-N 2,2,2-trifluoroethyl benzoate Chemical compound FC(F)(F)COC(=O)C1=CC=CC=C1 GMYUKHZXDVBIQE-UHFFFAOYSA-N 0.000 description 1
- CIOXTSWQGUAVPU-UHFFFAOYSA-N 2,2,2-trifluoroethyl cyclohexanecarboxylate Chemical compound FC(F)(F)COC(=O)C1CCCCC1 CIOXTSWQGUAVPU-UHFFFAOYSA-N 0.000 description 1
- PACDHXOPNJXFOK-UHFFFAOYSA-N 2,2,3,3-tetrafluoropropyl benzoate Chemical compound FC(F)C(F)(F)COC(=O)C1=CC=CC=C1 PACDHXOPNJXFOK-UHFFFAOYSA-N 0.000 description 1
- UOJCTEGNHXRPKO-UHFFFAOYSA-N 2,3,4,5,6-pentafluorobenzenesulfonyl chloride Chemical compound FC1=C(F)C(F)=C(S(Cl)(=O)=O)C(F)=C1F UOJCTEGNHXRPKO-UHFFFAOYSA-N 0.000 description 1
- YXWJGZQOGXGSSC-UHFFFAOYSA-N 2,3,4,5,6-pentafluorobenzonitrile Chemical compound FC1=C(F)C(F)=C(C#N)C(F)=C1F YXWJGZQOGXGSSC-UHFFFAOYSA-N 0.000 description 1
- PGJYYCIOYBZTPU-UHFFFAOYSA-N 2,3,4,5,6-pentafluorobenzyl alcohol Chemical compound OCC1=C(F)C(F)=C(F)C(F)=C1F PGJYYCIOYBZTPU-UHFFFAOYSA-N 0.000 description 1
- XTGOWLIKIQLYRG-UHFFFAOYSA-N 2,3,4,5,6-pentafluoropyridine Chemical compound FC1=NC(F)=C(F)C(F)=C1F XTGOWLIKIQLYRG-UHFFFAOYSA-N 0.000 description 1
- GLTGXIGJLCSEAM-UHFFFAOYSA-N 2,3,4,5-tetrafluorobenzonitrile Chemical compound FC1=CC(C#N)=C(F)C(F)=C1F GLTGXIGJLCSEAM-UHFFFAOYSA-N 0.000 description 1
- IOQMWOBRUDNEOA-UHFFFAOYSA-N 2,3,5,6-tetrafluorobenzonitrile Chemical compound FC1=CC(F)=C(F)C(C#N)=C1F IOQMWOBRUDNEOA-UHFFFAOYSA-N 0.000 description 1
- GKPHNZYMLJPYJJ-UHFFFAOYSA-N 2,3-difluorobenzonitrile Chemical compound FC1=CC=CC(C#N)=C1F GKPHNZYMLJPYJJ-UHFFFAOYSA-N 0.000 description 1
- DLKNOGQOOZFICZ-UHFFFAOYSA-N 2,4,5-trifluorobenzonitrile Chemical compound FC1=CC(F)=C(C#N)C=C1F DLKNOGQOOZFICZ-UHFFFAOYSA-N 0.000 description 1
- HTKFGTCCOJIUIK-UHFFFAOYSA-N 2,4,6-trifluorobenzonitrile Chemical compound FC1=CC(F)=C(C#N)C(F)=C1 HTKFGTCCOJIUIK-UHFFFAOYSA-N 0.000 description 1
- RJXOVESYJFXCGI-UHFFFAOYSA-N 2,4-difluoro-1-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=C(F)C=C1F RJXOVESYJFXCGI-UHFFFAOYSA-N 0.000 description 1
- LJFDXXUKKMEQKE-UHFFFAOYSA-N 2,4-difluorobenzonitrile Chemical compound FC1=CC=C(C#N)C(F)=C1 LJFDXXUKKMEQKE-UHFFFAOYSA-N 0.000 description 1
- SSRFMDDZODUAJG-UHFFFAOYSA-N 2,5,6-trifluoropyridine-3-carbonitrile Chemical compound FC1=CC(C#N)=C(F)N=C1F SSRFMDDZODUAJG-UHFFFAOYSA-N 0.000 description 1
- OJTMHIMQUQOLJV-UHFFFAOYSA-N 2,5-difluorobenzonitrile Chemical compound FC1=CC=C(F)C(C#N)=C1 OJTMHIMQUQOLJV-UHFFFAOYSA-N 0.000 description 1
- AILVYPLQKCQNJC-UHFFFAOYSA-N 2,6-dimethylcyclohexan-1-one Chemical compound CC1CCCC(C)C1=O AILVYPLQKCQNJC-UHFFFAOYSA-N 0.000 description 1
- ACNBBQGAWMHXLA-UHFFFAOYSA-N 2-(trifluoromethoxy)benzonitrile Chemical compound FC(F)(F)OC1=CC=CC=C1C#N ACNBBQGAWMHXLA-UHFFFAOYSA-N 0.000 description 1
- SOZGHDCEWOLLHV-UHFFFAOYSA-N 2-(trifluoromethyl)benzonitrile Chemical compound FC(F)(F)C1=CC=CC=C1C#N SOZGHDCEWOLLHV-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- WOYWLLHHWAMFCB-UHFFFAOYSA-N 2-ethylhexyl acetate Chemical compound CCCCC(CC)COC(C)=O WOYWLLHHWAMFCB-UHFFFAOYSA-N 0.000 description 1
- LFSAPCRASZRSKS-UHFFFAOYSA-N 2-methylcyclohexan-1-one Chemical compound CC1CCCCC1=O LFSAPCRASZRSKS-UHFFFAOYSA-N 0.000 description 1
- XFKYJMGXZXJYBS-UHFFFAOYSA-N 3,4,5-trifluorobenzonitrile Chemical compound FC1=CC(C#N)=CC(F)=C1F XFKYJMGXZXJYBS-UHFFFAOYSA-N 0.000 description 1
- BTBFCBQZFMQBNT-UHFFFAOYSA-N 3,4-difluorobenzonitrile Chemical compound FC1=CC=C(C#N)C=C1F BTBFCBQZFMQBNT-UHFFFAOYSA-N 0.000 description 1
- CZKHHAOIHXHOSR-UHFFFAOYSA-N 3,5-bis(trifluoromethyl)benzonitrile Chemical compound FC(F)(F)C1=CC(C#N)=CC(C(F)(F)F)=C1 CZKHHAOIHXHOSR-UHFFFAOYSA-N 0.000 description 1
- CQXZSEXZQVKCHW-UHFFFAOYSA-N 3,5-difluorobenzonitrile Chemical compound FC1=CC(F)=CC(C#N)=C1 CQXZSEXZQVKCHW-UHFFFAOYSA-N 0.000 description 1
- DCZAPXGEZYVQNX-UHFFFAOYSA-N 3-(trifluoromethoxy)benzonitrile Chemical compound FC(F)(F)OC1=CC=CC(C#N)=C1 DCZAPXGEZYVQNX-UHFFFAOYSA-N 0.000 description 1
- SMWZGZIZOHNWBH-UHFFFAOYSA-N 3-bromo-5-phenyl-1,2-oxazole Chemical compound O1N=C(Br)C=C1C1=CC=CC=C1 SMWZGZIZOHNWBH-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- SGACKKUEROEDNX-UHFFFAOYSA-N 4-(pentafluoro-$l^{6}-sulfanyl)benzonitrile Chemical compound FS(F)(F)(F)(F)C1=CC=C(C#N)C=C1 SGACKKUEROEDNX-UHFFFAOYSA-N 0.000 description 1
- XWHIXOMWXCHJPP-UHFFFAOYSA-N 4-(trifluoromethoxy)benzonitrile Chemical compound FC(F)(F)OC1=CC=C(C#N)C=C1 XWHIXOMWXCHJPP-UHFFFAOYSA-N 0.000 description 1
- DRNJIKRLQJRKMM-UHFFFAOYSA-N 4-(trifluoromethyl)benzonitrile Chemical compound FC(F)(F)C1=CC=C(C#N)C=C1 DRNJIKRLQJRKMM-UHFFFAOYSA-N 0.000 description 1
- OKSDJGWHKXFVME-UHFFFAOYSA-N 4-ethylcyclohexan-1-one Chemical compound CCC1CCC(=O)CC1 OKSDJGWHKXFVME-UHFFFAOYSA-N 0.000 description 1
- AEKVBBNGWBBYLL-UHFFFAOYSA-N 4-fluorobenzonitrile Chemical compound FC1=CC=C(C#N)C=C1 AEKVBBNGWBBYLL-UHFFFAOYSA-N 0.000 description 1
- MEXUTNIFSHFQRG-UHFFFAOYSA-N 6,7,12,13-tetrahydro-5h-indolo[2,3-a]pyrrolo[3,4-c]carbazol-5-one Chemical compound C12=C3C=CC=C[C]3NC2=C2NC3=CC=C[CH]C3=C2C2=C1C(=O)NC2 MEXUTNIFSHFQRG-UHFFFAOYSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UHFFFAOYSA-N 826-62-0 Chemical compound C1C2C3C(=O)OC(=O)C3C1C=C2 KNDQHSIWLOJIGP-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- KSMHLHAZNXTEMZ-UHFFFAOYSA-N C(C1=CC=CC=C1)#N.[F] Chemical compound C(C1=CC=CC=C1)#N.[F] KSMHLHAZNXTEMZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229920006369 KF polymer Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920006367 Neoflon Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920006355 Tefzel Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- SFDMSZXUKXWQMO-UHFFFAOYSA-N [O-][N+](=O)C1=CC=CC([S])=C1 Chemical compound [O-][N+](=O)C1=CC=CC([S])=C1 SFDMSZXUKXWQMO-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- PSRBRNHUQJKQHV-UHFFFAOYSA-N bis(2,2,2-trifluoroethyl) benzene-1,2-dicarboxylate Chemical compound FC(F)(F)COC(=O)C1=CC=CC=C1C(=O)OCC(F)(F)F PSRBRNHUQJKQHV-UHFFFAOYSA-N 0.000 description 1
- WLLOZRDOFANZMZ-UHFFFAOYSA-N bis(2,2,2-trifluoroethyl) carbonate Chemical compound FC(F)(F)COC(=O)OCC(F)(F)F WLLOZRDOFANZMZ-UHFFFAOYSA-N 0.000 description 1
- VOPAZGMXZXOOBN-UHFFFAOYSA-N bis(2,2,2-trifluoroethyl) hexanedioate pentyl butanoate Chemical compound C(CCCCC(=O)OCC(F)(F)F)(=O)OCC(F)(F)F.C(CCC)(=O)OCCCCC VOPAZGMXZXOOBN-UHFFFAOYSA-N 0.000 description 1
- VDLHKDQLOUOMTC-UHFFFAOYSA-N bis(2,2,3,3-tetrafluoropropyl) carbonate Chemical compound FC(F)C(F)(F)COC(=O)OCC(F)(F)C(F)F VDLHKDQLOUOMTC-UHFFFAOYSA-N 0.000 description 1
- IOVVFSGCNWQFQT-UHFFFAOYSA-N bis(2,3,4,5,6-pentafluorophenyl) carbonate Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1OC(=O)OC1=C(F)C(F)=C(F)C(F)=C1F IOVVFSGCNWQFQT-UHFFFAOYSA-N 0.000 description 1
- WWQLXRAKBJVNCC-UHFFFAOYSA-N bis(2,3,4,5,6-pentafluorophenyl)methanone Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C(=O)C1=C(F)C(F)=C(F)C(F)=C1F WWQLXRAKBJVNCC-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- CGZZMOTZOONQIA-UHFFFAOYSA-N cycloheptanone Chemical compound O=C1CCCCCC1 CGZZMOTZOONQIA-UHFFFAOYSA-N 0.000 description 1
- YKFKEYKJGVSEIX-UHFFFAOYSA-N cyclohexanone, 4-(1,1-dimethylethyl)- Chemical compound CC(C)(C)C1CCC(=O)CC1 YKFKEYKJGVSEIX-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- JBEYNXOZKKQLOH-UHFFFAOYSA-N ethyl 2,2,3,3,4,4,5,5,5-nonafluoropentanoate Chemical compound CCOC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F JBEYNXOZKKQLOH-UHFFFAOYSA-N 0.000 description 1
- DFUDMSIRGGTHGI-UHFFFAOYSA-N ethyl 2,3,4,5,6-pentafluorobenzoate Chemical compound CCOC(=O)C1=C(F)C(F)=C(F)C(F)=C1F DFUDMSIRGGTHGI-UHFFFAOYSA-N 0.000 description 1
- 125000000816 ethylene group Chemical class [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical class FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 125000005816 fluoropropyl group Chemical group [H]C([H])(F)C([H])([H])C([H])([H])* 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 1
- XKYICAQFSCFURC-UHFFFAOYSA-N isoamyl formate Chemical compound CC(C)CCOC=O XKYICAQFSCFURC-UHFFFAOYSA-N 0.000 description 1
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 description 1
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- YQUHULOBTDYMAG-UHFFFAOYSA-N methyl 2,4-difluorobenzoate Chemical compound COC(=O)C1=CC=C(F)C=C1F YQUHULOBTDYMAG-UHFFFAOYSA-N 0.000 description 1
- XVTQAXXMUNXFMU-UHFFFAOYSA-N methyl 2-(3-oxo-2-pyridin-2-yl-1h-pyrazol-5-yl)acetate Chemical compound N1C(CC(=O)OC)=CC(=O)N1C1=CC=CC=N1 XVTQAXXMUNXFMU-UHFFFAOYSA-N 0.000 description 1
- LTYNBDAJUXZFHP-UHFFFAOYSA-N methyl 3,5-bis(trifluoromethyl)benzoate Chemical compound COC(=O)C1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 LTYNBDAJUXZFHP-UHFFFAOYSA-N 0.000 description 1
- QQHNNQCWKYFNAC-UHFFFAOYSA-N methyl 3-(trifluoromethyl)benzoate Chemical compound COC(=O)C1=CC=CC(C(F)(F)F)=C1 QQHNNQCWKYFNAC-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- QULYNCCPRWKEMF-UHFFFAOYSA-N parachlorobenzotrifluoride Chemical compound FC(F)(F)C1=CC=C(Cl)C=C1 QULYNCCPRWKEMF-UHFFFAOYSA-N 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000003884 phenylalkyl group Chemical group 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- HTSABYAWKQAHBT-UHFFFAOYSA-N trans 3-methylcyclohexanol Natural products CC1CCCC(O)C1 HTSABYAWKQAHBT-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0011—Casting solutions therefor
- B01D67/00113—Pretreatment of the casting solutions, e.g. thermal treatment or ageing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/002—Organic membrane manufacture from melts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/087—Details relating to the spinning process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/26—Polyalkenes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/28—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/32—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising halogenated hydrocarbons as the major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
- B01D2323/081—Heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
- B01D2323/082—Cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/219—Specific solvent system
- B01D2323/22—Specific non-solvents or non-solvent system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/22—Thermal or heat-resistance properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/30—Chemical resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/36—Polytetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/052—Inducing phase separation by thermal treatment, e.g. cooling a solution
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/04—Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
- C08J2201/054—Precipitating the polymer by adding a non-solvent or a different solvent
- C08J2201/0542—Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
- C08J2201/0544—Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being aqueous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
- C08L23/0892—Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms containing monomers with other atoms than carbon, hydrogen or oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
- C08L23/28—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
Definitions
- the present invention relates to a method for producing an ethylene / tetrafluoroethylene copolymer porous material and an ethylene / tetrafluoroethylene copolymer porous material obtained by the production method.
- porous bodies such as porous films and porous hollow fibers made of a resin such as a polyolefin-based resin have a desired fine pore and are widely used in various fields because they are inexpensive and lightweight.
- separation of fine particles in cleaning chemicals and gases in semiconductor manufacturing processes aseptic separation of brewed products, removal of viruses in blood products, blood dialysis, seawater desalination, etc.
- Examples include battery separators.
- the fluororesin porous body is excellent in chemical resistance, solvent resistance, heat resistance, and other characteristics, and thus has been studied as a filter material.
- fluororesins that have been put into practical use as porous bodies are polytetrafluoroethylene (hereinafter sometimes abbreviated as PTFE) and vinylidene fluoride-based resin (hereinafter sometimes abbreviated as PVDF). is there.
- a highly porous PTFE film having fine pores is obtained by mixing a PTFE fine powder obtained by emulsion polymerization with a liquid lubricant (auxiliary) and pressing it into a predetermined shape. It is manufactured by stretching in the major axis direction to make it porous and fired.
- Highly porous PTFE films are used in clinical medicine fields such as blood component analysis, serum and sterilization of injections, semiconductor industry fields such as removal of fine particles in LSI cleaning water and cleaning chemicals, and public health fields such as air pollution tests. Widely used as a filter.
- the highly porous PTFE film has high water and oil repellency, and its micropores have a property of passing water vapor but blocking water droplets. It is also widely used in the field of general waterproof clothing.
- the porous PTFE material is relatively soft due to its material, the creep resistance is not sufficient, and there is a problem that when wound, the porous material is deformed, the pores are crushed and the filterability is lowered.
- PTFE has a very high melt viscosity, and there is a problem that melt molding such as extrusion molding and injection molding used in polyolefin resins is difficult. Therefore, the form of the PTFE porous body is limited to a film form or the like, and a special processing technique is required to form an arbitrary form according to the application, for example, a form of a hollow fiber or the like.
- the porous body made from PVDF is excellent in chemical resistance compared with polyolefin resin, it has the fault of being easily attacked by some chemicals.
- the porous body made of PVDF has insufficient alkali resistance, and there is a problem that a strong alkaline chemical cannot be used for cleaning the porous body.
- Patent Documents 1, 2, and 3 disclose a method for producing a porous body made of an ethylene / tetrafluoroethylene copolymer (hereinafter sometimes abbreviated as ETFE).
- ETFE ethylene / tetrafluoroethylene copolymer
- the present invention provides a method for easily producing a porous body of an ethylene / tetrafluoroethylene copolymer having excellent chemical resistance and filtration performance and high heat resistance in a wide range of porosity, and a method for producing the same It aims at providing the ethylene / tetrafluoroethylene copolymer porous body obtained by this.
- the present invention provides a method for producing an ethylene / tetrafluoroethylene copolymer porous body and an ethylene / tetrafluoroethylene copolymer porous body having the following configuration.
- An ethylene / tetrafluoroethylene copolymer containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is obtained at 300 ° C. or lower in a solvent capable of dissolving the ethylene / tetrafluoroethylene copolymer.
- a process for producing an ethylene / tetrafluoroethylene copolymer porous material comprising:
- the predetermined concentration in the step (A) is a mass ratio of the ethylene / tetrafluoroethylene copolymer to the solvent indicated by the ethylene / tetrafluoroethylene copolymer / the solvent in the solution. 15/85 to 65/35, The method for producing an ethylene / tetrafluoroethylene copolymer porous material according to the above [1] or [2].
- the solvent is at least one selected from the group consisting of a fluorine-containing aromatic compound, an aliphatic compound having at least one carbonyl group, and a hydrofluoroalkyl ether.
- Cooling in the step (C) allows the extrudate immediately after the step (B) to pass through a dry section having a length of 0.1 to 100 mm, 0 ° C. or more and a phase separation temperature of the solution or less. Then, the method for producing a porous ethylene / tetrafluoroethylene copolymer according to the above [7], which is carried out by introducing it into the cooling liquid.
- a wide range of ethylene / tetrafluoroethylene copolymer porous bodies containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene having excellent chemical resistance and filtration performance can be obtained. It can be easily obtained within the range of porosity. Moreover, the obtained porous body is a porous body having various shapes within a wide range of porosity, and has excellent separation performance.
- FIG. 2 is a scanning electron micrograph (100,000 times) of the surface of the ETFE porous film of the present invention obtained in Example 1.
- FIG. 2 is a scanning electron micrograph (10,000 magnifications) of a cross section of an ETFE hollow fiber of the present invention obtained in Example 2.
- FIG. 2 is a scanning electron micrograph (magnified 30,000 times) of the ETFE hollow fiber cross section of the present invention obtained in Example 3.
- FIG. 4 is a scanning electron micrograph (10,000 magnifications) of a cross section of the ETFE hollow fiber of the present invention obtained in Example 4.
- FIG. 2 is a scanning electron micrograph (25,000 times) of a cross section of an ETFE hollow fiber of the present invention obtained in Example 5.
- FIG. 4 is a scanning electron micrograph (10,000 magnifications) of a cross section of an ETFE hollow fiber of the present invention obtained in Example 6.
- the manufacturing method of the porous body of the ethylene / tetrafluoroethylene copolymer containing the repeating unit based on ethylene of this invention and the repeating unit based on tetrafluoroethylene is demonstrated.
- the ethylene / tetrafluoroethylene copolymer may be abbreviated as “ETFE”.
- ETFE is more specifically, ethylene. Is a term used for an ethylene / tetrafluoroethylene copolymer containing a repeating unit based on and a repeating unit based on tetrafluoroethylene.
- ETFE containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene is dissolved in a solvent capable of dissolving the ETFE at 300 ° C. or lower, and the phase separation temperature of the resulting solution is 300 ° C. or lower.
- a step (A) of obtaining a solution by dissolving at a predetermined concentration at the above temperature, and a step of molding the solution at a temperature not higher than 300 ° C. and not lower than the phase separation temperature of the solution B
- ETFE in the present invention is not particularly limited as long as it is ETFE containing a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene.
- ETFE a repeating unit based on ethylene and a repeating unit based on tetrafluoroethylene
- TFE tetrafluoroethylene
- examples include ETFE as a repeating unit.
- the molar ratio of the repeating unit based on TFE / the repeating unit based on ethylene is preferably 70/30 to 30/70, more preferably 65/35 to 40/60, and most preferably 60/40. Up to 40/60.
- ETFE in the present invention may contain a repeating unit based on another monomer in addition to the repeating unit based on TFE and ethylene.
- a group, X represents a fluorine atom or a trifluoromethyl group, m represents an integer of 0 to 5), and perfluor
- monomers that may be included in ETFE in the present invention include monomers having a crosslinkable functional group in addition to the above-mentioned comonomers.
- monomers having a crosslinkable functional group include itaconic anhydride, maleic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, and the like.
- the ETFE contains repeating units based on other monomers
- the content is preferably 30 mol% or less, more preferably 0.1 to 15 mol%, based on all repeating units of ETFE, Most preferably, it is 0.2 to 10 mol%.
- the melt index value (hereinafter referred to as MI) of an ethylene / tetrafluoroethylene copolymer such as ETFE is 0.5 to 40 (unit: g / 10 min), preferably 1 to 30.
- MI is a measure of melt moldability. When it is large, the molecular weight of ETFE is small, and when it is small, the molecular weight of ETFE is large. If the MI is too large, the viscosity of the solution tends to decrease and the hollow shape cannot be maintained, or the strength of the porous body after molding tends to decrease. If the MI is too small, the viscosity of the solution becomes too high and the moldability tends to be inferior. MI is measured by the method prescribed in ASTM D3159-98.
- the shape of ETFE when ETFE is dissolved in a solvent is preferable because a powder can be dissolved in a short time, but other shapes such as pellets can also be used.
- ETFE in the present invention it is possible to use a copolymer obtained by copolymerizing ethylene, TFE, and other monomers which may optionally be contained by a usual method.
- the polymerization method include solution polymerization, suspension polymerization, emulsion polymerization, bulk polymerization and the like.
- ETFE in this invention what is obtained as a commercial item can also be used.
- ETFE Asahi Glass Co., Ltd .: Fluon (registered trademark) ETFE Series, Fluon (registered trademark) LM Series, Daikin Industries, Ltd .: Neoflon (registered trademark), Dyneon: Dyneon (registered trademark)
- ETFE manufactured by DuPont: Tefzel (registered trademark)
- the melting point of ETFE in the present invention is not particularly limited, but is preferably 130 ° C. to 275 ° C., more preferably 140 ° C. to 265 ° C., and most preferably 150 ° C. to 260 ° C. from the viewpoints of solubility, strength and the like. It is.
- one of these ETFEs can be used alone, or two or more of them can be used as a mixture.
- step (A) in the production method of the present invention the ETFE is dissolved in a solvent capable of dissolving at 300 ° C. or lower, the ETFE is at a temperature of 300 ° C. or lower, and a temperature equal to or higher than the phase separation temperature of the obtained solution.
- step (A) in the production method of the present invention the ETFE is dissolved in a solvent capable of dissolving at 300 ° C. or lower, the ETFE is at a temperature of 300 ° C. or lower, and a temperature equal to or higher than the phase separation temperature of the obtained solution.
- This is a step of obtaining a solution by dissolving to a concentration.
- the solvent used in the step (A) in the production method of the present invention is not particularly limited as long as it is a solvent that can dissolve the ETFE at a temperature of 300 ° C. or lower, but at a temperature not higher than the melting point of ETFE to be dissolved in the solvent.
- a solvent capable of dissolving 1% by mass or more of ETFE with respect to the amount of the solvent is preferable.
- the amount capable of dissolving ETFE is more preferably 5% by mass or more, and most preferably 10 to 90% by mass.
- Such a solvent is preferably one or more solvents selected from the group consisting of fluorine-containing aromatic compounds, aliphatic compounds having one or more carbonyl groups, and hydrofluoroalkyl ethers. These solvents are solvents that cannot dissolve ETFE at room temperature, but can dissolve ETFE at least at a temperature lower than the melting point of ETFE to form an ETFE solution having an appropriate viscosity.
- the fluorine-containing aromatic compound used in the present invention preferably has a melting point of 230 ° C. or lower, more preferably 200 ° C. or lower, and further preferably ⁇ 50 to 180 ° C. When the melting point is within this range, the handleability when dissolving ETFE is excellent.
- the fluorine content in the fluorine-containing aromatic compound ((fluorine atom weight ⁇ number of fluorine atoms in molecule) ⁇ 100 / molecular weight) is preferably 5 to 75% by mass, more preferably 9 to 75% by mass. 12 to 75% by mass is more preferable. When in this range, the solubility of ETFE is excellent.
- fluorine-containing aromatic compounds include fluorine-containing benzonitrile, fluorine-containing benzoic acid and esters thereof, fluorine-containing polycyclic aromatic compounds, fluorine-containing nitrobenzene, fluorine-containing phenylalkyl alcohol, fluorine-containing phenol and Its ester, fluorine-containing aromatic ketone, fluorine-containing aromatic ether, fluorine-containing aromatic sulfonyl compound, fluorine-containing pyridine compound, fluorine-containing aromatic carbonate, perfluoroalkyl-substituted benzene, perfluorobenzene, benzoic acid polyfluoroalkyl ester, phthalate And polyfluoroalkyl esters of acids and aryl esters of trifluoromethanesulfonic acid.
- fluorine-containing aromatic compound used as the solvent in the present invention fluorine-containing benzonitrile, fluorine-containing benzoic acid and its ester, fluorine-containing polycyclic aromatic compound, fluorine-containing nitrobenzene, fluorine-containing phenylalkyl alcohol , Fluorinated phenols and esters thereof, fluorinated aromatic ketones, fluorinated aromatic ethers, fluorinated aromatic sulfonyl compounds, fluorinated pyridine compounds, fluorinated aromatic carbonates, perfluoroalkyl-substituted benzenes, perfluorobenzenes, and benzoic acid poly
- fluorine-containing aromatic compound used as the solvent in the present invention fluorine-containing benzonitrile, fluorine-containing benzoic acid and its ester, fluorine-containing polycyclic aromatic compound, fluorine-containing nitrobenzene, fluorine-containing phenylalkyl alcohol , Fluorinated
- fluorine-containing aromatic compounds more preferred compounds include pentafluorobenzonitrile, 2,3,4,5-tetrafluorobenzonitrile, 2,3,5,6-tetrafluorobenzonitrile, 2, 4,5-trifluorobenzonitrile, 2,4,6-trifluorobenzonitrile, 3,4,5-trifluorobenzonitrile, 2,3-difluorobenzonitrile, 2,4-difluorobenzonitrile, 2,5 -Difluorobenzonitrile, 2,6-difluorobenzonitrile, 3,4-difluorobenzonitrile, 3,5-difluorobenzonitrile, 4-fluorobenzonitrile, 3,5-bis (trifluoromethyl) benzonitrile, 2- (Trifluoromethyl) benzonitrile, 3- (trifluoromethyl) benzene Zonitrile, 4- (trifluoromethyl) benzonitrile, 2- (trifluoromethoxy) benzon
- the aliphatic compound having one or more carbonyl groups used as a solvent in the production method of the present invention preferably has a melting point of 220 ° C. or lower, more preferably 50 ° C. or lower, and still more preferably ⁇ 50 to 20 ° C.
- the boiling point of the aliphatic compound having one or more carbonyl groups is preferably the same as or higher than the temperature at which the carbonyl group-containing aliphatic compound dissolves the ETFE.
- an aliphatic compound having a boiling point of the carbonyl group-containing aliphatic compound equal to or lower than the dissolution temperature is also applicable.
- “Spontaneously generated pressure” refers to the pressure that a mixture of solvent and ETFE naturally exhibits in a closed container.
- ETFE and the above carbonyl group-containing aliphatic compound are heated to a predetermined temperature in a sealed container to obtain a transparent and uniform solution.
- the heating temperature is preferably not higher than the melting point of ETFE, and preferably 30 ° C. or lower than the melting point of ETFE.
- the possibility of dissolution depends only on the type and temperature of the aliphatic compound used, and is not related to the pressure. Therefore, if the mixture of the aliphatic compound and ETFE reaches a predetermined temperature, the pressure at that time is not particularly limited. When using an aliphatic compound having a lower boiling point, the spontaneously generated pressure increases.
- the boiling point of the carbonyl group-containing aliphatic compound to be used is preferably room temperature or higher, and 50 ° C. or higher. Is more preferable, and 80 ° C. or higher is most preferable.
- the upper limit of the boiling point of the carbonyl group-containing aliphatic compound is not particularly limited, but when used for forming a thin film by coating or the like, it is preferably 220 ° C. or lower from the viewpoint of easiness of drying.
- the aliphatic compound having one or more carbonyl groups is preferably a cyclic ketone having 3 to 10 carbon atoms, a ketone such as a chain ketone, a chain ester, an ester such as a glycol monoether monoester, And at least one selected from the group consisting of carbonates.
- the number of carbonyl groups is preferably 1 or 2.
- the molecular structure of the aliphatic compound having one or more carbonyl groups is not particularly limited.
- the carbon skeleton may be linear, branched, or cyclic, and the main chain or carbonization constituting the side chain may be used.
- -Etheric oxygen may be present between carbon bonds, and a part of hydrogen atoms bonded to carbon atoms may be substituted with a halogen atom such as a fluorine atom.
- a halogen atom such as a fluorine atom.
- a carbonyl group-containing aliphatic compound used in the present invention a cyclic ketone is more preferable. These may be used alone or in combination of two or more.
- carbonyl group-containing aliphatic compound in the present invention include the following compounds.
- cyclic ketone examples include cyclopentanone, cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, 4-ethylcyclohexanone, 2,6-dimethylcyclohexanone, 3,3,5-trimethylcyclohexanone, 4-tert-butylcyclohexanone, Examples include cycloheptanone and isophorone.
- chain ketone examples include acetone, methyl ethyl ketone, 2-pentanone, methyl isopropyl ketone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 2-octanone, 2-nonanone, diisobutyl ketone, 2-decanone and the like.
- chain ester examples include ethyl formate, isopentyl formate, methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, hexyl acetate, cyclohexyl acetate, 2-ethylhexyl acetate, ethyl butyrate, butyl butyrate, pentyl butyrate Bis (2,2,2-trifluoroethyl) adipate, methyl cyclohexanecarboxylate, 2,2,2-trifluoroethyl cyclohexanecarboxylate, ethyl perfluoropentanoate and the like.
- Examples of monoether monoesters of the glycols include 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 1-methoxy-2-acetoxypropane, 1-ethoxy-2-acetoxypropane, 3-acetic acid 3- Examples thereof include methoxybutyl and 3-methoxy-3-methylbutyl acetate.
- carbonate examples include bis (2,2,3,3-tetrafluoropropyl) carbonate, bis (2,2,2-trifluoroethyl) carbonate, diethyl carbonate, propylene carbonate, and the like.
- hydrofluoroalkyl ether used as a solvent in the production method of the present invention examples include 1,1,1,2,3,3-hexafluoro-4- (1,1,2,3,3,3 -Hexafluoropropoxy) pentane, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4- (trifluoromethyl) pentane and the like.
- the hydrofluoroalkyl ether used in the present invention is 1,1,1,2,3,3-hexafluoro-4- (1,1,2,3,3,3-hexafluoropropoxy). Pentane is preferred.
- the above solvents may be used alone or in combination of two or more.
- the speed of phase separation may be controlled.
- a solvent that does not dissolve or swell ETFE up to the melting point of ETFE or the boiling point of a liquid is defined as a non-solvent.
- a non-solvent may be contained in the ETFE solution as long as the solubility of ETFE is not impaired.
- the ETFE non-solvent include aromatic compounds not containing fluorine atoms, alcohols, and the like. Of these, aromatic compounds containing no fluorine atom, such as benzonitrile, acetophenone, nitrobenzene, and methyl benzoate, are preferably used in the production method of the present invention.
- the mixing ratio in the case where the ETFE solution contains a non-solvent together with a solvent capable of dissolving ETFE alone is a solvent / non-solvent (mass ratio) capable of dissolving ETFE alone. 9/1 to 1/9 is preferable, and 7/3 to 3/7 is more preferable.
- the ETFE solution contains a non-solvent in combination with a solvent capable of dissolving ETFE alone
- a mixture of a solvent capable of dissolving ETFE and a non-solvent alone is referred to as a “solvent”.
- the concentration of the ETFE solution prepared in the step (A) is 15/85 to 15/85 to the mass ratio of ETFE to the solvent represented by “ETFE / solvent” in the ETFE solution.
- the ratio is preferably 65/35, more preferably 20/80 to 60/40, and most preferably 25/75 to 55/45.
- the mass ratio of ETFE to the solvent in the ETFE solution is within this range, a hollow fiber having high strength and elongation characteristics can be easily obtained.
- the content of ETFE in the ETFE solution is too large, the porosity of the produced hollow fiber is reduced, and the water permeability may be lowered.
- the viscosity of the ETFE solution in the temperature range not higher than 300 ° C. and not lower than the phase separation temperature of the ETFE solution is preferably 1 to 10000 Pa ⁇ s, more preferably 5 to 5000 Pa ⁇ s, most preferably 10 to 1000 Pa ⁇ s. preferable.
- the viscosity of the ETFE solution is set to an orifice having a diameter of 1 mm and a length of 10 mm in a melt fluidity measuring apparatus “Capillograph” having a furnace inner diameter of 9.55 mm manufactured by Toyo Seiki Seisakusho Co., Ltd. It is the value of the viscosity measured by extruding at the above temperature and the piston speed of 10 mm / min.
- the viscosity of the ETFE solution is within this range, it is easy to form the ETFE solution into a shape such as a hollow fiber in the next step (B).
- the ETFE solution produced in this step (A) contains a powder having a primary particle diameter of 10 nm to 1 ⁇ m.
- the powder may be an organic powder or an inorganic powder as long as it can be dissolved and removed from the solidified ETFE product obtained in step (C) with a removal solvent.
- the inorganic powder is preferably used. Is used.
- the ETFE porous body obtained by the production method of the present invention tends to have a porous structure having a uniform pore size. It is also possible to increase the porosity in the resulting ETFE porous body by dissolving and removing the powder with a removal solvent. Furthermore, since the ETFE solution obtained in the step (A) is imparted with an appropriate viscosity by the addition of powder, it is easy to form into a shape such as a hollow fiber in the next step (B).
- the primary particle size of the powder is more preferably 10 nm to 0.5 ⁇ m, and further preferably 30 nm to 0.3 ⁇ m.
- any conventionally known powder can be used and is not particularly limited.
- Specific examples include anhydrous silica, talc, clay, kaolin, mica, zeolite, calcium carbonate, barium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, magnesium sulfate, zinc oxide, calcium oxide, magnesium oxide, titanium oxide, and hydroxide.
- examples thereof include inorganic powders such as aluminum, magnesium hydroxide, and calcium phosphate.
- anhydrous silica is preferable from the viewpoint of good dispersibility with respect to ETFE and removal with an alkali.
- the content of the powder in the ETFE solution is not particularly limited as long as it does not interfere with the solubility of ETFE and the moldability of the ETFE solution.
- the content of the powder is preferably 50 parts by mass or less, more preferably 0 to 30% by mass with respect to 100 parts by mass of the total amount of ETFE and the solvent.
- the removal solvent used when removing the powder from the solidified molded product of ETFE after the step (C) or in parallel with the step (C) is any solvent that dissolves the powder but does not dissolve the ETFE. There is no particular limitation.
- the powder is soluble in acid, hydrochloric acid, sulfuric acid or the like is used, and when the powder is soluble in alkali, an aqueous alkali solution such as caustic soda or caustic potash is used.
- the ETFE solution in the present invention is obtained by the step (A) of dissolving ETFE in the above solvent at a temperature of 300 ° C. or lower to a predetermined concentration.
- the lower limit of the solution preparation temperature in step (A) is the phase separation temperature of the solution at the predetermined concentration.
- a mixture containing at least two kinds of compounds, here ETFE and a solvent is separated into two phases at a temperature below the phase separation temperature, and thus does not form a uniform solution. That is, the solution can be produced only at a temperature higher than the phase separation temperature.
- the temperature of the obtained ETEF solution is 300 degrees C or less, and is the temperature more than the phase separation temperature of the said solution.
- the temperature at which ETFE dissolves in the above-mentioned solvent that is, the dissolution temperature varies depending on the type of solvent, the solution composition, etc.
- the vertical axis indicates the temperature
- the horizontal axis indicates the concentration ratio of ETFE and the solvent
- the ETFE and solvent at each temperature It is preferable to optimize by the phase diagram in which the concentration of the two-phase coexistence with is plotted. If the temperature at which ETFE is dissolved in the solvent is too high in the production method of the present invention, ETFE is thermally deteriorated and the solvent is volatilized or thermally deteriorated. If the temperature is lower than the phase separation temperature in the solution, ETFE does not dissolve in the solvent.
- the temperature at which ETFE is dissolved in the solvent in the step (A) is preferably a temperature 5 to 100 ° C. higher than the phase separation temperature of the solution to be produced, and more preferably 20 ° C. to the phase separation temperature.
- the temperature is 50 ° C higher.
- the upper limit of the said melting temperature in the manufacturing method of this invention is 300 degreeC, it should be below the melting
- the dissolution when ETFE is dissolved in the solvent, conditions other than temperature are not particularly limited, and it is usually preferable to carry out under normal pressure. However, depending on the type of ETFE and the solvent used, when the boiling point of the solvent is lower than the dissolution temperature, the dissolution may be carried out under pressure in a pressure vessel, for example, about 0.01 to 1 MPa.
- the dissolution time depends on the ETFE used, the type of solvent, the shape of the ETFE, the concentration of the ETFE solution to be prepared, and the like.
- the phase separation temperature is also called a cloud point (cloud point), and when a solution of a certain concentration is maintained at a temperature higher than that temperature, the solute (ETFE in the present invention) and the solvent are mixed. It becomes a uniform one-phase solution, but below the cloud point is the temperature at which phase separation occurs.
- the ETFE solution is brought to a temperature state equal to or lower than the phase separation temperature, it is separated into two phases of a solvent-containing and ETFE-rich phase and an ETFE-containing and solvent-rich phase.
- ETFE is fixed in a ETFE-rich phase, and a porous precursor is formed.
- the heat transfer rate in the ETFE solution is assumed to be 100 times faster than the diffusion rate of the solvent / non-solvent. If the cooling temperature is sufficiently lower than the crystallization temperature, the thickness of the porous body usually provided is 10 ⁇ m. At ⁇ 1 mm, phase separation / solidification occurs throughout the ETFE almost instantaneously after the cooling of the ETFE solution starts.
- a stirrer usually used for preparing various solutions can be used without particular limitation.
- a stirring device specifically, a homomixer, a Henschel mixer, a Banbury mixer, a batch-type kneading device such as a pressure kneader, a pressure vessel with a stirring device, or a kneading device such as an extruder or a kneader.
- a stirring device specifically, a homomixer, a Henschel mixer, a Banbury mixer, a batch-type kneading device such as a pressure kneader, a pressure vessel with a stirring device, or a kneading device such as an extruder or a kneader.
- a pressure vessel equipped with the stirring device for example, a device such as an autoclave with a stirrer is used, and the shape of the stirring blade is a marine propeller blade, paddle blade, anchor blade, turbine blade Etc. are used.
- the ETFE solution is 300 ° C. or lower through the following step (B) until reaching step (C). It is maintained at a temperature equal to or higher than the phase separation temperature.
- the production of the ETFE solution and the molding of the ETFE solution should be performed continuously using the above-mentioned devices having both kneading and extrusion functions such as a single-screw or twin-screw extruder and a kneader. Is advantageous.
- the holding temperature of the ETFE solution may be the same as or different from the temperature at the time of preparation of the solution, that is, at the time of dissolution, as long as the temperature is not higher than 300 ° C. and higher than the phase separation temperature of the solution.
- an apparatus having both functions of kneading and extrusion for example, a uniaxial or biaxial extruder
- components such as ETFE, solvent, and optionally added powder are quantitatively uniaxially or biaxially separated from independent feeders.
- An ETFE solution can be manufactured by supplying to a screw extruder and kneading in an extruder.
- addition of arbitrary components, such as the said powder may be performed by mixing with a solvent or ETFE previously.
- the step (B) is a step of forming the ETFE solution obtained in the step (A) at a temperature of 300 ° C. or lower and a phase separation temperature of the solution or higher to obtain a molded product.
- a method usually used for forming a solution can be used without particular limitation as a method for forming an ETFE solution.
- an extrusion means for example, a single-screw or twin-screw extruder, is used to discharge the ETFE solution from a discharge port and extrude into a hollow fiber or film.
- a general coating film forming method such as coating or spray coating the ETFE solution on the surface of the substrate can be used.
- extrusion molding is preferably used as a molding means of the ETFE solution in the step (B) from the viewpoint that it can be continuously molded instead of a batch type.
- a double-tube type die or a triple-tube type die for spinning a hollow fiber can be used as a die for the discharge port.
- a slit-shaped base may be used.
- the molding temperature of the ETFE solution in the step (B), specifically, the temperature of the base of the discharge port in the case of extrusion molding, the coating liquid temperature in the coating film forming method, etc. are the ETFE solution in the above step (A).
- the temperature range is from the phase separation temperature of the used ETFE solution to 300 ° C., and preferably from the phase separation temperature of the solution to the melting point of ETFE.
- the molding temperature and the melting temperature may be the same or different, but the melting temperature is preferably set to a temperature higher than the molding temperature from the viewpoint that the melting is performed uniformly in a short time.
- the ETFE solution when the ETFE solution is extruded into a hollow fiber shape using a double annular die, the ETFE solution is extruded from the outer annular portion, and at the same time, the gas or liquid as the hollow forming material is injected into the inner annular portion. Extrude from.
- the ETFE solution is extruded from the central annular part, and at the same time, the gas or liquid as the hollow forming material is extruded from the inner annular part, and the gas or liquid is similarly extruded from the outer annular part.
- the solvent is prevented from volatilizing from the surface of the hollow fiber.
- step (B) the molded product of the ETFE solution molded as described above in the temperature range from the phase separation temperature of the ETFE solution to 300 ° C. is obtained by the following step (C). Cooled below the phase separation temperature.
- the ETFE solution molded product having a temperature equal to or higher than the phase separation temperature obtained in the step (B) is cooled to a temperature lower than the phase separation temperature of the solution. It is a step of solidifying the ETFE.
- the cooling temperature of the ETFE solution molding is not particularly limited as long as it is not higher than the phase separation temperature of the ETFE solution to be cooled, but is preferably 20 ° C. or higher than the phase separation temperature of the ETFE solution, more preferably the phase separation temperature.
- the temperature is 50 ° C. or more lower.
- the lower limit of the cooling temperature of the ETFE solution molded product is not particularly limited, but is preferably ⁇ 10 ° C., more preferably 0 ° C. from the viewpoint of handling of the cooling medium.
- the ETFE porous body has a structure in which ETFE forms a spherical structure or a network structure by the operation of cooling and solidifying in the step (C), and these structures are connected to each other and have voids therebetween. Is manufactured.
- a gas or a liquid may be used as a cooling medium in the step (C).
- the gas for cooling is not particularly limited as long as it is a gas that is not reactive with ETFE and the solvent at the above cooling temperature, but preferably air or nitrogen gas can be used.
- the cooling liquid is not particularly limited as long as it is a liquid that is not reactive with ETFE and the solvent at the above cooling temperature.
- the ETFE solution molding immediately after molding in the step (B) is cooled, the ETFE solution molding is performed. Those having a boiling point higher than the temperature of the product and not dissolving ETFE at that temperature are preferred.
- Specific examples of such a cooling liquid include 2,6-difluorobenzonitrile, isophorone, silicone oil, water, and the like, and preferably silicone oil.
- the cooling method of the step (C) is specifically an ETFE solution that is discharged from a discharge port and formed into a hollow fiber shape or a film shape.
- a method of cooling by directing the liquid directly to a cooling bath filled with a cooling liquid can be mentioned.
- the solvent is volatilized from the outer surface of the ETFE solution molding, and the concentration of ETFE is increased, thereby suppressing the formation of a dense layer on the outer surface of the finally obtained porous body. This is preferable.
- the ETFE solution molding is introduced into the cooling liquid immediately after molding. Is preferable.
- the cooling medium for forming the hollow portion may be the same or different from the cooling liquid used in the cooling bath, and the air Or a gas such as nitrogen gas.
- These cooling media are not particularly limited and may be appropriately selected depending on the properties of the target hollow fiber, etc., but the solvent for the ETFE solution, the cooling liquid used in the cooling bath, and the hollow portion forming If the cooling medium is the same kind, it is highly convenient in recovering the solvent in the production process and is preferable from the viewpoint of the production process.
- the cooling liquid is preferably a liquid having a boiling point higher than the molding temperature of the ETFE solution molding, in this case, the temperature of the die, and does not dissolve ETFE near that temperature.
- the cooling liquid may be used depending on the structure of the extruder to be used, it may be possible to use a cooling liquid whose boiling point is lower than the temperature of the ETFE solution molding, and the cooling liquid is appropriately selected according to the structure of the extruder to be used. It is possible.
- the ETFE solution molded product is dried at 0 ° C. or more and below the phase separation temperature of the solution (air traveling portion or air). It is also possible to use a cooling method in which the ETFE solution molded product is cooled below its phase separation temperature to solidify the ETFE by passing it through a cooling bath filled with a cooling liquid. is there.
- the length of the dry part is preferably 0.1 to 100 mm, more preferably 0.1 to 50 mm, and most preferably 0.1 to 30 mm.
- the passing time of the dry part is preferably 0.1 to 10 seconds, more preferably 0.1 to 5 seconds, although it depends on the shape and size of the ETFE solution molding.
- the passage time of the dry part of the ETFE solution molded product extruded using an extruder or the like can be adjusted by controlling the extrusion speed, the winding speed, etc. of the apparatus.
- a dense layer is appropriately formed on the outer surface of the ETFE solution molded product, and fouling resistance is expected to be improved. It is preferable when it is used for a porous body, for example, for chemical treatment. If the dry part is made longer than 100 mm, the solvent volatilizes more than necessary from the outer surface of the ETFE solution molding and the concentration of ETFE increases, so an excessively dense layer is formed on the outer surface of the finally obtained porous body. Is done. In addition, in order to adjust the formation degree of a dense layer, you may devise so that the atmosphere of an aerial travel part may be maintained at fixed temperature and humidity.
- the temperature of the dry part is not particularly limited as long as it is equal to or lower than the phase separation temperature of the ETFE solution to be cooled.
- cooling liquid used in the cooling bath when the dry part is provided is not particularly limited, but water, ethanol, acetone, hexane and the like are preferably used. Of these, water is particularly preferred.
- the ETFE porous body is produced by sequentially performing the above-described step (A), step (B) and step (C).
- the ETFE solidified product solidified in the cooling medium of the cooling bath has a structure in which ETFE forms a spherical structure or a network structure, and these structures are connected and have voids therebetween. It is an ETFE porous body.
- the ETFE porous material obtained by solidifying in the cooling medium in the step (C) is in a state containing a solvent phase-separated from ETFE solution in the voids.
- This solvent may be extracted in the cooling bath in step (C), but may be extracted in that step by providing an extraction step (D) separately. In terms of simplicity, it is preferable that cooling and extraction are performed in parallel in the cooling bath in the step (C).
- the ETFE porous body obtained above contains powder
- extraction of these powder is performed as needed.
- the removal solvent is not particularly limited as long as it dissolves powder and does not dissolve ETFE.
- the powder is soluble in acid, hydrochloric acid, sulfuric acid or the like is used, and when the powder is soluble in alkali, an aqueous alkali solution such as caustic soda or caustic potash is used.
- the powder is extracted by immersing the ETFE porous material containing the powder in a removal medium for dissolving the powder under conditions of temperature and time appropriately selected. Is done. After removing the powder from the ETFE porous body, it may be washed with water and dried as necessary.
- a step of further stretching the ETFE porous body obtained above by a known method may be provided.
- the ETFE porous body is stretched at a temperature of about 80 to 130 ° C., for example, a part of the spherical structure and the aggregate of ETFE molecules that connect the spherical structure and the spherical structure are uniformly stretched, and there are many fine and elongated pores. It is formed.
- the obtained stretched porous material has improved water permeability and the like while maintaining the strong elongation characteristics.
- the ETFE porous body of the present invention can be obtained by the method for producing an ETFE porous body of the present invention having the steps (A) to (C) or the steps (A) to (D). .
- the ETFE porous body of the present invention can be formed into any shape that can be produced by the production method of the present invention, for example, a hollow fiber shape, a tube shape, a sheet shape, or a film shape.
- the porosity is preferably 20 to 90%, and the average pore diameter of the micropores is preferably 0.01 to 20 ⁇ m.
- the porosity is more preferably 40 to 85%, and most preferably 60 to 80%. When the porosity is within this range, the porous body has high strength and high permeability for substances such as water permeability.
- the porosity is also preferably controlled by the content of ETFE in the ETFE solution used in the production method of the present invention. When it is desired to obtain a high porosity, the ETFE content is decreased, and when a low porosity is desired, the content is increased.
- the average pore diameter of the fine pores of the ETFE porous body is more preferably 0.01 to 10 ⁇ m, and most preferably 0.01 to 5 ⁇ m. When the average pore diameter is within this range, high water permeability and separation performance can be obtained when the porous body is used for turbidity or removal of microorganisms, for example.
- the porosity is 40 to 85% and the average pore diameter of the micropores is 0.01 to 5 ⁇ m.
- the average pore diameter of the fine pores of the porous body refers to the average pore diameter of the through holes of the porous material measured based on the bubble point method according to JIS K3832.
- the average pore diameter can be easily measured using a general measuring device such as a palm porometer manufactured by PMI.
- the average pore diameter can be adjusted depending on the cooling rate of the ETFE solution molding, the type of cooling medium used for cooling, and the like. In order to obtain a large average pore diameter, a medium having a large cooling rate and a large heat capacity is used for the cooling bath. Further, when it is desired to obtain a small average pore diameter, a medium having a small cooling rate and a small heat capacity is used for the cooling bath.
- the pore diameter of the pores is easy to control and narrow compared to other methods such as the conventional stretching method.
- a porous body having a pore size distribution can be obtained in various shapes and high porosity.
- the ETFE porous body obtained by the production method of the present invention has such a homogeneous porous structure, it has a high mechanical strength in the same manner as a resin porous body obtained by a general phase separation method. Strength can be expected.
- the melt index value (MI) of ETFE and the pore size distribution / average pore size of the fluorocopolymer porous material were measured by the following methods.
- melt index value (MI) The melt index value (MI) of ETFE was measured at 297 ° C. using a melt indexer (manufactured by Takara Kogyo Co., Ltd.) in accordance with ASTM D3159-98.
- the average pore size and pore size distribution of the fine pores in the porous body of ETFE were measured using a pore size distribution measuring instrument (PMI, manufactured by PMI) based on the bubble point method in accordance with ASTM F316-86 and JIS K3832.
- Example 1 Preparation of ETFE porous film by thermally induced phase separation method
- ETFE a film-like ETFE porous body was produced by the following method.
- 30 g of ETFE (Asahi Glass Co., Ltd .: Fluon (registered trademark) LM-720AP, melting point: 225 ° C., melt index value: 18.7 (297 ° C.), hereinafter referred to as “ETFE1”) in a glass separable flask.
- 170 g of 2,6-difluorobenzonitrile was heated to 185 ° C. with stirring to obtain a uniform solution (the concentration of ETFE 1 was 15% by mass).
- a 4 cm square glass plate was immersed in this solution, and then pulled up to coat the glass plate with the solution.
- the glass plate after being pulled up was rapidly cooled by a water bath.
- the obtained glass plate coated with the ETFE1 solution was immersed in acetone for 12 hours to sufficiently elute and wash the solvent (2,6-difluorobenzonitrile), and then dried under reduced pressure at room temperature for 1 hour. Subsequently, the coating film was peeled from the glass plate to obtain an ETFE1 film (thickness: 300 ⁇ m).
- the ETFE1 film obtained above was confirmed to have a porous structure by observation using a scanning electron microscope.
- the 100,000 times photograph of the scanning electron microscope of the surface of the ETFE1 film obtained is shown in FIG.
- the pore size of the ETFE1 porous film was a pore size distribution of 0.06 to 2.0 ⁇ m, and the average pore size was 1.5 ⁇ m. Further, the porosity of the ETFE1 porous film was estimated to be 85% by the method of calculating the volume fraction from the addition amount of resin and solvent and the specific gravity.
- Example 2 Preparation of ETFE porous hollow fiber by thermally induced phase separation method
- a uniform and transparent 2,6-difluorobenzonitrile solution (concentration of ETFE1 of 30% by mass) of ETFE1 produced at a temperature of 200 ° C. was cooled and solidified.
- the obtained ETFE1 molded product was finely crushed and extruded into a hollow fiber (inner diameter: 2 mm, outer diameter: 3 mm) at 180 ° C. using a capillary flow tester (manufactured by Toyo Seiki Seisakusho) equipped with a hollow fiber capillary, and air-cooled. It was cooled rapidly.
- the obtained hollow fiber was immersed in acetone for 24 hours to extract the solvent (2,6-difluorobenzonitrile) and then dried.
- FIG. 2 shows a 10,000 times photograph of a scanning electron microscope of the obtained ETFE1 hollow fiber cross section.
- the pore diameter of the porous hollow fiber of ETFE1 was a pore diameter distribution of 0.06 to 0.086 ⁇ m, and the average pore diameter was 0.07 ⁇ m. Further, the porosity of the ETFE1 porous hollow fiber was 72%.
- Example 3 Preparation of ETFE porous hollow fiber by heat-induced phase separation method ETFE using a compound kneading extruder IMC-1973 (made by Imoto Seisakusho Co., Ltd.) having a double tubular die for hollow fiber extrusion molding A porous hollow fiber was produced. First, 150 g of ETEF1 and 150 g of 2,6-difluorobenzonitrile were put into a composite kneading extruder and mixed at a temperature of 200 ° C. to prepare an ETFE1 solution (the concentration of ETFE1 was 50% by mass).
- the ETFE1 solution was extruded in the form of a hollow fiber into air at room temperature from the above-mentioned double tubular cap set at 200 ° C., and the hollow fiber was cooled to the cooling water layer at 20 ° C. while cooling with air. It was immersed in a layer and solidified to obtain a hollow fiber shaped product.
- the cooling distance from the base to the cooling water tank, that is, the air gap was 10 mm.
- the obtained hollow fiber-like molded product was immersed in acetone at 60 ° C. for 1 hour in a pressure vessel to extract the solvent (2,6-difluorobenzonitrile) and then dried.
- FIG. 3 shows a 30,000 times photograph of a scanning electron microscope of the obtained ETFE1 hollow fiber cross section.
- the pore diameter of the porous hollow fiber of ETFE1 was a pore diameter distribution of 0.04 to 0.1 ⁇ m, and the average pore diameter was 0.06 ⁇ m. Further, the porosity of the ETFE1 porous hollow fiber was 56%.
- Example 4 Preparation of ETFE porous hollow fiber by heat-induced phase separation method The same as Example 3 except that the distance from the die of the composite kneading extruder to the cooling water tank, that is, the air gap was changed to 50 mm. Then, a hollow fiber made of ETFE1 was formed.
- FIG. 4 shows a 10,000 times photograph of a scanning electron microscope of the obtained ETFE1 hollow fiber cross section.
- the pore diameter of the porous hollow fiber of ETFE1 was a pore diameter distribution of 0.04 to 0.06 ⁇ m, and the average pore diameter was 0.043 ⁇ m. Further, the porosity of the ETFE1 porous hollow fiber was 52%.
- Example 5 Preparation of ETFE porous hollow fiber by heat-induced phase separation method Using the composite kneading extruder used in Example 3 above, 120 g of ETEF1 and 180 g of isophorone were mixed at a temperature of 190 ° C. An ETFE solution was prepared. Thereafter, the temperature of the double tubular die of the composite kneading extruder was set to 180 ° C., the distance from the die of the extruder to the cooling bath, and the air gap was changed to 20 mm in the same manner as in Example 3 above. A hollow fiber made of ETFE1 was molded.
- FIG. 5 shows a 25,000 times photograph of a scanning electron microscope of the cross section of the obtained ETFE1 hollow fiber.
- the pore diameter of the porous hollow fiber of ETFE1 was a pore diameter distribution of 0.04 to 0.06 ⁇ m, and the average pore diameter was 0.057 ⁇ m.
- the porosity of the ETFE1 porous hollow fiber was 68%.
- ETFE2 melting point: 190 ° C., melt index value: : 149 (297 ° C.), hereinafter referred to as “ETFE2”), hollow fibers were formed.
- Example 3 Using the composite kneading extruder used in Example 3, 90 g of ETFE2 and 270 g of 2,6-difluorobenzonitrile were mixed at a temperature of 145 ° C. to prepare a solution of ETFE2. Then, the temperature of the double tubular die of the composite kneading extruder is 145 ° C., the cooling medium inside the hollow fiber is water of 50 ° C., the distance from the die of the extruder to the cooling bath, and the air gap is 20 mm, respectively. A hollow fiber made of ETFE2 was formed in the same manner as in Example 3 except for the change.
- FIG. 6 shows a 10,000 times photograph of a scanning electron microscope of the obtained ETFE2 hollow fiber cross section.
- the pore diameter of the porous hollow fiber of ETFE2 was a pore diameter distribution of 0.24 to 0.26 ⁇ m, and the average pore diameter was 0.25 ⁇ m.
- the porosity of the ETFE2 porous hollow fiber was 75%.
- the ETFE3 composition was molded using a capillary flow tester (manufactured by Toyo Seiki Seisakusho) with a hollow fiber capillary to obtain a hollow fiber molded product (inner diameter: 2 mm, outer diameter: 3 mm).
- the obtained hollow fiber-shaped molded product was immersed in a 15% by mass potassium hydroxide aqueous solution at 90 ° C. for 2 hours to extract a part of anhydrous silica to obtain a hollow fiber.
- Tensilon with a thermostatic chamber (Orientec Co., Ltd.) was used to preheat the hollow fiber at 115 ° C.
- porous hollow made of ETFE3 A thread (inner diameter: 1.3 mm, outer diameter: 1.7 mm) was obtained.
- the porous hollow fiber made of ETFE3 obtained above had a pore size distribution of 0.13 to 0.25 ⁇ m and an average pore size of 0.25 ⁇ m.
- the porosity of the porous hollow fiber was 67%.
- ETFE4 Fluon (registered trademark) C-88AX, melting point: 260 ° C., melt index value: 3.8 (300 ° C.), glass transition temperature: 93 ° C., hereinafter referred to as “ETFE4”) 1800 g of polyvinylidene fluoride (manufactured by Kureha: KF polymer T- # 1100 (trade name)) as a solvent-soluble resin, and anhydrous silica (manufactured by Nippon Aerosil Co., Ltd .: AEROSILOX 50 (trade name)) as primary particles 750 g having an average particle diameter of 40 nm) was melt-kneaded at a molding temperature of 280 ° C. using a twin screw extruder to obtain pellets.
- the mass ratio of ETFE4 / polyvinylidene fluoride / anhydrous silica in the obtained pellet was 32
- the pellets obtained above were melt-kneaded at a resin temperature of 280 ° C. using a 30 mm single-screw extruder, and melt-extruded in an electric wire coating extruder equipped with a die having an outer diameter of 2.9 mm ⁇ and an inner diameter of 2.0 mm ⁇ . And cooled in a water bath. Thereafter, the core wire was drawn out to obtain a hollow tubular molded product (tube) as a molded body having an outer diameter of 1.5 mm ⁇ and an inner diameter of 0.9 mm ⁇ . The obtained hollow tubular molded product is cut into a predetermined size, and then immersed in N, N-dimethylformamide (a solvent of polyvinylidene fluoride) heated to 65 ° C.
- N, N-dimethylformamide a solvent of polyvinylidene fluoride
- this hollow tubular molded product contains Polyvinylidene fluoride was extracted.
- the obtained hollow tube was further immersed in a 15% by mass KOH aqueous solution heated to 80 ° C. for 2 hours to extract anhydrous silica.
- the extracted hollow tube was washed with water and preliminarily dried (preliminary heat treatment) at 80 ° C. for 24 hours to obtain a porous hollow tube of ETFE4.
- This porous hollow tube was heat-treated at 230 ° C. for 24 hours using a hot-air gear oven to obtain a product porous hollow tube. This heat treatment temperature of 230 ° C.
- the porosity of the porous hollow fiber made of ETFE4 thus obtained was 45%.
- the ETFE porous body can be easily produced in a wider porosity range than the conventional method, and the pore diameter A porous body with a sharp distribution can be created.
- the ethylene / tetrafluoroethylene copolymer porous body containing the repeating unit based on ethylene and the repeating unit based on tetrafluoroethylene of the present invention has high porosity, uniform pore diameter, high strength, precision Suitable for applications such as filtration membranes and separation membranes such as ultrafiltration membranes. Excellent chemical resistance, excellent heat resistance, and high mechanical strength, so it can be used for water treatment such as drinking water, water purification, sewage treatment and human waste treatment, membrane separation activated sludge treatment, wastewater treatment, and wastewater treatment. It can be used as a separator for secondary batteries. Specific examples include a water treatment membrane, a separation hollow fiber, a water treatment hollow fiber, a secondary battery separator, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Artificial Filaments (AREA)
Abstract
Description
また、PVDF製の多孔体は、ポリオレフィン系樹脂と比較して耐薬品性は優れるものの、一部の薬品に容易に侵されるという欠点がある。特に、PVDF製の多孔体は、耐アルカリ性が不十分であり、多孔体の洗浄に強アルカリ性薬品を使用できないという問題がある。
前記溶液を300℃以下かつ前記溶液の相分離温度以上の温度で成形して成形物とする工程(B)と、
前記溶液の相分離温度以上の温度の成形物を前記溶液の相分離温度以下の温度に冷却して前記エチレン/テトラフルオロエチレン共重合体を凝固させる工程(C)と、
を有することを特徴とするエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
[10]さらに前記溶媒の抽出工程(D)を有する、上記[1]~[9]のいずれかに記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
[12]空孔率が20~90%であり、微細孔の平均孔径が0.01~20μmである、上記[11]に記載のエチレン/テトラフルオロエチレン共重合体多孔体。
まず、本発明のエチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体の多孔体の製造方法について説明する。ここで、上述のように、本明細書においてエチレン/テトラフルオロエチレン共重合体は、「ETFE」と略記することもあるが、本明細書において「ETFE」とは、より具体的には、エチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体に対して用いられる用語である。
本発明におけるETFEとしては、商業品目として得られるものを用いることもできる。市販品として、例えば、ETFEについては、旭硝子社製:Fluon(登録商標)ETFE Series、Fluon(登録商標)LM Series、ダイキン工業社製:ネオフロン(登録商標)、Dyneon社製:Dyneon(登録商標)ETFE、DuPont社製:Tefzel(登録商標)等の市販品が挙げられる。また、本発明におけるETFEの融点としては、特に限定されないが、溶解性、強度等の点から、好ましくは130℃~275℃、より好ましくは140℃~265℃、最も好ましくは150℃~260℃である。
本発明の製造方法における工程(A)は、上記ETFEを300℃以下で溶解しうる溶媒に、上記ETFEを300℃以下の温度でありかつ得られる溶液の相分離温度以上の温度で、所定の濃度となるように溶解させて溶液を得る工程である。
なお、本発明の製造方法においてETFE溶液が、上記単独でETFEを溶解可能な溶媒と組合わせて非溶媒を含む場合、単独でETFEを溶解可能な溶媒と非溶媒との混合物を「溶媒」という。
工程(C)の後に、または工程(C)と並行してETFEの凝固成形物から粉体を除去する際に用いる除去溶媒としては、粉体を溶解するが、ETFEを溶解しないものであれば特に限定されない。粉体が酸に可溶な場合には塩酸や硫酸等が用いられ、粉体がアルカリに可溶な場合には苛性ソーダ、苛性カリ等のアルカリ水溶液が用いられる。
なお、前記ETFE溶液の保持温度は、300℃以下かつ前記溶液の相分離温度以上の温度であれば、上記溶液作製時すなわち溶解時の温度と同じでも、異なっていてもよい。
工程(B)は、上記工程(A)で得られたETFE溶液を300℃以下かつ前記溶液の相分離温度以上の温度で成形して成形物とする工程である。
なお、本発明の製造方法においては、工程(B)のETFE溶液の成形手段として、バッチ式ではなく、連続して成形できるという観点から、押出成形が好ましく用いられる。成形手段として押出成形を用いて、ETFE溶液を中空糸状に成形する場合には、吐出口の口金として中空糸紡糸用の二重管式口金あるいは三重管式口金等を用いることが可能である。また、同様にETFE溶液を平膜状に成形する場合は、スリット状の口金を用いればよい。
本発明の製造方法においては、工程(B)で、ETFE溶液の相分離温度から300℃までの温度範囲で上記のようにして成形されたETFE溶液の成形物は、次の工程(C)により相分離温度以下に冷却される。
本発明のETFEの多孔体の製造方法における工程(C)は、上記工程(B)で得られた相分離温度以上の温度のETFE溶液成形物を、前記溶液の相分離温度以下に冷却して前記ETFEを凝固させる工程である。前記ETFE溶液成形物の冷却温度としては、冷却されるETFE溶液の相分離温度以下であれば特に制限されないが、好ましくは、ETFE溶液の相分離温度より20℃以上、より好ましくは該相分離温度より50℃以上低い温度である。また、前記ETFE溶液成形物の冷却温度の下限としては、特に制限されないが、冷却媒体の取り扱い性の観点から-10℃が好ましく、0℃がより好ましい。
除去溶媒としては、粉体を溶解し、ETFEを溶解しないものであれば特に限定されない。粉体が酸に可溶な場合には塩酸や硫酸等が用いられ、粉体がアルカリに可溶な場合には苛性ソーダ、苛性カリ等のアルカリ水溶液が用いられる。粉体の抽出は、例えば、ETFE溶解溶媒の抽出工程後、粉体を含有するETFE多孔体を、該粉体を溶解する除去媒体に、適宜選択された温度・時間の条件で、浸漬することにより行われる。ETFE多孔体からの粉体の除去後、必要に応じて水洗、乾燥を行ってもよい。
上記空孔率は、本発明の製造方法に用いるETFE溶液中の、ETFEの含有量により制御することも好ましい。高い空孔率を得たい場合には、ETFEの含有量を低くし、低い空孔率を得たい場合には、高くする。
本発明のETFE多孔体において、空孔率が40~85%であり、かつ微細孔の平均孔径は0.01~5μmであるのが特に好ましい。
ETFEのメルトインデックス値(MI)は、ASTM D3159-98に準拠し、メルトインデクサー(タカラ工業社製)を用いて、297℃で測定した。
ETFEの多孔体における微細孔の平均孔径、孔径分布は、ASTM F316-86、JIS K3832に準拠したバブルポイント法による細孔径分布測定器(PMI社製、パームポロメータ)を用いて測定した。
ETFE溶液を用いて、フィルム状のETFE多孔体を以下に示す方法で作製した。
ガラス製セパラブルフラスコ中で、ETFE(旭硝子社製:Fluon(登録商標)LM-720AP、融点:225℃、メルトインデックス値:18.7(297℃)、以下、「ETFE1」という。)の30g、2,6-ジフルオロベンゾニトリル170gを撹拌しながら185℃に加熱し、均一な溶液を得た(ETFE1の濃度15質量%)。この溶液に、4cm角のガラス板を浸漬した後、引き上げて、該ガラス板に該溶液をコーティングした。引き上げ後のガラス板は、水浴により急冷した。得られたETFE1溶液がコーティングされたガラス板を、アセトンに12時間浸漬して充分に前記溶媒(2,6-ジフルオロベンゾニトリル)を溶出、洗浄した後、室温で1時間減圧乾燥した。ついで、塗膜をガラス板から剥離して、ETFE1のフィルム(厚さ300μm)を得た。
温度200℃で作製したETFE1の均一で透明な2,6-ジフルオロベンゾニトリル溶液(ETFE1の濃度30質量%)を冷却固化した。得られたETFE1成形物を、細かく砕き、中空糸状キャピラリーを備えたキャピラリーフローテスター(東洋精機製作所社製)を用いて180℃で中空糸(内径:2mm、外径:3mm)状に押し出し、空冷により急冷した。得られた中空糸をアセトンに24時間浸漬して前記溶媒(2,6-ジフルオロベンゾニトリル)を抽出した後、乾燥した。
中空糸押出成形用の二重管状口金を有する複合型混練押出機IMC-1973型(井元製作所社製)を使用してETFE多孔質中空糸を製造した。まず、複合型混練押出機にETEF1の150gと、2,6-ジフルオロベンゾニトリルの150gを投入し、温度200℃で混合してETFE1溶液(ETFE1の濃度50質量%)を作製した。その後、ETFE1溶液を200℃に温度設定された上記二重管状口金より常温の空気中に中空糸状に押し出し、中空糸内部を空気で冷却しながら、20℃の冷却用水層まで搬送し、冷却用水層に漬けて凝固させ中空糸状成形物を得た。なお、口金から冷却用水槽までの冷却用の距離、すなわちエアギャップは10mmであった。得られた中空糸状成形物を耐圧容器中で60℃のアセトンに1時間浸漬して前記溶媒(2,6-ジフルオロベンゾニトリル)を抽出した後、乾燥した。
複合型混練押出機の口金から冷却用水槽までの距離、すなわちエアギャップを50mmに変更した以外は、上記実施例3と同様にしてETFE1からなる中空糸を成形した。
上記実施例3で用いた複合型混練押出機を用いて、ETEF1の120gと、イソホロンの180gを、温度190℃で混合しETFE溶液を作製した。その後、複合型混練押出機の二重管状口金の温度を180℃に、該押出機の口金から冷却浴までの距離、エアギャップを20mmにそれぞれ変更した以外は上記実施例3と同様にして、ETFE1からなる中空糸を成形した。
得られた中空糸を液体窒素中で凍結、割断し、その断面を走査型電子顕微鏡により観察したところ、多孔質構造が発達していることが確認できた。図5に、得られたETFE1中空糸断面の走査型電子顕微鏡の2.5万倍写真を示す。該ETFE1の多孔質中空糸の細孔径は、0.04~0.06μmの孔径分布であり、平均細孔径は、0.057μmであった。また、該ETFE1多孔質中空糸の空孔率は68%であった。
ETFEとして、共重合組成が、TFEに基づく繰返し単位/エチレンに基づく繰返し単位/ヘキサフルオロプロピレンに基づく繰返し単位/CH2=CH(CF2)4Fに基づく繰返し単位/無水イタコン酸に基づく繰返し単位=48.1/42.7/8.2/0.8/0.2(モル%)のETFE(融点:190℃、メルトインデックス値:149(297℃)、以下、「ETFE2」という。)を使用して中空糸の成形を行った。
上記実施例3で用いた複合型混練押出機を用いて、ETFE2の90gと、2,6-ジフルオロベンゾニトリルの270gを、温度145℃で混合し、ETFE2の溶液を作製した。その後、複合型混練押出機の二重管状口金の温度を145℃に、中空糸内部の冷却媒体を50℃の水に、該押出機の口金から冷却浴までの距離、エアギャップを20mmにそれぞれ変更した以外は上記実施例3と同様にしてETFE2からなる中空糸を成形した。
ETFE(旭硝子社製:Fluon(登録商標)LM740A、融点:225℃、メルトインデックス値:37(297℃)、以下、「ETFE3」という。)の13.0g(30質量%)および無水シリカ(アドマテックス社製、アドマファインSOC3(商品名)、一次粒子の平均粒子径:900nm)の30.4g(70質量%)を、ラボプラスミルを用い、300℃で10分間溶融混練し、ETFE3組成物を得た。ETFE3組成物を、中空糸状キャピラリーを備えたキャピラリーフローテスター(東洋精機製作所社製)を用いて成形し、中空糸状成形物(内径:2mm、外径:3mm)を得た。得られた中空糸状成形物を、90℃の15質量%の水酸化カリウム水溶液に2時間浸漬して無水シリカの一部を抽出し、中空糸を得た。恒温槽付きテンシロン(オリエンテック社製)を用い、中空糸を115℃で10分間予熱した後、500mm/分で長さ方向に引張り、2.5倍の延伸を行い、ETFE3からなる多孔質中空糸(内径:1.3mm、外径:1.7mm)を得た。
上記で得られたETFE3からなる多孔質中空糸の細孔径は、0.13~0.25μmの孔径分布であり、平均細孔径は、0.25μmであった。また、多孔質中空糸の空孔率は67%であった。
ETFE(旭硝子社製:Fluon(登録商標)C-88AX、融点:260℃、メルトインデックス値:3.8(300℃)、ガラス転移温度:93℃、以下、「ETFE4」という。)の1200gと、溶媒可溶性樹脂として、ポリフッ化ビニリデン(クレハ社製:KFポリマーT-#1100(商品名)))の1800g、無機微粉体として無水シリカ(日本アエロジル社製:AEROSILOX50(商品名)、1次粒子平均粒子径40nm)の750gを、二軸押出機を用いて成形温度280℃で溶融混練して、ペレットを得た。なお、得られたペレットにおける、ETFE4/ポリフッ化ビニリデン/無水シリカの質量比は、32/48/20であった。
なお、2008年10月16日に出願された日本特許出願2008-266936号及び2009年7月1日に出願された日本特許出願2009-156741号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (12)
- エチレンに基づく繰返し単位とテトラフルオロエチレンに基づく繰返し単位を含有するエチレン/テトラフルオロエチレン共重合体を、300℃以下で前記エチレン/テトラフルオロエチレン共重合体を溶解しうる溶媒に、300℃以下かつ得られる溶液の相分離温度以上の温度で所定の濃度となるように溶解して溶液を得る工程(A)と、
前記溶液を300℃以下かつ前記溶液の相分離温度以上の温度で成形して成形物とする工程(B)と、
前記溶液の相分離温度以上の温度の成形物を前記溶液の相分離温度以下の温度に冷却して前記エチレン/テトラフルオロエチレン共重合体を凝固させる工程(C)と、
を有することを特徴とするエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。 - 前記工程(A)における溶解が、前記溶液の相分離温度以上かつ前記エチレン/テトラフルオロエチレン共重合体の融点以下の温度で行われる請求項1に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- 前記工程(A)における所定の濃度が、前記溶液中の、前記エチレン/テトラフルオロエチレン共重合体/前記溶媒で示される前記溶媒に対する前記エチレン/テトラフルオロエチレン共重合体の質量割合として、15/85~65/35である請求項1または2に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- 前記工程(C)における冷却を、冷却用液体中で行うことを特徴とする請求項1~3のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- 前記溶媒が、含フッ素芳香族化合物、カルボニル基を1個以上有する脂肪族化合物、および、ハイドロフルオロアルキルエーテルからなる群から選ばれる少なくとも一種である請求項1~4のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- 前記工程(A)において、一次粒子径が10nm~1μmの粉体を含有するように前記溶液を作製することを特徴とする請求項1~5のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- 前記工程(B)が、前記溶液を押出成形物として吐出することで行われる請求項4~6のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- 前記工程(C)における冷却が、前記工程(B)直後の前記押出成形物を、長さ0.1~100mm、0℃以上かつ前記溶液の相分離温度以下の乾式部に通過させ、ついで前記冷却用液体に導入して行うことからなる請求項7に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- 前記冷却用液体が、エチレン/テトラフルオロエチレン共重合体の非溶媒である請求項4、7または8に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- さらに前記溶媒の抽出工程(D)を有する、請求項1~9のいずれか1項に記載のエチレン/テトラフルオロエチレン共重合体多孔体の製造方法。
- 請求項1~10のいずれか1項に記載の製造方法で得られた、形状がフィルムまたは中空糸であることを特徴とするエチレン/テトラフルオロエチレン共重合体多孔体。
- 空孔率が20~90%であり、微細孔の平均孔径が0.01~20μmである、請求項11に記載のエチレン/テトラフルオロエチレン共重合体多孔体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801414548A CN102186909B (zh) | 2008-10-16 | 2009-10-14 | 乙烯/四氟乙烯共聚物多孔体的制造方法及乙烯/四氟乙烯共聚物多孔体 |
EP09820603A EP2338933B1 (en) | 2008-10-16 | 2009-10-14 | Process for producing porous ethylene/tetrafluoroethylene copolymer and porous ethylene/tetrafluoroethylene copolymer |
JP2010533914A JPWO2010044425A1 (ja) | 2008-10-16 | 2009-10-14 | エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 |
US13/071,720 US20110178193A1 (en) | 2008-10-16 | 2011-03-25 | Process for producing ethylene/tetrafluoroethylene copolymer porous material, and ethylene/tetrafluoroethylene copolymer porous material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008266936 | 2008-10-16 | ||
JP2008-266936 | 2008-10-16 | ||
JP2009156741 | 2009-07-01 | ||
JP2009-156741 | 2009-07-01 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/071,720 Continuation US20110178193A1 (en) | 2008-10-16 | 2011-03-25 | Process for producing ethylene/tetrafluoroethylene copolymer porous material, and ethylene/tetrafluoroethylene copolymer porous material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010044425A1 true WO2010044425A1 (ja) | 2010-04-22 |
Family
ID=42106588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/067789 WO2010044425A1 (ja) | 2008-10-16 | 2009-10-14 | エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110178193A1 (ja) |
EP (1) | EP2338933B1 (ja) |
JP (1) | JPWO2010044425A1 (ja) |
KR (1) | KR20110079617A (ja) |
CN (1) | CN102186909B (ja) |
TW (1) | TW201026761A (ja) |
WO (1) | WO2010044425A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120108723A1 (en) * | 2009-07-01 | 2012-05-03 | Asahi Glass Company, Limited | Fluorocopolymer composition and its production process |
WO2012074114A1 (ja) | 2010-12-03 | 2012-06-07 | 旭硝子株式会社 | 電荷保持媒体の製造方法 |
WO2012074115A1 (ja) | 2010-12-03 | 2012-06-07 | 旭硝子株式会社 | 電荷保持媒体 |
WO2013015385A1 (ja) | 2011-07-28 | 2013-01-31 | 旭硝子株式会社 | エレクトレットおよびその製造方法、ならびに静電誘導型変換素子 |
WO2013024886A1 (ja) * | 2011-08-17 | 2013-02-21 | 旭硝子株式会社 | 含フッ素共重合体組成物、コーティング用組成物、塗膜を有する物品、及び成形品 |
US10975483B2 (en) | 2015-03-18 | 2021-04-13 | Asahi Kasei Kabushiki Kaisha | Diaphragm for alkaline water electrolysis, alkaline water electrolysis device, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2011068129A1 (ja) * | 2009-12-03 | 2013-04-18 | 旭硝子株式会社 | 含フッ素共重合体ナノコンポジットの製造方法 |
CN103183884B (zh) * | 2011-12-28 | 2015-07-15 | 山东东岳高分子材料有限公司 | 含氟微孔膜及其制备方法 |
CN103187549B (zh) * | 2011-12-28 | 2015-04-22 | 山东东岳高分子材料有限公司 | 适用于锂离子电池的隔膜及其制备方法 |
CA2908503C (en) * | 2013-04-01 | 2021-12-21 | Petroliam Nasional Berhad | Polysulfone membrane having high selectivity |
US9932429B2 (en) * | 2014-07-29 | 2018-04-03 | W. L. Gore & Associates, Inc. | Method for producing porous articles from alternating poly(ethylene tetrafluoroethylene) and articles produced therefrom |
CN108686520A (zh) * | 2018-06-12 | 2018-10-23 | 漳州龙文琪睿生物科技有限公司 | 一种血液透析膜原材料的制备方法 |
CN112898662B (zh) * | 2021-01-21 | 2023-07-04 | 优唯新材料科技有限公司 | 一种特氟龙改性聚乙烯护套料及其制备方法 |
CN113799407B (zh) * | 2021-09-23 | 2024-01-12 | 莱州结力工贸有限公司 | 用于免拆洗过滤设备的抗菌驻极体的制作方法 |
CN113736134B (zh) * | 2021-11-08 | 2022-02-22 | 国家电投集团氢能科技发展有限公司 | 改性膨体聚四氟乙烯、其制备方法、复合离子交换膜及其应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61152739A (ja) * | 1984-12-27 | 1986-07-11 | Asahi Chem Ind Co Ltd | エチレン−テトラフルオロエチレン共重合体多孔膜の製造方法 |
JPS62106808A (ja) * | 1985-11-01 | 1987-05-18 | Asahi Chem Ind Co Ltd | エチレン―テトラフルオロエチレン共重合体多孔膜 |
JPH02196835A (ja) * | 1988-08-05 | 1990-08-03 | Hoechst Celanese Corp | 強度特性に優れたハロゲン化重合体微孔質膜の製造 |
JPH05192988A (ja) * | 1991-11-06 | 1993-08-03 | Daikin Ind Ltd | エチレンーテトラフルオロエチレン共重合体中空管の製造方法 |
JP3265678B2 (ja) | 1993-02-12 | 2002-03-11 | ダイキン工業株式会社 | エチレンーテトラフルオロエチレン共重合体多孔膜の製造方法 |
JP2005097367A (ja) * | 2003-09-22 | 2005-04-14 | Inoac Corp | フッ素ゴムを含むミクロ多孔体およびその製造方法 |
JP2008013615A (ja) | 2006-07-04 | 2008-01-24 | Asahi Glass Co Ltd | フッ素樹脂多孔体の製造方法 |
JP2008266936A (ja) | 2007-04-18 | 2008-11-06 | Taisei Corp | グラウトの比率制御方法及びその装置 |
JP2009156741A (ja) | 2007-12-27 | 2009-07-16 | Konica Minolta Medical & Graphic Inc | 開口封止部材、開口封止方法、マイクロ検査チップおよび開口封止治具 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2412960A (en) * | 1945-03-19 | 1946-12-24 | Du Pont | Fluid compositions containing copolymers of tetrafluoroethylene and ethylene |
US2484483A (en) * | 1945-07-26 | 1949-10-11 | Du Pont | Polytetrafluoroethylene dispersions |
US2448952A (en) * | 1945-07-26 | 1948-09-07 | Du Pont | Method for obtaining dispersions of polytetrafluoroethylene-ethylene copolymers |
CA1068458A (en) * | 1975-07-17 | 1979-12-25 | Hiroshi Mano | Process for producing porous materials |
GB2168981B (en) * | 1984-12-27 | 1988-07-06 | Asahi Chemical Ind | Porous fluorine resin membrane and process for preparation thereof |
DE3631561A1 (de) * | 1986-09-17 | 1988-03-31 | Hoechst Ag | Loesungen von fluorpolymeren und deren verwendung |
DE3744392A1 (de) * | 1987-12-29 | 1989-07-13 | Hoechst Ag | Loesungen von copolymeren des typs tetrafluorethylen/ethylen |
US5409997A (en) * | 1993-11-01 | 1995-04-25 | E. I. Du Pont De Nemours And Company | Thermally-stable melt processible fluoropolymer compositions and process |
US6921482B1 (en) * | 1999-01-29 | 2005-07-26 | Mykrolis Corporation | Skinned hollow fiber membrane and method of manufacture |
ITMI20010421A1 (it) * | 2001-03-01 | 2002-09-02 | Ausimont Spa | Membrane porose semipermeabili di fluoropolimeri semicristallini |
US7247238B2 (en) * | 2002-02-12 | 2007-07-24 | Siemens Water Technologies Corp. | Poly(ethylene chlorotrifluoroethylene) membranes |
JP4857560B2 (ja) * | 2002-09-30 | 2012-01-18 | 旭硝子株式会社 | 固体高分子型燃料電池用電解質膜の製造方法 |
US7351338B2 (en) * | 2003-03-13 | 2008-04-01 | Kureha Corporation | Porous membrane of vinylidene fluoride resin and process for producing the same |
-
2009
- 2009-10-14 JP JP2010533914A patent/JPWO2010044425A1/ja not_active Withdrawn
- 2009-10-14 WO PCT/JP2009/067789 patent/WO2010044425A1/ja active Application Filing
- 2009-10-14 KR KR1020117005526A patent/KR20110079617A/ko not_active Application Discontinuation
- 2009-10-14 EP EP09820603A patent/EP2338933B1/en not_active Not-in-force
- 2009-10-14 CN CN2009801414548A patent/CN102186909B/zh not_active Expired - Fee Related
- 2009-10-15 TW TW098134913A patent/TW201026761A/zh unknown
-
2011
- 2011-03-25 US US13/071,720 patent/US20110178193A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61152739A (ja) * | 1984-12-27 | 1986-07-11 | Asahi Chem Ind Co Ltd | エチレン−テトラフルオロエチレン共重合体多孔膜の製造方法 |
JPS6311370B2 (ja) | 1984-12-27 | 1988-03-14 | Asahi Chemical Ind | |
JPS62106808A (ja) * | 1985-11-01 | 1987-05-18 | Asahi Chem Ind Co Ltd | エチレン―テトラフルオロエチレン共重合体多孔膜 |
JPH02196835A (ja) * | 1988-08-05 | 1990-08-03 | Hoechst Celanese Corp | 強度特性に優れたハロゲン化重合体微孔質膜の製造 |
JPH05192988A (ja) * | 1991-11-06 | 1993-08-03 | Daikin Ind Ltd | エチレンーテトラフルオロエチレン共重合体中空管の製造方法 |
JP3265678B2 (ja) | 1993-02-12 | 2002-03-11 | ダイキン工業株式会社 | エチレンーテトラフルオロエチレン共重合体多孔膜の製造方法 |
JP2005097367A (ja) * | 2003-09-22 | 2005-04-14 | Inoac Corp | フッ素ゴムを含むミクロ多孔体およびその製造方法 |
JP2008013615A (ja) | 2006-07-04 | 2008-01-24 | Asahi Glass Co Ltd | フッ素樹脂多孔体の製造方法 |
JP2008266936A (ja) | 2007-04-18 | 2008-11-06 | Taisei Corp | グラウトの比率制御方法及びその装置 |
JP2009156741A (ja) | 2007-12-27 | 2009-07-16 | Konica Minolta Medical & Graphic Inc | 開口封止部材、開口封止方法、マイクロ検査チップおよび開口封止治具 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2338933A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120108723A1 (en) * | 2009-07-01 | 2012-05-03 | Asahi Glass Company, Limited | Fluorocopolymer composition and its production process |
EP2450406A1 (en) * | 2009-07-01 | 2012-05-09 | Asahi Glass Company, Limited | Fluorine-containing copolymer composition and method for producing same |
EP2450406A4 (en) * | 2009-07-01 | 2013-01-02 | Asahi Glass Co Ltd | FLUORINE CONTAINING COPOLYMER COMPOSITION AND METHOD FOR PRODUCING THE SAME |
WO2012074114A1 (ja) | 2010-12-03 | 2012-06-07 | 旭硝子株式会社 | 電荷保持媒体の製造方法 |
WO2012074115A1 (ja) | 2010-12-03 | 2012-06-07 | 旭硝子株式会社 | 電荷保持媒体 |
US9427777B2 (en) | 2010-12-03 | 2016-08-30 | Asahi Glass Company, Limited | Process for producing charge retention medium |
WO2013015385A1 (ja) | 2011-07-28 | 2013-01-31 | 旭硝子株式会社 | エレクトレットおよびその製造方法、ならびに静電誘導型変換素子 |
WO2013024886A1 (ja) * | 2011-08-17 | 2013-02-21 | 旭硝子株式会社 | 含フッ素共重合体組成物、コーティング用組成物、塗膜を有する物品、及び成形品 |
US10975483B2 (en) | 2015-03-18 | 2021-04-13 | Asahi Kasei Kabushiki Kaisha | Diaphragm for alkaline water electrolysis, alkaline water electrolysis device, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis |
Also Published As
Publication number | Publication date |
---|---|
CN102186909B (zh) | 2013-04-10 |
EP2338933B1 (en) | 2013-03-20 |
EP2338933A4 (en) | 2012-04-04 |
TW201026761A (en) | 2010-07-16 |
EP2338933A1 (en) | 2011-06-29 |
JPWO2010044425A1 (ja) | 2012-03-15 |
KR20110079617A (ko) | 2011-07-07 |
CN102186909A (zh) | 2011-09-14 |
US20110178193A1 (en) | 2011-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010044425A1 (ja) | エチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 | |
JP5626269B2 (ja) | 高分子多孔質膜及び高分子多孔質膜の製造方法 | |
JP2012525966A (ja) | フッ素系中空糸膜およびその製造方法 | |
JP6760359B2 (ja) | 親水化剤、親水化剤を含む組成物及び高分子多孔質膜 | |
WO1996017676A1 (fr) | Procede de preparation d'une membrane en polyether ether cetone | |
WO2014208592A1 (ja) | 組成物、高分子多孔質膜及び親水化剤 | |
JP2011225659A (ja) | 親水化されたエチレン/テトラフルオロエチレン共重合体多孔体の製造方法およびエチレン/テトラフルオロエチレン共重合体多孔体 | |
Huang et al. | Fabrication and properties of poly (tetrafluoroethylene-co-hexafluoropropylene) hollow fiber membranes | |
WO2015141653A1 (ja) | 複合分離膜 | |
WO2015041119A1 (ja) | 高分子多孔質膜及び高分子多孔質膜の製造方法 | |
JP5050499B2 (ja) | 中空糸膜の製造方法および中空糸膜 | |
JP4271750B2 (ja) | 微多孔膜及びその製造方法 | |
JP4978829B2 (ja) | フッ素樹脂多孔体の製造方法 | |
JP4781691B2 (ja) | 多孔質膜およびその製造方法 | |
JP2016183301A (ja) | 水処理用ポリフッ化ビニリデン多孔膜及び水処理用ポリフッ化ビニリデン多孔膜の製造方法 | |
EP3130390B1 (en) | Ptfe/pfsa additive blended membrane | |
JP2008062227A (ja) | 製膜原液、多孔膜及び多孔膜の製造方法 | |
JP2015058418A (ja) | 高分子多孔質膜及び高分子多孔質膜の製造方法 | |
JPS5916503A (ja) | ポリフツ化ビニリデン系樹脂多孔中空糸膜及びその製造方法 | |
JP5968982B2 (ja) | 中空糸膜製造用高分子樹脂組成物、中空糸膜の製造方法及び中空糸膜 | |
CN114269459A (zh) | 包含聚芳醚砜和聚芳醚酮共混物的膜及其制造方法 | |
JPH08126825A (ja) | 濾過膜の熱安定化方法 | |
Jayan et al. | Fluoropolymer nanocomposite membranes for gas separation applications | |
EP3763434A1 (en) | Membrane and method for manufacturing thereof | |
CN115920669A (zh) | 一种全氟中空纤维多孔膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980141454.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09820603 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010533914 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117005526 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009820603 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |