KR20110039489A - 전기주조 방법 - Google Patents

전기주조 방법 Download PDF

Info

Publication number
KR20110039489A
KR20110039489A KR1020117005296A KR20117005296A KR20110039489A KR 20110039489 A KR20110039489 A KR 20110039489A KR 1020117005296 A KR1020117005296 A KR 1020117005296A KR 20117005296 A KR20117005296 A KR 20117005296A KR 20110039489 A KR20110039489 A KR 20110039489A
Authority
KR
South Korea
Prior art keywords
recess
model
insulating layer
cavity
metal
Prior art date
Application number
KR1020117005296A
Other languages
English (en)
Other versions
KR101254888B1 (ko
Inventor
카즈마사 세키
아키히코 하타무라
히토시 요시다
토시오 야마시타
야스히로 미우라
Original Assignee
오므론 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오므론 가부시키가이샤 filed Critical 오므론 가부시키가이샤
Publication of KR20110039489A publication Critical patent/KR20110039489A/ko
Application granted granted Critical
Publication of KR101254888B1 publication Critical patent/KR101254888B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier

Abstract

도전성 기재(13)의 윗면에 겹쳐서 형성된 절연층(14)에 캐비티(15)를 개구하여 모형(11)을 제작하고 있다. 이 모형(11)을 전해조 내에 배치하여 전압을 인가하고, 캐비티(15)의 저면에 금속을 전착시켜서 캐비티(15) 내에 금속 성형품(12)을 전기주조한다. 이 전착 공정에서는, 캐비티(15)의 폭을 W, 캐비티(15)의 윗면 개구와 금속층(18)의 윗면 사이의 헤드 스페이스의 수직 높이를 H로 할 때, 금속층(18)의 위에 남기는 헤드 스페이스의 높이(H)가, 300㎛≤W이면, H≥W/2.85 200㎛≤W<300㎛이면, H≥W/3.75 100㎛≤W<200㎛이면, H≥W/4 W<100㎛이면, H≥W/10을 충족시키도록 하여, 금속층(18)의 성장을 정지시킨다.

Description

전기주조 방법{ELECTROFORMING METHOD}
본 발명은 금속제품을 성형하기 위한 전기주조(電氣鑄造) 방법에 관한 것이다.
기계 가공으로는 제작 곤란한 미세 금속제품을 제조하는 방법으로서, 전기주조 기술(전기주조법)이 알려져 있다. 이것은, 모형(母型)에 대해 금속을 후막(厚膜) 도금하고, 그 후막 도금(금속 성형품)을 모형으로부터 박리시킴으로써 금속제품을 성형하는 두껍게 붙이는 전기도금 프로세스로서, 일반적으로 20㎛을 초과하는 두께의 전기도금을 전주(電鑄)라고 말한다.
예를 들면, 특허 문헌 1에 개시된 방법에서는, 금속제의 모형의 표면에 포토레지스트를 도포하고, 이것을 패터닝하여 소망 패턴의 개구를 갖는 레지스트막을 형성하고, 계속해서 레지스트막의 개구 내, 즉 모형의 표면 중 레지스트막으로 덮여지지 않은 표면에 금속을 전착(電着)시켜서 금속층(후막 도금)을 성형하고 있다. 이 후, 모형으로부터 금속층을 박리시켜, 소망하는 형상의 미세한 금속 성형품을 얻고 있다.
그러나, 모형의 표면에 금속을 전착시키는 공정에서는, 레지스트막에 차단된 전류의 일부가 레지스트막 부근의 전착 부분에 유입하여 전착량을 부분적으로 증가시키는 결과, 금속층의 두께가 불균일하게 되는 이상이 있다. 특히, 금속층의 표면(모형에 전착하는 면의 반대측의 면) 중 레지스트막에 접하여 있는 언저리의 부분에서 금속층이 솟아올라 금속층의 두께가 부분적으로 두껍게 되어 있다.
그 때문에, 특허 문헌 1에 개시된 방법에서는, 금속층을 레지스트막의 두께보다도 약간 두껍게 형성해 두고, 금속층의 표면을 연마하여 평활화함으로써 금속층의 두께를 균일하게 하고 있다.
상기한 바와 같이, 종래의 전기주조 방법에서는, 금속층의 표면(모형에 전착하는 면의 반대측의 면)의 형상이 제어 불능이어서, 금속 성형품의 성형 가능한 형상에 큰 제약이 있다. 또한, 금속 성형품의 형상을 정돈하기 위해서는, 성형 후에 연마 처리 등을 행하여야 하므로, 제조 효율이 나쁘고, 그만큼 제조 생산 비용이 비싸게 들고 있다.
[특허문헌]
특허 문헌 1: 일본 특개평8-225983호 공보(단락 0002, 도 7)
본 발명은, 상기한 바와 같은 문제점을 감안하여 이루어진 것으로서, 모형에 전착하는 면과 반대측의 금속층 표면의 형상을 제어하는 것이 가능한 전기주조 방법을 제공하는 것을 과제로 하고 있다.
이와 같은 과제를 해결하기 위해, 본 발명에 관한 제 1의 전기주조 방법은, 도전성 기재의 윗면에 겹쳐서 절연층을 형성하고, 상기 절연층에 오목부를 마련함과 함께 상기 오목부의 저면의 적어도 일부에서 상기 도전성 기재를 노출시켜 모형을 형성하는 모형 형성 공정과, 상기 모형을 전해조 내에 배치하여 전압을 인가하고, 상기 오목부 내에서의 상기 도전성 기재의 노출면에 금속을 전착하는 전착 공정을 구비한 전기주조 방법으로서, 상기 전착 공정에서, 상기 오목부의 폭이 300㎛ 이상인 경우에, 상기 오목부의 폭의 1/2.85배 이상의 높이를 갖는 공간을 남기도록 하여 상기 오목부 내에 금속층을 성장시키는 것을 특징으로 하고 있다.
또한, 본 발명에 관한 제 2의 전기주조 방법은, 도전성 기재의 윗면에 겹쳐서 절연층을 형성하고, 상기 절연층에 오목부를 마련함과 함께 상기 오목부의 저면의 적어도 일부에서 상기 도전성 기재를 노출시켜 모형을 형성하는 모형 형성 공정과, 상기 모형을 전해조 내에 배치하여 전압을 인가하고, 상기 오목부 내에서의 상기 도전성 기재의 노출면에 금속을 전착하는 전착 공정을 구비한 전기주조 방법으로서, 상기 전착 공정에서, 상기 오목부의 폭이 200㎛ 이상 300㎛ 미만인 경우에, 상기 오목부의 폭의 1/3.75배 이상의 높이를 갖는 공간을 남기도록 하여 상기 오목부 내에 금속층을 성장시키는 것을 특징으로 하고 있다.
또한, 본 발명에 관한 제 3의 전기주조 방법은, 도전성 기재의 윗면에 겹쳐서 절연층을 형성하고, 상기 절연층에 오목부를 마련함과 함께 상기 오목부의 저면의 적어도 일부에서 상기 도전성 기재를 노출시켜 모형을 형성하는 모형 형성 공정과, 상기 모형을 전해조 내에 배치하여 전압을 인가하고, 상기 오목부 내에서의 상기 도전성 기재의 노출면에 금속을 전착하는 전착 공정을 구비한 전기주조 방법으로서, 상기 전착 공정에서, 상기 오목부의 폭이 100㎛ 이상 200㎛ 미만인 경우에, 상기 오목부의 폭의 1/4배 이상의 높이를 갖는 공간을 남기도록 하여 상기 오목부 내에 금속층을 성장시키는 것을 특징으로 하고 있다.
또한, 본 발명에 관한 제 4의 전기주조 방법은, 도전성 기재의 윗면에 겹쳐서 절연층을 형성하고, 상기 절연층에 오목부를 마련함과 함께 상기 오목부의 저면의 적어도 일부에서 상기 도전성 기재를 노출시켜 모형을 형성하는 모형 형성 공정과, 상기 모형을 전해조 내에 배치하여 전압을 인가하고, 상기 오목부 내에서의 상기 도전성 기재의 노출면에 금속을 전착하는 전착 공정을 구비한 전기주조 방법으로서, 상기 전착 공정에서, 상기 오목부의 폭이 100㎛ 미만인 경우에, 상기 오목부의 폭의 1/10배 이상의 높이를 갖는 공간을 남기도록 하여 상기 오목부 내에 금속층을 성장시키는 것을 특징으로 하고 있다.
여기서, 상기 도전성 기재란, 전기주조에 의해 금속층을 석출시키기 위한 기재이다. 도전성 기재는, 표면이 플랫한 형상이라도 좋고, 표면에 요철이나 단차(段差)가 있어도 상관없다. 전기주조시의 전극으로서 사용되기 위해, 도전성 기재는 도전성을 갖어야 하지만, 도전성 기재의 전체가 도전 재료로 이루어져 있는 경우로 한하지 않는다. 부도전 재료로 이루어지는 심재의 표면 전체 또는 그 표면의 일부에 도전 재료로 이루어지는 도전성 코트부를 마련한 것이라도 좋다. 또한, 도전 재료로 이루어지는 심재의 표면의 일부에 절연 재료로 이루어지는 절연성 코트부를 마련한 것이라도 좋다.
상기 절연층이란, 전주(電鑄)시에 도전성 기재의 표면을 전기적으로 절연하고, 금속의 전착을 억제하는 층으로서, 일반적으로는 레지스트가 사용된다. 또한, 모형이란, 도전성 기재와 절연층으로 이루어지고, 성형용의 하나 또는 복수의 오목부가 형성된 마스터 전극이다. 전착이란, 전해조 내에 배치한 한쪽의 전극(모형)에 적산(積算) 통전량에 비례한 금속 퇴적물을 석출시키는 것이다.
오목부란, 도전성 기재의 윗면에서 절연층에 의해 형성된 캐비티로서, 제작하는 금속 성형품의 반전(反轉) 형상을 갖고 있다. 오목부의 폭이란, 폭을 정하려고 하는 위치에서, 또한, 오목부의 폭이 가장 좁은 방향의 단면(斷面)에서, 금속층의 성장을 최종적으로 정지시키는 높이로 측정한 개구폭(開口幅)을 말한다. 오목부 내에 남기는 공간의 높이란, 오목부 내에 석출한 금속층의 최상단부터 절연층의 윗면(오목부의 윗면 개구)까지의 사이의 공간의 수직 거리를 말한다. 단, 절연층의 높이가 불균일한 경우에는, 금속층의 최상단부터, 절연층의 높이가 가장 낮은 개소에서의 절연층의 윗면까지의 수직 거리를 오목부에 남기는 공간의 높이로 한다.
그리하여, 본 발명에 관한 제 1 내지 4의 전기주조 방법에서는, 오목부의 내부 공간 전체에 금속을 전기주조하는 일 없이, 금속층의 상부에 소정의 공간을 남기고 금속층의 성장을 정지하도록 함으로써, 오목부의 윗면 개구의 언저리의 절연층이, 대향 전극의 오목부에 정대(正對)하지 않는 부분부터 이미 전착되어 있는 금속층에 비스듬하게 유입하려고 하는 전류를 차단하기 때문에, 전착되는 금속의 두께가 흐트러지지 않는다. 이 때문에, 전기주조된 금속층은, 모형의 절연층이 형성되지 않은 부분부터의 거리가 일정하게 되도록, 균일하게 성장한다.
또한, 본 발명에 관한 제 1 내지 4의 전기주조 방법에서는, 오목부의 폭에 응하여 금속층의 상부에 남겨야 할 공간의 최소치(즉, 절연층의 어느 두께에 대한 금속층의 두께의 최대치)를 정하고 있기 때문에, 오목부의 폭과 성형하고 싶은 금속 성형품의 두께에 의해 정해지는 필요 최소량의 절연층 두께(즉 부재 절약)로 효율 좋게 금속 성형품을 성형할 수 있다.
본 발명에 관한 제 1 내지 4의 전기주조 방법의 어느 실시 양태에서는, 상기 모형 형성 공정에서, 상기 오목부의 저면의 주연부의 적어도 일부분에 상기 절연층을 형성하여도 좋다. 금속층은, 모형의 절연층이 형성되지 않은 부분부터의 거리가 일정하게 되도록 성장하기 때문에, 이러한 실시 양태에 의하면, 저면의 외주부의 절연층의 상부에 곡면을 형성하도록 금속층을 형성할 수 있다. 예를 들면, 이것에 따라, 금속 성형품의 모형과 반대측의 에지를 모따기하는 것이 가능해진다.
본 발명에 관한 제 1 내지 4의 전기주조 방법의 다른 실시 양태에서는, 상기 오목부의 저면에 겹쳐지는 영역에서, 상기 도전성 기재의 윗면에 패여진 곳을 형성하고 있어도 좋다. 이러한 실시 양태에 의하면, 도전성 기재의 패여진 곳에 의해 오목부의 저면 형상을 여러 가지의 형상으로 할 수 있기 때문에, 여러 가지의 형상의 금속 성형품을 성형하는 것이 가능해진다.
본 발명에 관한 제 1 내지 4의 전기주조 방법의 또 다른 실시 양태에서는, 상기 오목부의 저면에 노출하고 있는 상기 도전성 기재의 표면이, 전압 인가 방향에 수직한 면에 대한 경사각도가 60°이하가 되는 면을 주(主)로 하여 구성된 집합이라도 좋다. 이러한 실시 양태에서는, 모형의 절연층이 형성되지 않은 면이, 대향 전극과의 사이의 전압 인가 방향에 수직한 면부터 60°보다) 크게 경사하지 않도록 함으로써, 그 경사한 면이 대향 전극으로부터의 전류를 비스듬하게 인입하여, 금속층을 불균일하게 성장시키는 것을 방지할 수 있다. 단, 전압 인가 방향에 수직한 면부터 60°보다(부터) 큰 경사각도를 갖는 면이라도, 오목부의 저면 전체의 면적에 비하여 작은 면적이라면 금속층에 불균일이 생기기 어렵다.
본 발명에 관한 제 1 내지 4의 전기주조 방법의 또 다른 실시 양태에서는, 상기 모형 형성 공정에서, 상기 오목부의 측벽면에 상기 오목부의 개구 면적을 확대하는 단차부를 형성하고 있어도 좋다. 이러한 실시 양태에 의하면, 금속 성형품의 일부를 전압 인가 방향과 다른 방향으로 돌출시킬 수 있다.
본 발명에 관한 제 1 내지 4의 전기주조 방법의 어느 실시 양태에서는, 상기 전착 공정에서, 상기 전해조 내에 흐른 전류의 적산 통전량이 소정치에 달한 때에 상기 전압을 정지하도록 하여도 좋다. 전착하는 금속의 총량은, 공급하는 전류의 적산 통전량에 비례하기 때문에, 직접 측정하지 않아도, 성장한 금속층의 두께를 제어할 수 있다.
또한, 본 발명에서의 상기 과제를 해결하기 위한 수단은, 이상 설명하는 구성 요소를 적절히 조합한 특징을 갖는 것이고, 본 발명은 이러한 구성 요소의 조합에 의한 많은 베리에이션을 가능하게 하는 것이다.
본 발명에 의하면, 금속층의 위에 오목부의 폭에 따른 높이의 공간을 남기고 금속층의 성장을 정지하기 때문에, 금속층에 측방으로부터 전류가 유입하여, 성형한 금속층의 성장 방향에서의 두께가 균일하게 되고, 모형과 반대측의 표면을 마무리 가공할 필요가 없어진다.
도 1은, 본 발명의 실시 형태 1에 의한 전기주조 방법에 이용하는 모형을 도시하는 단면도.
도 2(a) 내지 (j)는, 실시 형태 1의 전기주조법에 의해 금속 성형품을 성형하는 공정을 도시한 개략 단면도.
도 3은, 전해조 내에 배치한 모형을 도시하는 단면도.
도 4(a)는, 전해조의 전극 사이에 인가하는 전압의 변화를 도시하는 도면, 도 4(b)는, 전해조 내에 흘리는 전류의 변화를 도시하는 도면.
도 5(a)는, 캐비티의 폭과 헤드 스페이스의 높이와의 관계를 정하기 위해 이용한 샘플의 형상을 도시하는 평면도. 도 5(b)는, 도 5(a)의 A부의 단면을 확대하여 도시한 도면.
도 6은, 금속층의 위에 남기는 헤드 스페이스의 높이(H)를 변화시켜서, 캐비티 내에 금속을 전착시켜서 여러 가지의 샘플을 제작하고, 헤드 스페이스의 높이(H)와 샘플의 세선부(細線部)에서의 두께 편차와의 관계를 조사한 결과를 도시하는 도면.
도 7은, 세선부의 두께 편차가 1.01이 되는 경우의 조건을 횡축에 캐비티 폭(W)을 취하고, 종축에 H/W의 비를 취하여 도시한 도면.
도 8은, 금속층의 위에 남기는 헤드 스페이스의 높이(H)를 변화시켜서, 캐비티 내에 금속을 전착시켜 여러 가지의 샘플을 제작하고, 헤드 스페이스의 높이(H)와 샘플의 세선부에서의 두께 편차와의 관계를 조사한 결과를 도시하는 도면.
도 9는, 비교예를 도시하는 단면도.
도 10(a) 내지 (d)는, 전착 레지스트를 이용한 절연 피막의 형성 방법을 설명하는 도면.
도 11은, 비교예의 모형을 이용하여 제작한 금속 성형품의 평면도.
도 12는, 스프레이 코터와 포토 리소그래피 기술을 이용하여 도전성 기재의 위에 형성한 절연층의 단면을 도시하는 도면.
도 13(a)는 본 발명의 실시 형태 2에 의한 모형을 도시하는 단면도. 도 13(b)는 실시 형태 2의 다른 모형을 도시하는 단면도.
도 14는, 실시 형태 2의 또 다른 모형을 도시하는 단면도.
도 15는, 본 발명의 실시 형태 3에 의한 모형과 금속 성형품의 길이방향에 따른 단면을 도시하는 단면도.
도 16은, 경사면부의 경사각도(θ)을 바꾸어, 금속층의 두께 편차를 측정한 결과를 도시하는 도면.
도 17은, 도전성 기재의 윗면에 경사각도가 60°이상의 경사면을 갖는 패여진 곳을 마련한 경우에, 금속층이 성장한 양상을 도시하는 도면.
도 18은, 도전성 기재의 패여진 곳의 일부에서 경사각도가 60°이상이 되어 있어도 금속층의 성장에 거의 영향이 없는 것을 설명하기 위한 단면도.
도 19는, 실시 형태 3이 다른 예를 도시하는 단면도.
도 20은, 본 발명에 의해 형성한 전자 부품용의 접점 부재의 형상을 도시하는 사시도.
도 21은, 본 발명의 실시 형태 4에 의한 모형의 캐비티와, 금속층의 성장 과정을 도시하는 도면.
도 22는, 실시 형태 4의 다른 예를 도시하는 단면도.
도 23(a), (b)는 각각, 본 발명의 다른 실시 형태의 모형을 도시하는 단면도.
도 24(a) 내지 (d)는 각각, 본 발명의 다른 실시 형태의 모형을 도시하는 단면도.
도 25(a) 내지 (d)는 각각, 본 발명의 다른 실시 형태의 모형을 도시하는 단면도.
도 26(a) 내지 (d)는 각각, 본 발명의 다른 실시 형태의 모형을 도시하는 단면도.
도 27(a), (b)는 각각, 본 발명의 다른 실시 형태의 모형을 도시하는 단면도.
도 28(a), (b)는 각각, 본 발명의 다른 실시 형태의 모형을 도시하는 단면도.
이하, 첨부 도면을 참조하면서 본 발명의 알맞은 실시 형태를 설명한다.
(제 1의 실시 형태)
도 1은, 본 발명의 실시 형태 1에 의한 전기주조 방법(이하, 전주법(電鑄法)이라고 말한다)을 설명하기 위한 단면도이고, 모형(11)과 그 모형(11)을 이용하여 전기주조된 금속 성형품(12)을 나타낸다.
실시 형태 1로 사용하는 모형(11)은, 도전성 기재(13)의 평탄한 윗면에 후막의 절연층(14)을 적층한 것이고, 절연층(14)에는 금속 성형품(12)의 반전형이 되는 형상의 캐비티(15)(오목부)가 형성되어 있다. 캐비티(15)의 저면에는 절연층(14)이 남아 있지 않고, 캐비티(15)의 저면 전체에서 도전성 기재(13)의 윗면이 노출하고 있다. 모형(11)의 캐비티(15) 내에는, 전주법에 의해 금속 성형품(12)이 성형된다. 또한, 도 1은 캐비티(15)의 길이방향에 직교하는 방향(폭방향)의 단면이다.
다음에, 상기한 바와 같은 모형(11)을 이용하여 금속 성형품(12)을 제작하는 공정을 설명한다. 도 2는 전주법에 의해 금속 성형품(12)을 성형하는 공정을 도시하고 있고, 도 2(a) 내지 (f)는 모형(11)을 형성하기 위하는 공정(모형 형성 공정)을 도시하고, 도 2(g) 및 (h)는 캐비티(15) 내에 금속을 전착시켜서 금속 성형품(12)을 제작하는 공정(전착 공정)을 도시하고, 도 2(i) 및 (j)는 모형(11)으로부터 금속 성형품(12)을 박리시키는 공정(박리 공정)을 도시한다. 또한, 실제로는, 모형(11)에 복수의 캐비티(15)를 형성하여 두고 복수의 금속 성형품(12)을 한번에 제작하지만, 편의상 하나의 금속 성형품(12)을 제작하는 경우에 관해 설명한다.
도 2(a)는 윗면이 평탄한 금속제의 도전성 기재(13)로서, 적어도 윗면에는 전착한 금속 성형품(12)을 용이하게 박리시키기 위한 처리가 시행되어 있다. 모형 형성 공정에서는, 우선 도 2(b)에 도시하는 바와 같이, 도전성 기재(13)의 윗면에, 스프레이 코터나 스핀 코터에 의해 네가형 포토레지스트(16)를 도포하여 균일한 두께의 후막을 형성한다. 계속해서, 도 2(c)와 같이 포토레지스트(16)를 프리베이크한 후, 도 2(d)에 도시하는 바와 같이 캐비티(15)를 형성하는 영역을 마스크(17)으로 덮고 포토레지스트(16)에 노광한다. 포토레지스트(16)의 노광된 영역은 불용화(不溶化)하므로 현상시에 녹지 않기 때문에, 마스크(17)으로 덮여 있던 영역만이 현상에 의해 용해 제거되고, 도 2(e)에 도시하는 바와 같이 포토레지스트(16)에 캐비티(15)가 형성된다. 최후에, 포토레지스트(16)를 포스트베이크함으로써 포토레지스트(16)에 의해 도전성 기재(13)의 윗면에 소정 두께의 절연층(14)이 형성된다. 이렇게 하여 얻어진 모형(11)을 도 2(f)에 도시한다.
또한, 도 1이나 도 2에서는 도전성 기재(13)의 윗면만을 절연층(14)으로 덮고 있지만, 실제로는, 캐비티(15)의 내부 이외에 금속이 전착하지 않도록, 도전성 기재(13)의 하면이나 측면 등도 절연층으로 덮고 있다.
전착 공정에서는, 도 3에 도시하는 바와 같이, 모형(11)을 전해조(19) 내에 배치하고, 직류 전원(20)에 의해 모형(11)과 대향 전극(21) 사이에 전압을 인가하여 전해액(α)에 전류를 흘린다. 통전을 시작하면, 전해액(α) 중의 금속 이온이 도전성 기재(13)의 표면에 전착하고, 금속층(18)이 석출한다. 한편, 절연층(14)은, 전류를 차단하기 때문에, 모형(11)과 대향 전극(21) 사이에 전압을 인가하여도, 절연층(14)에는 직접 금속이 전착하지 않는다. 이 때문에, 도 2(g)에 도시하는 바와 같이, 캐비티(15)의 내부에는 그 저면부터 전압 인가 방향으로 금속층(18)이 성장하여 간다.
이때, 전착한 금속층(18)(금속 성형품(12))의 두께는, 전류의 적산(積算) 통전량(즉, 통전 전류의 시간 적산량으로서, 도 4(b)의 사선을 그은 영역의 면적에 상당한다)에 의해 관리된다. 단위 시간당에 석출한 금속량은 전류치에 비례하기 때문에, 금속층(18)의 체적은 전류의 적산 통전량으로 정해지고, 금속층(18)의 두께는 전류의 적산 통전량으로부터 알 수 있기 때문이다.
예를 들면, 직류 전원(20)의 전압이, 도 4(a)에 도시하는 바와 같이, 통전 시작부터의 경과 시간과 함께 점차로, 또한 단계적으로 증가한다고 하면, 대향 전극(21)과 모형(11)의 사이에 흐른 전류도, 도 4(b)에 도시하는 바와 같이, 통전 시작부터의 경과 시간과 함께 점차로, 또한 단계적으로 증가한다. 그리고, 통전 전류의 적산 통전량을 감시함에 의해 금속층(18)이 목적으로 한 두께에 도달한 것을 검지하면, 직류 전원(20)을 오프에 하여 통전을 정지한다. 이 결과, 도 2(h)에 도시하는 바와 같이, 소망하는 두께의 금속층(18)에 의해 캐비티(15) 내에 금속 성형품(12)이 성형된다.
또한, 캐비티(15) 내에 금속층(18)(금속 성형품(12))을 성장시키는 전착 공정에서는, 캐비티(15)의 폭이 300㎛ 이상인 경우에는, 캐비티(15)의 폭의 1/2.85배 이상의 높이를 갖는 공간(이하, 헤드 스페이스라고 말한다)을 남기도록 금속층(18)을 성장시킨다. 또한, 캐비티(15)의 폭이 200㎛ 이상 300㎛ 미만인 경우에는, 캐비티(15)의 폭의 1/3.75배 이상의 높이를 갖는 헤드 스페이스를 남기도록 금속층(18)을 성장시킨다. 또한, 캐비티(15)의 폭이 100㎛ 이상 200㎛ 미만인 경우에는, 캐비티(15)의 폭의 1/4배 이상의 높이를 갖는 헤드 스페이스를 남기도록 금속층(18)을 성장시킨다. 또한, 캐비티(15)의 폭이 100㎛ 미만인 경우에는, 상기 오목부의 폭의 1/10배 이상의 높이를 갖는 헤드 스페이스를 남기도록 금속층(18)을 성장시킨다. 즉, 본 발명에서는, 캐비티(15)의 폭을 W, 캐비티(15)의 윗면 개구(즉, 절연층(14)의 윗면)와 금속층(18)의 윗면 사이의 헤드 스페이스의 수직 높이를 H로 하면, 금속층(18)의 위에 남기는 헤드 스페이스의 높이(H)가,
300㎛≤W이면, H≥W/2.85
200㎛≤W<300㎛이면, H≥W/3.75
100㎛≤W<200㎛이면, H≥W/4
W<100㎛이면, H≥W/10을
충족시키도록, 금속층(18)의 성장을 정지시킨다.
금속 성형품(12)이 성형되면, 도 2(i)에 도시하는 바와 같이, 에칭 등에 의해 절연층(14)을 박리시켜고, 또한 도 2(j)에 도시하는 바와 같이, 금속 성형품(12)을 도전성 기재(13)으로부터 박리시켜서, 모형(11)의 형상을 반전 전사한 금속 성형품(12)을 얻는다.
본 발명의 전주(電鑄) 방법에서는, 상기한 바와 같이 도전성 기재(13)의 윗면에 겹치도록 하여 후막의 절연층(14)을 형성하고, 절연층(14)을 개구시킴에 의해 모형(11)에 캐비티(15)를 형성하고 있기 때문에, 포토 리소그래피 기술 등을 이용하여 미세한 캐비티(15)를 정밀하게 제작할 수 있고, 그 때문에 전주법에 의해 미세하고 정밀한 금속 성형품(12)을 제작하는 것이 가능해진다.
(헤드 스페이스에 관해)
또한, 본 발명의 전주 방법에서는, 상기한 바와 같이 캐비티(15)의 상부에 소정의 높이의 헤드 스페이스를 남기도록 하여 금속층(18)의 성장을 정지하고 있기 때문에, 금속층(18)의 윗면과 캐비티(15)의 윗면 개구 사이에 어느 거리(H)를 유지할 수 있고, 캐비티(15) 내에 유입하여 석출하는 금속 이온 중, 캐비티(15)의 윗면 개구 주연부에서 캐비티(15) 내로 비스듬하게 유입하는 금속 이온을 캐비티(15)의 윗면 개구의 언저리의 절연층(14)에 의해 차단하고, 금속층(18)의 윗면 전체에 균일한 전류를 흘려서, 금속층(18)을 균일하게 성장시킨다. 이 때문에, 금속층(18)이 성장해 이루어지는 금속 성형품(12)는, 도전성 기재(13)와 반대측의 대향 전극에 대향하는 면이, 도전성 기재(13)의 윗면부터 일정한 거리를 가지며, 캐비티(15)를 모방한 형상이 된다.
이하에서는, 금속 성형품(12)을 성형할 때에, 금속 성형품(12)의 위에 남기는 헤드 스페이스 높이(H)를,
300㎛≤W이면, H≥W/2.85
200㎛≤W<300㎛이면, H≥W/3.75
100㎛≤W<200㎛이면, H≥W/4
W<100㎛이면, H≥W/10
로 정한 근거를 설명한다(이하, 이들의 조건을 성장 정지 조건이라고 부른다).
또한, 금속 성형품(12)으로서는, 원형 판형상이나 사각형 판형상 등 판형상을 한 것이라도 좋고, 일 방향으로 길다란 형상을 한 것(예를 들면, 도 20을 참조)이라도 좋고, 특히 본 발명에 의해 제작된 금속 성형품(12)의 형상에는 한정은 없다. 따라서, 판형상의 금속 성형품(12)을 제작하는 경우에서는, 단면의 가장 좁은 방향에 있어서 단면으로 상기 성장 정지 조건을 충족시키도록 하면 좋다. 특히, 일방향으로 길다란 형상을 한 금속 성형품(12)에서는, 폭방향의 단면에 있어서 상기 성장 정지 조건을 충족시키도록 전착 공정을 관리하면 좋다. 이하에서는, 일방향으로 길다란 형상을 한 금속 성형품(12)을 제작하는 경우를 예로 들어 설명한다.
도 5(a)는 캐비티(15)의 폭(W)과 헤드 스페이스의 높이(H)와의 관계를 정하기 위해 이용한 샘플(22)의 형상을 도시하는 평면도이다. 또한, 도 5(b)는 도 5(a)의 A부의 단면도이다. 이 샘플(22)은, 띠 모양을 한 후프부(23a, 23b, 23c) 사이에 일정 피치마다 세선부(24)(길이 4.5mm)를 배열한 것이고, 그 두께는 20㎛ 내지 300㎛로 하였다. 이 세선부(24)는, 도 20에 도시한 성형품과 같이 일방향으로 길고, 또한, 3차원 형상을 갖는 것이다. 샘플(22)은, 샘플(22)의 반전 형상을 한 캐비티(15)를 갖는 모형(11)을 이용하여, 그 캐비티(15) 내에 금속을 전착시키도록 한 것이다. 그리고, 캐비티(15)의 폭(W)(폭방향의 폭)이나 헤드 스페이스의 높이(H), 절연층(14)의 폭(L) 등을 변화시킨 샘플을 제작하고, 도 5(a)에서 파선으로 나타낸 영역을 해석용으로 컷트하고, 그 세선부(24)의 두께의 균일 정도를 조사하였다.
측정의 결과에 의하면, 헤드 스페이스의 높이(H)를 캐비티(15)의 폭(W)과 동등하게 하던지, 또는 캐비티(15)의 폭(W)보다도 큰 높이로 하면(H/W≥1), 캐비티(15)의 폭(W)(즉, 세선부(24)의 폭)에 관계없이, 세선부(24)에 두께 편차가 발생하지 않음을 알았다. 또한, 캐비티(15)의 폭(W)이 작아질수록, 세선부(24)의 두께 편차는 작아진다. (이들의 양상은, 도 6으로 부터 알 수 있다)
도 6은, 금속층(18)의 위에 남기는 헤드 스페이스의 높이(H)를 변화시켜서, 캐비티(15) 내에 금속을 전착시켜서 여러 가지의 샘플(22)를 제작하고, 헤드 스페이스의 높이(H)와 세선부(24)에서의 두께 편차와의 관계를 실측에 의해 조사한 결과를 도시하고 있다. 모형(11)으로서는, 캐비티 폭(W)이 100㎛인 것, 200㎛인 것, 300㎛인 것, 400㎛인 것을 이용하였다. 세선부(24)(금속 성형품)의 두께 편차란, 세선부(24)의 폭방향에 따른 가장 얇은 개소의 두께를 T1, 가장 두꺼운 개소의 두께를 T2로 하였을 때, T2/T1로 나타내어지는 것이다.
전주에 의한 금속 성형품의 두께 편차는, 근래의 부품의 정밀화에 의해 1% 이하인 것이 요망되고 있다. 따라서 도 6에서, 세선부(24)의 두께 편차가 1.01 이하이기 위한 조건을 정하면, 캐비티 폭(W)이 400㎛인 경우에는, 헤드 스페이스 높이(H)를 140㎛ 이상으로 할 필요가 있고, 캐비티 폭(W)이 300㎛인 경우에는, 헤드 스페이스 높이(H)를 80㎛ 이상으로 할 필요가 있고, 캐비티 폭(W)이 200㎛인 경우에는, 헤드 스페이스 높이(H)를 50㎛ 이상으로 할 필요가 있고, 캐비티 폭(W)이 100㎛인 경우에는, 헤드 스페이스 높이(H)를 10㎛ 이상으로 할 필요가 있다.
세선부(24)의 두께 편차와 캐비티 폭(W)에 대한 헤드 스페이스 높이(H)의 비(H/W) 사이에 상관이 보여졌기 때문에, 도 6에 의거하여, 두께 편차가 1.01이 되는 경우의 조건을 횡축에 캐비티 폭(W)을 취하고, 종축에 H/W의 비를 취하여 도시한 것이 도 7이다.
도 6 또는 도 7에 의하면, 두께 편차를 1.01 이하로 억제하기 위해서는, 캐비티 폭(W)이 300㎛ 이상인 경우에는, 캐비티 폭(W)에 대한 헤드 스페이스 높이(H)의 비를
H/W≥140/400=1/2.85
로 할 필요가 있다. 또한, 캐비티 폭(W)이 200㎛ 이상 300㎛ 미만인 경우에는, 캐비티 폭(W)에 대한 헤드 스페이스 높이(H)의 비를
H/W≥80/300=1/3.75
로 할 필요가 있다. 또한, 캐비티 폭(W)이 100㎛ 이상 200㎛ 미만인 경우에는, 캐비티 폭(W)에 대한 헤드 스페이스 높이(H)의 비를
H/W≥50/200=1/4
로 할 필요가 있다. 또한, 캐비티 폭(W)이 100㎛ 미만인 경우에는, 캐비티 폭(W)에 대한 헤드 스페이스 높이(H)의 비를
H/W≥10/100=1/10
로 할 필요가 있다.
도 8은, 금속층(18)의 위에 남기는 헤드 스페이스의 높이(H)를 변화시켜서, 캐비티(15) 내에 금속을 전착시켜서 여러 가지의 샘플(22)을 제작하고, 헤드 스페이스의 높이(H)와 세선부(24)에서의 두께 편차와의 관계를 실측에 의해 조사한 결과를 도시하고 있다. 모형(11)으로서는, 캐비티 폭(W)이 300㎛인 것을 이용하고, 절연층(14)의 폭(L)을 100㎛, 200㎛, 300㎛로 변화시켰다.
이 측정 결과에 의하면, 절연층 폭(L)이 캐비티 폭(W)의 1/3배보다도 좁아지면, 세선부(24)의 두께 편차가 작아지는 것을 알 수 있다. 또한, 이론 계산에 의하면, 절연층 폭(L)이 제로가 되면, 세선부(24)의 두께 편차는 발생하지 않는다.
또한, 절연층 폭(L)과 캐비티 폭(W)의 비(L/W)가 2/3 이상인 경우에는, 헤드 스페이스 높이(H)가 상기한 바와 같은 조건을 충족시키면, 세선부(24)의 두께 편차는 캐비티 폭(W)이 300㎛인 경우와 거의 변화가 없다. 즉, 캐비티 폭(W)이 300㎛인 경우와 마찬가지로, 비 H/W≥1이면, 세선부(24)에 두께 편차가 발생하지 않고, 캐비티 폭(W)이 작아질수록, 세선부(24)의 두께 편차가 작아진다. 또한,
300㎛≤W인 때, H/W≥1/2.85
200㎛≤W<300㎛인 때, H/W≥1/3.75
100㎛≤W<200㎛인 때, H/W≥1/4
W<100㎛인 때, H/W≥1/10
이면, 세선부(24)의 두께 편차를 1% 정도로 작게 할 수 있다. 특히, 극단적으로 절연층 폭(L)이 커졌다고 하여도, 헤드 스페이스 높이(H)와 캐비티 폭(W)의 비(H/W)가 1/2.85 이상이면, 세선부(24)의 두께 편차를 작게 할 수 있다.
(절연층의 형성 방법에 관해)
본 발명에서는, 도전성 기재(13)의 윗면에 겹치도록 절연층(14)을 형성하고 있기 때문에, 스프레이 코터나 스핀 코터(바람직하게는, 스프레이 코터)에 의해 절연층(14)을 균일한 두께로 형성할 수 있고, 또한 샤프한 형상의 캐비티(15)를 형성할 수 있기 때문에, 샤프한 형상의 금속 성형품(12)을 제작하는 것이 가능해진다. 특히, 스프레이 코터에 의하면, 후술하는 실시 형태와 같이 도전성 기재(13)의 윗면이 요철이 있는 경우에도, 균일한 두께로 절연층(14)을 형성할 수 있다. 이 점을 비교예와 대비하면서 설명한다.
도 9는 비교예를 도시하는 단면도이다. 이 비교예의 모형(101)은, 금속제의 도전성 기재(103)에 직접 캐비티(105)를 형성하고, 캐비티(105)의 저면을 제외하고 도전성 기재(103)의 표면에 절연 피막(104)을 형성한 것이다. 그리고, 이 모형(101)을 전해조 내에 설치하고, 캐비티(105)의 저면에 금속 이온을 전착시켜서 금속 성형품(12)을 성장시킨 것이다.
이와 같은 모형(101)의 경우에는, 전착 레지스트에 의해 도전성 기재(103)의 표면에 절연 피막(104)을 형성한다. 도 10(a) 내지 (d)는, 전착 레지스트를 이용한 절연 피막(104)의 형성 방법을 설명하는 도면이다. 절연 피막(104)을 형성하는 공정에서는, 도 10(a)에 도시하는 바와 같이, 캐비티(105)가 형성된 도전성 기재(103)는, 대향 전극(106)과 대향시켜서 전해조(107)의 전착 레지스트액(β)중에 배치된다. 직류 전원(109)에 통전하면, 물이 전기분해되어 대향 전극(106)에는 수소 이온(108a)(H+)이 흡착되고, 도전성 기재(103)의 표면에는 산소 이온(108b)(O2-)이 흡착된다. 또한, 도 10(b)에 도시하는 바와 같이, 전착 레지스트액(β) 중의 성분인 감광제(110)(수지)가 도전성 기재(103)의 표면의 산소 이온과 반응하여 도전성 기재(103)의 표면에서 고화된다. 이렇게 하여 도전성 기재(103)의 표면은, 입상(粒狀)을 한 감광제(110)의 고화물에 의해 덮여진다. 이 도전성 기재(103)는, 전해조(107)로부터 취출한 후, 도 10(c)에 도시하는 바와 같이 프리베이크된다. 80℃ 내지 100℃ 정도의 온도로 프리베이크하면, 감광제(110)의 용제가 휘발하는 동시에 감광제(110)이 유동하여, 감광제(110)의 구멍 등의 결함 부분이 메워진다. 계속해서, 도 10(d)에 도시하는 바와 같이, 120℃ 내지 140℃ 정도의 온도로 포스트베이크하여 감광제(110)의 열중합 반응을 촉진시키면, 감광제(110)가 더욱 유동하여 매끈한 피막이 되고, 도전성 기재(103)의 표면에서 감광제(110)이 소고(燒固)되어 절연 피막(104)이 형성된다. 그리고, 캐비티(105)의 저면에서 절연 피막(104)을 제거하여 도전성 기재(103)을 노출시켜서, 모형(101)을 형성한다.
그러나, 이와 같이 전착 레지스트에 의해 절연 피막(104)을 형성하는 경우에는, 포스트베이크 된 감광제(110)가 유동하는 결과, 도 10(d)에 도시하는 바와 같이, 도전성 기재(103)의 외(外) 에지 부분(모서리 부분)에서는 도전성 기재(103)가 얇아지고, 캐비티(105) 내의 내(內) 에지 부분(내 구석 부분)에서는 도전성 기재(103)가 두꺼워지기 쉽다. 그 결과, 도전성 기재(103)에 의해 형성된 캐비티(105)(절연 피막 형성 전의 캐비티)와 비하여 절연 피막(104)로 덮여진 캐비티에서는, 폭방향의 단면에 있어서 내 에지 부분이나 외 에지 부분이 둥그스름해지기 쉬워지고, 샤프한 형상의 금속 성형품(12)을 얻기 어렵게 되어 있다.
도 11은 상기한 바와 같이 하여 제작한 모형(101)을 이용하여 제작한 금속 성형품(12)을 촬영한 현미경 사진의 평면도이고, 아울러서 그 일부를 확대하여 도시하고 있다. 도 10에서 설명한 바와 같이, 전착 레지스트법에서는, 폭방향의 단면에 있어서 내 에지 부분이나 외 에지 부분이 둥글게 되는데, 실제로는 3차원 형상의 캐비티(105)의 모서리(변)가 둥글게 되기 때문에, 평면으로 본 때에도 캐비티(105)의 내 에지 부분은 둥그스름해져 있다. 그 때문에, 이 캐비티(105) 내에서 성형된 금속 성형품(12)도, 도 11과 같이 평면으로 보아 모서리가 둥글게 되어 있다. 도 11로부터 알 수 있는 바와 같이, 이 모형(101)을 이용하여 금속 성형품(12)을 제작한 경우, 캐비티(105)의 내 에지 부분이나 외 에지 부분이 절연 피막(104)에 의해 둥그스름해지기 때문에, 도전성 기재(103)에 샤프한 형상의 캐비티(105)가 형성되어 있다고 하여도 금속 성형품(12)에 샤프한 형상을 전사시키는 것이 곤란하고, 특히 모서리나 구석이 둥글게 된다.
이에 대해, 도전성 기재(13)의 위에 형성한 절연층(14)에 캐비티(15)를 개구하는 방법에서는, 도전성 기재(13)의 표면에 스프레이 코터나 스핀 코터를 이용하여 레지스트를 도포하고, 포토 리소그래피 기술에 의해 캐비티(15)를 개구하기 때문에, 캐비티(15)를 정밀하게, 또한 샤프하게 형성할 수 있다. 도 12는 스프레이 코터와 포토 리소그래피 기술을 이용하여 도전성 기재(13)의 위에 형성한 절연층(14)의 단면 사진을 도시하는 도면이다. 또한, 도 12의 샘플에서는, 모형(11)을 컷트할 때에 절연층(14)의 형상이 무너지는 것을 방지하기 위해, 절연층(14)의 윗면과 캐비티(15) 내부를 수지(111)로 굳히고 있다.
본 발명의 모형(11)에서는, 도 12에 도시한 바와 같은 샤프한 형상의 캐비티(15)를 형성할 수 있기 때문에, 이 캐비티(15) 내에 금속 성형품(12)을 성형함으로써 샤프한 형상의 금속 성형품(12)을 제작하는 것이 가능해진다.
(절연층의 두께에 관해)
또한, 본 발명의 전기주조 방법에서는, 캐비티(15)의 폭에 응하여 금속층(18)의 상부에 남겨야 할 헤드 스페이스의 최소 높이(즉, 절연층의 어느 두께에 대한 금속층의 두께의 최대치)를 정하고 있기 때문에, 오목부의 폭과 성형하고 싶은 금속 성형품의 두께에 의해 정해지는 필요 최소량의 절연층 두께(즉 부재 절약)로 효율 좋게 금속 성형품을 성형할 수 있다.
또한, 절연막(14)의 두께를 얇게 할 수 있으면, 포토 리소그래피 공정에서 절연층(14)의 에지 형상을 고정밀화하기 쉽기 때문에, 금속 성형품(12)의 전기주조 정밀도도 그에 수반하여 높아진다. 또한, 절연층(14)의 두께를 얇게 할 수 있으면, 포토레지스트의 성막 시간이나 박리 시간이 짧아지고, 금속 성형품(12)의 생산 효율이 향상한다. 그 결과, 금속 성형품(12)의 고품질화와 저비용화를 도모할 수 있다.
(본 발명의 제 2의 실시 형태)
도 13(a)는 본 발명의 실시 형태 2에 의한 모형(31)을 도시하는 단면도이다. 이 모형(31)에서는, 캐비티(15) 내에서 도전성 기재(13)의 윗면에 소망하는 형상의 패여진 곳(32)을 형성하고 있고, 이 패여진 곳(32)이 캐비티(15)의 일부를 구성하고 있다. 따라서, 이 캐비티(15) 내에 금속을 전착시킴에 의해, 보다 고도(高度)한 형상의 금속 성형품(12)을 성형할 수 있다.
또한, 도 13(a)에 도시하는 실시 형태에서는 캐비티(15)의 저면의 일부에 패여진 곳(32)을 형성하였지만, 도 13(b)에 도시하는 다른 실시 형태와 같이, 캐비티(15)의 저면의 전체에 패여진 곳(32)을 형성하고 있어도 좋다.
또한, 도 14에 도시하는 또 다른 실시 형태에서는, 캐비티(15)의 저면보다도 넓은 범위에 걸쳐서 도전성 기재(13)의 윗면에 패여진 곳(32)을 형성하고 있고, 패여진 곳(32)의 일부를 절연층(14)에 의해 메우고 있다.
또한, 도 13(a), (b), 도 14와 같이 금속 성형품(12)의 윗면이 평탄하지 않은 경우에는, 헤드 스페이스 높이(H)는, 금속 성형품(12)의 가장 높은 위치부터 측정하는 것으로 한다. 또한, 도 13(a), (b)와 같이 절연층(14)의 높이가 균일하지 않은 경우에는, 헤드 스페이스 높이(H)는, 절연층(14)의 가장 낮은 개소의 윗면까지의 높이를 측정하는 것으로 한다. 따라서, 도 13(a), (b)와 같은 경우에는, 헤드 스페이스 높이(H)는, 금속 성형품(12)의 가장 높은 위치부터, 절연층(14)의 가장 낮은 부분의 윗면까지의 수직 거리가 된다. 또한, 도 13(a), (b), 도 14와 같이 폭방향의 단면에서, 도전성 기재(13)의 윗면(패여진 곳(32))이 경사면으로 형성되어 있는 경우에는, 두께 편차는, 그 경사면에 수직한 법선 방향에서의 두께로 평가한다.
(본 발명의 제 3의 실시 형태)
도 15는 본 발명의 실시 형태 3에 의한 모형(41)과 금속 성형품(12)의 길이방향에 따른 단면도이다. 본 실시 형태에서는, 캐비티(15)의 저면 형상에 관해, 길이방향을 예로 하여 설명을 하지만, 이것은 폭방향의 저면에서도 마찬가지로 말할 수 있고, 길이 및 폭이 양쪽 모두 경사인 경우도 성립한다. 단, 어느 경우에도, 어디까지나 폭방향은 실시 형태 1에서 기술한 범위 내에서 전착을 행하고 있다. 본 실시 형태에서는, 폭방향의 단면에서는, 실시 형태 1에서 설명한 바와 같은 조건으로 전착을 행하고 있지만, 또한 길이방향에서도 실시 형태 1에서 기술한 바와 같은 조건에 따라 전주를 행함에 의해, 실시 형태 1과 같이 상단의 평면부(42a)와 하단의 평면부(42c)에서 비교한 경우, 1% 이내의 두께 편차에 들어가지 않을 때까지의 매우 고정밀도로 두께 편차를 작게 할 수 있다. 이 모형(41)에 형성된 캐비티(15)는, 그 저면의 깊이가 다르고, 각각 대향 전극에 정대(전압 인가 방향에 수직)한 3개의 평면부(42a, 42b, 42c)와, 각 평면부(42a, 42b, 42c)를 접속하고, 전압 인가 방향에 수직한 면에 대해 경사한 경사면부(43a, 43b)로 이루어진다.
여기서, 헤드 스페이스의 높이(H)는, 캐비티(15)의 가장 얕은 부분에 남는 공간의 높이이다. 이 도 15가 도시하는 바와 같이, 캐비티(15)의 길이방향에서는, 헤드 스페이스의 높이(H)에 비하여 캐비티(15)의 길이가 길어도, 헤드 스페이스의 높이(H)가 캐비티(15)의 폭(지면의 안 길이방향의 길이=오목부의 폭)(W)에 대해 상기한 어느 하나의 조건을 충족시키고 있으면, 금속 성형품(12)의 두께 편차를 작게 할 수 있다.
또한, 경사면부(43a, 43b)를 갖는 저면에 대해, 금속층(18)은, 평면부(42a, 42b, 42c) 및 경사면부(43a, 43b)에 각각 두께가 동등하게 되(저면부터의 거리가 일정하게 되)도록 적층하여 전착된다. 평면부(42a)와 경사면부(43a)가 형성한 모서리부, 및, 평면부(42b)와 경사면부(43b)가 형성한 모서리부에서도, 금속층(18)은, 그 두께가 거의 동등하게 되(캐비티(15)의 저면부터의 거리가 일정이 되)도록 적층하여 전착한다. 도 15에 도시하는 화살표는, 금속층(18)의 성장 방향을 나타내는 벡터이다.
또한, 도 15는 길이방향의 단면을 도시하고 있지만, 가령 이것이 폭방향의 단면이라고 가정한 경우에는, 두께 편차를 산출함에 있어서는, 경사면부에서의 금속층(18)의 두께는 고려하지 않고, 저면이 수평한 각면에서의 금속층(18)의 두께를 측정하고, 가장 얇은 개소의 두께(T1)에 대한 가장 두꺼운 개소의 두께(T2)의 비(T2/T1)를 두께 편차로 한다. 즉, 폭방향의 단면에 있어서, 실시 형태 1과 같이 캐비티(15)의 저면이 수평면인 경우나, 실시 형태 2와 같이 캐비티(15)의 저면이 경사면인 경우에는, 수평면 또는 경사면의 법선 방향의 두께를 평가하지만, 수평면과 경사면이 혼재하고 있는 경우에는, 수평면에서의 두께만으로 평가한다.
도 16에, 경사면부(43a, 43b)의 경사각도(θ)(전압 인가 방향에 수직한 면 사이에 이루는 각도)를 바꾸어서, 금속층(18)의 두께 편차를 측정한 결과를 도시한다. 도시하는 바와 같이, 경사면부(43a, 43b)의 경사각도(θ)가 60°이하라면, 금속층(18)의 두께 편차는, 1% 이하이고, 전혀 문제가 없다. 그러나, 경사면부(43a, 43b)의 경사각도(θ)가 60°를 초과하면, 금속층(18)의 두께 편차가 생긴다. 또한, 이 금속층(18)의 두께 편차는, 중단의 평면부(42b)에 비하여, 상단의 평면부(42a) 및 하단의 평면부(42c)에서, 커지는 경향이 있다.
따라서, 캐비티(15)의 저면에 노출하고 있는 도전성 기재(13)의 패여진 곳(32)의 표면은, 전압 인가 방향에 수직한 면에 대한 경사각도가 거의 60°이하가 되도록 하는 것이 바람직하다. 도 17은, 도전성 기재(13)의 윗면에 경사각도가 60°이상의 경사면을 갖는 패여진 곳(32)을 마련한 경우에, 금속층(18)이 성장한 양상을 도시하는 도면이다. 이와 같이 경사각도가 60°를 초과하면, 전류가 불균일하게 되어 금속층(18)의 두께를 제어하는 것이 곤란해진다. 그러나, 도 18에 도시하는 바와 같이, 패여진 곳(32)의 주연(周緣) 부분의 경사각도가 60°이상으로 되어 있는 경우와 같이, 경사각도가 60°이상의 영역이 존재하여도 일부분이면 거의 영향은 없다. 또한, 이 도 18과 같이 도전성 기재(13)의 윗면에 날카로운 변곡점 부분이 존재하는 경우에는, 도 18에 화살표로 나타내도록 해당 변곡점 부분에서는 금속층(18)은 변곡점을 중심으로 하여 균등한 두께가 되도록 성장하기 때문에, 도전성 기재(13)의 변곡점 부분에 대응하는 금속층(18)의 윗면의 변곡점 부분은 아르 형상으로 완만하게 된다. 도 13, 도 14, 도 23(b) 등의 도시 예에서는, 금속층(18)의 윗면도 도전성 기재(13)의 윗면과 같이 굴곡하고 있지만, 실제의 금속 성형품(12)에서는 굴곡 부분이 둥그스름해져 아르 형상이 된다.
이와 같이, 본 발명에서는, 경사면부(43a, 43b)의 경사각도(θ)을 거의 60°이하로 하도록, 저면에 깊이의 변화를 마련함으로써, 금속 성형품(12)의 디자인을, 두께를 일정하게 유지하면서, 전압 인가 방향에 굴곡한 것으로 할 수도 있다. 환언하면, 캐비티(15)의 저면은, 반드시 대향 전극에 정대할 필요가 없다.
또한, 절연층(14)의 높이는 균일하지 않아도 좋기 때문에, 도 19에 도시하는 바와 같이, 길이방향에서의 절연층(14)의 높이가 낮은 개소에서는, 금속층(18)의 윗면의 가장 높은 위치보다도 낮게 되어도 무방하다. 단, 도 19와 같은 경우에도, 폭방향의 단면으로 본 경우의 절연층(14)은, 금속 성형품(12)에 대해 실시 형태 1과 같은 조건은 성립하고 있다.
실시 형태 3의 한 예로서, 도 20에, 본 발명에 의해 형성한 전자 부품용의 접점 부재의 형상을 나타낸다. 본 발명에 의하면, 이와 같은 형상의 금속 부품을, 어떠한 마무리 가공도 필요로 하지 않고, 전기주조 만에 의해 형성할 수 있다.
(본 발명의 제 4의 실시 형태)
도 21은, 본 발명의 실시 형태 4에 의한 모형(51)의 캐비티(15)와, 금속층(18)의 성장 과정을 도시한다. 도 21에서 화살표는, 금속층(18)이 성장하는 방향과 성장량을 나타내는 벡터이다. 이 캐비티(15)는, 캐비티(15)의 측벽면의 중간 정도에, 단차부(52)를 형성함으로써, 캐비티(15)의 단면적을 도중에서 확대하여, 캐비티(15)의 개구 면적을 저면보다도 크게 하고 있다. 또한, 절연층(14)이 캐비티(15)의 저면상의 주연부의 일부를 덮도록 연신하여 있다. 저면에서의 절연층(14)의 연신 부분을 절연층(14a)으로 나타낸다.
이 캐비티(15)를 이용하여 전기주조하면, 우선, 캐비티(15)의 저면중 절연층(14a)에 덮히지 않은 영역에 금속이 전착하여 금속층(18)이 형성된다. 더욱 전압을 계속 인가하면, 금속층(18)은, 저면의 절연층(14a)에 덮여 있지 않은 부분부터의 거리가 일정하게 되도록 하여, 또한, 절연층(14a)의 위에 덮여 겹쳐지도록 성장한다.
더욱, 전류를 흘려서 금속층(18)을 성장시키면, 단차부(52)의 위에도 금속층(18)이 비어져 나와 성장한다. 이때, 절연층(14a)에 덮여지지 않은 저면에서 보아 단차부(52)의 그늘이 되는 부분에는, 단차부(52)의 에지로부터의 거리가 일정하게 되도록 금속층(18)이 성장한다.
이와 같이, 캐비티(15)에 단차부(52)를 마련함으로써, 금속 성형품(12)은, 단차부(52)의 상부에 비어져 나온 형상으로 주조된다. 또한, 캐비티(15)의 저면의 주연부를 절연층(14a)으로 덮음으로써, 그 상부에서 금속 성형품(12)을 모따기한 형상으로 할 수 있다. 즉, 본 변형례를 이용함으로써, 모형(11)의 형상을 반전 전사한 형상의 표면에, 아르 형상의 모따기를 추가한 금속 부품을 형성할 수 있다.
도 22는, 캐비티(15)의 저면에 절연층(14a)을 마련한 다른 예를 도시하는 단면도이다. 이 모형(61)에서는, 캐비티(15)의 저면의 양측부 또는 외주연에 따라 절연층(14)이 저면의 일부를 덮도록 연신하여 저면의 절연층(14a)을 형성하고 있다. 이 모형(61)을 이용한 경우에도, 저면의 절연층(14a)에 덮히지 않은 부분부터의 거리가 일정하게 되도록 하여, 또한, 절연층(14a)의 위에 덮어 겹쳐지도록 금속층(18)이 성장함으로써, 금속 성형품(12)의 윗면 외주부가 아르 형상으로 만곡하여 형성된다.
또한, 이 실시 형태와 같이, 캐비티(15)의 저면의 일부 절연층(14a)에 의해 덮히어서 금속층(18)의 윗면의 일부가 만곡하고 있는 경우에는, 금속층(18)의 두께 편차는, 도전성 기재(13)가 노출하고 있는 영역의 위의 금속층(18)의 수직 방향에서의 두께가 거의 균일으로 되어 있는 영역에서 평가한다.
(그 밖의 실시 형태)
이하에서는, 여러 가지 형상의 모형(71 내지 88)을 나타낸다.
도 23(a)는, 상방에서 폭이 좁아지도록 양 측면에 테이퍼가 붙은 절연층(14)을 갖는 모형(71)을 이용한 것이다.
도 23(b)에 도시하는 모형(72)은, 도전성 기재(13)의 윗면에 패여진 곳(32)을 가지며, 한쪽의 측벽면의 절연층(14)은 패여진 곳(32)의 밖에 있고, 다른 쪽의 절연층(14)은 패여진 곳(32) 내로 들어간 것이다.
도 24(a)에 도시하는 모형(73)은, 절연층(14)을 절연층(91a, 91b)의 2층 구성으로 하여, 개구폭이 좁은 절연층(91a)의 위에 개구폭이 넓은 절연층(91b)를 겹치고 있다.
도 24(b)에 도시하는 모형(74)은, 상방에서 좁아진 단면 테이퍼 형상의 절연층(91a)의 위에, 그보다도 개구폭이 넓은 절연층(91b)를 겹쳐서 2층 구성의 절연층(14)으로 한 것이다.
도 24(c)에 도시하는 모형(75)은, 캐비티(15)의 저면에 V홈 형상이 패여진 곳(32)을 형성함과 함께, 개구폭이 좁은 절연층(91a)의 위에 개구폭이 넓은 절연층(91b)을 겹쳐서 절연층(14)을 2층 구성으로 한 것이다.
도 24(d)에 도시하는 모형(76)은, 도 23(b)의 모형(72)을 기초로 하여, 그 절연층(14)을 개구폭이 좁은 절연층(91a)과 개구폭이 넓은 절연층(91b)의 2층 구성으로 한 것이다.
도 25(a)에 도시하는 모형(77)은, 부도전 재료(절연 재료)로 이루어지는 심재(92a)의 표면을 도전 재료로 이루어지는 도전성 코트부(92b)로 피복한 도전성 기재(13)를 이용한 것이다.
도 25(b) 내지 (d)에 도시하는 모형(78 내지 80)도, 부도전 재료(절연 재료)로 이루어지는 심재(92a)의 표면을 도전 재료로 이루어지는 도전성 코트부(92b)로 피복한 도전성 기재(13)를 이용한 것이고, 또한 도 25(b)의 모재(78)에서는 테이퍼형상의 절연층(14)을 이용하고 있고, 도 25(c), (d)의 모형(79, 80)에서는 패여진 곳(32)을 갖는 도전성 기재(13)를 이용하고 있다.
도 26(a) 내지 (d)에 도시하는 모형(81 내지 84)은, 어느 것이나 절연층(14)을 절연층(91a, 91b)의 2층 구성으로 하고, 개구폭이 좁은 절연층(91a)의 위에 개구폭이 넓은 절연층(91b)을 겹침과 함께, 부전도 재료(절연 재료)로 이루어지는 심재(92a)의 표면을 도전 재료로 이루어지는 도전성 코트부(92b)로 피복한 도전성 기재(13)를 이용한 것이다.
도 27(a)에 도시하는 모형(85)은, 도전성 기재(13)의 윗면에 패여진 곳(32)을 형성하고, 절연층(14)을 패여진 곳(32)의 일부에 들어가도록 형성함과 함께, 캐비티(15)의 저면에서 절연층(14a)을 연장시킨 것이다. 또한, 도 27(b)의 모형(86)은, 또한 절연층(14)을 절연층(91a, 91b)의 2층 구성으로 한 것이다. 또한, 도 28(a), (b)의 모형(87, 88)은, 또한 부도전 재료(절연 재료)로 이루어지는 심재(92a)의 표면을 도전 재료로 이루어지는 도전성 코트부(92b)로 피복한 도전성 기재(13)를 이용하는 것이다.
본 발명에 이용하는 모재로서는 상술한 바와 같이 여러 가지의 형상, 구조의 것을 이용할 수 있지만, 어떤 모재에서도, 헤드 스페이스 높이(H)나 캐비티 폭(W)은, 다음과 같이 정의된다. 헤드 스페이스 높이는, 예를 들면 도 23, 도 24 등에 도시하는 바와 같이, 제작된 금속 성형품(12)의 가장 높은 위치부터 캐비티(15)의 윗면 개구의 높이(즉, 절연층(14)의 윗면이 위치한 높이의 평면)까지의 수직 거리이다. 단, 절연층(14)의 윗면의 높이에 편차가 있는 경우에는, 도 13(a), (b)에 도시하는 바와 같이, 가장 낮은 위치에서의 절연층(14)의 윗면까지의 수직 거리로 한다. 또한, 캐비티 폭(W)은, 금속 성형품(12)의 윗면이 위치하는 높이에서의 캐비티(15)의 폭이다.
11, 31, 41, 51, 61, 71 내지 88 : 모형
12 : 금속 성형품
13 : 도전성 기재
14, 14a : 절연층
15 : 캐비티
18 : 금속층
19 : 전해조
21 : 대향 전극
32 : 패여진 곳
42a, 42b, 42c : 평면부
43a, 43b : 경사면부
52 : 단차부

Claims (9)

  1. 도전성 기재의 윗면에 겹쳐서 절연층을 형성하고, 상기 절연층에 오목부를 마련함과 함께 상기 오목부의 저면의 적어도 일부에서 상기 도전성 기재를 노출시켜 모형을 형성하는 모형 형성 공정과,
    상기 모형을 전해조 내에 배치하여 전압을 인가하고, 상기 오목부 내에서의 상기 도전성 기재의 노출면에 금속을 전착하는 전착 공정을 구비한 전기주조 방법으로서,
    상기 전착 공정에서, 상기 오목부의 폭이 300㎛ 이상인 경우에, 상기 오목부의 폭의 1/2.85배 이상의 높이를 갖는 공간을 남기도록 하여 상기 오목부 내에 금속층을 성장시키는 것을 특징으로 하는 전기주조 방법.
  2. 도전성 기재의 윗면에 겹쳐서 절연층을 형성하고, 상기 절연층에 오목부를 마련함과 함께 상기 오목부의 저면의 적어도 일부에서 상기 도전성 기재를 노출시켜 모형을 형성하는 모형 형성 공정과,
    상기 모형을 전해조 내에 배치하여 전압을 인가하고, 상기 오목부 내에서의 상기 도전성 기재의 노출면에 금속을 전착하는 전착 공정을 구비한 전기주조 방법으로서,
    상기 전착 공정에서, 상기 오목부의 폭이 200㎛ 이상 300㎛ 미만인 경우에, 상기 오목부의 폭의 1/3.75배 이상의 높이를 갖는 공간을 남기도록 하여 상기 오목부 내에 금속층을 성장시키는 것을 특징으로 하는 전기주조 방법.
  3. 도전성 기재의 윗면에 겹쳐서 절연층을 형성하고, 상기 절연층에 오목부를 마련함과 함께 상기 오목부의 저면의 적어도 일부에서 상기 도전성 기재를 노출시켜 모형을 형성하는 모형 형성 공정과,
    상기 모형을 전해조 내에 배치하여 전압을 인가하고, 상기 오목부 내에서의 상기 도전성 기재의 노출면에 금속을 전착하는 전착 공정을 구비한 전기주조 방법으로서,
    상기 전착 공정에서, 상기 오목부의 폭이 100㎛ 이상 200㎛ 미만인 경우에, 상기 오목부의 폭의 1/4배 이상의 높이를 갖는 공간을 남기도록 하여 상기 오목부 내에 금속층을 성장시키는 것을 특징으로 하는 전기주조 방법.
  4. 도전성 기재의 윗면에 겹쳐서 절연층을 형성하고, 상기 절연층에 오목부를 마련함과 함께 상기 오목부의 저면의 적어도 일부에서 상기 도전성 기재를 노출시켜 모형을 형성하는 모형 형성 공정과,
    상기 모형을 전해조 내에 배치하여 전압을 인가하고, 상기 오목부 내에서의 상기 도전성 기재의 노출면에 금속을 전착하는 전착 공정을 구비한 전기주조 방법으로서,
    상기 전착 공정에서, 상기 오목부의 폭이 100㎛ 미만인 경우에, 상기 오목부의 폭의 1/10배 이상의 높이를 갖는 공간을 남기도록 하여 상기 오목부 내에 금속층을 성장시키는 것을 특징으로 하는 전기주조 방법.
  5. 제 1항 내지 제 4항 중 어느 한 항에 있어서,
    상기 모형 형성 공정에서, 상기 오목부의 저면의 주연부의 적어도 일부분에 상기 절연층을 형성하는 것을 특징으로 하는 전기주조 방법.
  6. 제 1항 내지 제 4항 중 어느 한 항에 있어서,
    상기 오목부의 저면에 겹쳐지는 영역에서, 상기 도전성 기재의 윗면에 패여진 곳을 형성하고 있는 것을 특징으로 하는 전기주조 방법.
  7. 제 1항 내지 제 4항 중 어느 한 항에 있어서,
    상기 오목부의 저면에 노출하고 있는 상기 도전성 기재의 표면은, 전압 인가 방향에 수직한 면에 대한 경사각도가 60°이하가 되는 면을 주로 하여 구성된 집합인 것을 특징으로 하는 전기주조 방법.
  8. 제 1항 내지 제 4항 중 어느 한 항에 있어서,
    상기 모형 형성 공정에서, 상기 오목부의 측벽면에 상기 오목부의 개구 면적을 확대하는 단차부를 형성한 것을 특징으로 하는 전기주조 방법.
  9. 제 1항 내지 제 4항 중 어느 한 항에 있어서,
    상기 전착 공정에서, 상기 전해조 내에 흘린 전류의 적산 통전량이 소정치에 달한 때에 상기 전압을 정지하는 것을 특징으로 하는 전기주조 방법.
KR1020117005296A 2008-09-29 2009-09-11 전기주조 방법 KR101254888B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008251085A JP5470791B2 (ja) 2008-09-29 2008-09-29 電気鋳造方法
JPJP-P-2008-251085 2008-09-29
PCT/JP2009/004522 WO2010035417A1 (ja) 2008-09-29 2009-09-11 電気鋳造方法

Publications (2)

Publication Number Publication Date
KR20110039489A true KR20110039489A (ko) 2011-04-18
KR101254888B1 KR101254888B1 (ko) 2013-04-15

Family

ID=42059431

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117005296A KR101254888B1 (ko) 2008-09-29 2009-09-11 전기주조 방법

Country Status (7)

Country Link
US (1) US9085828B2 (ko)
EP (1) EP2336393B1 (ko)
JP (1) JP5470791B2 (ko)
KR (1) KR101254888B1 (ko)
CN (1) CN102149855B (ko)
TW (1) TWI428475B (ko)
WO (1) WO2010035417A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170267520A1 (en) * 2010-10-21 2017-09-21 Hewlett-Packard Development Company, L.P. Method of forming a micro-structure
US10370769B2 (en) * 2014-12-12 2019-08-06 Citizen Watch Co., Ltd. Method of manufacturing electroformed components
US10115690B2 (en) * 2015-02-26 2018-10-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing micro pins and isolated conductive micro pin
EP3168057A1 (fr) * 2015-11-11 2017-05-17 Nivarox-FAR S.A. Procede de fabrication d'une piece metallique avec au moins un motif a illusion d'optique
US10213144B2 (en) 2016-01-25 2019-02-26 International Business Machines Corporation Nanopatterned biosensor electrode for enhanced sensor signal and sensitivity
US10376193B2 (en) 2016-07-25 2019-08-13 International Business Machines Corporation Embedded sacrificial layer to enhance biosensor stability and lifetime for nanopatterned electrodes
JP6936955B2 (ja) * 2016-09-30 2021-09-22 日立金属株式会社 金属箔製造用陰極ドラムおよび金属箔の製造方法
US10161898B2 (en) * 2017-01-30 2018-12-25 International Business Machines Corporation Nanopatterned biosensor electrode for enhanced sensor signal and sensitivity
US10548530B2 (en) 2017-03-01 2020-02-04 International Business Machines Corporation Biosensor calibration structure containing different sensing surface area
WO2018208074A1 (ko) * 2017-05-10 2018-11-15 성낙훈 수직성장 전주가공물과 그 제작 방법
CN107447243B (zh) * 2017-06-19 2023-07-14 中南大学 一种用于金属微弧氧化单向表面改性的装置
EP3839626B1 (fr) * 2019-12-18 2023-10-11 Nivarox-FAR S.A. Procede de fabrication d'un composant horloger
KR102558919B1 (ko) 2021-05-28 2023-07-24 주식회사 이랜텍 전주도금을 이용한 캐패시터형 센서 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2831060B2 (ja) * 1989-11-22 1998-12-02 九州日立マクセル株式会社 電鋳製のic用リードフレーム
JP2992645B2 (ja) * 1990-11-19 1999-12-20 九州日立マクセル株式会社 透孔を有する電鋳製品の製造方法
JPH05259359A (ja) * 1992-03-14 1993-10-08 Justy:Kk Icパッケ―ジ用マイクロリ―ドピンのicチップ等への実装装着方法、icパッケ―ジ用マイクロリ―ドピン板の製造方法およびicパッケ―ジ用マイクロリ―ドピン板。
US7073254B2 (en) * 1993-11-16 2006-07-11 Formfactor, Inc. Method for mounting a plurality of spring contact elements
JPH0864145A (ja) * 1994-08-25 1996-03-08 Sumitomo Metal Mining Co Ltd アパチャーグリル
JPH08138941A (ja) * 1994-09-12 1996-05-31 Matsushita Electric Ind Co Ltd 積層型セラミックチップインダクタおよびその製造方法
KR100276052B1 (ko) * 1994-10-04 2000-12-15 모리시타 요이찌 전사도체의 제조방법 및 적층용 그린시트의 제조방법
JP3427332B2 (ja) 1995-02-21 2003-07-14 九州日立マクセル株式会社 精密微細パターンを有する電鋳製品の製造方法
US6156487A (en) * 1998-10-23 2000-12-05 Matsushita-Kotobuki Electronics Industries, Ltd. Top surface imaging technique for top pole tip width control in magnetoresistive read/write head processing
JP2001205599A (ja) * 2000-01-27 2001-07-31 Canon Inc マイクロガイド機構、マイクロアクチュエータおよびマイクロセンサ
US6933738B2 (en) * 2001-07-16 2005-08-23 Formfactor, Inc. Fiducial alignment marks on microelectronic spring contacts
US20050133375A1 (en) * 2002-06-28 2005-06-23 Gunter Schmid Method of producing electrodeposited antennas for RF ID tags by means of selectively introduced adhesive
WO2008018261A1 (en) * 2006-08-07 2008-02-14 Seiko Instruments Inc. Method for manufacturing electroformed mold, electroformed mold, and method for manufacturing electroformed parts

Also Published As

Publication number Publication date
EP2336393B1 (en) 2019-02-20
CN102149855B (zh) 2012-10-03
EP2336393A4 (en) 2016-01-27
TWI428475B (zh) 2014-03-01
KR101254888B1 (ko) 2013-04-15
EP2336393A1 (en) 2011-06-22
US9085828B2 (en) 2015-07-21
WO2010035417A1 (ja) 2010-04-01
US20110233063A1 (en) 2011-09-29
TW201022479A (en) 2010-06-16
CN102149855A (zh) 2011-08-10
JP5470791B2 (ja) 2014-04-16
JP2010084158A (ja) 2010-04-15

Similar Documents

Publication Publication Date Title
KR101254888B1 (ko) 전기주조 방법
TW201833389A (zh) 母板、母板的製造方法及遮罩的製造方法
CA1046446A (en) Production of metallic strands
Zhao et al. Experimental study on uniformity of copper layer with microstructure arrays by electroforming
KR101843035B1 (ko) 모판 및 마스크의 제조 방법
US5462648A (en) Method for fabricating a metal member having a plurality of fine holes
CN110670014A (zh) 一种母版芯模、掩膜板及其制作方法
JPH08258051A (ja) レンズ金型の製造方法
WO2006112696A2 (en) Method for electroforming a studded plate and a copy die, electroforming die for this method, and copy die
WO2010114358A1 (en) Method for producing an ecm tool and use thereof as a cathode in electrochemical machining of a workpiece
JPH09300573A (ja) 電鋳製薄状金属板およびその製造方法
US20230035647A1 (en) Electroforming process
KR20190005432A (ko) 전주가공에 사용되는 수직성장 마스터와 그 제조방법
JP5029094B2 (ja) 電気鋳造方法
KR100928476B1 (ko) 전주가공물의 균일성장 현상을 이용한 정밀치수의전주가공물을 제작하는 방법과 그 방법에 의한 전주가공물
KR20190001261A (ko) 수직성장 전주가공물과 그 제작 방법
KR20060068817A (ko) 전주가공물의 균일성장 현상을 이용한 전주마스타를제작하는 방법 및 그 방법에 의하여 제작되어진 전주마스타
JP2001026895A (ja) 電鋳用母型、その製造方法、電鋳用母型を用いた突起部を有する構造体の製造方法
KR20190001713A (ko) 수직성장을 유도하는 전주금형과 그 가공방법
JP2000301727A (ja) インクジェットノズル用のノズル基板の製造方法
JPH0673590A (ja) 電鋳成形型及びその製造方法
JP2002331530A (ja) レンズ金駒形成工法及びそのレンズ
KR20170034356A (ko) 입체 몸체 전체에 걸쳐 미세 패턴을 구비하는 패턴체 제조 방법
JPS61235591A (ja) 多孔金属薄板を製造するための電鋳用母型及びその製造方法
JPH0371410A (ja) 薄膜磁気ヘッドの製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160318

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170322

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180316

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190319

Year of fee payment: 7