WO2010035417A1 - 電気鋳造方法 - Google Patents

電気鋳造方法 Download PDF

Info

Publication number
WO2010035417A1
WO2010035417A1 PCT/JP2009/004522 JP2009004522W WO2010035417A1 WO 2010035417 A1 WO2010035417 A1 WO 2010035417A1 JP 2009004522 W JP2009004522 W JP 2009004522W WO 2010035417 A1 WO2010035417 A1 WO 2010035417A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
insulating layer
metal
cavity
width
Prior art date
Application number
PCT/JP2009/004522
Other languages
English (en)
French (fr)
Inventor
関寿昌
畑村章彦
吉田仁
山下利夫
三浦康弘
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN2009801354373A priority Critical patent/CN102149855B/zh
Priority to EP09815839.7A priority patent/EP2336393B1/en
Priority to KR1020117005296A priority patent/KR101254888B1/ko
Priority to US13/063,638 priority patent/US9085828B2/en
Publication of WO2010035417A1 publication Critical patent/WO2010035417A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier

Definitions

  • the present invention relates to an electroforming method for molding a metal product.
  • Electrocasting technology is known as a method for producing fine metal products that are difficult to manufacture by machining. This is a thick electroplating process in which a metal product is formed by plating a metal on a matrix and peeling the thick film plating (metal molded product) from the matrix. Electroplating with a thickness exceeding 20 ⁇ m is called electroforming.
  • a photoresist is applied to the surface of a metal matrix, and this is patterned to form a resist film having an opening of a desired pattern, and then in the opening of the resist film, That is, a metal layer (thick film plating) is formed by electrodepositing a metal on the surface of the matrix that is not covered with the resist film. Thereafter, the metal layer is peeled off from the matrix to obtain a fine metal molded product having a desired shape.
  • the step of electrodepositing metal on the surface of the matrix a part of the current blocked by the resist film flows into the electrodeposition part near the resist film and partially increases the amount of electrodeposition.
  • the thickness of the film became uneven.
  • the metal layer was raised at the edge portion in contact with the resist film on the surface of the metal layer (the surface opposite to the surface electrodeposited on the mold), and the thickness of the metal layer was partially increased.
  • the metal layer is formed to be slightly thicker than the thickness of the resist film, and the thickness of the metal layer is made uniform by polishing and smoothing the surface of the metal layer. .
  • the shape of the surface of the metal layer (the surface opposite to the surface electrodeposited on the mother die) is uncontrollable, and there are significant restrictions on the shape of the metal molded product that can be molded. there were.
  • the present invention has been made in view of the above problems, and provides an electroforming method capable of controlling the shape of the surface of the metal layer opposite to the surface electrodeposited on the mother die. Is an issue.
  • the first electroforming method includes forming an insulating layer on the upper surface of the conductive substrate, providing a recess in the insulating layer, and at least a bottom surface of the recess.
  • the metal layer is grown in the recess so as to leave a space having a height of 2 mm.
  • the second electroforming method includes forming an insulating layer on the upper surface of the conductive base material, providing a concave portion in the insulating layer, and forming the conductive group on at least a part of the bottom surface of the concave portion.
  • An electrodeposition method comprising: an electrodeposition step, wherein, in the electrodeposition step, when the width of the recess is 200 ⁇ m or more and less than 300 ⁇ m, the height is 1 / 3.75 times or more the width of the recess.
  • a metal layer is grown in the recess so as to leave a space.
  • the third electroforming method according to the present invention comprises forming an insulating layer on the upper surface of the conductive substrate, providing a recess in the insulating layer, and forming the conductive group on at least a part of the bottom surface of the recess.
  • a matrix forming step of exposing a material to form a matrix, and placing the matrix in an electrolytic cell and applying a voltage to electrodeposit metal on the exposed surface of the conductive substrate in the recess An electroforming method comprising an electrodeposition step, wherein, in the electrodeposition step, when the width of the recess is not less than 100 ⁇ m and less than 200 ⁇ m, a space having a height that is at least 1/4 times the width of the recess A metal layer is grown in the recess so as to remain.
  • the fourth electroforming method according to the present invention is such that an insulating layer is formed on the upper surface of the conductive base material, a concave portion is provided in the insulating layer, and the conductive group is formed on at least a part of the bottom surface of the concave portion.
  • a matrix forming step of exposing a material to form a matrix, and placing the matrix in an electrolytic cell and applying a voltage to electrodeposit metal on the exposed surface of the conductive substrate in the recess An electrodeposition process, wherein, in the electrodeposition process, when the width of the recess is less than 100 ⁇ m, a space having a height of 1/10 or more of the width of the recess is left. Then, a metal layer is grown in the recess.
  • the conductive substrate is a substrate for depositing a metal layer by electroforming.
  • the conductive substrate may have a flat surface, or may have irregularities or steps on the surface. Since it is used as an electrode at the time of electroforming, the conductive substrate must have conductivity, but it is not limited to the case where the entire conductive substrate is made of a conductive material.
  • a conductive coating portion made of a conductive material may be provided on the entire surface of the core material made of a nonconductive material or a part of the surface.
  • the insulating coat part which consists of insulating materials in a part of surface of the core material which consists of electrically conductive materials may be used.
  • the insulating layer is a layer that electrically insulates the surface of the conductive base material during electroforming and suppresses metal electrodeposition, and a resist is generally used.
  • the mother die is a master electrode made of a conductive base material and an insulating layer and having one or more concave portions for molding. Electrodeposition refers to depositing a metal deposit proportional to the amount of accumulated energization on one electrode (matrix) arranged in the electrolytic cell.
  • the concave portion is a cavity formed by an insulating layer on the upper surface of the conductive base material, and has an inverted shape of a metal molded product to be manufactured.
  • the width of the recess means an opening width measured at a height at which the growth of the metal layer is finally stopped at the position where the width is to be determined and in the cross section in the direction in which the width of the recess is the narrowest.
  • the height of the space left in the recess means the vertical distance of the space from the uppermost end of the metal layer deposited in the recess to the upper surface of the insulating layer (upper surface opening of the recess).
  • the vertical distance from the uppermost end of the metal layer to the upper surface of the insulating layer at the place where the height of the insulating layer is the lowest is referred to as the height of the space in the recess.
  • the metal layer is grown without leaving a predetermined space above the metal layer without electroforming metal in the entire internal space of the recess.
  • the insulating layer at the edge of the opening on the upper surface of the recess blocks the current that tries to flow obliquely into the metal layer that is already electrodeposited from the portion that does not face the recess of the counter electrode.
  • the thickness of the electrodeposited metal does not vary. For this reason, the electroformed metal layer grows uniformly so that the distance from the portion where the base insulating layer is not formed is constant.
  • the minimum value of the space to be left above the metal layer according to the width of the recess that is, the thickness of the metal layer relative to the thickness of the insulating layer. Since the maximum value is determined, the metal molded product can be efficiently molded with the minimum necessary insulating layer thickness (that is, member saving) determined by the width of the recess and the thickness of the metal molded product to be molded.
  • the insulating layer may be formed on at least a part of a peripheral edge of the bottom surface of the recess in the mother die forming step. Since the metal layer grows so that the distance from the portion where the base insulating layer is not formed is constant, according to such an embodiment, the curved surface is formed on the insulating layer on the outer peripheral portion of the bottom surface. A metal layer can be formed. For example, this makes it possible to chamfer the edge of the metal molded product opposite to the mother die.
  • a recess may be formed on the upper surface of the conductive substrate in a region overlapping the bottom surface of the recess. According to such an embodiment, since the bottom shape of the recess can be changed to various shapes by the depression of the conductive base material, it becomes possible to mold metal molded products having various shapes.
  • the surface of the conductive substrate exposed on the bottom surface of the recess has an inclination angle with respect to a plane perpendicular to the voltage application direction. It may be a set mainly composed of surfaces that are 60 ° or less. In such an embodiment, the surface on which the matrix insulating layer is not formed is not inclined more than 60 ° from the surface perpendicular to the voltage application direction between the counter electrode and the inclined surface is It is possible to prevent the metal layer from growing unevenly by drawing current from the counter electrode obliquely. However, even if the surface has an inclination angle larger than 60 ° from the surface perpendicular to the voltage application direction, the metal layer is less likely to be nonuniform if the area is smaller than the entire area of the bottom surface of the recess.
  • a step portion that enlarges an opening area of the concave portion may be formed on the side wall surface of the concave portion in the matrix forming step. Good. According to this embodiment, a part of the metal molded product can be protruded in a direction different from the voltage application direction.
  • the voltage in the electrodeposition step, is stopped when an integrated amount of current flowing in the electrolytic cell reaches a predetermined value. You may do it. Since the total amount of the metal to be electrodeposited is proportional to the integrated energization amount of the supplied current, the thickness of the grown metal layer can be controlled without direct measurement.
  • the means for solving the above-described problems in the present invention has a feature in which the above-described constituent elements are appropriately combined, and the present invention enables many variations by combining such constituent elements. .
  • the current flows into the metal layer from the side, and the growth of the molded metal layer
  • the thickness in the direction becomes uniform, and there is no need to finish the surface on the opposite side to the mother die.
  • FIG. 1 is a cross-sectional view showing a mother die used in the electroforming method according to Embodiment 1 of the present invention.
  • FIGS. 2A to 2J are schematic cross-sectional views showing a process of forming a metal molded product by the electroforming method of the first embodiment.
  • FIG. 3 is a cross-sectional view showing a matrix placed in the electrolytic cell.
  • FIG. 4A is a diagram showing a change in voltage applied between the electrodes of the electrolytic cell
  • FIG. 4B is a diagram showing a change in current flowing in the electrolytic cell.
  • FIG. 5A is a plan view showing the shape of a sample used to determine the relationship between the width of the cavity and the height of the head space.
  • FIG. 5B is an enlarged view of a cross section of a portion A in FIG.
  • FIG. 6 shows various samples prepared by changing the height H of the head space left on the metal layer and electrodepositing metal in the cavity, and the height H of the head space and the thickness of the thin line portion of the sample. It is a figure which shows the result of having investigated the relationship with dispersion
  • FIG. 7 is a diagram showing the conditions when the variation in the thickness of the thin line portion is 1.01, with the abscissa indicating the cavity width W and the ordinate indicating the H / W ratio.
  • FIG. 8 shows various samples prepared by changing the height H of the head space left on the metal layer and electrodepositing metal in the cavity, and the height H of the head space and the thickness of the thin line portion of the sample. It is a figure which shows the result of having investigated the relationship with dispersion
  • FIG. 9 is a cross-sectional view showing a comparative example.
  • FIGS. 10A to 10D are views for explaining a method for forming an insulating film using an electrodeposition resist.
  • FIG. 11 is a plan view of a metal molded product produced using the matrix of the comparative example.
  • FIG. 12 is a view showing a cross section of an insulating layer formed on a conductive substrate using a spray coater and a photolithography technique.
  • FIG. 13A is a cross-sectional view showing a mother die according to Embodiment 2 of the present invention.
  • FIG. 13B is a cross-sectional view showing another matrix of the second embodiment.
  • FIG. 14 is a cross-sectional view showing still another mother die of the second embodiment.
  • FIG. 15 is a cross-sectional view showing a cross section along the longitudinal direction of the mother die and the metal molded product according to Embodiment 3 of the present invention.
  • FIG. 16 is a diagram showing the results of measuring the thickness variation of the metal layer by changing the inclination angle ⁇ of the inclined surface portion.
  • FIG. 17 is a diagram showing how the metal layer grows when a recess having an inclined surface with an inclination angle of 60 ° or more is provided on the upper surface of the conductive substrate.
  • FIG. 18 is a cross-sectional view for explaining that there is almost no influence on the growth of the metal layer even when the inclination angle is 60 ° or more in a part of the recess of the conductive substrate.
  • FIG. 19 is a cross-sectional view showing a different example of the third embodiment.
  • FIG. 20 is a perspective view showing the shape of a contact member for an electronic component formed according to the present invention.
  • FIG. 21 is a diagram illustrating a mother die cavity and a metal layer growth process according to a fourth embodiment of the present invention.
  • FIG. 22 is a cross-sectional view illustrating another example of the fourth embodiment.
  • FIGS. 23A and 23B are cross-sectional views showing mother dies according to different embodiments of the present invention.
  • FIGS. 26 (a) to 26 (d) are cross-sectional views showing mother dies according to different embodiments of the present invention.
  • 27 (a) and 27 (b) are cross-sectional views showing mother dies according to different embodiments of the present invention.
  • 28 (a) and 28 (b) are cross-sectional views showing mother dies according to different embodiments of the present invention.
  • FIG. 1 is a cross-sectional view for explaining an electroforming method (hereinafter referred to as electroforming method) according to Embodiment 1 of the present invention, in which a mother die 11 and a metal electroformed using the mother die 11 are shown.
  • the molded product 12 is shown.
  • the mother die 11 used in the first embodiment is obtained by laminating a thick insulating layer 14 on a flat upper surface of a conductive base material 13.
  • the cavity 15 (concave portion) is formed.
  • the insulating layer 14 does not remain on the bottom surface of the cavity 15, and the upper surface of the conductive substrate 13 is exposed on the entire bottom surface of the cavity 15.
  • a metal molded product 12 is formed in the cavity 15 of the mother die 11 by electroforming.
  • FIG. 1 is a cross section in a direction (short direction) perpendicular to the longitudinal direction of the cavity 15.
  • FIG. 2 shows a process of molding the metal molded product 12 by electroforming
  • FIGS. 2A to 2F show a process for forming the mother die 11 (matrix forming process).
  • G) and (h) show a process (electrodeposition process) in which metal is electrodeposited in the cavity 15 to produce a metal molded product 12, and FIGS.
  • the process (peeling process) which peels the goods 12 is shown.
  • a plurality of cavities 15 are formed in the mother die 11 and a plurality of metal molded products 12 are produced at a time, but the case where one metal molded product 12 is produced will be described for convenience.
  • FIG. 2A shows a metal conductive substrate 13 having a flat upper surface, and at least the upper surface is subjected to a treatment for easily peeling the electrodeposited metal molded product 12.
  • a negative photoresist 16 is applied to the upper surface of the conductive substrate 13 by a spray coater or a spin coater to form a thick film having a uniform thickness.
  • the region where the cavity 15 is formed is covered with a mask 17 and exposed to the photoresist 16 as shown in FIG.
  • the photoresist 16 Since the exposed area of the photoresist 16 is insolubilized and does not dissolve during development, only the area covered with the mask 17 is dissolved and removed by development, and the cavity 15 is formed in the photoresist 16 as shown in FIG. It is formed. Finally, the photoresist 16 is post-baked to form an insulating layer 14 having a predetermined thickness on the upper surface of the conductive substrate 13 by the photoresist 16. The matrix 11 obtained in this way is shown in FIG.
  • the mother die 11 is placed in the electrolytic cell 19, and a voltage is applied between the mother die 11 and the counter electrode 21 by the DC power source 20 to supply a current to the electrolyte ⁇ . Shed.
  • metal ions in the electrolytic solution ⁇ are electrodeposited on the surface of the conductive base material 13 and the metal layer 18 is deposited.
  • the insulating layer 14 cuts off the current, even if a voltage is applied between the mother die 11 and the counter electrode 21, no metal is directly electrodeposited on the insulating layer 14. Therefore, as shown in FIG. 2G, the metal layer 18 grows in the cavity 15 from the bottom surface in the voltage application direction.
  • the thickness of the electrodeposited metal layer 18 is the accumulated current amount of current (that is, the accumulated time amount of the energized current, and is the area of the shaded area in FIG. 4B). It is managed by. This is because the amount of metal deposited per unit time is proportional to the current value, so that the volume of the metal layer 18 is determined by the accumulated current amount of current, and the thickness of the metal layer 18 can be known from the accumulated current amount of current.
  • the current flowing between the counter electrode 21 and the mother die 11 is also As shown in FIG.4 (b), it increases gradually and in steps with the elapsed time from an energization start. Then, when it is detected that the metal layer 18 has reached the target thickness by monitoring the integrated energization amount of the energization current, the DC power source 20 is turned off to stop energization. As a result, as shown in FIG. 2 (h), the metal molded product 12 is molded in the cavity 15 by the metal layer 18 having a desired thickness.
  • the height is 1 / 2.85 times the width of the cavity 15 or more.
  • the metal layer 18 is grown so as to leave a space having a thickness (hereinafter referred to as a head space).
  • the width of the cavity 15 is 200 ⁇ m or more and less than 300 ⁇ m, the metal layer 18 is grown so as to leave a head space having a height of 1 / 3.75 times or more of the width of the cavity 15.
  • the metal layer 18 is grown so as to leave a head space having a height of 1/4 times or more the width of the cavity 15.
  • the width of the cavity 15 is less than 100 ⁇ m, the metal layer 18 is grown so as to leave a head space having a height of 1/10 times or more the width of the recess.
  • the metal layer The height H of the head space left above 18 is If 300 ⁇ m ⁇ W, H ⁇ W / 2.85 If 200 ⁇ m ⁇ W ⁇ 300 ⁇ m, H ⁇ W / 3.75 If 100 ⁇ m ⁇ W ⁇ 200 ⁇ m, H ⁇ W / 4 If W ⁇ 100 ⁇ m, H ⁇ W / 10
  • the growth of the metal layer 18 is stopped so as to satisfy the above condition.
  • the insulating layer 14 is peeled off by etching or the like as shown in FIG. 2 (i), and the metal molded product 12 is further removed from the conductive substrate 13 as shown in FIG. 2 (j). To obtain a metal molded product 12 in which the shape of the mother die 11 is transferred in reverse.
  • the thick insulating layer 14 is formed so as to overlap the upper surface of the conductive substrate 13 as described above, and the cavity 15 is formed in the mother die 11 by opening the insulating layer 14. Therefore, it is possible to precisely manufacture the fine cavity 15 using a photolithography technique or the like, and therefore it is possible to manufacture a fine and precise metal molded product 12 by electroforming.
  • the growth of the metal layer 18 is stopped so as to leave a head space having a predetermined height above the cavity 15 as described above.
  • the distance H between the upper surface opening of the cavity 15 can be maintained, and among the metal ions flowing into the cavity 15 and precipitated, metal ions flowing obliquely into the cavity 15 at the periphery of the upper surface opening of the cavity 15 are
  • the metal layer 18 is uniformly grown by passing a uniform current over the entire upper surface of the metal layer 18.
  • the metal molded product 12 in which the metal layer 18 is grown has a surface facing the counter electrode on the side opposite to the conductive base material 13 having a certain distance from the upper surface of the conductive base material 13. 15 according to the shape.
  • the head space height H left on the metal molded product 12 is If 300 ⁇ m ⁇ W, H ⁇ W / 2.85 If 200 ⁇ m ⁇ W ⁇ 300 ⁇ m, H ⁇ W / 3.75 If 100 ⁇ m ⁇ W ⁇ 200 ⁇ m, H ⁇ W / 4 If W ⁇ 100 ⁇ m, H ⁇ W / 10 (Hereinafter, these conditions are referred to as growth stop conditions).
  • the metal molded product 12 may have a plate shape such as a circular plate shape or a rectangular plate shape, or may have a shape that is long in one direction (for example, see FIG. 20), and is particularly manufactured according to the present invention.
  • the shape of the metal molded product 12. Therefore, when the plate-shaped metal molded product 12 is produced, the above growth stop condition may be satisfied in the cross section in the narrowest direction of the cross section.
  • the electrodeposition process may be managed so that the growth stop condition is satisfied in the cross section in the width direction (short direction).
  • a metal molded product 12 having a shape elongated in one direction will be described as an example.
  • FIG. 5A is a plan view showing the shape of the sample 22 used for determining the relationship between the width W of the cavity 15 and the height H of the head space.
  • FIG. 5B is a cross-sectional view of a portion A in FIG.
  • thin wire portions 24 (length: 4.5 mm) are arranged at regular intervals between strip-shaped hoop portions 23a, 23b, and 23c, and the thickness is set to 20 ⁇ m to 300 ⁇ m.
  • the thin line portion 24 is long in one direction and has a three-dimensional shape like the molded product shown in FIG.
  • the sample 22 is obtained by electrodepositing a metal in the cavity 15 using the mother die 11 having the cavity 15 in the inverted shape of the sample 22.
  • samples in which the width W of the cavity 15 (width in the short direction), the height H of the head space, the width L of the insulating layer 14 and the like are changed are manufactured, and the region indicated by the broken line in FIG.
  • the sample was cut for analysis, and the thickness of the thin line portion 24 was checked for uniformity.
  • the width W of the cavity 15 is determined. It was found that no variation in thickness occurred in the thin line portion 24 regardless of (that is, the width of the thin line portion 24). Further, as the width W of the cavity 15 becomes smaller, the variation in the thickness of the thin line portion 24 becomes smaller. (These can be seen from FIG. 6.)
  • the height H of the head space left on the metal layer 18 is changed, and metal is electrodeposited into the cavity 15 to produce various samples 22.
  • variation in is measured.
  • the mother die 11 those having a cavity width W of 100 ⁇ m, 200 ⁇ m, 300 ⁇ m, and 400 ⁇ m were used.
  • the thickness variation of the thin wire portion 24 (metal molded product) is expressed by T2 / T1, where T1 is the thickness of the thinnest portion along the width direction of the thin wire portion 24 and T2 is the thickness of the thickest portion. It is.
  • the thickness variation of the metal molded product by electroforming is desired to be 1% or less due to the recent refinement of parts. Therefore, in FIG. 6, when the condition for the thickness variation of the thin line portion 24 to be 1.01 or less is determined, when the cavity width W is 400 ⁇ m, the head space height H needs to be 140 ⁇ m or more. When the cavity width W is 300 ⁇ m, the head space height H needs to be 80 ⁇ m or more, and when the cavity width W is 200 ⁇ m, the head space height H needs to be 50 ⁇ m or more. When W is 100 ⁇ m, the head space height H needs to be 10 ⁇ m or more.
  • FIG. 7 shows the cavity width W on the horizontal axis and the H / W ratio on the vertical axis.
  • the headspace height H remaining on the metal layer 18 is changed, and metal is electrodeposited into the cavity 15 to produce various samples 22.
  • variation in is measured.
  • the mother die 11 one having a cavity width W of 300 ⁇ m was used, and the width L of the insulating layer 14 was changed to 100 ⁇ m, 200 ⁇ m, and 300 ⁇ m.
  • the thickness variation of the thin line portion 24 will be the cavity width. There is almost no change from the case where W is 300 ⁇ m. That is, as in the case where the cavity width W is 300 ⁇ m, if the ratio H / W ⁇ 1, no variation in thickness occurs in the fine line portion 24, and the smaller the cavity width W, the smaller the variation in thickness of the fine line portion 24. .
  • the insulating layer 14 can be formed so as to overlap the upper surface of the conductive substrate 13, the insulating layer 14 can be formed to a uniform thickness by a spray coater or a spin coater (preferably a spray coater). Since the sharply shaped cavity 15 can be formed, it is possible to produce a sharply shaped metal molded product 12.
  • the insulating layer 14 can be formed with a uniform thickness even when the upper surface of the conductive substrate 13 is uneven as in the embodiment described later. This point will be described in comparison with a comparative example.
  • FIG. 9 is a cross-sectional view showing a comparative example.
  • the mother die 101 of this comparative example is one in which a cavity 105 is directly formed in a metal conductive base material 103 and an insulating coating 104 is formed on the surface of the conductive base material 103 except for the bottom surface of the cavity 105. .
  • the mother mold 101 is placed in the electrolytic cell, and metal ions are electrodeposited on the bottom surface of the cavity 105 to grow the metal molded product 12.
  • FIGS. 10A to 10D are views for explaining a method of forming the insulating film 104 using an electrodeposition resist.
  • the conductive base material 103 on which the cavity 105 is formed is opposed to the counter electrode 106 in the electrodeposition resist solution ⁇ in the electrolytic bath 107. Placed in.
  • the photosensitive agent 110 which is a component in the electrodeposition resist solution ⁇ , reacts with oxygen ions on the surface of the conductive base material 103 to react with the surface of the conductive base material 103. Solidify with.
  • the surface of the conductive base material 103 is covered with the solidified product of the granular photosensitizer 110.
  • the conductive substrate 103 is taken out from the electrolytic cell 107 and then pre-baked as shown in FIG.
  • prebaking is performed at a temperature of about 80 ° C. to 100 ° C.
  • the solvent of the photosensitive agent 110 volatilizes, and at the same time, the photosensitive agent 110 flows to fill a defective portion such as a hole in the photosensitive agent 110.
  • FIG. 10 (d) when post-baking at a temperature of about 120 ° C. to 140 ° C. to promote the thermal polymerization reaction of the photosensitive agent 110, the photosensitive agent 110 further flows to form a smooth coating,
  • the photosensitive agent 110 is baked and hardened on the surface of the conductive substrate 103 to form the insulating coating 104.
  • the insulating coating 104 is removed from the bottom surface of the cavity 105 to expose the conductive base material 103, thereby forming the mother die 101.
  • the insulating coating 104 is formed by the electrodeposition resist as described above, the post-baked photosensitive agent 110 flows, and as a result, as shown in FIG. In the (corner portion), the conductive substrate 103 becomes thin, and in the inner edge portion (inner corner portion) in the cavity 105, the conductive substrate 103 tends to be thick. As a result, in the cavity covered with the insulating coating 104 compared to the cavity 105 (cavity before forming the insulating coating) formed by the conductive base material 103, the inner edge portion and the outer edge portion are rounded in the cross section in the short direction. It was difficult to obtain a metal molded product 12 having a sharp shape.
  • FIG. 11 is a plan view of a photomicrograph of a metal molded article 12 produced using the mother die 101 produced as described above, and a part thereof is enlarged and shown.
  • the inner edge portion and the outer edge portion are rounded in the cross section in the short direction, but in reality, the corner (side) of the three-dimensional cavity 105 is rounded. Even when viewed in a plane, the inner edge portion of the cavity 105 is rounded. Therefore, the metal molded product 12 molded in the cavity 105 is also rounded in a plan view as shown in FIG. As can be seen from FIG.
  • the inner edge portion and the outer edge portion of the cavity 105 are rounded by the insulating coating 104, so that the conductive base material 103 is sharpened. Even if the cavity 105 having a simple shape is formed, it is difficult to transfer a sharp shape to the metal molded product 12, and the corners and corners are particularly rounded.
  • FIG. 12 is a view showing a cross-sectional photograph of the insulating layer 14 formed on the conductive substrate 13 using a spray coater and a photolithography technique.
  • the upper surface of the insulating layer 14 and the inside of the cavity 15 are hardened with a resin 111 in order to prevent the shape of the insulating layer 14 from collapsing when the mother die 11 is cut.
  • a sharply shaped cavity 15 as shown in FIG. 12 can be formed.
  • a sharply shaped metal molded product is obtained. 12 can be produced.
  • the minimum height of the head space to be left above the metal layer 18 according to the width of the cavity 15 that is, the maximum value of the thickness of the metal layer relative to the thickness of the insulating layer. Therefore, the metal molded product can be efficiently molded with the minimum necessary insulating layer thickness (that is, a member-saving) determined by the width of the recess and the thickness of the metal molded product to be molded.
  • the thickness of the insulating film 14 can be reduced, the edge shape of the insulating layer 14 can be easily improved in the photolithography process, and the electroforming accuracy of the metal molded product 12 is accordingly increased. Moreover, when the thickness of the insulating layer 14 can be reduced, the photoresist film formation time and the peeling time are shortened, and the production efficiency of the metal molded product 12 is improved. As a result, high quality and low cost of the metal molded product 12 can be achieved.
  • FIG. 13A is a sectional view showing a mother die 31 according to Embodiment 2 of the present invention.
  • a recess 32 having a desired shape is formed on the upper surface of the conductive substrate 13 in the cavity 15, and the recess 32 constitutes a part of the cavity 15. Therefore, by electrodepositing a metal in the cavity 15, it is possible to mold a metal molded product 12 having a higher degree of shape.
  • the dent 32 is formed in a part of the bottom surface of the cavity 15, but the dent is formed in the entire bottom surface of the cavity 15 as in another embodiment shown in FIG. 32 may be formed.
  • the depression 32 is formed on the upper surface of the conductive base material 13 over a wider range than the bottom surface of the cavity 15, and a part of the depression 32 is filled with the insulating layer 14. Yes.
  • the head space height H is measured from the highest position of the metal molded product 12. .
  • the head space height H measures the height to the top surface of the lowest portion of the insulating layer 14.
  • the head space height H is a vertical distance from the highest position of the metal molded product 12 to the upper surface of the lowest portion of the insulating layer 14.
  • the thickness variation is The thickness in the normal direction perpendicular to the inclined surface is evaluated.
  • FIG. 15 is a cross-sectional view along the longitudinal direction of the mother die 41 and the metal molded product 12 according to the third embodiment of the present invention.
  • the bottom surface shape of the cavity 15 will be described by taking the longitudinal direction as an example, but the same can be said for the bottom surface in the short side direction, and the case where both the long side and the short side are oblique also holds.
  • electrodeposition is performed within the range described in the first embodiment in the short direction.
  • electrodeposition is performed under the conditions described in the first embodiment, but in the longitudinal direction, electroforming is performed in accordance with the conditions described in the first embodiment.
  • the cavity 15 formed in the mother die 41 has a different depth at the bottom surface, and each of the plane portions 42a, 42b, 42c facing the counter electrode (perpendicular to the voltage application direction), and each plane portion 42a, 42b and 42c are connected, and it consists of inclined surface parts 43a and 43b which incline with respect to a surface perpendicular to the voltage application direction.
  • the metal layer 18 is equal in thickness to the flat surface portions 42a, 42b and 42c and the inclined surface portions 43a and 43b (the distance from the bottom surface becomes constant). Laminated and electrodeposited.
  • the metal layer 18 has substantially the same thickness (the distance from the bottom surface of the cavity 15) at the corner portion formed by the flat surface portion 42a and the inclined surface portion 43a and the corner portion formed by the flat surface portion 42b and the inclined surface portion 43b. Is deposited and electrodeposited.
  • the arrows shown in FIG. 15 are vectors indicating the growth direction of the metal layer 18.
  • FIG. 15 shows a cross section in the longitudinal direction. However, if it is assumed that this is a cross section in the short direction, the thickness of the metal layer 18 at the inclined surface portion should be taken into account when calculating the thickness variation.
  • the thickness of the metal layer 18 on each surface with the bottom surface being horizontal is measured, and the thickness T1 of the thinnest portion with respect to the thickness T1 of the thinnest portion is defined as the thickness variation T2 / T1.
  • the bottom surface of the cavity 15 is a horizontal surface as in the first embodiment, or when the bottom surface of the cavity 15 is an inclined surface as in the second embodiment, the horizontal surface or the inclined surface
  • the thickness in the normal direction is evaluated, when the horizontal plane and the inclined plane are mixed, the thickness is evaluated only by the thickness in the horizontal plane.
  • FIG. 16 shows the result of measuring the thickness variation of the metal layer 18 by changing the inclination angle ⁇ of the inclined surface portions 43a and 43b (angle formed between the surfaces perpendicular to the voltage application direction).
  • the inclination angle ⁇ of the inclined surface portions 43a and 43b is 60 ° or less, the thickness variation of the metal layer 18 is 1% or less, and there is no problem at all.
  • the inclination angle ⁇ of the inclined surface parts 43a and 43b exceeds 60 °, the thickness variation of the metal layer 18 occurs.
  • the variation in thickness of the metal layer 18 tends to be larger in the upper plane portion 42a and the lower plane portion 42c than in the middle plane portion 42b.
  • FIG. 17 is a diagram showing how the metal layer 18 grows when a recess 32 having an inclined surface with an inclination angle of 60 ° or more is provided on the upper surface of the conductive substrate 13.
  • the inclination angle exceeds 60 °, the current becomes non-uniform and it becomes difficult to control the thickness of the metal layer 18.
  • FIG. 17 is a diagram showing how the metal layer 18 grows when a recess 32 having an inclined surface with an inclination angle of 60 ° or more is provided on the upper surface of the conductive substrate 13.
  • the metal layer 18 has an inflection point at the inflection point as shown by an arrow in FIG. Since it grows so as to have a uniform thickness as the center, the inflection point portion on the upper surface of the metal layer 18 corresponding to the inflection point portion of the conductive substrate 13 becomes gently rounded.
  • the upper surface of the metal layer 18 is bent in the same manner as the upper surface of the conductive base material 13. Rounded and rounded.
  • the design of the metal molded product 12 is made constant by providing a change in depth on the bottom surface so that the inclination angle ⁇ of the inclined surface portions 43a and 43b is approximately 60 ° or less. It can also be bent in the voltage application direction while maintaining. In other words, the bottom surface of the cavity 15 does not necessarily face the counter electrode.
  • the insulating layer 14 Since the height of the insulating layer 14 does not have to be uniform, as shown in FIG. 19, the insulating layer 14 has a lower height in the longitudinal direction than the highest position on the upper surface of the metal layer 18. It does not matter. However, even in the case as shown in FIG. 19, the condition as in the first embodiment is satisfied for the insulating layer 14 when viewed in the cross section in the short direction with respect to the metal molded product 12.
  • FIG. 20 shows the shape of a contact member for an electronic component formed according to the present invention.
  • a metal part having such a shape can be formed only by electroforming without requiring any finishing process.
  • FIG. 21 shows the cavity 15 of the mother die 51 and the growth process of the metal layer 18 according to the fourth embodiment of the present invention.
  • the arrows in FIG. 21 are vectors indicating the growth direction and growth amount of the metal layer 18.
  • a stepped portion 52 is formed in the middle of the side wall surface of the cavity 15, so that the sectional area of the cavity 15 is enlarged from the middle, and the opening area of the cavity 15 is made larger than the bottom surface.
  • the insulating layer 14 extends so as to cover a part of the peripheral edge on the bottom surface of the cavity 15. An extending portion of the insulating layer 14 on the bottom surface is indicated by an insulating layer 14a.
  • metal is electrodeposited on a region of the bottom surface of the cavity 15 that is not covered with the insulating layer 14 a, thereby forming a metal layer 18.
  • the metal layer 18 grows so that the distance from the portion of the bottom surface not covered with the insulating layer 14a becomes constant and covers the insulating layer 14a.
  • the metal layer 18 when the metal layer 18 is grown by passing an electric current, the metal layer 18 protrudes and grows on the stepped portion 52. At this time, the metal layer 18 grows so that the distance from the edge of the stepped portion 52 is constant in a portion that is behind the stepped portion 52 when viewed from the bottom surface that is not covered with the insulating layer 14a.
  • the metal molded product 12 is cast into a shape projecting above the stepped portion 52. Further, by covering the peripheral edge of the bottom surface of the cavity 15 with the insulating layer 14a, the metal molded product 12 can be chamfered at the upper portion thereof. That is, by using this modification, it is possible to form a metal part in which a rounded chamfer is added to the surface of the shape obtained by reversing and transferring the shape of the mother die 11.
  • FIG. 22 is a cross-sectional view showing another example in which an insulating layer 14 a is provided on the bottom surface of the cavity 15.
  • This matrix 61 has this.
  • the insulating layer 14 extends along both sides or the outer peripheral edge of the bottom surface of the cavity 15 so as to cover a part of the bottom surface, thereby forming the bottom insulating layer 14a.
  • the metal layer 18 grows so that the distance from the portion of the bottom surface not covered with the insulating layer 14a is constant and overlies the insulating layer 14a. By doing so, the outer peripheral part of the upper surface of the metal molded product 12 is formed in a curved shape.
  • the variation in the thickness of the metal layer 18 is caused by the conductive Evaluation is made in a region where the thickness in the vertical direction of the metal layer 18 on the region where the conductive substrate 13 is exposed is substantially uniform.
  • FIG. 23 (a) shows a case in which a mother die 71 having insulating layers 14 tapered on both side surfaces so that the width is narrowed upward is used.
  • a matrix 72 shown in FIG. 23B has a depression 32 on the upper surface of the conductive base material 13, the insulating layer 14 on one side wall surface is outside the depression 32, and the other insulating layer 14 has the depression 32. It has entered inside.
  • the insulating layer 14 has a two-layer structure of insulating layers 91a and 91b, and an insulating layer 91b having a wide opening width is overlaid on an insulating layer 91a having a small opening width.
  • a matrix 74 shown in FIG. 24B has a two-layered insulating layer 14 in which an insulating layer 91b having a wider opening width is stacked on an insulating layer 91a having a tapered cross section that is narrowed upward. Is.
  • a mother die 75 shown in FIG. 24C has a V-shaped groove 32 formed on the bottom surface of the cavity 15, and an insulating layer 91b having a wide opening width is stacked on the insulating layer 91a having a small opening width.
  • 14 has a two-layer structure.
  • a matrix 76 shown in FIG. 24D is based on the matrix 72 in FIG. 23B, and the insulating layer 14 is divided into two layers, an insulating layer 91a having a narrow opening width and an insulating layer 91b having a wide opening width. It is a configuration.
  • a matrix 77 shown in FIG. 25A uses a conductive base material 13 in which the surface of a core material 92a made of a nonconductive material (insulating material) is covered with a conductive coating portion 92b made of a conductive material. .
  • 25 (b) to (d) also have a conductive substrate 13 in which the surface of a core material 92a made of a nonconductive material (insulating material) is covered with a conductive coat portion 92b made of a conductive material. Furthermore, the tapered insulating layer 14 is used in the base material 78 of FIG. 25B, and the conductive material having the depression 32 is used in the bases 79 and 80 of FIGS. 25C and 25D. The base material 13 is used.
  • the insulating layer 14 has a two-layer structure of insulating layers 91a and 91b, and insulation having a wide opening width is formed on the insulating layer 91a having a small opening width.
  • the layer 91b is stacked, and the conductive base material 13 is used in which the surface of a core material 92a made of a nonconductive material (insulating material) is covered with a conductive coating portion 92b made of a conductive material.
  • a mother die 85 shown in FIG. 27A has a recess 32 formed on the upper surface of the conductive substrate 13, and the insulating layer 14 is formed so as to enter a part of the recess 32, and an insulating layer is formed on the bottom surface of the cavity 15. 14a is extended.
  • the mother die 86 of FIG. 27B further has the insulating layer 14 having a two-layer structure of insulating layers 91a and 91b.
  • 28 (a) and 28 (b) further include a conductive group in which the surface of a core material 92a made of a nonconductive material (insulating material) is covered with a conductive coat portion 92b made of a conductive material. The material 13 is used.
  • the headspace height H and cavity width W are defined as follows. Is done.
  • the head space height is the height of the upper surface opening of the cavity 15 from the highest position of the produced metal molded article 12 (that is, the height at which the upper surface of the insulating layer 14 is positioned). Vertical plane).
  • the cavity width W is the width of the cavity 15 at a height at which the upper surface of the metal molded product 12 is located.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 導電性基材13の上面に重ねて形成された絶縁層14にキャビティ15を開口して母型11を作製している。この母型11を電解槽内に配置して電圧を印加し、キャビティ15の底面に金属を電着させてキャビティ15内に金属成型品12を電気鋳造する。この電着工程においては、キャビティ15の幅をW、キャビティ15の上面開口と金属層18の上面との間のヘッドスペースの垂直高さをHとするとき、金属層18の上に残すヘッドスペースの高さHが、 300μm≦W なら、H≧W/2.85   200μm≦W<300μm なら、H≧W/3.75   100μm≦W<200μm なら、H≧W/4   W<100μm なら、H≧W/10 を満たすようにして、金属層18の成長を停止させる。

Description

電気鋳造方法
 本発明は金属製品を成型するための電気鋳造方法に関する。
 機械加工では製作困難な微細金属製品を製造する方法として、電気鋳造技術(電鋳法)が知られている。これは、母型に対して金属を膜厚メッキし、その厚膜メッキ(金属成型品)を母型から剥離させることで金属製品を成型する厚付けの電気メッキプロセスであって、一般的に20μmを超える厚みの電気メッキを電鋳という。
 例えば、特許文献1に開示された方法では、金属製の母型の表面にフォトレジストを塗布し、これをパターニングして所望パターンの開口を有するレジスト膜を形成し、ついでレジスト膜の開口内、すなわち母型の表面のうちレジスト膜で覆われていない表面に金属を電着させて金属層(厚膜メッキ)を成型している。この後、母型から金属層を剥離させ、所望の形状の微細な金属成型品を得ている。
 しかしながら、母型の表面に金属を電着させる工程においては、レジスト膜に遮断された電流の一部がレジスト膜近傍の電着部分に流れ込んで電着量を部分的に増加させる結果、金属層の厚みが不均一になる不具合があった。特に、金属層の表面(母型に電着する面の反対側の面)のうちレジスト膜に接している縁の部分で金属層が盛り上がって金属層の厚みが部分的に厚くなっていた。
 そのため、特許文献1に開示された方法では、金属層をレジスト膜の厚みよりも若干厚く形成しておき、金属層の表面を研磨して平滑化することで金属層の厚みを均一にしている。
 上記のように、従来の電気鋳造方法では、金属層の表面(母型に電着する面の反対側の面)の形状が制御不能であり、金属成型品の成型可能な形状に大きな制約があった。また、金属成型品の形状を整えるためには、成形後に研磨処理などを行わねばならず、製造効率が悪く、その分製造コストが高くついていた。
特開平8-225983号公報(段落0002、図7)
 本発明は、上記のような問題点に鑑みてなされたものであって、母型に電着する面と反対側の金属層表面の形状を制御することが可能な電気鋳造方法を提供することを課題としている。
 このような課題を解決するため、本発明にかかる第1の電気鋳造方法は、導電性基材の上面に重ねて絶縁層を形成し、前記絶縁層に凹部を設けると共に前記凹部の底面の少なくとも一部で前記導電性基材を露出させて母型を形成する母型形成工程と、前記母型を電解槽内に配置して電圧を印加し、前記凹部内における前記導電性基材の露出面に金属を電着する電着工程とを備えた電気鋳造方法であって、前記電着工程において、前記凹部の幅が300μm以上の場合に、前記凹部の幅の1/2.85倍以上の高さを有する空間を残すようにして前記凹部内に金属層を成長させることを特徴としている。
 また、本発明にかかる第2の電気鋳造方法は、導電性基材の上面に重ねて絶縁層を形成し、前記絶縁層に凹部を設けると共に前記凹部の底面の少なくとも一部で前記導電性基材を露出させて母型を形成する母型形成工程と、前記母型を電解槽内に配置して電圧を印加し、前記凹部内における前記導電性基材の露出面に金属を電着する電着工程とを備えた電気鋳造方法であって、前記電着工程において、前記凹部の幅が200μm以上300μm未満の場合に、前記凹部の幅の1/3.75倍以上の高さを有する空間を残すようにして前記凹部内に金属層を成長させることを特徴としている。
 また、本発明にかかる第3の電気鋳造方法は、導電性基材の上面に重ねて絶縁層を形成し、前記絶縁層に凹部を設けると共に前記凹部の底面の少なくとも一部で前記導電性基材を露出させて母型を形成する母型形成工程と、前記母型を電解槽内に配置して電圧を印加し、前記凹部内における前記導電性基材の露出面に金属を電着する電着工程とを備えた電気鋳造方法であって、前記電着工程において、前記凹部の幅が100μm以上200μm未満の場合に、前記凹部の幅の1/4倍以上の高さを有する空間を残すようにして前記凹部内に金属層を成長させることを特徴としている。
 また、本発明にかかる第4の電気鋳造方法は、導電性基材の上面に重ねて絶縁層を形成し、前記絶縁層に凹部を設けると共に前記凹部の底面の少なくとも一部で前記導電性基材を露出させて母型を形成する母型形成工程と、前記母型を電解槽内に配置して電圧を印加し、前記凹部内における前記導電性基材の露出面に金属を電着する電着工程とを備えた電気鋳造方法であって、前記電着工程において、前記凹部の幅が100μm未満の場合に、前記凹部の幅の1/10倍以上の高さを有する空間を残すようにして前記凹部内に金属層を成長させることを特徴としている。
 ここで、前記導電性基材とは、電鋳により金属層を析出させるための基材である。導電性基材は、表面がフラットな形状であってもよく、表面に凸凹や段差があっても構わない。電鋳時の電極として使用されるため、導電性基材は導電性を有していなければならないが、導電性基材の全体が導電材料でできている場合に限らない。不導電材料からなる芯材の表面全体あるいはその表面の一部に導電材料からなる導電性コート部を設けたものでもよい。また、導電材料からなる芯材の表面の一部に絶縁材料からなる絶縁性コート部を設けたものでもよい。
 前記絶縁層とは、電鋳時に導電性基材の表面を電気的に絶縁し、金属の電着を抑制する層であって、一般的にはレジストが用いられる。また、母型とは、導電性基材と絶縁層からなり、成型用の1つ又は複数の凹部が形成されたマスター電極である。電着とは、電解槽内に配置した一方の電極(母型)に積算通電量に比例した金属堆積物を析出させることである。
 凹部とは、導電性基材の上面において絶縁層によって形成されたキャビティであって、製作する金属成型品の反転形状を有している。凹部の幅とは、幅を定めようとする位置において、かつ、凹部の幅が最も狭い方向の断面において、金属層の成長を最終的に停止させる高さで測った開口幅をいう。凹部内に残す空間の高さとは、凹部内に析出した金属層の最上端から絶縁層の上面(凹部の上面開口)までの間の空間の垂直距離をいう。ただし、絶縁層の高さが不均一な場合には、金属層の最上端から、絶縁層の高さが最も低い箇所における絶縁層の上面までの垂直距離を凹部に残す空間の高さという。
 しかして、本発明にかかる第1~4の電気鋳造方法にあっては、凹部の内部空間全体に金属を電気鋳造することなく、金属層の上部に所定の空間を残して金属層の成長を停止するようにすることで、凹部の上面開口の縁の絶縁層が、対向電極の凹部に正対しない部分から既に電着されている金属層に斜めに流れ込もうとする電流を遮断するので、電着される金属の厚みがばらつかない。このため、電気鋳造される金属層は、母型の絶縁層が形成されていない部分からの距離が一定となるように、均一に成長する。
 また、本発明にかかる第1~4の電気鋳造方法にあっては、凹部の幅に応じて金属層の上部に残すべき空間の最小値(つまり、絶縁層のある厚みに対する金属層の厚みの最大値)を定めているので、凹部の幅と成型したい金属成形品の厚みによって決まる必要最小量の絶縁層厚み(つまり省部材)で効率良く金属成型品を成型することができる。
 本発明にかかる第1~4の電気鋳造方法のある実施態様においては、前記母型形成工程において、前記凹部の底面の周縁部の少なくとも一部分に前記絶縁層を形成してもよい。金属層は、母型の絶縁層が形成されていない部分からの距離が一定となるように成長するので、かかる実施態様によれば、底面の外周部の絶縁層の上部に曲面を形成するように金属層を形成することができる。例えば、これによって、金属成型品の母型と反対側のエッジを面取りすることが可能になる。
 本発明にかかる第1~4の電気鋳造方法の別な実施態様においては、前記凹部の底面に重なる領域で、前記導電性基材の上面に窪みを形成してあってもよい。かかる実施態様によれば、導電性基材の窪みによって凹部の底面形状を種々の形状にすることができるので、種々の形状の金属成型品を成型することが可能になる。
 本発明にかかる第1~4の電気鋳造方法のさらに別な実施態様においては、前記凹部の底面に露出している前記導電性基材の表面が、電圧印加方向に垂直な面に対する傾斜角度が60°以下となる面を主として構成された集合であってもよい。かかる実施態様においては、母型の絶縁層が形成されていない面が、対向電極との間の電圧印加方向に垂直な面から60°より大きく傾斜しないようにすることで、その傾斜した面が対向電極からの電流を斜めに引き込み、金属層を不均一に成長させることを防止できる。ただし、電圧印加方向に垂直な面から60°より大きな傾斜角度を有する面であっても、凹部の底面全体の面積に比べて小さな面積であれば金属層に不均一が生じにくい。
 本発明にかかる第1~4の電気鋳造方法のさらに別な実施態様においては、前記母型形成工程において、前記凹部の側壁面に前記凹部の開口面積を拡大する段差部を形成していてもよい。かかる実施態様によれば、金属成型品の一部を電圧印加方向と異なる方向に突出させることができる。
 本発明にかかる第1~4の電気鋳造方法のある実施態様においては、前記電着工程において、前記電解槽内に流れた電流の積算通電量が所定値に達したときに前記電圧を停止するようにしてもよい。電着する金属の総量は、供給した電流の積算通電量に比例するので、直接測定しなくても、成長した金属層の厚みを制御することができる。
 なお、本発明における前記課題を解決するための手段は、以上説明した構成要素を適宜組み合せた特徴を有するものであり、本発明はかかる構成要素の組合せによる多くのバリエーションを可能とするものである。
 本発明によれば、金属層の上に凹部の幅に応じた高さの空間を残して金属層の成長を停止するので、金属層に側方から電流が流れ込んで、成型した金属層の成長方向における厚みが均一になり、母型と反対側の表面を仕上げ加工する必要がなくなる。
図1は、本発明の実施形態1による電気鋳造方法に用いる母型を示す断面図である。 図2(a)~(j)は、実施形態1の電鋳法によって金属成型品を成型する工程を表した概略断面図である。 図3は、電解槽内に配置した母型を示す断面図である。 図4(a)は、電解槽の電極間に印加する電圧の変化を示す図、図4(b)は、電解槽内に流す電流の変化を示す図である。 図5(a)は、キャビティの幅とヘッドスペースの高さとの関係を定めるために用いたサンプルの形状を示す平面図である。図5(b)は、図5(a)のA部の断面を拡大して示した図である。 図6は、金属層の上に残すヘッドスペースの高さHを変化させて、キャビティ内に金属を電着させて種々のサンプルを作製し、ヘッドスペースの高さHとサンプルの細線部における厚みばらつきとの関係を調べた結果を示す図である。 図7は、細線部の厚みばらつきが1.01となる場合の条件を横軸にキャビティ幅Wをとり、縦軸にH/Wの比をとって表した図である。 図8は、金属層の上に残すヘッドスペースの高さHを変化させて、キャビティ内に金属を電着させて種々のサンプルを作製し、ヘッドスペースの高さHとサンプルの細線部における厚みばらつきとの関係を調べた結果を示す図である。 図9は、比較例を示す断面図である。 図10(a)~(d)は、電着レジストを用いた絶縁被膜の形成方法を説明する図である。 図11は、比較例の母型を用いて作製した金属成型品の平面図である。 図12は、スプレーコーターとフォトリソグラフィ技術を用いて導電性基材の上に形成した絶縁層の断面を示す図である。 図13(a)は本発明の実施形態2による母型を示す断面図である。図13(b)は実施形態2の別な母型を示す断面図である。 図14は、実施形態2のさらに別な母型を示す断面図である。 図15は、本発明の実施形態3による母型と金属成型品の長手方向に沿った断面を示す断面図である。 図16は、傾斜面部の傾斜角度θを変えて、金属層の厚みばらつきを測定した結果を示す図である。 図17は、導電性基材の上面に傾斜角度が60°以上の傾斜面を有する窪みを設けた場合に、金属層の成長する様子を示す図である。 図18は、導電性基材の窪みの一部で傾斜角度が60°以上となっていても金属層の成長にほとんど影響がないことを説明するための断面図である。 図19は、実施形態3の異なる例を示す断面図である。 図20は、本発明により形成した電子部品用の接点部材の形状を示す斜視図である。 図21は、本発明の実施形態4による母型のキャビティと、金属層の成長過程とを示す図である。 図22は、実施形態4の別な例を示す断面図である。 図23(a)、(b)はそれぞれ、本発明の異なる実施形態の母型を示す断面図である。 図24(a)~(d)はそれぞれ、本発明の異なる実施形態の母型を示す断面図である。 図25(a)~(d)はそれぞれ、本発明の異なる実施形態の母型を示す断面図である。 図26(a)~(d)はそれぞれ、本発明の異なる実施形態の母型を示す断面図である。 図27(a)、(b)はそれぞれ、本発明の異なる実施形態の母型を示す断面図である。 図28(a)、(b)はそれぞれ、本発明の異なる実施形態の母型を示す断面図である。
 以下、添付図面を参照しながら本発明の好適な実施形態を説明する。
(第1の実施形態)
 図1は、本発明の実施形態1による電気鋳造方法(以下、電鋳法という。)を説明するための断面図であって、母型11とその母型11を用いて電気鋳造された金属成型品12を示す。
 実施形態1で使用する母型11は、導電性基材13の平坦な上面に厚膜の絶縁層14を積層したものであって、絶縁層14には金属成型品12の反転型となる形状のキャビティ15(凹部)が形成されている。キャビティ15の底面には絶縁層14が残っておらず、キャビティ15の底面全体で導電性基材13の上面が露出している。母型11のキャビティ15内には、電鋳法によって金属成型品12が成形される。なお、図1はキャビティ15の長手方向に直交する方向(短手方向)の断面である。
 つぎに、上記のようにな母型11を用いて金属成型品12を製作する工程を説明する。図2は電鋳法によって金属成型品12を成型する工程を表しており、図2(a)~(f)は母型11を形成するための工程(母型形成工程)を示し、図2(g)及び(h)はキャビティ15内に金属を電着させて金属成型品12を作製する工程(電着工程)を示し、図2(i)及び(j)は母型11から金属成型品12を剥離させる工程(剥離工程)を示す。なお、実際には、母型11に複数のキャビティ15を形成しておいて複数の金属成型品12を一度に作製するが、便宜上ひとつの金属成型品12を作製する場合について説明する。
 図2(a)は上面が平坦な金属製の導電性基材13であって、少なくとも上面には電着した金属成型品12を容易に剥離させるための処理が施されている。母型形成工程では、まず図2(b)に示すように、導電性基材13の上面に、スプレーコーターやスピンコーターによってネガ型フォトレジスト16を塗布して均一な厚みの厚膜を形成する。ついで、図2(c)のようにフォトレジスト16をプリベークした後、図2(d)に示すようにキャビティ15を形成する領域をマスク17で覆ってフォトレジスト16に露光する。フォトレジスト16の露光された領域は不溶化するため現像時に溶けないので、マスク17で覆われていた領域だけが現像によって溶解除去され、図2(e)に示すようにフォトレジスト16にキャビティ15が形成される。最後に、フォトレジスト16をポストベークすることでフォトレジスト16によって導電性基材13の上面に所定厚みの絶縁層14が形成される。こうして得られた母型11を図2(f)に示す。
 なお、図1や図2では導電性基材13の上面だけを絶縁層14で覆っているが、実際には、キャビティ15の内部以外に金属が電着しないよう、導電性基材13の下面や側面なども絶縁層で覆っている。
 電着工程では、図3に示すように、母型11を電解槽19内に配置し、直流電源20によって母型11と対向電極21との間に電圧を印加して電解液αに電流を流す。通電を開始すると、電解液α中の金属イオンが導電性基材13の表面に電着し、金属層18が析出する。一方、絶縁層14は、電流を遮断するので、母型11と対向電極21との間に電圧を印加しても、絶縁層14には直接金属が電着しない。このため、図2(g)に示すように、キャビティ15の内部にはその底面から電圧印加方向に金属層18が成長してゆく。
 このとき、電着した金属層18(金属成型品12)の厚みは、電流の積算通電量(すなわち、通電電流の時間積算量であって、図4(b)の斜線を施した領域の面積に相当する。)によって管理される。単位時間あたりに析出する金属量は電流値に比例するから、金属層18の体積は電流の積算通電量で決まり、金属層18の厚みは電流の積算通電量から知ることができるからである。
 例えば、直流電源20の電圧が、図4(a)に示すように、通電開始からの経過時間とともに次第に、かつ段階的に増加するとすると、対向電極21と母型11の間に流れる電流も、図4(b)に示すように、通電開始からの経過時間とともに次第に、かつ段階的に増加する。そして、通電電流の積算通電量を監視することによって金属層18が目的とする厚みに達したことを検知したら、直流電源20をオフにして通電を停止する。この結果、図2(h)に示すように、所望の厚みの金属層18によってキャビティ15内に金属成型品12が成型される。
 また、キャビティ15内に金属層18(金属成型品12)を成長させる電着工程においては、キャビティ15の幅が300μm以上の場合には、キャビティ15の幅の1/2.85倍以上の高さを有する空間(以下、ヘッドスペースという。)を残すように金属層18を成長させる。また、キャビティ15の幅が200μm以上300μm未満の場合には、キャビティ15の幅の1/3.75倍以上の高さを有するヘッドスペースを残すように金属層18を成長させる。また、キャビティ15の幅が100μm以上200μm未満の場合には、キャビティ15の幅の1/4倍以上の高さを有するヘッドスペースを残すように金属層18を成長させる。また、キャビティ15の幅が100μm未満の場合には、前記凹部の幅の1/10倍以上の高さを有するヘッドスペースを残すように金属層18を成長させる。つまり、本発明では、キャビティ15の幅をW、キャビティ15の上面開口(すなわち、絶縁層14の上面)と金属層18の上面との間のヘッドスペースの垂直高さをHとすると、金属層18の上に残すヘッドスペースの高さHが、
   300μm≦W なら、 H≧W/2.85
   200μm≦W<300μm なら、 H≧W/3.75
   100μm≦W<200μm なら、 H≧W/4
   W<100μm なら、 H≧W/10
を満たすように、金属層18の成長を停止させる。
 金属成型品12が成型されたら、図2(i)に示すように、エッチング等によって絶縁層14を剥離させ、さらに図2(j)に示すように、金属成型品12を導電性基材13から剥離させ、母型11の形状を反転転写した金属成型品12を得る。
 本発明の電鋳方法では、上記のように導電性基材13の上面に重ねるようにして厚膜の絶縁層14を形成し、絶縁層14を開口させることによって母型11にキャビティ15を形成しているので、フォトリソグラフィ技術などを利用して微細なキャビティ15を精密に作製することができ、そのため電鋳法によって微細で精密な金属成型品12を作製することが可能になる。
(ヘッドスペースについて)
 また、本発明の電鋳方法では、上記のようにキャビティ15の上部に所定の高さのヘッドスペースを残すようにして金属層18の成長を停止しているので、金属層18の上面とキャビティ15の上面開口との間にある距離Hを保つことができ、キャビティ15内に流れ込んで析出する金属イオンのうち、キャビティ15の上面開口周縁部でキャビティ15内へ斜めに流れ込む金属イオンをキャビティ15の上面開口の縁の絶縁層14によって遮断し、金属層18の上面全体に均一な電流を流して、金属層18を均一に成長させる。このため、金属層18が成長してなる金属成型品12は、導電性基材13と反対側の対向電極に対向する面が、導電性基材13の上面から一定の距離を有し、キャビティ15に倣った形状となる。
 以下においては、金属成型品12を成型する際に、金属成型品12の上に残すヘッドスペース高さHを、
   300μm≦W なら、 H≧W/2.85
   200μm≦W<300μm なら、 H≧W/3.75
   100μm≦W<200μm なら、 H≧W/4
   W<100μm なら、 H≧W/10
と定めた根拠を説明する(以下、これらの条件を成長停止条件と呼ぶ。)。
 なお、金属成型品12としては、円形板状や矩形板状など板状をしたものでもよく、一方向に長い形状をしたもの(例えば、図20を参照)でもよく、特に本発明によって製作される金属成型品12の形状には限定はない。よって、板状の金属成型品12を作製する場合では、断面の最も狭い方向における断面で上記成長停止条件を満たすようにすればよい。特に、一方向に長い形状をした金属成型品12では、幅方向(短手方向)の断面において上記成長停止条件を満たすように電着工程を管理すればよい。以下においては、一方向に長い形状をした金属成型品12を作製する場合を例にとって説明する。
 図5(a)はキャビティ15の幅Wとヘッドスペースの高さHとの関係を定めるために用いたサンプル22の形状を示す平面図である。また、図5(b)は図5(a)のA部の断面図である。このサンプル22は、帯状をしたフープ部23a、23b、23c間に一定ピッチ毎に細線部24(長さ4.5mm)を配列したものであり、その厚みは20μm~300μmとした。この細線部24は、図20に示した成形品のように一方向に長く、かつ、3次元形状を有するものである。サンプル22は、サンプル22の反転形状をしたキャビティ15を有する母型11を用いて、そのキャビティ15内に金属を電着させるようにしたものである。そして、キャビティ15の幅W(短手方向の幅)やヘッドスペースの高さH、絶縁層14の幅Lなどを変化させたサンプルを作製し、図5(a)において破線で示した領域を解析用にカットし、その細線部24の厚みの均一具合を調べた。
 測定の結果によれば、ヘッドスペースの高さHをキャビティ15の幅Wと等しくするか、あるいはキャビティ15の幅Wよりも大きな高さとすれば(H/W≧1)、キャビティ15の幅W(つまり、細線部24の幅)に関係なく、細線部24に厚みばらつきが発生しないことが分かった。また、キャビティ15の幅Wが小さくなるほど、細線部24の厚みばらつきは小さくなる。(これらの様子は、図6から分かる。)
 図6は、金属層18の上に残すヘッドスペースの高さHを変化させて、キャビティ15内に金属を電着させて種々のサンプル22を作製し、ヘッドスペースの高さHと細線部24における厚みばらつきとの関係を実測により調べた結果を表している。母型11としては、キャビティ幅Wが100μmのもの、200μmのもの、300μmのもの、400μmのものを用いた。細線部24(金属成型品)の厚みばらつきとは、細線部24の幅方向に沿ってもっとも薄い箇所の厚みをT1、最も厚い箇所の厚みをT2としたとき、T2/T1で表されるものである。
 電鋳による金属成形品の厚みばらつきは、近年の部品の精密化によって1%以下であることが望まれている。したがって、図6において、細線部24の厚みばらつきが1.01以下であるための条件を定めると、キャビティ幅Wが400μmの場合には、ヘッドスペース高さHを140μm以上とする必要があり、キャビティ幅Wが300μmの場合には、ヘッドスペース高さHを80μm以上とする必要があり、キャビティ幅Wが200μmの場合には、ヘッドスペース高さHを50μm以上とする必要があり、キャビティ幅Wが100μmの場合には、ヘッドスペース高さHを10μm以上とする必要がある。
 細線部24の厚みばらつきとキャビティ幅Wに対するヘッドスペース高さHの比H/Wとの間に相関が見られたので、図6に基づいて、厚みばらつきが1.01となる場合の条件を横軸にキャビティ幅Wをとり、縦軸にH/Wの比をとって表したものが図7である。
 図6又は図7によれば、厚みばらつきを1.01以下に抑えるためには、キャビティ幅Wが300μm以上の場合には、キャビティ幅Wに対するヘッドスペース高さHの比を
   H/W≧140/400=1/2.85
とする必要がある。また、キャビティ幅Wが200μm以上300μm未満の場合には、キャビティ幅Wに対するヘッドスペース高さHの比を
   H/W≧80/300=1/3.75
とする必要がある。また、キャビティ幅Wが100μm以上200μm未満の場合には、キャビティ幅Wに対するヘッドスペース高さHの比を
   H/W≧50/200=1/4
とする必要がある。また、キャビティ幅Wが100μm未満の場合には、キャビティ幅Wに対するヘッドスペース高さHの比を
   H/W≧10/100=1/10
とする必要がある。
 図8は、金属層18の上に残すヘッドスペースの高さHを変化させて、キャビティ15内に金属を電着させて種々のサンプル22を作製し、ヘッドスペースの高さHと細線部24における厚みばらつきとの関係を実測により調べた結果を表している。母型11としては、キャビティ幅Wが300μmのものを用い、絶縁層14の幅Lを100μm、200μm、300μmと変化させた。
 この測定結果によれば、絶縁層幅Lがキャビティ幅Wの1/3倍よりも狭くなると、細線部24の厚みばらつきが小さくなることが分かる。なお、理論計算によれば、絶縁層幅Lがゼロになると、細線部24の厚みばらつきは発生しない。
 また、絶縁層幅Lとキャビティ幅Wの比L/Wが2/3以上である場合には、ヘッドスペース高さHが上記のような条件を満たせば、細線部24の厚みばらつきはキャビティ幅Wが300μmの場合とほぼ変化がない。すなわち、キャビティ幅Wが300μmの場合と同様に、比H/W≧1であれば、細線部24に厚みばらつきが発生せず、キャビティ幅Wが小さくなるほど、細線部24の厚みばらつきが小さくなる。また、
 300μm≦W のとき、 H/W≧1/2.85
 200μm≦W<300μm のとき、 H/W≧1/3.75
 100μm≦W<200μm のとき、 H/W≧1/4
 W<100μm のとき、 H/W≧1/10
であれば、細線部24の厚みばらつきを1%程度に小さくできる。特に、極端に絶縁層幅Lが大きくなったとしても、ヘッドスペース高さHとキャビティ幅Wの比H/Wが1/2.85以上であれば、細線部24の厚みばらつきを小さくできる。
(絶縁層の形成方法について)
 本発明では、導電性基材13の上面に重ねるように絶縁層14を形成しているので、スプレーコーターやスピンコーター(好ましくは、スプレーコーター)によって絶縁層14を均一な厚みに形成でき、またシャープな形状のキャビティ15を形成することができるため、シャープな形状の金属成型品12を作製することが可能になる。特に、スプレーコーターによれば、後述の実施形態のように導電性基材13の上面に凹凸がある場合にも、均一な厚みに絶縁層14を形成することができる。この点を比較例と対比しながら説明する。
 図9は比較例を示す断面図である。この比較例の母型101は、金属製の導電性基材103に直接にキャビティ105を形成し、キャビティ105の底面を除いて導電性基材103の表面に絶縁被膜104を形成したものである。そして、この母型101を電解槽内に設置し、キャビティ105の底面に金属イオンを電着させて金属成型品12を成長させたものである。
 このような母型101の場合には、電着レジストによって導電性基材103の表面に絶縁被膜104を形成する。図10(a)~(d)は、電着レジストを用いた絶縁被膜104の形成方法を説明する図である。絶縁被膜104を形成する工程においては、図10(a)に示すように、キャビティ105を形成された導電性基材103は、対向電極106と対向させて電解槽107の電着レジスト液β中に配置される。直流電源109に通電すると、水が電気分解されて対向電極106には水素イオン108a(H)が吸着され、導電性基材103の表面には酸素イオン108b(O2-)が吸着される。さらに、図10(b)に示すように、電着レジスト液β中の成分である感光剤110(樹脂)が導電性基材103の表面の酸素イオンと反応して導電性基材103の表面で固化する。こうして導電性基材103の表面は、粒状をした感光剤110の固化物によって覆われる。この導電性基材103は、電解槽107から取り出した後、図10(c)に示すようにプリベークされる。80℃~100℃程度の温度でプリベークすると、感光剤110の溶剤が揮発すると同時に感光剤110が流動し、感光剤110の穴などの欠陥部分が埋められる。ついで、図10(d)に示すように、120℃~140℃程度の温度でポストベークして感光剤110の熱重合反応を促進させると、感光剤110がさらに流動して滑らかな被膜となり、導電性基材103の表面で感光剤110が焼き固められて絶縁被膜104が形成される。そして、キャビティ105の底面で絶縁被膜104を除去して導電性基材103を露出させ、母型101を形成する。
 しかし、このように電着レジストによって絶縁被膜104を形成する場合には、ポストベークされた感光剤110が流動する結果、図10(d)に示すように、導電性基材103の外エッジ部分(角部分)では導電性基材103が薄くなり、キャビティ105内の内エッジ部分(内隅部分)では導電性基材103が厚くなりやすい。その結果、導電性基材103によって形成されたキャビティ105(絶縁被膜形成前のキャビティ)に比べて絶縁被膜104で覆われたキャビティでは、短手方向の断面において内エッジ部分や外エッジ部分が丸味を帯びやすくなり、シャープな形状の金属成型品12を得にくくなっていた。
 図11は上記のようにして作製した母型101を用いて作製した金属成型品12を撮影した顕微鏡写真の平面図であって、併せてその一部を拡大して示している。図10において説明したように、電着レジスト法では、短手方向の断面において内エッジ部分や外エッジ部分が丸くなるが、実際には3次元形状のキャビティ105の角(辺)が丸くなるので、平面で見たときにもキャビティ105の内エッジ部分は丸味を帯びている。そのため、このキャビティ105内で成型された金属成型品12も、図11のように平面視で角が丸くなっている。図11から分かるように、この母型101を用いて金属成型品12を作製した場合、キャビティ105の内エッジ部分や外エッジ部分が絶縁被膜104によって丸味を帯びるため、導電性基材103にシャープな形状のキャビティ105が形成されていたとしても金属成型品12にシャープな形状を転写させることが困難であり、特に角や隅が丸くなる。
 これに対し、導電性基材13の上に形成した絶縁層14にキャビティ15を開口する方法では、導電性基材13の表面にスプレーコーターやスピンコーターを用いてレジストを塗布し、フォトリソグラフィ技術によってキャビティ15を開口するので、キャビティ15を精密に、かつシャープに形成することができる。図12はスプレーコーターとフォトリソグラフィ技術を用いて導電性基材13の上に形成した絶縁層14の断面写真を示す図である。なお、図12のサンプルでは、母型11をカットする際に絶縁層14の形状が崩れるのを防止するため、絶縁層14の上面とキャビティ15内部を樹脂111で固めている。
 本発明の母型11では、図12に示したようなシャープな形状のキャビティ15を形成することができるので、このキャビティ15内に金属成型品12を成型することでシャープな形状の金属成型品12を作製することが可能になる。
(絶縁層の厚みについて)
 また、本発明の電気鋳造方法にあっては、キャビティ15の幅に応じて金属層18の上部に残すべきヘッドスペースの最小高さ(つまり、絶縁層のある厚みに対する金属層の厚みの最大値)を定めているので、凹部の幅と成型したい金属成形品の厚みによって決まる必要最小量の絶縁層厚み(つまり省部材)で効率良く金属成型品を成型することができる。
 さらに、絶縁膜14の厚みを薄くできると、フォトリソグラフィ工程において絶縁層14のエッジ形状を高精度化しやすいので、金属成型品12の電鋳精度もそれに伴って高くなる。また、絶縁層14の厚みを薄くできると、フォトレジストの成膜時間や剥離時間が短くなり、金属成型品12の生産効率が向上する。その結果、金属成型品12の高品質化とローコスト化を図ることができる。
(本発明の第2の実施形態)
 図13(a)は本発明の実施形態2による母型31を示す断面図である。この母型31では、キャビティ15内において導電性基材13の上面に所望の形状の窪み32を形成してあり、この窪み32がキャビティ15の一部を構成している。よって、このキャビティ15内に金属を電着させることにより、より高度な形状の金属成型品12を成型することができる。
 また、図13(a)に示す実施形態ではキャビティ15の底面の一部に窪み32を形成したが、図13(b)に示す別な実施形態のように、キャビティ15の底面の全体に窪み32を形成していてもよい。
 また、図14に示すさらに別な実施形態では、キャビティ15の底面よりも広い範囲にわたって導電性基材13の上面に窪み32を形成してあり、窪み32の一部を絶縁層14によって埋めている。
 なお、図13(a)、(b)、図14のように金属成型品12の上面が平坦でない場合には、ヘッドスペース高さHは、金属成型品12の最も高い位置から測るものとする。また、図13(a)、(b)のように絶縁層14の高さが均一でない場合には、ヘッドスペース高さHは、絶縁層14の最も低い箇所の上面までの高さを測るものとする。従って、図13(a)、(b)のような場合には、ヘッドスペース高さHは、金属成型品12の最も高い位置から、絶縁層14の最も低い箇所の上面までの垂直距離となる。また、図13(a)、(b)、図14のように短手方向の断面において、導電性基材13の上面(窪み32)が傾斜面で形成されている場合には、厚みばらつきは、その傾斜面に垂直な法線方向における厚みで評価する。
(本発明の第3の実施形態)
 図15は本発明の実施形態3による母型41と金属成型品12の長手方向に沿った断面図である。本実施形態では、キャビティ15の底面形状について、長手方向を例にして説明をするが、これは短手方向の底面でも同様のことが言え、長手および短手が両方とも斜めの場合も成立する。ただし、どの場合においても、あくまで短手方向は実施形態1で述べた範囲内で電着を行っている。本実施形態においては、短手方向の断面においては、実施形態1において説明したような条件で電着を行っているが、さらに長手方向においても実施形態1で述べたような条件に従って電鋳を行うことにより、実施形態1のように上段の平面部42aと下段の平面部42cで比較した場合、1%以内の厚みばらつきに入らないまでもかなりの高精度に厚みばらつきを小さくすることができる。この母型41に形成されたキャビティ15は、その底面の深さが異なり、それぞれ対向電極に正対(電圧印加方向に垂直)する3つの平面部42a,42b,42cと、各平面部42a,42b,42cを接続し、電圧印加方向に垂直な面に対して傾斜する傾斜面部43a,43bとからなる。
 ここで、ヘッドスペースの高さHは、キャビティ15の最も浅い部分に残る空間の高さである。この図15が示すように、キャビティ15の長手方向においては、ヘッドスペースの高さHに比してキャビティ15の長さが長くても、ヘッドスペースの高さHがキャビティ15の幅(紙面の奥行き方向の長さ=凹部の幅)Wに対して前記のいずれかの条件を満たしていれば、金属成型品12の厚みばらつきを小さくすることができる。
 また、傾斜面部43a,43bを有する底面に対して、金属層18は、平面部42a,42b,42cおよび傾斜面部43a,43bにそれぞれ厚みが等しくなる(底面からの距離が一定になる)ように積層して電着される。平面部42aと傾斜面部43aとが形成する角部、および、平面部42bと傾斜面部43bとが形成する角部でも、金属層18は、その厚みがほぼ等しくなる(キャビティ15の底面からの距離が一定になる)ように積層して電着する。図15に示す矢印は、金属層18の成長方向を示すベクトルである。
 なお、図15は長手方向の断面を表しているが、仮にこれが短手方向の断面であると仮定した場合には、厚みばらつきを算出するに当たっては、傾斜面部における金属層18の厚みは考慮せず、底面が水平な各面における金属層18の厚みを測定し、最も薄い箇所の厚みT1に対する最も厚い箇所の厚みをT2の比T2/T1を厚みばらつきとする。すなわち、短手方向の断面において、実施形態1のようにキャビティ15の底面が水平面である場合や、実施形態2のようにキャビティ15の底面が傾斜面である場合には、水平面あるいは傾斜面の法線方向の厚みを評価するが、水平面と傾斜面が混在している場合には、水平面における厚みだけで評価する。
 図16に、傾斜面部43a,43bの傾斜角度θ(電圧印加方向に垂直な面との間になす角度)を変えて、金属層18の厚みばらつきを測定した結果を示す。図示するように、傾斜面部43a,43bの傾斜角度θが60°以下であれば、金属層18の厚みばらつきは、1%以下であり、全く問題がない。しかしながら、傾斜面部43a,43bの傾斜角度θが60°を超えると、金属層18の厚みばらつきが生じる。尚、この金属層18の厚みばらつきは、中段の平面部42bに比べて、上段の平面部42aおよび下段の平面部42cにおいて、大きくなる傾向がある。
 よって、キャビティ15の底面に露出している導電性基材13の窪み32の表面は、電圧印加方向に垂直な面に対する傾斜角度がほぼ60°以下となるようにすることが望ましい。図17は、導電性基材13の上面に傾斜角度が60°以上の傾斜面を有する窪み32を設けた場合に、金属層18の成長する様子を示す図である。このように傾斜角度が60°を超えると、電流が不均一になって金属層18の厚みを制御することが困難になる。しかし、図18に示すように、窪み32の周縁部分の傾斜角度が60°以上となっている場合のように、傾斜角度が60°以上の領域が存在しても一部分であればほとんど影響はない。また、この図18のように導電性基材13の上面に鋭い変曲点部分が存在する場合には、図18に矢印で示すように当該変曲点部分では金属層18は変曲点を中心として均等な厚みとなるように成長するので、導電性基材13の変曲点部分に対応する金属層18の上面の変曲点部分はアール形状になだらかとなる。図13、図14、図23(b)等の図示例では、金属層18の上面も導電性基材13の上面と同じように屈曲しているが、実際の金属成型品12では屈曲部分が丸味を帯びてアール形状になる。
 このように、本発明では、傾斜面部43a,43bの傾斜角度θをほぼ60°以下にするように、底面に深さの変化を設けることで、金属成型品12のデザインを、厚みを一定に保ちながら、電圧印加方向に屈曲したものとすることもできる。換言すると、キャビティ15の底面は、必ずしも対向電極に正対する必要がない。
 なお、絶縁層14の高さは均一でなくともよいので、図19に示すように、長手方向における絶縁層14の高さの低い箇所では、金属層18の上面の最も高い位置よりも低くなっていて差し支えない。ただし、図19のような場合でも、短手方向の断面で見た場合の絶縁層14は、金属成型品12に対して実施形態1のような条件は成立している。
 実施形態3の一例として、図20に、本発明により形成した電子部品用の接点部材の形状を示す。本発明によれば、このような形状の金属部品を、いかなる仕上げ加工も必要とせず、電気鋳造のみによって形成できる。
(本発明の第4の実施形態)
 図21は、本発明の実施形態4による母型51のキャビティ15と、金属層18の成長過程とを示す。図21における矢印は、金属層18の成長する方向と成長量を示すベクトルである。このキャビティ15は、キャビティ15の側壁面の中程に、段差部52を形成することで、キャビティ15の断面積を途中から拡大して、キャビティ15の開口面積を底面よりも大きくしている。また、絶縁層14がキャビティ15の底面上の周縁部の一部を覆うように延伸している。底面における絶縁層14の延伸部分を絶縁層14aで示す。
 このキャビティ15を用いて電気鋳造すると、先ず、キャビティ15の底面のうち絶縁層14aに覆われていない領域に金属が電着して金属層18が形成される。さらに電圧を印加し続けると、金属層18は、底面の絶縁層14aに覆われていない部分からの距離が一定になるようにして、かつ、絶縁層14aの上に覆い重なるように成長する。
 さらに、電流を流して金属層18を成長させると、段差部52の上にも金属層18が張り出して成長する。このとき、絶縁層14aに覆われていない底面から見て段差部52の陰になる部分には、段差部52のエッジからの距離が一定になるように金属層18が成長する。
 このように、キャビティ15に段差部52を設けることで、金属成型品12は、段差部52の上部に張り出した形状に鋳造される。また、キャビティ15の底面の周縁部を絶縁層14aで覆うことで、その上部において金属成型品12を面取りした形状にすることができる。すなわち、本変形例を用いることで、母型11の形状を反転転写した形状の表面に、アール状の面取りを追加した金属部品を形成することができる。
 図22は、キャビティ15の底面に絶縁層14aを設けた別な例を示す断面図である。この母型61では、ている。キャビティ15の底面の両側部もしくは外周縁に沿って絶縁層14が底面の一部を覆うように延伸して底面の絶縁層14aを形成している。この母型61を用いた場合にも、底面の絶縁層14aに覆われていない部分からの距離が一定になるようにして、かつ、絶縁層14aの上に覆い重なるように金属層18が成長することで、金属成型品12の上面外周部がアール状に湾曲して形成される。
 なお、この実施形態のように、キャビティ15の底面の一部絶縁層14aによって覆われていて金属層18の上面の一部が湾曲している場合には、金属層18の厚みばらつきは、導電性基材13が露出している領域の上の金属層18の垂直方向における厚みがほぼ均一となっている領域で評価する。
(その他の実施形態)
 以下においては、種々の形状の母型71~88を示す。
 図23(a)は、上方で幅が狭くなるように両側面にテーパーのついた絶縁層14を有する母型71を用いたものである。
 図23(b)に示す母型72は、導電性基材13の上面に窪み32を有し、一方の側壁面の絶縁層14は窪み32の外にあり、他方の絶縁層14は窪み32内に入り込んだものである。
 図24(a)に示す母型73は、絶縁層14を絶縁層91a、91bの2層構成とし、開口幅の狭い絶縁層91aの上に開口幅の広い絶縁層91bを重ねている。
 図24(b)に示す母型74は、上方で狭くなった断面テーパー状の絶縁層91aの上に、それよりも開口幅の広い絶縁層91bを重ねて2層構成の絶縁層14としたものである。
 図24(c)に示す母型75は、キャビティ15の底面にV溝状の窪み32を形成すると共に、開口幅の狭い絶縁層91aの上に開口幅の広い絶縁層91bを重ねて絶縁層14を2層構成としたものである。
 図24(d)に示す母型76は、図23(b)の母型72をもとにして、その絶縁層14を開口幅の狭い絶縁層91aと開口幅の広い絶縁層91bの2層構成としたものである。
 図25(a)に示す母型77は、不導電材料(絶縁材料)からなる芯材92aの表面を導電材料からなる導電性コート部92bで被覆した導電性基材13を用いたものである。
 図25(b)~(d)に示す母型78~80も、不導電材料(絶縁材料)からなる芯材92aの表面を導電材料からなる導電性コート部92bで被覆した導電性基材13を用いたものであり、さらに図25(b)の母材78ではテーパー状の絶縁層14を用いており、図25(c)、(d)の母型79、80では窪み32を有する導電性基材13を用いている。
 図26(a)~(d)に示す母型81~84は、いずれも絶縁層14を絶縁層91a、91bの2層構成とし、開口幅の狭い絶縁層91aの上に開口幅の広い絶縁層91bを重ねると共に、不導電材料(絶縁材料)からなる芯材92aの表面を導電材料からなる導電性コート部92bで被覆した導電性基材13を用いたものである。
 図27(a)に示す母型85は、導電性基材13の上面に窪み32を形成し、絶縁層14を窪み32の一部に入り込むように形成すると共に、キャビティ15の底面において絶縁層14aを延出させたものである。また、図27(b)の母型86は、さらに絶縁層14を絶縁層91a、91bの2層構成としたものである。また、図28(a)、(b)の母型87、88は、さらに不導電材料(絶縁材料)からなる芯材92aの表面を導電材料からなる導電性コート部92bで被覆した導電性基材13を用いたものである。
 本発明に用いる母材としては上述のように種々の形状、構造のものを用いることができるが、どのような母材においても、ヘッドスペース高さHやキャビティ幅Wは、つぎのように定義される。ヘッドスペース高さは、例えば図23、図24などに示すように、作製された金属成型品12の最も高い位置からキャビティ15の上面開口の高さ(すなわち、絶縁層14の上面の位置する高さの平面)までの垂直距離である。但し、絶縁層14の上面の高さにばらつきがある場合には、図13(a)、(b)に示すように、最も低い位置における絶縁層14の上面までの垂直距離とする。また、キャビティ幅Wは、金属成型品12の上面が位置する高さにおけるキャビティ15の幅である。
 11、31、41、51、61、71~88   母型
 12   金属成型品
 13   導電性基材
 14、14a   絶縁層
 15   キャビティ
 18   金属層
 19   電解槽
 21   対向電極
 32   窪み
 42a,42b,42c   平面部
 43a,43b   傾斜面部
 52   段差部

Claims (9)

  1.  導電性基材の上面に重ねて絶縁層を形成し、前記絶縁層に凹部を設けると共に前記凹部の底面の少なくとも一部で前記導電性基材を露出させて母型を形成する母型形成工程と、
     前記母型を電解槽内に配置して電圧を印加し、前記凹部内における前記導電性基材の露出面に金属を電着する電着工程とを備えた電気鋳造方法であって、
     前記電着工程において、前記凹部の幅が300μm以上の場合に、前記凹部の幅の1/2.85倍以上の高さを有する空間を残すようにして前記凹部内に金属層を成長させることを特徴とする電気鋳造方法。
  2.  導電性基材の上面に重ねて絶縁層を形成し、前記絶縁層に凹部を設けると共に前記凹部の底面の少なくとも一部で前記導電性基材を露出させて母型を形成する母型形成工程と、
     前記母型を電解槽内に配置して電圧を印加し、前記凹部内における前記導電性基材の露出面に金属を電着する電着工程とを備えた電気鋳造方法であって、
     前記電着工程において、前記凹部の幅が200μm以上300μm未満の場合に、前記凹部の幅の1/3.75倍以上の高さを有する空間を残すようにして前記凹部内に金属層を成長させることを特徴とする電気鋳造方法。
  3.  導電性基材の上面に重ねて絶縁層を形成し、前記絶縁層に凹部を設けると共に前記凹部の底面の少なくとも一部で前記導電性基材を露出させて母型を形成する母型形成工程と、
     前記母型を電解槽内に配置して電圧を印加し、前記凹部内における前記導電性基材の露出面に金属を電着する電着工程とを備えた電気鋳造方法であって、
     前記電着工程において、前記凹部の幅が100μm以上200μm未満の場合に、前記凹部の幅の1/4倍以上の高さを有する空間を残すようにして前記凹部内に金属層を成長させることを特徴とする電気鋳造方法。
  4.  導電性基材の上面に重ねて絶縁層を形成し、前記絶縁層に凹部を設けると共に前記凹部の底面の少なくとも一部で前記導電性基材を露出させて母型を形成する母型形成工程と、
     前記母型を電解槽内に配置して電圧を印加し、前記凹部内における前記導電性基材の露出面に金属を電着する電着工程とを備えた電気鋳造方法であって、
     前記電着工程において、前記凹部の幅が100μm未満の場合に、前記凹部の幅の1/10倍以上の高さを有する空間を残すようにして前記凹部内に金属層を成長させることを特徴とする電気鋳造方法。
  5.  前記母型形成工程において、前記凹部の底面の周縁部の少なくとも一部分に前記絶縁層を形成することを特徴とする、請求項1から4のいずれか1項に記載の電気鋳造方法。
  6.  前記凹部の底面に重なる領域で、前記導電性基材の上面に窪みを形成していることを特徴とする、請求項1から4のいずれか1項に記載の電気鋳造方法。
  7.  前記凹部の底面に露出している前記導電性基材の表面は、電圧印加方向に垂直な面に対する傾斜角度が60°以下となる面を主として構成された集合であることを特徴とする、請求項1から4のいずれか1項に記載の電気鋳造方法。
  8.  前記母型形成工程において、前記凹部の側壁面に前記凹部の開口面積を拡大する段差部を形成したことを特徴とする、請求項1から4のいずれか1項に記載の電気鋳造方法。
  9.  前記電着工程において、前記電解槽内に流れた電流の積算通電量が所定値に達したときに前記電圧を停止することを特徴とする、請求項1から4のいずれか1項に記載の電気鋳造方法。
PCT/JP2009/004522 2008-09-29 2009-09-11 電気鋳造方法 WO2010035417A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801354373A CN102149855B (zh) 2008-09-29 2009-09-11 电铸方法
EP09815839.7A EP2336393B1 (en) 2008-09-29 2009-09-11 Electroforming method
KR1020117005296A KR101254888B1 (ko) 2008-09-29 2009-09-11 전기주조 방법
US13/063,638 US9085828B2 (en) 2008-09-29 2009-09-11 Electroforming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-251085 2008-09-29
JP2008251085A JP5470791B2 (ja) 2008-09-29 2008-09-29 電気鋳造方法

Publications (1)

Publication Number Publication Date
WO2010035417A1 true WO2010035417A1 (ja) 2010-04-01

Family

ID=42059431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004522 WO2010035417A1 (ja) 2008-09-29 2009-09-11 電気鋳造方法

Country Status (7)

Country Link
US (1) US9085828B2 (ja)
EP (1) EP2336393B1 (ja)
JP (1) JP5470791B2 (ja)
KR (1) KR101254888B1 (ja)
CN (1) CN102149855B (ja)
TW (1) TWI428475B (ja)
WO (1) WO2010035417A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009780A (zh) * 2019-12-18 2021-06-22 尼瓦罗克斯-法尔股份公司 制造钟表组件的方法和由该方法获得的组件

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170267520A1 (en) * 2010-10-21 2017-09-21 Hewlett-Packard Development Company, L.P. Method of forming a micro-structure
JP6529516B2 (ja) * 2014-12-12 2019-06-12 シチズン時計株式会社 電鋳部品の製造方法
US10115690B2 (en) * 2015-02-26 2018-10-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing micro pins and isolated conductive micro pin
EP3168057A1 (fr) * 2015-11-11 2017-05-17 Nivarox-FAR S.A. Procede de fabrication d'une piece metallique avec au moins un motif a illusion d'optique
US10213144B2 (en) 2016-01-25 2019-02-26 International Business Machines Corporation Nanopatterned biosensor electrode for enhanced sensor signal and sensitivity
US10376193B2 (en) 2016-07-25 2019-08-13 International Business Machines Corporation Embedded sacrificial layer to enhance biosensor stability and lifetime for nanopatterned electrodes
JP6936955B2 (ja) * 2016-09-30 2021-09-22 日立金属株式会社 金属箔製造用陰極ドラムおよび金属箔の製造方法
US10161898B2 (en) * 2017-01-30 2018-12-25 International Business Machines Corporation Nanopatterned biosensor electrode for enhanced sensor signal and sensitivity
US10548530B2 (en) 2017-03-01 2020-02-04 International Business Machines Corporation Biosensor calibration structure containing different sensing surface area
WO2018208074A1 (ko) * 2017-05-10 2018-11-15 성낙훈 수직성장 전주가공물과 그 제작 방법
CN107447243B (zh) * 2017-06-19 2023-07-14 中南大学 一种用于金属微弧氧化单向表面改性的装置
KR102558919B1 (ko) 2021-05-28 2023-07-24 주식회사 이랜텍 전주도금을 이용한 캐패시터형 센서 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183892A (ja) * 1990-11-19 1992-06-30 Kyushu Hitachi Maxell Ltd 透孔を有する電鋳製品の製造方法
JPH0864145A (ja) * 1994-08-25 1996-03-08 Sumitomo Metal Mining Co Ltd アパチャーグリル
JPH08138941A (ja) * 1994-09-12 1996-05-31 Matsushita Electric Ind Co Ltd 積層型セラミックチップインダクタおよびその製造方法
JPH08225983A (ja) 1995-02-21 1996-09-03 Kyushu Hitachi Maxell Ltd 精密微細パターンを有する電鋳製品の製造方法
JP2001205599A (ja) * 2000-01-27 2001-07-31 Canon Inc マイクロガイド機構、マイクロアクチュエータおよびマイクロセンサ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831060B2 (ja) * 1989-11-22 1998-12-02 九州日立マクセル株式会社 電鋳製のic用リードフレーム
JPH05259359A (ja) * 1992-03-14 1993-10-08 Justy:Kk Icパッケ―ジ用マイクロリ―ドピンのicチップ等への実装装着方法、icパッケ―ジ用マイクロリ―ドピン板の製造方法およびicパッケ―ジ用マイクロリ―ドピン板。
US7073254B2 (en) * 1993-11-16 2006-07-11 Formfactor, Inc. Method for mounting a plurality of spring contact elements
US5647966A (en) * 1994-10-04 1997-07-15 Matsushita Electric Industrial Co., Ltd. Method for producing a conductive pattern and method for producing a greensheet lamination body including the same
US6156487A (en) * 1998-10-23 2000-12-05 Matsushita-Kotobuki Electronics Industries, Ltd. Top surface imaging technique for top pole tip width control in magnetoresistive read/write head processing
US6933738B2 (en) * 2001-07-16 2005-08-23 Formfactor, Inc. Fiducial alignment marks on microelectronic spring contacts
US20050133375A1 (en) * 2002-06-28 2005-06-23 Gunter Schmid Method of producing electrodeposited antennas for RF ID tags by means of selectively introduced adhesive
WO2008018261A1 (en) * 2006-08-07 2008-02-14 Seiko Instruments Inc. Method for manufacturing electroformed mold, electroformed mold, and method for manufacturing electroformed parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04183892A (ja) * 1990-11-19 1992-06-30 Kyushu Hitachi Maxell Ltd 透孔を有する電鋳製品の製造方法
JPH0864145A (ja) * 1994-08-25 1996-03-08 Sumitomo Metal Mining Co Ltd アパチャーグリル
JPH08138941A (ja) * 1994-09-12 1996-05-31 Matsushita Electric Ind Co Ltd 積層型セラミックチップインダクタおよびその製造方法
JPH08225983A (ja) 1995-02-21 1996-09-03 Kyushu Hitachi Maxell Ltd 精密微細パターンを有する電鋳製品の製造方法
JP2001205599A (ja) * 2000-01-27 2001-07-31 Canon Inc マイクロガイド機構、マイクロアクチュエータおよびマイクロセンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009780A (zh) * 2019-12-18 2021-06-22 尼瓦罗克斯-法尔股份公司 制造钟表组件的方法和由该方法获得的组件

Also Published As

Publication number Publication date
EP2336393B1 (en) 2019-02-20
EP2336393A4 (en) 2016-01-27
EP2336393A1 (en) 2011-06-22
CN102149855B (zh) 2012-10-03
US9085828B2 (en) 2015-07-21
TWI428475B (zh) 2014-03-01
JP5470791B2 (ja) 2014-04-16
KR101254888B1 (ko) 2013-04-15
US20110233063A1 (en) 2011-09-29
JP2010084158A (ja) 2010-04-15
CN102149855A (zh) 2011-08-10
TW201022479A (en) 2010-06-16
KR20110039489A (ko) 2011-04-18

Similar Documents

Publication Publication Date Title
JP5470791B2 (ja) 電気鋳造方法
CN103459680A (zh) 模具的制造方法
TW201833389A (zh) 母板、母板的製造方法及遮罩的製造方法
WO2011158731A1 (ja) 半導体素子搭載用基板及びその製造方法
WO2018016362A1 (ja) 金属電着用陰極板及びその製造方法
Zhao et al. Experimental study on uniformity of copper layer with microstructure arrays by electroforming
KR20180089068A (ko) 전주가공법에 의하여 제작되는 금형과 그 제작방법
JP4650113B2 (ja) 積層構造体、ドナー基板、および積層構造体の製造方法
CN110670014A (zh) 一种母版芯模、掩膜板及其制作方法
WO2022158357A1 (ja) マスター原盤及び金属成形物の製造方法
TWI304225B (en) Method and process for improved uniformity of electrochemical plating films produced in semiconductor device processing
EP1871925B1 (en) Method for electroforming a studded plate
KR101001165B1 (ko) 전주가공물의 균일성장 현상을 이용한 초정밀금형를제작하는 방법 및 그 방법에 의하여 제작되어진 초정밀금형
JP3637214B2 (ja) ウエハのメッキ方法
JP5029094B2 (ja) 電気鋳造方法
KR20190005432A (ko) 전주가공에 사용되는 수직성장 마스터와 그 제조방법
KR100980217B1 (ko) 전주가공물의 균일성장 현상을 이용한 전주마스타를 제작하는 방법
JP7188218B2 (ja) 金属電着用の陰極板
JP7188217B2 (ja) 金属電着用の陰極板の製造方法
KR20190001261A (ko) 수직성장 전주가공물과 그 제작 방법
KR20180028869A (ko) 모판, 모판의 제조 방법, 및 마스크의 제조 방법
KR100928476B1 (ko) 전주가공물의 균일성장 현상을 이용한 정밀치수의전주가공물을 제작하는 방법과 그 방법에 의한 전주가공물
KR20190001713A (ko) 수직성장을 유도하는 전주금형과 그 가공방법
JPH0665777A (ja) 電鋳加工による多孔質成形型の製造方法
JPH03126885A (ja) 電鋳作成方法及びその電鋳制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135437.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117005296

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009815839

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13063638

Country of ref document: US