WO2010029679A1 - 無水銀アルカリ乾電池 - Google Patents
無水銀アルカリ乾電池 Download PDFInfo
- Publication number
- WO2010029679A1 WO2010029679A1 PCT/JP2009/003406 JP2009003406W WO2010029679A1 WO 2010029679 A1 WO2010029679 A1 WO 2010029679A1 JP 2009003406 W JP2009003406 W JP 2009003406W WO 2010029679 A1 WO2010029679 A1 WO 2010029679A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zinc
- negative electrode
- less
- alkaline battery
- short fiber
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
- H01M6/08—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
Definitions
- the present invention relates to a mercury-free alkaline battery.
- An alkaline manganese dry battery using manganese dioxide for the positive electrode, zinc for the negative electrode, and an alkaline aqueous solution for the electrolyte is widely used as a power source for various devices because it is versatile and inexpensive.
- an amorphous zinc powder obtained by a gas atomizing method or the like is usually used as a negative electrode active material.
- mercury was added to the negative electrode to form amalgam on the surface of the zinc powder in order to ensure sufficient contact between the zinc powders and contact between the zinc powder and the current collector to increase current collection efficiency.
- Patent Document 5 discloses a battery in which mercury is added to acicular zinc produced by electrolysis instead of zinc powder to form a negative electrode active material.
- the dryness of alkaline batteries progressed, and as a result, the corrosion resistance and discharge characteristics of alkaline batteries decreased.
- Patent Documents 2 to 4 attempts have been made to improve discharge characteristics by using a zinc ribbon or fiber as a negative electrode active material.
- zinc fibers and zinc particles are fixed with an adhesive to form a negative electrode.
- zinc fibers are made into a wool (cotton) shape to form a porous solid zinc electrode.
- a zinc ribbon is used as a negative electrode active material. Since these negative electrodes are porous and zinc is fixed like a mercury-containing battery in which zinc powders or needle-shaped zincs are fixed by amalgam, they are used in current commercially available alkaline dry batteries. Instead of a gel electrolyte, a KOH aqueous solution is used as the electrolyte.
- a gel electrolyte is used so that zinc powder does not precipitate and separate from the electrolyte by silver-free.
- an aggregate of zinc powder that is not sufficiently in contact with the surrounding zinc powder or current collector in the gel electrolyte does not sufficiently react and remains unused as a negative electrode active material. This does not occur in the techniques described in 2 to 4.
- Patent Documents 2 to 4 are completely different from the current commercially available alkaline dry batteries, it is necessary to develop and use a new manufacturing process / equipment when manufacturing the manufacturing cost. There has been a problem that increases.
- the negative electrode is a structure in which zinc particles and zinc fibers are fixed with an adhesive, local stress is applied to the negative electrode structure due to expansion of the positive electrode due to discharge. There was a problem that the structure collapsed due to stress concentration and the network of electron conduction was cut off.
- the present invention has been made in view of such a point, and an object thereof is to provide a mercury-free alkaline battery capable of improving discharge characteristics at low cost.
- a mercury-free alkaline battery of the present invention includes a positive electrode, a negative electrode, and a separator, and the negative electrode is a short-fiber zinc as a negative electrode active material and a dispersion medium.
- the short fiber-shaped zinc containing a gel alkaline electrolyte has a length of 1 mm or more and 50 mm or less, a major axis of a cross section of 2 ⁇ m or more and 1 mm or less, and a specific surface area of 50 cm 2 / g or more and 1000 cm 2 / It was set as the structure which is g or less.
- the length of short fiber-shaped zinc is 2 times or more of the major axis of a cross section.
- the negative electrode does not contain an adhesive that bonds the negative electrode active materials to each other.
- the adhesive means that the negative electrode active materials are bonded and fixed in a dry battery, and the contact state between the negative electrode active materials is maintained.
- the adhesive is, for example, polyvinyl alcohol.
- the major axis and the minor axis of the cross section have a relationship of 0.1 ⁇ minor axis / major axis ⁇ 1.
- the crystal grain size of short fiber-shaped zinc is 1 ⁇ m or more and 50 ⁇ m or less.
- zinc particles having a maximum diameter of 500 ⁇ m or less are also included as the negative electrode active material, and the amount of short-fiber zinc is 2% by mass or more and 80% by mass or less in the total negative electrode active material.
- the major axis and minor axis of the cross section have a relationship of 0.15 ⁇ minor axis / major axis ⁇ 1, and the maximum diameter of the zinc particles is preferably 250 ⁇ m or less.
- the density of the negative electrode is 2.3 g / cm 3 or more 3.8 g / cm 3 or less.
- At least one substance selected from the group consisting of Al, Bi, In, Ca, and Mg is added to the short fiber-shaped zinc.
- At least one substance selected from the group consisting of Al, Bi, In, Ca, and Mg is added to the short fiber-shaped zinc and zinc particles.
- the short fiber shape has a length of 1 mm or more and 50 mm or less, a major axis of a cross section of 2 ⁇ m or more and 1 mm or less, and a specific surface area of 50 cm 2 / g or more and 1000 cm 2 / g or less.
- the short fiber-shaped zinc forms a close electronic conduction network and has high discharge characteristics. The process can be used as it is, and the manufacturing cost can be reduced.
- (A) is an external view of the roll used for a melt spinning method
- (b) is an enlarged view of a groove part. It is the chart which described the property of the produced zinc blob.
- 6 is a chart showing evaluation results of Examples 1 to 10 and Comparative Examples 1 to 19.
- 6 is a chart showing evaluation results of Examples 11 to 17.
- 6 is a chart showing evaluation results of Examples 18 to 28.
- 10 is a chart showing evaluation results of Examples 29 to 36.
- 6 is a chart showing evaluation results of Examples 37 to 43.
- 6 is a chart showing evaluation results of Examples 44 to 52. It is a partially broken view of the alkaline dry battery according to the embodiment.
- the small zinc lump here is a small lump or small piece of zinc used as a negative electrode active material having a maximum diameter and maximum length of several ⁇ m to 10 mm regardless of the shape. It is a concept that includes fiber-shaped zinc and zinc particles.
- the zinc here includes a zinc alloy containing a small amount of metal other than zinc (excluding mercury).
- Zinc lumps filled in a conventional commercially available alkaline battery are powders produced by the gas atomization method, and the shapes are irregular lumps such as potato, and the average particle size is around 180 ⁇ m. Thus, it is classified with a sieve.
- An example is zinc powder manufactured by Mitsui Kinzoku Co., Ltd. (lot No. 70SA-H, Al 50 ppm, Bi 50 ppm, In 200 ppm contained).
- short fiber-shaped zinc was produced by a melt spinning method.
- the melt spinning method is a method in which molten metal is ejected and dropped onto a rotating single roll and blown off by centrifugal force to form a metal blob.
- Various shapes of metal from strip metal to powder can be produced by adjusting the amount of molten metal ejected and the rotational speed of the roll.
- the method for producing short fiber-shaped zinc of the present application is not limited to the melt spinning method, and may be a melt spinning method, a cutting method, or the like.
- the short fiber-shaped zinc can be produced by a melt spinning method using a normal cylindrical or disk-shaped roll, but can also be produced using the roll 30 shown in FIG.
- a groove 31 is formed on the side surface of the cylinder farthest from the rotation shaft 32, and a short diameter / long diameter in a cross section (transverse cross section) perpendicular to the long axis direction is obtained by ejecting molten metal into the groove 31. It is possible to produce short fiber-shaped zinc having a large value.
- the minor axis / major axis value is determined by both the width m and the depth h of the groove 31.
- the shape of the groove 31 is not limited to a triangular cross section, and the cross section may be rectangular or U-shaped.
- the specific surface area of the zinc nodule was measured using a gas adsorption method.
- ASAP-2010 manufactured by Shimadzu Corporation was used as the measuring device.
- About 7g of zinc lumps are collected and placed in a measurement cell, vacuum degassed at 120 ° C for 2 hours, and then the amount of gas adsorbed is measured using Kr as the adsorbed gas.
- Kr as the adsorbed gas.
- the crystal grain size of the zinc lumps was measured from a micrograph. That is, the surface or cross section of the produced zinc block is magnified with an optical microscope or an electron microscope, a photograph is taken, and the crystal grain size in the photograph is measured. The magnification of the microscope was adjusted so that several tens or more of the area surrounded by the grain boundaries appeared in one photograph.
- Draw a plurality of straight lines arbitrarily in the micrograph select straight lines having intersections with 10 or more grain boundaries, and from the intersections of the straight lines and the first grain boundaries in 10 consecutive grain boundaries, The distance to the intersection of the straight line and the tenth grain boundary was measured, and a value r obtained by dividing the distance by 9 was obtained. Two or more such straight lines were selected to obtain r, and the average value of these r was taken as the crystal grain size of the zinc block.
- this mercury-free alkaline battery has a positive electrode mixture pellet 3 and a gelled negative electrode 6.
- the positive electrode mixture pellet 3 and the gelled negative electrode 6 are separated by a separator 4.
- the positive electrode case 1 is made of a nickel-plated steel plate.
- a graphite coating film 2 is formed inside the positive electrode case 1.
- the mercury-free alkaline battery shown in FIG. 9 can be produced as follows. That is, first, a plurality of hollow cylindrical positive electrode mixture pellets 3 containing a positive electrode active material such as manganese dioxide are inserted into the positive electrode case 1 and are brought into close contact with the inner surface of the positive electrode case 1 by pressurization.
- a positive electrode active material such as manganese dioxide
- the gelled negative electrode 6 is filled inside the separator 4.
- the gelled negative electrode 6 is prepared by previously mixing and dispersing a zinc blob as a negative electrode active material in a gelled alkaline electrolyte (dispersion medium). This zinc blob is produced as described above.
- an anionic surfactant, a quaternary ammonium salt type cationic surfactant and, if necessary, an indium compound are added to the alkaline electrolyte of the gelled negative electrode.
- the negative electrode current collector 10 in which the resin sealing plate 7, the bottom plate 8 also serving as the negative electrode terminal, and the insulating washer 9 are integrated is inserted into the gelled negative electrode 6. Then, the opening end of the positive electrode case 1 is crimped to the peripheral edge portion of the bottom plate 8 via the end portion of the sealing plate 7 to closely contact the opening portion of the positive electrode case 1.
- the anhydrous mercury alkaline battery in this embodiment can be obtained.
- a 33% by weight potassium hydroxide aqueous solution (containing 2% by weight of ZnO) is 54% by weight.
- the positive electrode was produced as follows. Electrolytic manganese dioxide and graphite are mixed at a weight ratio of 94: 6, and 1 part by weight of an electrolyte (39% by weight potassium hydroxide aqueous solution containing 2% by weight of ZnO) is mixed with 100 parts by weight of the mixed powder. Then, the mixture was uniformly stirred and mixed with a mixer to regulate the particle size. And the obtained granular material was pressure-molded using the hollow cylinder type
- electrolytic manganese dioxide used was HH-TF manufactured by Tosoh Corporation, and graphite used was SP-20 manufactured by Nippon Graphite Industries Co., Ltd.
- a separator and a bottom paper were further inserted.
- a vinylon-lyocell composite nonwoven fabric manufactured by Kuraray Co., Ltd. was used as the separator.
- 33% by weight aqueous potassium hydroxide solution (containing 2% by weight of ZnO) was injected inside the separator, the negative electrode was filled, and the bottom plate was caulked to prepare AA alkaline batteries.
- the dry batteries thus produced were evaluated under the following two types of discharge conditions.
- the temperature condition is 20 ° C. This condition is for determining so-called low rate discharge characteristics.
- Discharge condition (B) The discharge was performed at a constant current of 1000 mA, and the discharge capacity until the discharge voltage reached 0.9 V was evaluated.
- the temperature condition is 20 ° C. This condition is for determining so-called high rate discharge characteristics.
- FIG. 3 shows the evaluation results of the dry batteries A1 to A29 in Comparative Examples 1 to 19 and Examples 1 to 10.
- the batteries A2 to A19 are more discharged in the discharge conditions (A)
- the discharge capacity of (B) is slightly larger than battery A1, but there is no significant difference. This is because the batteries A2 to A5 have a short fiber-shaped zinc having a small cross-sectional major axis of 1 ⁇ m (A4 and A5 have a specific surface area larger than 1000 cm 2 / g), and the batteries A6 to A9 have short fiber-shaped zinc.
- the battery A10 ⁇ A15 specific surface area of the zinc of the short fiber shape is larger than 1000cm 2 / g (A15 In the case of the batteries A6 to A9, the length of the short-fiber zinc is longer than 50 mm (in A16, the specific surface area is further smaller than 50 cm 2 / g).
- the short fiber-shaped zinc has a length of 1 mm or more and 50 mm or less, a major axis of the cross section of 2 ⁇ m or more and 1 mm or less, and a specific surface area of 50 cm 2 / Since g is 1000 cm 2 / g or less, the discharge capacities of the discharge conditions (A) and (B) are significantly larger than those of Comparative Examples 1 to 18.
- the short fiber-shaped zinc has a length of 1 mm or more and 50 mm or less, a long diameter of a cross section of 2 ⁇ m or more and 1 mm or less, and a specific surface area of 50 cm 2 / g or more and 1000 cm 2 / g or less.
- the zinc fibers are intertwined well and the contact frequency increases, so the electronic conduction network between the zinc fibers becomes tight, and there are almost no isolated zinc fibers that are not electrically connected to other zinc fibers. It becomes like this. The effect is further enhanced when the gel electrolyte is contained.
- the zinc fibers By arranging the zinc fibers around the gel portion (gel small region portion) of the electrolytic solution, the zinc fibers come into closer contact. Further, the gel portion is continuously present between the short-fiber zincs, so that the electrolyte is easily diffused. If the electron conduction network between the zinc fibers is tight, the reaction proceeds uniformly in time throughout the aggregate of zinc fibers, so there is almost no zinc fiber left behind without the reaction progressing. Discharge capacity increases. In addition, when the diffusion of the electrolyte is hindered, the discharge voltage drops and the discharge capacity decreases even if an unreacted active material is present. However, if the zinc fiber of the example is used as the negative electrode active material, Things can be avoided.
- Comparative Example 1 is considered to be a dry battery substantially equivalent to a conventional alkaline battery
- the dry batteries of Examples 1 to 10 can be produced by the same manufacturing method, the same process and the same manufacturing apparatus as Comparative Example 1, and the conventional production line Therefore, it is possible to reliably suppress an increase in manufacturing cost.
- Comparative Example 1 in the aggregate of zinc lumps, it is difficult to keep the zinc lumps in contact with each other throughout the aggregate, so that the electron conductivity between the zinc lumps is poor and isolated. There are many zinc lumps, and they are delayed in reaction.
- Examples 11 to 17 are No. 1 in FIG.
- Batteries B1 to B7 were produced in the same manner as in Example 1 except that 30 to 36 short-fiber zinc was used as the negative electrode active material.
- the evaluation results under the discharge conditions (A) and (B) of these dry batteries are as shown in FIG.
- the value of the minor axis / major axis in the cross section of the short fiber-shaped zinc changes in order from 0.1 to 1, but 0.3 has the best discharge characteristics. It is more preferable that the value of the minor axis / major axis of the cross section is 0.15 or more and 1 or less because the discharge characteristics are better.
- the dry battery of Example 11 in which the value of the minor axis / major axis of the cross section is 0.1 is also practically sufficiently improved in the discharge characteristics as compared to the comparative battery.
- Examples 18 to 28 are No. 1 in FIG.
- Batteries C1 to C11 were produced in the same manner as in Example 1 except that 37 to 47 short-fiber zinc was used as the negative electrode active material.
- the evaluation results under the discharge conditions (A) and (B) of these dry batteries are as shown in FIG.
- Example 18 since the crystal grain size of short fiber-shaped zinc is as small as 0.5 ⁇ m, the amount of gas generated from the grain boundary is increased, and the degree of improvement in discharge characteristics is so high compared to Comparative Examples 1-19. There is no. Further, in Example 28, the crystal grain size of short fiber-shaped zinc is slightly large as 60 ⁇ m, so that the reactivity of zinc is somewhat suppressed, and the degree of improvement in discharge characteristics is not so high as compared with Comparative Examples 1-19. Therefore, the crystal grain size of short-fiber zinc is preferably 1 ⁇ m or more and 50 ⁇ m or less. However, the dry batteries of Example 18 and Example 28 are also practically sufficiently improved in discharge characteristics when compared with the comparative example.
- Examples 29 to 36> As shown in FIG. No. 40 short fiber-shaped zinc was used as the negative electrode active material. Dry batteries D1 to D8 were produced in the same manner as in Example 1 except that 1 potato-like zinc blob (granular zinc) was also added as the negative electrode active material. Note that the amount of short-fiber zinc is variously changed as shown in FIG. 6 with respect to the total negative electrode active material (zinc). The evaluation results under the discharge conditions (A) and (B) of these dry batteries are as shown in FIG.
- the battery D1 in which the short fiber-shaped zinc mixing ratio is 2% by mass has better high-rate and low-rate discharge characteristics than those of Comparative Examples 1 to 19, but both discharge characteristics compared to the batteries D2 to D7. Slightly low.
- the battery D8 in which the short fiber-shaped zinc mixing ratio is 85% by mass has better high-rate and low-rate discharge characteristics than Comparative Examples 1 to 19, but both of the battery D2 to the battery D7 have both characteristics. Discharge characteristics are slightly low.
- the mixing ratio of short fiber-shaped zinc in all negative electrode active materials is more preferably 2% by mass or more and 80% by mass or less.
- Examples 37 to 43> As shown in FIG. No. 30, 31, 33, 36 short-fiber zinc was used as the negative electrode active material. Dry batteries E1 to E7 were prepared in the same manner as in Example 1 except that 1 sprinkled zinc blob (granular zinc) was also added as the negative electrode active material. The amount of short fiber-shaped zinc in the total negative electrode active material (zinc) was 4 mass%, and the size (maximum diameter) of granular zinc was 0.25 mm or less and over 0.25 mm. The evaluation results under the discharge conditions (A) and (B) of these dry batteries are as shown in FIG.
- the maximum diameter of the granular zinc is larger than 0.25 mm, the discharge characteristics are improved as compared with the comparative examples 1 to 19.
- the degree of improvement is smaller than when the maximum diameter of granular zinc is 0.25 mm or less. This is presumably because when the maximum diameter of the granular zinc is larger than 0.25 mm, the function of forming an electron conduction network closely and the function of diffusion of the electrolyte are reduced. Therefore, the maximum diameter of the granular zinc to be mixed is preferably 0.25 mm or less.
- Example 44 to 52> As shown in FIG. No. 41 short fiber zinc was used as the negative electrode active material.
- dry batteries F1 to F9 were produced.
- the amount of short fiber-shaped zinc in the total negative electrode active material (zinc) was 7% by mass.
- the evaluation results of these batteries under the discharge conditions (A) and (B) are as shown in FIG.
- the batteries F1 and F9 have improved discharge characteristics as compared with Comparative Examples 1 to 19, but the degree of improvement is smaller than those of the batteries F2 to F8.
- the negative electrode density is less 2.3 g / cm 3 or more 3.8 g / cm 3, it is considered that where the action of the diffusion effect as the electrolytic solution to tightly form the electron conductive network be more effectively increased.
- the mercury-free alkaline battery according to the present invention has a large negative electrode utilization rate and improved discharge characteristics, and is useful for devices that require a long-life battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Primary Cells (AREA)
Abstract
Description
-亜鉛の小塊の作製-
アルカリ乾電池を作製するために、上述の三井金属株式会社製の亜鉛粉末を用いて、メルトスピニング法によって種々の形状の短繊維形状の亜鉛を作製した。作製条件と出来上がった亜鉛の形状・性質を図2の図表に示す。ノズルというのは、亜鉛粉末を加熱してロールに噴出する際に用いるものである。溝形状h/mがゼロであるのは、溝がなくフラットなロールを用いたことを示している。なお、作製条件が一定であっても出来上がった亜鉛の小塊の形状は一定ではないので、図表に示す形状は当該作製条件においてもっとも多くできた小塊の平均を示している。ここで形状がいも状(No.1)とあるのは原料の亜鉛粉末そのもののことである。
亜鉛の小塊の比表面積は、ガス吸着法を用いて測定した。測定装置には、島津製作所株式会社製のASAP-2010を用いた。亜鉛の小塊を約7g採取して測定セルに入れて、120℃、2時間の条件で真空脱ガス処理を行い、その後吸着ガスとしてKrを使用してガスの吸着量を測定して比表面積を換算した。
亜鉛の小塊の結晶粒径は、顕微鏡写真から測定した。すなわち、作製された亜鉛小塊の表面または断面を、光学顕微鏡や電子顕微鏡で拡大して写真を撮影し、その写真に写った結晶粒径を測定したものである。1枚の写真には粒界で囲まれた領域が数十個以上写るように顕微鏡の倍率を調整した。顕微鏡写真に任意に複数の直線を引いて、10個以上の粒界と交点を有する直線を選び、連続して並ぶ10個の粒界において前記直線と1個目の粒界との交点から、前記直線と10個目の粒界との交点までの距離を測定し、その距離を9で除した値rを求めた。このような直線をさらに2つ以上選んでrを求めて、これらのrの平均値を亜鉛小塊の結晶粒径とした。
以下、本発明の一実施の形態である、無水銀アルカリ乾電池について説明する。図9に示すように、この無水銀アルカリ乾電池は、正極合剤ペレット3と、ゲル状負極6とを有する。正極合剤ペレット3とゲル状負極6とはセパレータ4により隔てられている。正極ケース1は、ニッケルメッキされた鋼板からなる。この正極ケース1の内部には、黒鉛塗装膜2が形成されている。
上で説明した無水銀アルカリ乾電池において、負極活物質である亜鉛小塊の検討を行った実施例を以下に示す。なお、以下の実施例は本発明の例示であり、本発明はこれらの実施例に限定されるものではない。
ゲル状負極6を以下の手順で作製した。
図4に示すように、実施例11乃至17は、図2のNo.30乃至36の短繊維形状の亜鉛をそれぞれ負極活物質として用い、それ以外は実施例1と同様にして乾電池B1~B7を作製したものである。これらの乾電池の放電条件(A)、(B)による評価結果は図4に示す通りである。
図5に示すように、実施例18乃至28は、図2のNo.37乃至47の短繊維形状の亜鉛をそれぞれ負極活物質として用い、それ以外は実施例1と同様にして乾電池C1~C11を作製したものである。これらの乾電池の放電条件(A)、(B)による評価結果は図5に示す通りである。
図6に示すように、実施例29乃至36は、図2のNo.40の短繊維形状の亜鉛を負極活物質として用い、さらにNo.1のいも状の亜鉛小塊(粒状亜鉛)も負極活物質として加えて、それ以外は実施例1と同様にして乾電池D1~D8を作製した。なお、短繊維形状の亜鉛の量を全負極活物質(亜鉛)に対して図6に示すように種々に変更している。これらの乾電池の放電条件(A)、(B)による評価結果は図6に示す通りである。
図7に示すように、実施例37乃至43は、図2のNo.30,31,33,36の短繊維形状の亜鉛を負極活物質として用い、さらにNo.1のいも状の亜鉛小塊(粒状亜鉛)も負極活物質として加えて、それ以外は実施例1と同様にして乾電池E1~E7を作製したものである。なお、全負極活物質(亜鉛)中における短繊維形状の亜鉛の量は4質量%とし、粒状亜鉛の大きさ(最大径)を0.25mm以下と0.25mm超の2種類とした。これらの乾電池の放電条件(A)、(B)による評価結果は図7に示す通りである。
図8に示すように、実施例44乃至52は、図2のNo.41の短繊維形状の亜鉛を負極活物質として用い、No.1のいも状の亜鉛小塊(粒状亜鉛、最大径が0.25mm以下)も負極活物質として加えて、さらに負極の充填度合いを調節して負極の密度を変更しながら、それ以外は実施例1と同様にして乾電池F1~F9を作製したものである。なお、全負極活物質(亜鉛)中の短繊維形状の亜鉛の量は7質量%とした。これらの電池の放電条件(A)、(B)による評価結果は図8に示す通りである。
Claims (10)
- 正極と、負極と、セパレータと、を備え、
前記負極は、負極活物質である短繊維形状の亜鉛と、分散媒であるゲル状アルカリ電解液とを含み、
前記短繊維形状の亜鉛は、長さが1mm以上50mm以下であり、横断面の長径が2μm以上1mm以下であり、比表面積が50cm2/g以上1000cm2/g以下である、無水銀アルカリ乾電池。 - 前記負極には前記負極活物質同士を接着させる接着剤は含有されていない、請求項1に記載されている無水銀アルカリ乾電池。
- 前記接着剤はポリビニルアルコールである、請求項2に記載されている無水銀アルカリ乾電池。
- 前記横断面の長径と短径とが、0.1≦短径/長径≦1という関係を有する、請求項1から3のいずれか一つに記載されている無水銀アルカリ乾電池。
- 前記短繊維形状の亜鉛の結晶粒径が1μm以上50μm以下である、請求項1から4のいずれか一つに記載されている無水銀アルカリ乾電池。
- 前記負極活物質として最大径が500μm以下の亜鉛粒子も含まれており、前記短繊維形状の亜鉛の量は全負極活物質中の2質量%以上80質量%以下である、請求項1から5のいずれか一つに記載されている無水銀アルカリ乾電池。
- 前記横断面の長径と短径とが、0.15≦短径/長径≦1という関係を有し、前記亜鉛粒子の最大径が250μm以下である、請求項6に記載されている無水銀アルカリ乾電池。
- 負極の密度は、2.3g/cm3以上3.8g/cm3以下である、請求項1から7のいずれか一つに記載されている無水銀アルカリ乾電池。
- 前記短繊維形状の亜鉛には、Al、Bi、In、CaおよびMgからなる群から選ばれた少なくとも1種類の物質が添加されている、請求項1から8のいずれか一つに記載されている無水銀アルカリ乾電池。
- 前記短繊維形状の亜鉛および前記亜鉛粒子には、Al、Bi、In、CaおよびMgからなる群から選ばれた少なくとも1種類の物質が添加されている、請求項6または7に記載されている無水銀アルカリ乾電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010528597A JPWO2010029679A1 (ja) | 2008-09-12 | 2009-07-21 | 無水銀アルカリ乾電池 |
CN2009801354782A CN102150309A (zh) | 2008-09-12 | 2009-07-21 | 无汞碱性干电池 |
EP09812828A EP2323206A1 (en) | 2008-09-12 | 2009-07-21 | Mercury-free alkaline dry battery |
US13/058,798 US20110143210A1 (en) | 2008-09-12 | 2009-07-21 | Mercury-free alkaline dry battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008235323 | 2008-09-12 | ||
JP2008-235323 | 2008-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010029679A1 true WO2010029679A1 (ja) | 2010-03-18 |
Family
ID=42004945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003406 WO2010029679A1 (ja) | 2008-09-12 | 2009-07-21 | 無水銀アルカリ乾電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110143210A1 (ja) |
EP (1) | EP2323206A1 (ja) |
JP (1) | JPWO2010029679A1 (ja) |
CN (1) | CN102150309A (ja) |
WO (1) | WO2010029679A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2499686A2 (en) | 2009-11-11 | 2012-09-19 | Amprius, Inc. | Intermediate layers for electrode fabrication |
US9780365B2 (en) | 2010-03-03 | 2017-10-03 | Amprius, Inc. | High-capacity electrodes with active material coatings on multilayered nanostructured templates |
CN102780012B (zh) * | 2012-07-29 | 2014-11-26 | 宁波倍特瑞能源科技有限公司 | 一种无汞碱性干电池 |
JP7040056B2 (ja) * | 2017-09-28 | 2022-03-23 | 株式会社Gsユアサ | 鉛蓄電池 |
CN108844878A (zh) * | 2018-05-24 | 2018-11-20 | 宁德时代新能源科技股份有限公司 | 负极极片、极片活性比表面积的测试方法及电池 |
JP7068939B2 (ja) * | 2018-06-20 | 2022-05-17 | Fdk株式会社 | アルカリ電池、およびアルカリ電池用負極ゲルの製造方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3853625A (en) | 1970-04-03 | 1974-12-10 | Union Carbide Corp | Zinc fibers and needles and galvanic cell anodes made therefrom |
JPS6269463A (ja) * | 1985-09-20 | 1987-03-30 | Toshiba Battery Co Ltd | アルカリ電池 |
JPH0371737A (ja) | 1989-08-11 | 1991-03-27 | Nec Corp | 遠方監視光伝送装置 |
JPH06196155A (ja) * | 1992-12-22 | 1994-07-15 | Fuji Elelctrochem Co Ltd | 電池の負極亜鉛缶 |
JPH07254406A (ja) * | 1994-03-15 | 1995-10-03 | Toshiba Battery Co Ltd | 無汞化亜鉛アルカリ電池 |
JP2001524254A (ja) * | 1997-05-02 | 2001-11-27 | エヴァレディー バッテリー カンパニー インコーポレイテッド | 電気化学電池のアノード用亜鉛形材 |
JP2002531923A (ja) | 1998-12-01 | 2002-09-24 | エヴァレディー バッテリー カンパニー インコーポレイテッド | 電気化学的電池用の電極構成 |
JP2004095512A (ja) * | 2002-09-04 | 2004-03-25 | Dowa Mining Co Ltd | アルカリ電池用亜鉛合金粉末及びその製造方法並びにそれを用いたアルカリ電池 |
JP2004179044A (ja) * | 2002-11-28 | 2004-06-24 | Hitachi Maxell Ltd | アルカリ一次電池用負極活物質、およびそれを用いたアルカリ一次電池 |
JP2005535076A (ja) * | 2002-07-31 | 2005-11-17 | ザ ジレット カンパニー | ポリマー電解質を有するアルカリ電池 |
JP2008516410A (ja) | 2004-10-15 | 2008-05-15 | ザ ジレット カンパニー | 改良型アノードを備えたアルカリ電池 |
JP2008518408A (ja) | 2004-11-01 | 2008-05-29 | テクコミンコ・メタルズ・リミテッド | 多孔性固体亜鉛電極およびその作製方法 |
JP2008181891A (ja) * | 2000-11-17 | 2008-08-07 | Toshiba Battery Co Ltd | 密閉形ニッケル亜鉛一次電池、その正極及びそれらの製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1265486C (zh) * | 2000-11-17 | 2006-07-19 | 东芝电池株式会社 | 密闭形镍锌一次电池、其正极以及它们的制造方法 |
US7147678B2 (en) * | 2003-07-03 | 2006-12-12 | The Gillette Company | Alkaline cell with improved anode |
JP4736345B2 (ja) * | 2004-04-23 | 2011-07-27 | パナソニック株式会社 | アルカリ電池 |
JP2008171762A (ja) * | 2007-01-15 | 2008-07-24 | Matsushita Electric Ind Co Ltd | マンガン乾電池及びマンガン乾電池用負極亜鉛缶 |
US20080193851A1 (en) * | 2007-02-09 | 2008-08-14 | Rovcal, Inc. | Alkaline electrochemical cell having improved gelled anode |
-
2009
- 2009-07-21 CN CN2009801354782A patent/CN102150309A/zh active Pending
- 2009-07-21 JP JP2010528597A patent/JPWO2010029679A1/ja not_active Withdrawn
- 2009-07-21 EP EP09812828A patent/EP2323206A1/en not_active Withdrawn
- 2009-07-21 WO PCT/JP2009/003406 patent/WO2010029679A1/ja active Application Filing
- 2009-07-21 US US13/058,798 patent/US20110143210A1/en not_active Abandoned
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3853625A (en) | 1970-04-03 | 1974-12-10 | Union Carbide Corp | Zinc fibers and needles and galvanic cell anodes made therefrom |
JPS6269463A (ja) * | 1985-09-20 | 1987-03-30 | Toshiba Battery Co Ltd | アルカリ電池 |
JPH0371737A (ja) | 1989-08-11 | 1991-03-27 | Nec Corp | 遠方監視光伝送装置 |
JPH06196155A (ja) * | 1992-12-22 | 1994-07-15 | Fuji Elelctrochem Co Ltd | 電池の負極亜鉛缶 |
JPH07254406A (ja) * | 1994-03-15 | 1995-10-03 | Toshiba Battery Co Ltd | 無汞化亜鉛アルカリ電池 |
JP2001524254A (ja) * | 1997-05-02 | 2001-11-27 | エヴァレディー バッテリー カンパニー インコーポレイテッド | 電気化学電池のアノード用亜鉛形材 |
JP2002531923A (ja) | 1998-12-01 | 2002-09-24 | エヴァレディー バッテリー カンパニー インコーポレイテッド | 電気化学的電池用の電極構成 |
JP2008181891A (ja) * | 2000-11-17 | 2008-08-07 | Toshiba Battery Co Ltd | 密閉形ニッケル亜鉛一次電池、その正極及びそれらの製造方法 |
JP2005535076A (ja) * | 2002-07-31 | 2005-11-17 | ザ ジレット カンパニー | ポリマー電解質を有するアルカリ電池 |
JP2004095512A (ja) * | 2002-09-04 | 2004-03-25 | Dowa Mining Co Ltd | アルカリ電池用亜鉛合金粉末及びその製造方法並びにそれを用いたアルカリ電池 |
JP2004179044A (ja) * | 2002-11-28 | 2004-06-24 | Hitachi Maxell Ltd | アルカリ一次電池用負極活物質、およびそれを用いたアルカリ一次電池 |
JP2008516410A (ja) | 2004-10-15 | 2008-05-15 | ザ ジレット カンパニー | 改良型アノードを備えたアルカリ電池 |
JP2008518408A (ja) | 2004-11-01 | 2008-05-29 | テクコミンコ・メタルズ・リミテッド | 多孔性固体亜鉛電極およびその作製方法 |
Also Published As
Publication number | Publication date |
---|---|
US20110143210A1 (en) | 2011-06-16 |
EP2323206A1 (en) | 2011-05-18 |
CN102150309A (zh) | 2011-08-10 |
JPWO2010029679A1 (ja) | 2012-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4377904B2 (ja) | 電極の製造方法及び非水電解質電池の製造方法 | |
WO2010029679A1 (ja) | 無水銀アルカリ乾電池 | |
CN105406033A (zh) | 正极合剂、正极、固体电池及它们的制造方法 | |
KR20030063374A (ko) | 밀폐형 니켈 아연 일차 전지, 그 양극 및 이의 제조 방법 | |
JPWO2018193994A1 (ja) | 全固体リチウムイオン二次電池 | |
JP2001126757A (ja) | リチウム電池 | |
JP2013101770A (ja) | 小型非水電解質二次電池及びその製造方法 | |
CN110024183B (zh) | 碱性干电池 | |
WO2010067494A1 (ja) | アルカリ乾電池 | |
CN102668183A (zh) | 圆筒型碱性电池 | |
JP3341693B2 (ja) | 酸化銀電池の電極用活物質粉体と電極材料およびそれらの製造方法 | |
JPH10188955A (ja) | 電池用電極、電極の製造方法、及び電池 | |
JP2012113945A (ja) | リチウムイオン電池用負極材料及びその製造方法 | |
JP3908892B2 (ja) | 非水系二次電池の負極用黒鉛材料 | |
US6221527B1 (en) | Electrode for an electrochemical cell including ribbons | |
WO2017130674A1 (ja) | 固定電解質および、固体電解質を用いた全固体リチウム電池 | |
EP2631973A1 (en) | Electrode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same | |
WO2010029678A1 (ja) | 無水銀アルカリ乾電池 | |
WO2010067493A1 (ja) | アルカリ乾電池 | |
JP6868794B2 (ja) | アルカリ乾電池 | |
WO2003009406A1 (en) | Alkaline dry battery | |
JPWO2018066204A1 (ja) | アルカリ乾電池 | |
JP4352187B2 (ja) | 空気電池用正極の製造方法 | |
US20110189517A1 (en) | Alkaline battery | |
JP2000294233A (ja) | アルカリ乾電池用正極合剤の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980135478.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09812828 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010528597 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009812828 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13058798 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |