WO2010026849A1 - 集積型薄膜太陽電池 - Google Patents

集積型薄膜太陽電池 Download PDF

Info

Publication number
WO2010026849A1
WO2010026849A1 PCT/JP2009/063869 JP2009063869W WO2010026849A1 WO 2010026849 A1 WO2010026849 A1 WO 2010026849A1 JP 2009063869 W JP2009063869 W JP 2009063869W WO 2010026849 A1 WO2010026849 A1 WO 2010026849A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
photoelectric conversion
thin film
layer
electrode layer
Prior art date
Application number
PCT/JP2009/063869
Other languages
English (en)
French (fr)
Inventor
善之 奈須野
武田 徹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2009801347806A priority Critical patent/CN102144299B/zh
Priority to EP09811378A priority patent/EP2323168A1/en
Priority to US13/061,210 priority patent/US8907203B2/en
Publication of WO2010026849A1 publication Critical patent/WO2010026849A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • H01L27/1421Energy conversion devices comprising bypass diodes integrated or directly associated with the device, e.g. bypass diode integrated or formed in or on the same substrate as the solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an integrated thin film solar cell.
  • FIG. 6 of Patent Document 1 discloses an integrated thin film solar cell including a string in which a plurality of thin film photoelectric conversion elements are electrically connected in series.
  • a thin film photoelectric conversion element is formed by sequentially laminating a transparent electrode layer, a photoelectric conversion layer, and a metal electrode layer on a translucent insulating substrate, and on the metal electrode layers of three or more thin film photoelectric conversion elements.
  • a current collecting electrode made of a metal bar is joined via a brazing material.
  • FIG. 1 of Patent Document 1 discloses an integrated thin film solar cell having the following structure.
  • the metal electrode layer and the photoelectric conversion layer are partially removed to form a groove, and the collector electrode is buried in the groove to directly form the transparent electrode layer. It is a structure electrically connected to. This structure is also disclosed in FIG.
  • the integrated thin film solar cells of the prior arts 1 and 2 having a structure in which a collecting electrode is joined to three or more thin film photoelectric conversion elements include a plurality of thin films between a collecting electrode on one end side and an intermediate integrated electrode.
  • the photoelectric conversion elements are connected in series to form one series connection string.
  • the series connection strings adjacent to each other in the series connection direction are configured such that the current directions are opposite to each other.
  • FIG. 1 of Patent Document 3 discloses an integrated thin film solar cell having a structure in which current collecting electrodes are bonded only to metal electrode layers of thin film photoelectric conversion elements at both ends in a series connection direction. Has been.
  • FIG. 4 discloses an integrated thin film solar cell having a structure in which current collecting electrodes are bonded only to metal electrode layers of thin film photoelectric conversion elements at both ends in a series connection direction. Has been.
  • FIG. 4 As prior art 4, FIG.
  • Patent Document 3 shows metal electrode layers of thin film photoelectric conversion elements at both ends in the series connection direction and one or more thin film photoelectric conversion elements between the thin film photoelectric conversion elements at both ends.
  • An integrated thin film solar cell having a structure in which a current collecting electrode is joined to the metal electrode layer is disclosed.
  • the thin film photoelectric conversion element is as thin as about 200 to 5000 nm.
  • the photoelectric conversion layer between the metal electrode layer and the transparent electrode layer is short-circuited halfway due to the pressure pressing the current collecting electrode against the surface of the metal electrode layer.
  • the photoelectric conversion layer directly under the current collecting electrode has a normal photoelectric conversion function, the electric power generated by this photoelectric conversion layer is consumed at the short-circuit portion and locally generates heat. This local heat generation causes, for example, occurrence of substrate cracking, film peeling, electrode damage, collecting electrode dropping off, and the like.
  • the separation between the photoelectric conversion layer directly below the collecting electrode and the other photoelectric conversion layer adjacent thereto in the series connection direction is not sufficient, one thin film photoelectric conversion element When the contact between the metal electrode layer and the transparent electrode layer of another thin film photoelectric conversion element adjacent to the metal electrode layer is insufficient, a large current flows intensively at the short-circuited portion in the photoelectric conversion layer. An exotherm occurs.
  • the above-mentioned “short-circuiting halfway” means a state in which the electric resistance is larger than the normal electric short-circuiting (electric resistance range: 10 to 1000 ohms) and heat is generated when a current flows. means.
  • reference numeral 101 denotes a light-transmitting insulating substrate
  • 102 denotes a transparent electrode layer
  • 104 denotes a metal electrode layer
  • 104a denotes a conductive part for series connection
  • 105 denotes a thin film photoelectric conversion element
  • 106 and 107 denote collectors.
  • the electric electrode is represented.
  • An object of the present invention is to solve such problems of the prior art and to provide an integrated thin film solar cell capable of preventing local heat generation caused by a short circuit inside the thin film photoelectric conversion element.
  • a string formed of a plurality of thin film photoelectric conversion elements formed on a light-transmitting insulating substrate and electrically connected in series with each other, and one or more electrically connected to the string Current collector electrode
  • the thin film photoelectric conversion element includes a light-transmitting first electrode layer stacked on a light-transmitting insulating substrate, a photoelectric conversion layer stacked on the first electrode layer, and a second electrode stacked on the photoelectric conversion layer.
  • the collector electrode is electrically bonded onto the second electrode layer of any thin film photoelectric conversion element in the string,
  • the string has an element isolation groove formed by removing the second electrode layer and the photoelectric conversion layer between two adjacent thin film photoelectric conversion elements,
  • the first electrode layer of one thin film photoelectric conversion element has an extending portion whose one end crosses the element isolation groove and extends to the area of another adjacent thin film photoelectric conversion element, and of the adjacent thin film photoelectric conversion element Electrically insulated from the first electrode layer by an electrode separation line;
  • the second electrode layer of one thin film photoelectric conversion element is electrically connected to the extension part of the first electrode layer of the adjacent thin film photoelectric conversion element through a conductive part penetrating the photoelectric conversion layer,
  • the thin film photoelectric conversion element joined to the current collecting electrode includes an integrated thin film solar cell in which at least a portion immediately below the current collecting electrode and the other portion of the first electrode layer are insulated and separated by at least one of an electrode separation line and an insulation line. Provided.
  • the integrated thin film solar cell of the present invention is a thin film photoelectric conversion element bonded to a current collecting electrode, wherein at least a portion immediately below the current collecting electrode and other portions of the first electrode layer are separated by an electrode separation line and an insulating line. Insulated and separated by at least one of the above. Therefore, even if a halfway short-circuit occurs in the photoelectric conversion layer immediately below due to pressure or heat at the time of joining the current collecting electrode on an arbitrary thin film photoelectric conversion element of the string, the current collecting of the first electrode layer Since the portion directly under the electrode is insulated and separated from other portions, no current flows. As a result, local heat generation at the short-circuited portion is prevented. Therefore, the integrated thin film solar cell of the present invention can prevent substrate cracking, film peeling, electrode damage, collecting electrode dropping, and the like due to local heat generation.
  • FIG. 1 is a plan view showing Embodiment 1 of the integrated thin film solar cell of the present invention.
  • 2A is a sectional view of the integrated thin film solar cell of FIG. 1 cut in the series connection direction
  • FIG. 2B is a side view of the integrated thin film solar cell of FIG. 1 viewed from the series connection direction.
  • FIG. 2C is a side view of a modified example of the integrated thin film solar cell of FIG. 1 as viewed from the series connection direction.
  • FIG. 3 is a plan view showing Embodiment 2 of the integrated thin film solar cell of the present invention.
  • FIG. 4 is a plan view showing Embodiment 3 of the integrated thin film solar cell of the present invention.
  • FIG. 5 is a cross-sectional view of the integrated thin film solar cell of FIG. 4 cut in the series connection direction.
  • FIG. 6 is a partial sectional view showing a conventional integrated thin film solar cell.
  • FIG. 7 is a partial sectional view showing another conventional integrated thin film solar cell.
  • the material, number and position of the collecting electrode, the number, shape, dimensions and material of the thin film photoelectric conversion elements constituting the string, the number and arrangement of the strings, the electrical connection method between the strings, etc. There is no particular limitation.
  • embodiments of the integrated thin film solar cell of the present invention will be described in detail with reference to the drawings.
  • the embodiment is an example of the present invention, and the present invention is not limited to the embodiment.
  • FIG. 1 is a plan view showing Embodiment 1 of the integrated thin film solar cell of the present invention.
  • 2A is a sectional view of the integrated thin film solar cell of FIG. 1 cut in the series connection direction
  • FIG. 2B is a side view of the integrated thin film solar cell of FIG. 1 viewed from the series connection direction.
  • FIG. 2C is a side view of a modified example of the integrated thin film solar cell of FIG. 1 as viewed from the series connection direction.
  • an arrow E indicates a direction in which a current flows (current direction), and when simply referred to as “upstream” or “downstream” in this specification, it means upstream or downstream in the current direction.
  • an arrow A indicates a series connection direction, which means a direction in which a plurality of thin film photoelectric conversion elements connected in series are arranged.
  • the arrow B has shown the direction orthogonal to a serial connection direction.
  • This integrated thin-film solar cell includes a rectangular translucent insulating substrate 1, a string S formed on the insulating substrate 1, and a plurality of thin-film photoelectric conversion elements 5 electrically connected in series with each other, and a string One first current collecting electrode 6 and one second current electrode which are electrically joined to the second electrode layers 4 of the thin film photoelectric conversion elements 5a and 5b on both sides of the serial connection direction A in S via a brazing material. And a current collecting electrode 7.
  • the thin film photoelectric conversion element 5 is formed by laminating a transparent first electrode layer 2, a photoelectric conversion layer 3, and a second electrode layer 4 in this order on an insulating substrate 1.
  • a plurality of strings S are arranged on the same insulating substrate 1 in a direction B orthogonal to the series connection direction with a plurality of (in this case, 11) string separation grooves 8 extending in the series connection direction A. (In this case, 12 pieces) are arranged in parallel, and a plurality of strings S are connected in parallel.
  • the “integrated thin film solar cell” may be abbreviated as “solar cell”, and the “thin film photoelectric conversion element” may be referred to as “cell”.
  • the string S is an element formed by removing the second electrode layer 4 and the photoelectric conversion layer 3 between two adjacent cells (thin film photoelectric conversion elements) 5.
  • a separation groove 9 is provided.
  • the element isolation groove 9 has an arrow B so as to electrically isolate the second electrode 4 and the photoelectric conversion layer 3 of one cell 5 from the second electrode 4 and the photoelectric conversion layer 3 of another adjacent cell 5. It extends in the direction.
  • the first electrode layer 2 of one cell 5 extends such that one end (the downstream end in the current direction E) extends across the element isolation groove 9 to a region of another adjacent cell 5.
  • the electrode separation line 10 is electrically insulated from the adjacent 1st electrode layer 2 which has the part 2a.
  • one end of the second electrode layer 4 of one cell 5 (upstream end portion in the current direction E) is connected to the first electrode of the adjacent cell 5 via the series conductive portion 4 a penetrating the photoelectric conversion layer 3.
  • the layer 2 is electrically connected to the extending portion 2a.
  • the conductive portion 4a can be integrally formed of the same material in the same process as the second electrode layer 4. Further, in the cell 5a joined to the first collector electrode 6 of the string S and the cell 5b joined to the second collector electrode 7, the portion immediately below the collector electrode of the first electrode layer 2 is insulated and separated from the other portions. ing.
  • the cell 5a joined to the first current collecting electrode 6 includes a first part 5a1 directly below and in the vicinity of the first current collecting electrode 6, and a first part 5a1. And a second portion 5a2 on the downstream side in the current direction E. Then, an insulation line in which the portion 2b immediately below the first current collecting electrode 6 of the first electrode layer 2 and its vicinity 2b (that is, the first electrode layer 2b of the first portion 5a1) is formed on the downstream side in the current direction E. 11 is electrically insulated from the other part 2c of the first electrode layer (that is, the first electrode layer 2c of the second part 5a2).
  • the cell separation is performed so that the cell 5a is electrically insulated from the first electrode layer of the other upstream cell.
  • the line 10 is not provided, the absence of another cell on the upstream side functions as an electrode separation line.
  • the first electrode layer 2b at least immediately below the first current collecting electrode 6 is electrically connected to the first electrode layer 2c on the downstream side. Therefore, the current at the time of solar cell power generation flows from the first collector electrode 6 to the cell 5a2 without flowing through the cell 5a1, and from the first electrode layer 2c to the downstream cell 5 through the conductive portion 4a. To flow. Accordingly, as described above, even if a halfway short circuit occurs in the photoelectric conversion layer 3 immediately below the first current collecting electrode 6 in the cell 5a, no current flows through the first part 5a1 having the short circuit part. Therefore, local heat generation at the short-circuited portion is prevented, and it is possible to prevent the first current collecting electrode 6 from dropping, substrate cracking, film peeling, electrode damage, and the like due to the heat generation.
  • the cell 5 b joined to the second current collecting electrode 7 has an electrode separation line 10 on the upstream side in the current direction E from the second current collecting electrode 7. Further, no other cell is arranged on the downstream side in the current direction E of the cell 5b.
  • the first electrode layer 2 at least immediately below the second collector electrode 7 is the first electrode layer 2 of the upstream cell 5. Therefore, the current from the upstream cell 5 does not flow to the first electrode layer 2 of the cell 5b, and the second electrode layer 4 and the second collector electrode via the conductive portion 4a. It flows to 7.
  • the cell 5b at the most downstream position does not substantially contribute to power generation, and therefore the second electrode 4 of the cell 5b is used as an extraction electrode for the first electrode 2 of the adjacent cell 5. . Accordingly, as described above, even if a halfway short circuit occurs in the photoelectric conversion layer 3 immediately below the second current collecting electrode 7 in the cell 5b, no current flows through the short circuit portion. Therefore, local heat generation at the short-circuited portion can be prevented, and it is possible to prevent the second collector electrode 7 from dropping, substrate cracking, film peeling, electrode damage, and the like due to the heat generation.
  • each cell 5a (at least the first portion 5a1) joined to the first current collecting electrode 6 and each cell 5b joined to the second current collecting electrode 7 are as shown in FIG. May be integrally connected to each other, or may be separated by string separation grooves 8 as shown in FIG.
  • the string separating groove 8 does not completely divide two adjacent strings S, and the cells 5a (at least 5a1) and the cells 5b at both ends in the direction of arrow A extend long in the direction of arrow B. For this reason, both ends of all the strings S are electrically connected in parallel to the first current collecting electrode 6 and the second current collecting electrode 7 through the common second electrode layer 4.
  • the string separating groove 8 completely divides two adjacent strings S, but all the strings S are electrically connected in parallel by the first and second current collecting electrodes 6 and 7. Has been.
  • the string separation groove 8 is formed by removing the first groove 8a formed by removing the first electrode layer 2, and removing the photoelectric conversion layer 3 and the second electrode layer 4 with a width wider than the width of the first groove 8a.
  • the second groove 8b is preferably formed in order to prevent the first electrode layer 2 and the second electrode layer 4 of each cell from being short-circuited by the formation of the string separation groove 8. This will be described in detail later.
  • the plurality of strings S are formed on the inner side of the outer peripheral end face (end face of the four sides) of the translucent insulating substrate 1.
  • the outer peripheral region of the surface of the insulating substrate 1 is a non-conductive surface region 12 in which the first electrode layer 2, the photoelectric conversion layer 3, and the second electrode layer 4 are not formed, and the width thereof is that of the solar cell.
  • the dimension range is set according to the output voltage.
  • Translucent insulating substrate and first electrode layer As the translucent insulating substrate 1, a glass substrate having heat resistance and translucency in the subsequent film forming process, a resin substrate such as polyimide, and the like can be used.
  • the first electrode layer 2 is made of a transparent conductive film, and is preferably made of a transparent conductive film made of a material containing ZnO or SnO 2 .
  • the material containing SnO 2 may be SnO 2 itself or a mixture of SnO 2 and another oxide (for example, ITO which is a mixture of SnO 2 and In 2 O 3 ).
  • each semiconductor layer forming the photoelectric conversion layer 3 is not particularly limited, for example, made of silicon-based semiconductor, CIS (CuInSe 2) compound semiconductor, CIGS (Cu (In, Ga ) Se 2) compound semiconductor or the like.
  • silicon-based semiconductor means a semiconductor (silicon carbide, silicon germanium, or the like) in which carbon, germanium, or other impurities are added to amorphous silicon, microcrystalline silicon, amorphous or microcrystalline silicon.
  • microcrystalline silicon means silicon in a mixed phase state of crystalline silicon having a small crystal grain size (about several tens to thousands of thousands) and amorphous silicon. Microcrystalline silicon is formed, for example, when a crystalline silicon thin film is manufactured at a low temperature using a non-equilibrium process such as a plasma CVD method.
  • the photoelectric conversion layer 3 is formed by laminating a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer in order from the first electrode 2 side. Note that the i-type semiconductor layer may be omitted.
  • the p-type semiconductor layer is doped with p-type impurity atoms such as boron and aluminum, and the n-type semiconductor layer is doped with n-type impurity atoms such as phosphorus.
  • the i-type semiconductor layer may be a completely non-doped semiconductor layer, or may be a weak p-type or weak n-type semiconductor layer having a small amount of impurities and sufficiently equipped with a photoelectric conversion function.
  • amorphous layer and “microcrystalline layer” mean amorphous and microcrystalline semiconductor layers, respectively.
  • the photoelectric conversion layer 3 may be a tandem type in which a plurality of pin structures are stacked. For example, an a-Si: Hp layer, an a-Si: Hi layer, and an a-Si: Hn layer are formed on the first electrode 2.
  • the upper semiconductor layer may be sequentially stacked, and the lower semiconductor layer may be formed by stacking a ⁇ c-Si: Hp layer, a ⁇ c-Si: Hi layer, and a ⁇ c-Si: Hn layer in this order on the upper semiconductor layer.
  • the pin structure may be a photoelectric conversion layer 3 having a three-layer structure including an upper semiconductor layer, a middle semiconductor layer, and a lower semiconductor layer.
  • amorphous silicon a-Si
  • lower semiconductor layers are used.
  • ⁇ c-Si microcrystalline silicon
  • the combination of the material and laminated structure of the photoelectric conversion layer 3 is not particularly limited.
  • the semiconductor layer located on the light incident side of the thin-film solar cell is the upper semiconductor layer, and the semiconductor layer located on the side opposite to the light incident side is the lower semiconductor layer.
  • a straight line written in the photoelectric conversion layer 3 in (a) to (c) represents a boundary between the upper semiconductor layer and the lower semiconductor layer.
  • the configuration and material of the second electrode layer 4 are not particularly limited, but in one example, the second electrode 4 has a stacked structure in which a transparent conductive film and a metal film are stacked on the photoelectric conversion layer.
  • the transparent conductive film is made of ZnO, ITO, SnO 2 or the like.
  • the metal film is made of a metal such as silver or aluminum.
  • the second electrode layer 4 may be made of only a metal film such as Ag or Al.
  • the transparent conductive film such as ZnO, ITO or SnO 2 is disposed on the photoelectric conversion layer 3 side, the second electrode layer 4 is absorbed by the photoelectric conversion layer 3.
  • the reflectance which reflects the light which did not exist in the back electrode layer 4 improves, and it is preferable at the point which can obtain the thin film solar cell of high conversion efficiency.
  • a back surface sealing material is laminated on the translucent insulating substrate 1 via an adhesive layer so as to completely cover the string S and the nonconductive surface region 8.
  • an adhesive layer for example, a sealing resin sheet made of ethylene-vinyl acetate copolymer (EVA) can be used.
  • EVA ethylene-vinyl acetate copolymer
  • the back surface sealing material for example, a laminated film in which an aluminum film is sandwiched between PET films can be used.
  • the adhesive layer and the back surface sealing material are previously formed with small holes for leading the leading ends of the lead wires 13 connected to the current collecting electrodes to the outside.
  • a terminal box having an output line and a terminal electrically connected to each take-out line 13 is attached on the back surface sealing material.
  • a frame for example, made of aluminum is attached to the outer peripheral portion of the solar cell sealed with the back surface sealing material and the adhesive layer.
  • This integrated thin film solar cell A pre-division string in which a plurality of cells 5 in which a first electrode layer 2, a photoelectric conversion layer 3, and a second electrode layer 4 are laminated in this order on one surface of a translucent insulating substrate 1 are electrically connected in series with each other. Forming a film, and A plurality of strings are formed by removing predetermined portions of the cell portion and the pre-division string formed on the outer peripheral portion of one surface of the insulating substrate 1 with a light beam to form the non-conductive surface region 12 and the string separation groove 8.
  • a film removal step of forming S A current collector in which the first current collecting electrode 6 and the second current collecting electrode 7 are electrically joined to each other via the brazing material on the second electrode layers 4 of the cells 5a and 5b at both ends in the series connection direction A in the plurality of strings S. It can manufacture with the manufacturing method including an electrode joining process.
  • a transparent conductive film having a film thickness of 600 to 1000 nm is formed on the entire surface of the translucent insulating substrate 1 by CVD, sputtering, vapor deposition, or the like, and the transparent conductive film is partially irradiated with a light beam.
  • the first electrode layer 2 having a predetermined pattern is formed by forming a plurality of parallel electrode separation lines 10 extending in the arrow B direction.
  • the transparent conductive film is separated into a strip shape with a predetermined width by irradiating the fundamental wave (wavelength: 1064 nm) of the YAG laser from the translucent insulating substrate 1 side, and a plurality of electrode separation lines 10 are separated at predetermined intervals.
  • one insulating line 11 is formed under the same conditions as the electrode separation line 10 in the cell formation region at the most upstream position.
  • an upper semiconductor layer is formed by laminating an a-Si: Hp layer, an a-Si: Hi layer (film thickness of about 150 nm to 300 nm), and an a-Si: Hn layer in this order on the first electrode 2.
  • a lower semiconductor layer is formed by laminating a ⁇ c-Si: Hp layer, a ⁇ c-Si: Hi layer (film thickness of about 1.5 ⁇ m to 3 ⁇ m), and a ⁇ c-Si: Hn layer in this order on the semiconductor layer.
  • the photoelectric conversion layer 3 having a predetermined pattern is formed by partially removing the photoelectric conversion film having a tandem structure with a light beam to form a contact line for forming the conductive portion 4a.
  • the photoelectric conversion film is separated into strips with a predetermined width by irradiating the second harmonic (wavelength: 532 nm) of the YAG laser from the translucent insulating substrate 1 side.
  • the second harmonic (wavelength: 532 nm) of the YVO 4 laser may be used as the laser instead of the second harmonic of the YAG laser.
  • a conductive film is formed on the photoelectric conversion layer 3 so as to completely embed the contact line by a method such as CVD, sputtering, vapor deposition, etc., and the conductive film and the photoelectric conversion layer 3 are partially removed by a light beam.
  • the second electrode layer 4 having a predetermined pattern is formed.
  • a plurality of cells 5 are connected in series on the translucent insulating substrate 1 at the conductive portion 4a, and the cells at the most upstream and downstream positions where the first and second current collecting electrodes 6 and 7 are joined.
  • a pre-division string having a structure in which no current flows is formed in the first electrode layers 2b and 2 immediately below the collecting electrodes 5a and 5b (see FIG. 2A). At this time, since the pre-division string is not yet divided into a plurality of cells, one cell extends long in the arrow B direction.
  • the conductive film can have a two-layer structure of a transparent conductive film (ZnO, ITO, SnO 2 or the like) and a metal film (Ag, Al, or the like).
  • the film thickness of the transparent conductive film can be 10 to 200 nm, and the film thickness of the metal film can be 100 to 500 nm.
  • the second harmonic of the YAG laser or the second of the YVO 4 laser having high transparency to the first conductive layer 2 is used. By irradiating harmonics from the translucent insulating substrate 1 side, the conductive film is separated into strips with a predetermined width, and element isolation grooves 9 are formed. At this time, it is preferable to select a processing condition that minimizes damage to the first electrode layer 2 and suppresses the generation of burrs of the silver electrode after processing the second electrode layer 4.
  • the first electrode layer 2 which is a thin film photoelectric conversion element portion formed on the outer peripheral portion of the surface of the translucent insulating substrate 1 with a predetermined width inward from the outer peripheral end surface of the translucent insulating substrate 1;
  • the non-conductive surface region 12 is formed on the entire circumference.
  • the cell portion of the division part is removed to form a plurality of string separation grooves 8.
  • the first electrode layer 2, the photoelectric conversion layer 3, and the second electrode layer 4 are partially removed by irradiating the fundamental wave (wavelength: 1064 nm) of the YAG laser from the translucent insulating substrate 1 side.
  • the first groove 8a is formed.
  • the photoelectric conversion layer 3 and the second electrode are irradiated by irradiating the second harmonic of the YAG laser or the second harmonic of the YVO 4 laser having high transparency with respect to the first conductive layer 2 from the translucent insulating substrate 1 side.
  • the string separation groove 8 can be formed by partially removing 4 in a width wider than the width of the first groove 8a to form the second groove 8b.
  • the conductive material scattered by the formation of the first groove 8a and adhered to the inner surface of the groove can be removed, and the first electrode layer 2 and the second electrode 8 can be removed.
  • a short circuit with the electrode layer 4 can be avoided.
  • a brazing material for example, silver paste
  • the first and second current collecting electrodes 6 and 7 were pressed and adhered to the brazing material. Heat later.
  • the first and second current collecting electrodes 6 and 7 are electrically connected to the second electrode layer 4 to form a current extraction portion.
  • the applied pressure is, for example, about 60 N
  • the heat energy of heating is, for example, about 300 ° C.
  • the lead wire 13 is brazed to a predetermined location of the first and second current collecting electrodes 6 and 7.
  • a transparent EVA sheet and a back surface sealing material as an adhesive layer are stacked on the back surface side (non-light-receiving surface side) of the solar cell, and the back surface sealing material is solar cell through the adhesive layer using a vacuum laminator. Adhere to and seal. At this time, a laminated film in which an Al film is sandwiched between PET films is preferably used as the back surface sealing material. Thereafter, the lead-out line 13 is electrically connected to the output line of the terminal box, the terminal box is bonded to the back surface sealing material, and the inside of the terminal box is filled with silicone resin. And metal frame (for example, aluminum frame) is attached to the outer peripheral part of a thin film solar cell, and commercialization is completed.
  • metal frame for example, aluminum frame
  • FIG. 3 is a plan view showing Embodiment 2 of the integrated thin film solar cell of the present invention. 3 that are the same as those in FIGS. 1 and 2 are denoted by the same reference numerals.
  • a plurality of strings S are arranged in parallel in a direction B orthogonal to the series connection direction A across one or more string separation grooves extending in the series connection direction on the same translucent insulating substrate 1.
  • the plurality of strings S are completely separated for each group by at least one string separation groove.
  • each group of the separated strings S is connected in parallel by the first current collecting electrode 16 and the second current collecting electrode 17, and a group of a plurality of strings S connected in parallel is connected in series.
  • six strings S are formed on the same insulating substrate 1, and a first group of three strings S adjacent to each other and a first group of other three strings S adjacent to each other.
  • the two groups are completely separated by one string separation groove 18A.
  • the string separation groove 18B in each group does not completely separate the two adjacent strings S, and the cells 5a and 5b at both ends in the series connection direction A in the three strings S of each group are integrated.
  • the 1st and 2nd current collection electrodes 16 and 17 are joined individually on these integrated cells 5a and 5b. Therefore, although the three strings S of each group are electrically connected in parallel, the first group and the second group are not electrically connected in parallel.
  • the first current collecting electrode 16 of the first group and the second current collecting electrode 17 of the second group are connected to the connection line provided directly or in the terminal box by the lead-out line 13a.
  • the remaining first and second current collecting electrodes 16 and 17 are electrically connected to the output line of the terminal box via the lead-out line 13.
  • the current generated in the first group and the second group flows in the current direction E, and the first group and the second group are connected in series. It is effective to make it the structure which can output this electric current.
  • the other configurations and effects are the same as those in the first embodiment, and the first and second current collecting electrodes 6 and 7 are prevented from falling off.
  • FIG. 3 is a plan view showing Embodiment 3 of the integrated thin film solar cell of the present invention
  • FIG. 5 is a cross-sectional view of the integrated thin film solar cell of FIG. 4 cut in the series connection direction.
  • symbol is attached
  • the third embodiment is different from the first embodiment in the following two points.
  • an intermediate collector electrode 14 is formed on the second electrode layer 4 of one or more cells 5c between the cells 5a and 5b at both ends having the first collector electrode 6 and the second collector electrode 7. That formed.
  • the first electrode 2d immediately below and in the vicinity of the intermediate collector electrode 14 is connected to the first electrode of the other part by the insulating line 11 formed on the downstream side thereof. Insulated and separated from the layer 2e.
  • 12 strings S are arranged on the same translucent insulating substrate 1 with the string separation groove 8 interposed therebetween, and the first and second strings are arranged.
  • the current collecting electrodes 6 and 7 are joined to the cells 5a and 5b of the strings S on the upstream side and the downstream side in the current direction E, and the strings S are electrically connected in parallel.
  • one intermediate current collecting electrode 14 is joined via a brazing material (for example, silver paste) on the cell 5c at a substantially intermediate position in the series connection direction A of each string S.
  • the cells 5c joined to the intermediate current collecting electrode 14 are separated from each other by the string separation grooves 8 as shown in FIG. 2C. However, as shown in FIG. It may be connected in a shape.
  • the electrode separation line 10 is arranged on the upstream side in the current direction E from directly below the middle current collection electrode 14, as in the first embodiment.
  • the insulating line 11 is arranged downstream of the intermediate collector electrode 14 immediately below. That is, the first electrode layer 2 d immediately below the intermediate collector electrode 14 is insulated and separated from the first electrode layer 2 of the upstream cell 5 by the separation line 10, and downstream of the same cell 5 c by the insulation line 11.
  • the first electrode layer 2e is insulated and separated. Therefore, a part of the current from the cell 5 upstream of the cell 5c joined to the intermediate collector electrode 14 flows to the intermediate collector electrode 14 via the conductive portion 4a and the second electrode layer 4 of the cell 5c.
  • the portion flows through the photoelectric conversion layer 3 to the first electrode layer 2e, and does not flow to the first electrode layer 2d immediately below the intermediate collector electrode 14. Therefore, even if a halfway short circuit occurs in the photoelectric conversion layer 3 immediately below the intermediate current collecting electrode 14 in the cell 5c, no current flows through the short circuit portion. Therefore, local heat generation at the short-circuited portion can be prevented, and it is possible to prevent the intermediate collecting electrode 14 from dropping, substrate cracking, film peeling, electrode damage, and the like due to the heat generation.
  • the solar cell of Embodiment 3 configured as described above has a plurality of strings S electrically connected in parallel by the first collector electrode 6, the intermediate collector electrode 14, and the second collector electrode 7.
  • a plurality of bypass diodes D provided in the terminal box T are electrically connected in parallel to the plurality of strings S that are connected and electrically connected in parallel via the lead-out line 13. They are electrically connected in series with each other. With such connection, an integrated thin film solar cell having a high voltage output can be obtained while maintaining hot spot resistance.
  • Embodiment 3 it is the same as that of Embodiment 1 except such a structure, and can manufacture according to the manufacturing method of Embodiment 1.
  • the first electrode layer 2 of the cell 5b joined to the second collector electrode 7 is a metal of the solar cell. There is a possibility of short circuit to the frame. Therefore, in the solar cell having the structure shown in FIG. 2 (Embodiment 1), an insulating line is formed on the upstream side of the second collector electrode 7 of the first electrode layer 2 of the cell 5b on the most downstream side. Even if the first electrode layer 2 of the cell 5b is short-circuited to the metal frame, the current from the solar cell can be prevented from flowing to the metal frame. 2.
  • the number of strings, the mounting position and the number of current collecting electrodes are not limited to the above-described embodiment.
  • the first and second current collecting electrodes at both ends in the series connection direction are the first electrodes while leaving the intermediate current collecting electrodes. It may be connected to a layer (p-side electrode, n-side electrode). Moreover, you may provide an intermediate
  • the string forming region of the same translucent insulating substrate may be divided into four sections, a group of strings may be formed in each section, and a plurality of groups may be connected in a desired form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 透光性絶縁基板上に形成されて互いに電気的に直列接続された複数の薄膜光電変換素子で構成されたストリングと、ストリングに電気的に接合された1つ以上の集電電極とを備え、薄膜光電変換素子は、透光性絶縁基板上に積層された透光性第1電極層と、第1電極層上に積層された光電変換層と、光電変換層上に積層された第2電極層とを有し、集電電極は、ストリングにおける任意の薄膜光電変換素子の第2電極層上に電気的に接合され、ストリングは、隣接する2つの薄膜光電変換素子の間に第2電極層および光電変換層が除去されて形成された素子分離溝を有し、一つの薄膜光電変換素子の第1電極層は、その一端が素子分離溝を横切って隣接する他の薄膜光電変換素子の領域まで延びた延出部を有し、かつ隣接する薄膜光電変換素子の第1電極層とは電極分離ラインによって電気的に絶縁され、一つの薄膜光電変換素子の第2電極層は、光電変換層を貫通する導電部を介して隣接する薄膜光電変換素子の第1電極層の延出部と電気的に接続し、集電電極と接合した薄膜光電変換素子は、第1電極層の少なくとも集電電極直下部分と他部分とが、電極分離ラインおよび絶縁ラインの少なくとも一方によって絶縁分離されている集積型薄膜太陽電池。

Description

集積型薄膜太陽電池
 本発明は、集積型薄膜太陽電池に関する。
 従来技術1として、例えば特許文献1の図6には、複数の薄膜光電変換素子が電気的に直列接続されたストリングを備えた集積型薄膜太陽電池が開示されている。
 従来技術1において、薄膜光電変換素子は、透光性絶縁基板上に透明電極層、光電変換層および金属電極層が順次積層されてなり、3箇所以上の薄膜光電変換素子の金属電極層上に、金属バーからなる集電電極がろう材を介して接合されている。
 また、従来技術2の集積型薄膜太陽電池として、特許文献1の図1には、次の構造の集積型薄膜太陽電池が開示されている。
 この構造は、集電電極を接合する薄膜光電変換素子において、金属電極層と光電変換層を部分的に除去して溝を形成し、その溝内に集電電極を埋設して直接透明電極層と電気的に接続した構造である。
 この構造は特許文献2の図1にも開示されている。
 3箇所以上の薄膜光電変換素子に集電電極が接合した構造を有する従来技術1および2の集積型薄膜太陽電池は、一端側の集電電極と中間の集積電極との間にある複数の薄膜光電変換素子が直列接続されて1つの直列接続ストリングが構成されている。さらに、直列接続方向に隣接する直列接続ストリングは電流方向が相互に逆向きとなるように構成されている。
 また、従来技術3として、特許文献3の図1には、直列接続方向の両端の薄膜光電変換素子の金属電極層のみに、集電電極が接合された構造を有する集積型薄膜太陽電池が開示されている。
 さらに、従来技術4として、特許文献3の図3には、直列接続方向の両端の薄膜光電変換素子の金属電極層と、これら両端の薄膜光電変換素子の間の1つ以上の薄膜光電変換素子の金属電極層に、集電電極が接合された構造を有する集積型薄膜太陽電池が開示されている。
特開2005-353767号公報 特開2000-49369号公報 特開2001-68713号公報
 従来技術1の集積型薄膜太陽電池では、集電電極を薄膜光電変換素子の金属電極層上にろう材を介して接合する際、薄膜光電変換素子は膜厚が200~5000nm程度と薄いため、集電電極を金属電極層の表面に押し付ける圧力によって、金属電極層と透明電極層の間の光電変換層が中途半端に短絡する場合がある。
 この場合、集電電極の直下の光電変換層は通常の光電変換機能を有しているため、この光電変換層で発電した電力が前記短絡部で消費されて局所的に発熱する。この局所的な発熱は、例えば、基板割れ、膜剥がれ、電極損傷、集電電極脱落等の発生原因となる。
 さらに、前記の場合に加えて、集電電極の直下の光電変換層と、これに対して直列接続方向に隣接する他の光電変換層との分離が十分でないために、一の薄膜光電変換素子の金属電極層と隣接する他の薄膜光電変換素子の透明電極層との接触が不十分となっている場合には、光電変換層内の短絡箇所に大電流が集中的に流れるため、より大きな発熱が生じる。
 なお、前記の「中途半端に短絡する」とは、通常の電気的な短絡よりも電気抵抗が大きく(電気抵抗の範囲:10~1000オーム)、電流が流れる際に発熱を伴う様な状態を意味する。
 従来技術2の場合、集電電極が透明電極層上に形成されるため、従来技術1のような短絡の問題はない。
 素子直列接続構造のストリング内に中間集電電極114が設けられた従来技術4の場合、図6および図7に示すように、中間集電電極114の直下の光電変換層3内に短絡箇所が存在すると、この光電変換層3も局所的に発熱するおそれがある。なお、図6および図7において、符号101は透光性絶縁基板、102は透明電極層、104は金属電極層、104aは直列用の導電部、105は薄膜光電変換素子、106および107は集電電極を表している。
 本発明は、このような従来技術の課題を解決し、薄膜光電変換素子内部の短絡が原因の局所的な発熱を防止できる集積型薄膜太陽電池を提供することを目的とする。
 かくして、本発明によれば、透光性絶縁基板上に形成されて互いに電気的に直列接続された複数の薄膜光電変換素子で構成されたストリングと、ストリングに電気的に接合された1つ以上の集電電極とを備え、
 薄膜光電変換素子は、透光性絶縁基板上に積層された透光性第1電極層と、第1電極層上に積層された光電変換層と、光電変換層上に積層された第2電極層とを有し、
 集電電極は、ストリングにおける任意の薄膜光電変換素子の第2電極層上に電気的に接合され、
 ストリングは、隣接する2つの薄膜光電変換素子の間に第2電極層および光電変換層が除去されて形成された素子分離溝を有し、
 一つの薄膜光電変換素子の第1電極層は、その一端が素子分離溝を横切って隣接する他の薄膜光電変換素子の領域まで延びた延出部を有し、かつ隣接する薄膜光電変換素子の第1電極層とは電極分離ラインによって電気的に絶縁され、
 一つの薄膜光電変換素子の第2電極層は、光電変換層を貫通する導電部を介して隣接する薄膜光電変換素子の第1電極層の延出部と電気的に接続し、
 集電電極と接合した薄膜光電変換素子は、第1電極層の少なくとも集電電極直下部分と他部分とが、電極分離ラインおよび絶縁ラインの少なくとも一方によって絶縁分離されている集積型薄膜太陽電池が提供される。
 本発明の集積型薄膜太陽電池は、上述のように、集電電極と接合した薄膜光電変換素子において、第1電極層の少なくとも集電電極直下部分と他部分とは、電極分離ラインおよび絶縁ラインの少なくとも一方によって絶縁分離されている。
 したがって、ストリングの任意の薄膜光電変換素子上に集電電極を接合する際の圧力あるいは熱によって、その直下の光電変換層内に中途半端な短絡が生じたとしても、第1電極層の集電電極直下部分は他部分と絶縁分離されているため電流が流れない。その結果、短絡箇所での局所的な発熱が防止される。
 よって、本発明の集積型薄膜太陽電池は、局所的な発熱が原因で基板割れ、膜剥がれ、電極損傷、集電電極脱落等が発生することを防止することができる。
図1は本発明の集積型薄膜太陽電池の実施形態1を示す平面図である。 図2(a)は図1の集積型薄膜太陽電池の直列接続方向に切断した断面図であり、図2(b)は図1の集積型薄膜太陽電池を直列接続方向から見た側面図であり、図2(c)は図1の集積型薄膜太陽電池の変形例を直列接続方向から見た側面図である。 図3は本発明の集積型薄膜太陽電池の実施形態2を示す平面図である。 図4は本発明の集積型薄膜太陽電池の実施形態3を示す平面図である。 図5は図4の集積型薄膜太陽電池の直列接続方向に切断した断面図である。 図6は従来の集積型薄膜太陽電池を示す部分断面図である。 図7は従来の別の集積型薄膜太陽電池を示す部分断面図である。
 本発明において、集電電極の材料、数および接合位置、ストリングを構成する薄膜光電変換素子の数、形状、寸法および材料、ストリングの数および配置、複数のストリング同士の電気的な接続方法等は、特に限定されるものではない。
 以下、図面を参照しながら本発明の集積型薄膜太陽電池の実施形態を詳しく説明する。なお、実施形態は本発明の一例であり、本発明は実施形態によって限定されるものではない。
(実施形態1)
 図1は本発明の集積型薄膜太陽電池の実施形態1を示す平面図である。図2(a)は図1の集積型薄膜太陽電池の直列接続方向に切断した断面図であり、図2(b)は図1の集積型薄膜太陽電池を直列接続方向から見た側面図であり、図2(c)は図1の集積型薄膜太陽電池の変形例を直列接続方向から見た側面図である。
 図1および図2(a)において、矢印Eは電流が流れる方向(電流方向)を示し、本明細書において単に「上流」または「下流」と称する場合は電流方向の上流または下流を意味する。
 また、図1および図2(a)において、矢印Aは直列接続方向を示し、直列接続された複数の薄膜光電変換素子が並ぶ方向を意味する。
 また、図1および図2(a)において、矢印Bは直列接続方向と直交する方向を示している。
 この集積型薄膜太陽電池は、四角形の透光性絶縁基板1と、絶縁基板1上に形成されて互いに電気的に直列接続された複数の薄膜光電変換素子5で構成されたストリングSと、ストリングSにおける直列接続方向Aの両側の薄膜光電変換素子5a、5bの第2電極層4上にろう材を介して電気的に接合された1本の第1集電電極6および1本の第2集電電極7とを備える。
 薄膜光電変換素子5は、絶縁基板1上に透光性第1電極層2、光電変換層3および第2電極層4がこの順に積層されてなる。
 第1および第2集電電極6、7としては、例えば銅線、はんだメッキ銅線等が用いられる。
 さらに、この太陽電池は、ストリングSが、同一の絶縁基板1上に、直列接続方向Aに延びる複数(この場合11本)のストリング分離溝8を挟んで直列接続方向と直交する方向Bに複数(この場合12個)並列して配置され、かつ複数のストリングSが並列接続されている。
 以下、「集積型薄膜太陽電池」を「太陽電池」と略称し、「薄膜光電変換素子」を「セル」と称する場合がある。
<ストリング>
 図1および図2(a)に示すように、ストリングSは、隣接する2つのセル(薄膜光電変換素子)5の間に第2電極層4および光電変換層3が除去されて形成された素子分離溝9を有している。この素子分離溝9は、一つのセル5の第2電極4および光電変換層3と、隣接する他のセル5の第2電極4および光電変換層3とを電気的に分離するよう、矢印B方向に延びて形成されている。
 このストリングSにおいて、一つのセル5の第1電極層2は、その一端(電流方向Eの下流側端部)が素子分離溝9を横切って隣接する他のセル5の領域まで延びた延出部2aを有し、かつ隣接する第1電極層2とは電極分離ライン10によって電気的に絶縁されている。
 また、一つのセル5の第2電極層4の一端(電流方向Eの上流側端部)は、光電変換層3を貫通する直列用の導電部4aを介して隣接するセル5の第1電極層2の延出部2aと電気的に接続している。なお、導電部4aは、第2電極層4と同一工程にて同一材料で一体的に形成することができる。
 さらに、このストリングSの第1集電電極6と接合したセル5aおよび第2集電電極7と接合したセル5bにおいて、第1電極層2の集電電極直下部分は他の部分と絶縁分離されている。
 具体的に説明すると、図2(a)に示すように、第1集電電極6と接合したセル5aは、第1集電電極6の直下および近傍の第1部分5a1と、第1部分5a1よりも電流方向Eの下流側の第2部分5a2とを有している。そして、第1電極層2の第1集電電極6の直下およびその近傍部分2b(すなわち、第1部分5a1の第1電極層2b)が、その電流方向Eの下流側に形成された絶縁ライン11によって、第1電極層の他部分2c(すなわち、第2部分5a2の第1電極層2c)と電気的に絶縁分離されている。
 さらに、このセル5aの電流方向Eの上流側には他のセルが配置されていないため、セル5aは上流側の他のセルの第1電極層と電気的に絶縁されるための前記電極分離ライン10を有していないが、上流側に他のセルが無いことが電極分離ラインの機能を果たしている。
 このように、第1集電電極6と接合した最上流位置のセル5aにおいて、第1集電電極6の少なくとも直下部分の第1電極層2bは、下流側の第1電極層2cと電気的に絶縁分離しているため、太陽電池発電時の電流は第1集電電極6からセル5a1を流れずにセル5a2を流れ、第1電極層2cから導電部4aを介して下流側のセル5へ流れる。
 したがって、上述のように、セル5aにおける第1集電電極6の直下の光電変換層3内に中途半端な短絡が生じたとしても、短絡箇所を有する第1部分5a1には電流が流れない。そのため、短絡箇所での局所的な発熱が防止され、その発熱が原因で第1集電電極6の脱落、基板割れ、膜剥がれ、電極損傷等が発生することを防止することができる。
 一方、第2集電電極7と接合したセル5bは、電極分離ライン10を第2集電電極7よりも電流方向Eの上流側に有している。さらに、このセル5bの電流方向Eの下流側には他のセルが配置されていない。
 このように、第2集電電極7と接合した最下流位置のセル5bにおいて、第2集電電極7の少なくとも直下部分の第1電極層2は、上流側のセル5の第1電極層2と電気的に絶縁分離しているため、上流側のセル5からの電流は、セル5bの第1電極層2へは流れず導電部4aを介して第2電極層4および第2集電電極7へ流れる。つまり、最下流位置のセル5bは、実質的に発電に寄与しておらず、そのため、このセル5bの第2電極4は、隣接するセル5の第1電極2の引き出し電極として用いられている。
 したがって、上述のように、セル5bにおける第2集電電極7の直下の光電変換層3内に中途半端な短絡が生じたとしても、短絡箇所には電流が流れない。そのため、短絡箇所での局所的な発熱が防止され、その発熱が原因で第2集電電極7の脱落、基板割れ、膜剥がれ、電極損傷等が発生することを防止することができる。
 また、複数のストリングSにおいて、第1集電電極6と接合した各セル5a(少なくとも第1部分5a1)および第2集電電極7と接合した各セル5bは、図2(b)に示すように一体状に繋がっていてもよく、あるいは図2(c)に示すようにストリング分離溝8によって分離されていてもよい。
 図2(b)の場合、ストリング分離溝8は隣接する2つのストリングSを完全に分割しておらず、矢印A方向の両端のセル5a(少なくとも5a1)およびセル5bは矢印B方向に長く延びており、そのため、全てのストリングSの両端はそれぞれ共通の第2電極層4を介して第1集電電極6および第2集電電極7と電気的に並列接続されていることになる。
 図2(c)の場合、ストリング分離溝8は隣接する2つのストリングSを完全に分割しているが、第1および第2集電電極6、7によって全てのストリングSは電気的に並列接続されている。
 ストリング分離溝8は、第1電極層2を除去して形成された第1溝8aと、光電変換層3および第2電極層4を第1溝8aの幅よりも広い幅で除去して形成された第2溝8bとからなることが、ストリング分離溝8の形成によって各セルの第1電極層2と第2電極層4とが短絡すること防止する上で好ましい。なお、これについて詳しくは後述する。
 また、複数のストリングSは、透光性絶縁基板1の外周端面(四辺の端面)よりも内側に形成されている。つまり、絶縁基板1の表面の外周領域は、第1電極層2、光電変換層3および第2電極層4が形成されていない非導電性表面領域12とされており、その幅は太陽電池の出力電圧に応じた寸法範囲に設定されている。
〔透光性絶縁基板および第1電極層〕
 透光性絶縁基板1としては、以降の膜形成プロセスにおける耐熱性および透光性を有するガラス基板、ポリイミド等の樹脂基板等が使用可能である。
 また、第1電極層2は、透明導電膜からなり、好ましくは、ZnOまたはSnO2を含む材料からなる透明導電膜からなる。SnO2を含む材料は、SnO2自体であってもよく、SnO2と別の酸化物の混合物(例えば、SnO2とIn23の混合物であるITO)であってもよい。
〔光電変換層〕
 光電変換層3を構成する各半導体層の材料は、特に限定されず、例えば、シリコン系半導体、CIS(CuInSe2)化合物半導体、CIGS(Cu(In,Ga)Se2)化合物半導体等からなる。
 以下、各半導体層がシリコン系半導体からなる場合を例にとって説明を進める。
 「シリコン系半導体」とは、非晶質シリコン、微結晶シリコン、非晶質または微結晶シリコンに炭素やゲルマニウム又はその他の不純物が添加された半導体(シリコンカーバイド、シリコンゲルマニウム等)を意味する。また、「微結晶シリコン」とは、結晶粒径が小さい(数十から千Å程度)結晶シリコンと、非晶質シリコンとの混合相の状態のシリコンを意味する。微結晶シリコンは、例えば、結晶シリコン薄膜をプラズマCVD法などの非平衡プロセスを用いて低温で作製した場合に形成される。
 光電変換層3は、第1電極2側から順にp型半導体層、i型半導体層およびn型半導体層が積層されてなる。なお、i型半導体層を省略してもよい。
 p型半導体層には、ボロン、アルミニウム等のp型不純物原子がドープされており、n型半導体層にはリン等のn型不純物原子がドープされている。i型半導体層は、完全にノンドープである半導体層であってもよく、微量の不純物を含む弱p型または弱n型で光電変換機能を十分に備えている半導体層であってもよい。
 なお、本明細書において、「非晶質層」及び「微結晶層」は、それぞれ、非晶質および微結晶の半導体層を意味する。
 また、光電変換層3は、pin構造が複数重ねられたタンデム型でもよく、例えば、第1電極2上にa-Si:Hp層、a-Si:Hi層、a-Si:Hn層をこの順に積層した上部半導体層と、上部半導体層上にμc-Si:Hp層、μc-Si:Hi層、μc-Si:Hn層をこの順に積層した下部半導体層とから構成されてもよい。
 また、pin構造を上部半導体層、中部半導体層および下部半導体層からなる3層構造の光電変換層3としてもよく、例えば、上部および中部半導体層にアモルファスシリコン(a-Si)、下部半導体層に微結晶シリコン(μc-Si)を用いた3層構造でも構わない。
 光電変換層3の材料および積層構造の組み合わせは、特に限定されるものではない。
 なお、本発明の実施形態および実施例においては、薄膜太陽電池の光入射側に位置する半導体層を上部半導体層とし、光入射側と反対側に位置する半導体層を下部半導体層とし、図2(a)~(c)中の光電変換層3内に記された直線は上部半導体層と下部半導体層との境界を表している。
〔第2電極層〕
 第2電極層4の構成や材料は、特に限定されないが、一例では、第2電極4は、透明導電膜と金属膜とが光電変換層上に積層した積層構造を有する。
 透明導電膜は、ZnO、ITO、SnO2などからなる。金属膜は、銀、アルミニウム等の金属からなる。
 なお、第2電極層4はAg、Al等の金属膜のみでも良いが、ZnO、ITO、SnO2等の透明導電膜を光電変換層3側に配置した方が、光電変換層3で吸収されなかった光を裏面電極層4で反射する反射率が向上し、高い変換効率の薄膜太陽電池を得ることができる点で好ましい。
〔その他の構成〕
 図示しないが、この太陽電池において、透光性絶縁基板1上にはストリングSおよび非導電性表面領域8を完全に覆うように裏面封止材が接着層を介して積層されている。
 接着層としては、例えば、エチレン-酢酸ビニル共重合体(EVA)からなる封止樹脂シートを用いることができる。
 裏面封止材としては、例えば、PETフィルムにてアルミニウムフィルムを挟んだ積層フィルムを用いることができる。
 なお、接着層および裏面封止材には、各集電電極と接続される取り出し線13の先端を外部へ導出するための小孔が予め形成されている。
 また、裏面封止材上には、各取り出し線13と電気的に接続される出力線および端子を有する端子ボックスが取り付けられる。
 また、裏面封止材および接着層にて封止された太陽電池の外周部にはフレーム(例えば、アルミニウム製)が取り付けられる。
<集積型薄膜太陽電池の製造方法について>
 この集積型薄膜太陽電池は、
 透光性絶縁基板1の一表面上に第1電極層2、光電変換層3および第2電極層4がこの順に積層されてなるセル5が複数個互いに電気的に直列接続された分割前ストリングを形成する成膜工程と、
 絶縁基板1の一表面の外周部に形成されているセル部分および分割前ストリングの所定箇所を光ビームによって除去して、非導電性表面領域12およびストリング分離溝8を形成することにより複数のストリングSを形成する膜除去工程と、
 複数のストリングSにおける少なくとも直列接続方向Aの両端のセル5a、5bの第2電極層4上にろう材を介して第1集電電極6および第2集電電極7を電気的に接合する集電電極接合工程とを含む製造方法により製造することができる。
〔成膜工程〕
 成膜工程では、まず、透光性絶縁基板1の一表面全面に、CVD、スパッタ、蒸着等の方法により膜厚600~1000nmの透明導電膜を形成し、透明導電膜を部分的に光ビームによって除去して、矢印B方向に延びる平行な複数本の電極分離ライン10を形成することにより、所定パターンの第1電極層2を形成する。この際、YAGレーザの基本波(波長:1064nm)を透光性絶縁基板1側から照射することにより、透明導電膜は所定幅で短冊状に分離され、複数本の電極分離ライン10が所定間隔で形成され、かつ、最上流位置のセル形成領域には電極分離ライン10と同条件で絶縁ライン11が1本形成される。
 この後、得られた基板を純水で超音波洗浄し、その後、p-CVDにより電極分離ライン10および絶縁ライン11を完全に埋め込むように光電変換膜を第1電極層2上に形成する。例えば、第1電極2上にa-Si:Hp層、a-Si:Hi層(膜厚150nmから300nm程度)、a-Si:Hn層をこの順に積層して上部半導体層を形成し、上部半導体層上にμc-Si:Hp層、μc-Si:Hi層(膜厚1.5μmから3μm程度)、μc-Si:Hn層をこの順に積層して下部半導体層を形成する。
 その後、タンデム構造の光電変換膜を部分的に光ビームによって除去して、導電部4aを形成するための、コンタクトラインを形成することにより所定パターンの光電変換層3を形成する。この際、YAGレーザの第二高調波(波長:532nm)を透光性絶縁基板1側から照射することにより、光電変換膜は所定幅で短冊状に分離される。なお、レーザとしてYAGレーザの第二高調波の代りにYVO4レーザの第二高調波(波長:532nm)を用いても構わない。
 次に、CVD、スパッタ、蒸着等の方法によりコンタクトラインを完全に埋め込むように導電膜を光電変換層3上に形成し、導電膜および光電変換層3を部分的に光ビームによって除去して素子分離溝9を形成することにより所定パターンの第2電極層4を形成する。これにより、透光性絶縁基板1上に複数のセル5が導電部4aにて直列接続し、かつ、第1および第2集電電極6、7と接合される最上流および最下流位置のセル5a、5bの集電電極直下の第1電極層2b、2に電流が流れない構造の分割前ストリングが形成される(図2(a)参照)。
 この時点では、分割前ストリングは未だ複数に分割されていないため、1つのセルは矢印B方向に長く延びている。
 この工程では、導電膜を透明導電膜(ZnO、ITO、SnO2等)と金属膜(Ag、Al等)の2層構造にすることができる。透明導電膜の膜厚としては10~200nm、金属膜の膜厚としては100~500nmとすることができる。
 また、第2電極層4のパターニングでは、光ビームによる第1電極層2へのダメージを避けるため、第1導電層2に対する透過性が高いYAGレーザの第二高調波またはYVO4レーザの第二高調波を透光性絶縁基板1側から照射することにより、導電膜は所定幅で短冊状に分離され、素子分離溝9が形成される。この際、第1電極層2へのダメージを最小限に抑え、かつ、第2電極層4の加工後の銀電極のバリ発生を抑制する加工条件を選択することが好ましい。
〔膜除去工程〕
 成膜工程後、透光性絶縁基板1の外周端面から内側へ所定幅で、透光性絶縁基板1の表面の外周部に形成されている薄膜光電変換素子部分である第1電極層2、光電変換層3および第2電極層4をYAGレーザの基本波を用いて除去することにより、非導電性表面領域12を全周に形成する。
 また、この工程の後または前に、分割前ストリングを複数に分割すべく、分割部分のセル部分を除去してストリング分離溝8を複数本形成する。
 この際、まず、YAGレーザの基本波(波長:1064nm)を透光性絶縁基板1側から照射することにより、第1電極層2、光電変換層3および第2電極層4を部分的に除去して第1溝8aを形成する。その後、第1導電層2に対する透過性が高いYAGレーザの第二高調波またはYVO4レーザの第二高調波を透光性絶縁基板1側から照射することにより、光電変換層3および第2電極4を第1溝8aの幅よりも広い幅で部分的に除去して第2溝8bを形成することにより、ストリング分離溝8を形成することができる。
 第1溝8aより幅広い第2溝8bを後から形成することにより、第1溝8aの形成によって飛散して溝内面に付着した導電材料を除去することができ、第1電極層2と第2電極層4との短絡を回避することができる。
 この膜除去工程によって、非導電性表面領域12に囲まれた複数列のストリングSが形成される。なお、分割前ストリングを分割しない場合、膜除去工程では非導電性表面領域12を形成するレーザ加工のみ行われる。
〔集電電極接合工程〕
 各ストリングSの直列接続方向Aの両端の第2電極層4上にろう材(例えば、銀ペースト)を塗布し、第1および第2集電電極6、7をろう材に加圧して接着した後に加熱する。このようにして、第1および第2集電電極6、7を第2電極層4に電気的に接続して、電流の取り出し部を形成する。この際、加圧力としては、例えば60N程度、加熱の熱エネルギーとしては、例えば300℃程度であるが、セル5a、5bは薄いため、第1および第2集電電極6、7の直下部分に短絡箇所が形成される場合がある。
 その後、第1および第2集電電極6、7の所定箇所に取り出し線13がろう付けされる。
〔その他の工程〕
 次に、太陽電池の裏面側(非受光面側)に、接着層としての透明なEVAシートおよび裏面封止材を重ね、真空ラミネート装置を用いて接着層を介して裏面封止材を太陽電池に接着して封止する。この時、裏面封止材として、PETフィルムでAlフィルムを挟んだ積層フィルムを用いることが好ましい。
 その後、前記取り出し線13を端子ボックスの出力線と電気的に接続し、端子ボックスを裏面封止材に接着し、シリコーン樹脂で端子ボックス内を充填する。そして、薄膜太陽電池の外周部に金属フレーム(例えば、アルミフレーム)を取り付けて製品化を完了させる。
(実施形態2)
 図3は本発明の集積型薄膜太陽電池の実施形態2を示す平面図である。なお、図3中の構成要素において、図1および図2中の構成要素と同様のものには同一の符号を付している。
 実施形態2の太陽電池は、ストリングSが、同一の透光性絶縁基板1上に、直列接続方向に延びる1本以上のストリング分離溝を挟んで直列接続方向Aと直交する方向Bに複数並列して配置され、少なくとも1本のストリング分離溝によって複数のストリングSがグループ毎に完全に分離されている。さらに、分離されたストリングSの各グループが第1集電電極16および第2集電電極17によって並列接続され、並列接続された複数のストリングSのグループが直列接続されている。
 詳しく説明すると、実施形態2の場合、同一の絶縁基板1上に6つのストリングSが形成され、そのうちの隣接する3つのストリングSからなる第1グループと隣接する他の3つのストリングSからなる第2グループとが、1本のストリング分離溝18Aによって完全に分離されている。
 また、各グループにおけるストリング分離溝18Bは隣接する2つのストリングSを完全には分離しておらず、各グループの3つのストリングSにおける直列接続方向Aの両端のセル5a、5bは一体化している。そして、それら一体化したセル5a、5bの上に個別に第1および第2集電電極16、17が接合されている。
 したがって、各グループの3つのストリングSは電気的に並列接続されているが、第1グループと第2グループは電気的に並列接続されていない。
 このように構成された太陽電池は、取り出し線13aによって第1グループの第1集電電極16と第2グループの第2集電電極17とが直接または端子ボックスに設けられた接続線と接続されることにより電気的に直列接続され、残りの第1および第2集電電極16、17は取り出し線13を介して端子ボックスの出力線と電気的に接続される。
 この実施形態2によれば、第1グループおよび第2グループで発生した電流はそれぞれ電流方向Eへ流れ、かつ第1グループと第2グループは直列接続されているため、1つの太陽電池で高電圧の電流を出力することができる構成とするのに有効である。
 なお、実施形態2において、その他の構成および効果は実施形態1と同様であり、第1および第2集電電極6、7の脱落が防止される。
(実施形態3)
 図4は本発明の集積型薄膜太陽電池の実施形態3を示す平面図であり、図5は図4の集積型薄膜太陽電池の直列接続方向に切断した断面図である。なお、図4および図5中の構成要素において、図1および図2中の構成要素と同様のものには同一の符号を付している。
 実施形態3が実施形態1と異なる点は、次の2点である。
 第1点として、第1集電電極6および第2集電電極7を有する両端のセル5a、5bの間の1つ以上のセル5cの第2電極層4上に、中間集電電極14が形成されたこと。
 第2点として、中間集電電極14を有するセル5cにおいて、中間集電電極14の直下および近傍部分の第1電極2dが、その下流側に形成された絶縁ライン11によって他部分の第1電極層2eと絶縁分離されていること。
 具体的に説明すると、この太陽電池は、実施形態1と同様に、同一の透光性絶縁基板1上に12個のストリングSがストリング分離溝8を挟んで並列され、かつ第1および第2集電電極6、7が電流方向Eの上流側および下流側の各ストリングSのセル5a、5b上に接合されて、各ストリングSを電気的に並列接続している。
 さらに、各ストリングSの直列接続方向Aのほぼ中間位置のセル5c上に1本の中間集電電極14がろう材(例えば、銀ペースト)を介して接合されている。
 なお、中間集電電極14と接合される各セル5cは、図2(c)に示すように、ストリング分離溝8によって相互に分離されているが、図2(b)に示すように、一体状に繋がっていてもよい。
 また、図5に示すように、中間集電電極14を有するセル5cにおいて、電極分離ライン10は、実施形態1と同様に、中間集電電極14の直下よりも電流方向Eの上流側に配置され、中間集電電極14の直下よりも下流側に絶縁ライン11が配置されている。
 つまり、中間集電電極14の直下の第1電極層2dは、分離ライン10によって上流側のセル5の第1電極層2と絶縁分離され、かつ絶縁ライン11によって同じセル5c内の下流側の第1電極層2eと絶縁分離されている。
 したがって、中間集電電極14と接合したセル5cの上流側のセル5からの電流は、セル5cの導電部4aおよび第2電極層4を介して一部が中間集電電極14へ流れ、一部が光電変換層3を通って第1電極層2eへ流れ、中間集電電極14の直下の第1電極層2dには流れない。
 よって、セル5cにおける中間集電電極14の直下の光電変換層3内に中途半端な短絡が生じたとしても、短絡箇所には電流が流れない。そのため、短絡箇所での局所的な発熱が防止され、その発熱が原因で中間集電電極14の脱落、基板割れ、膜剥がれ、電極損傷等が発生することを防止することができる。
 このように構成された実施形態3の太陽電池は、図4に示すように、第1集電電極6、中間集電電極14および第2集電電極7によって複数のストリングSが電気的に並列接続され、電気的に並列接続された複数のストリングSに、端子ボックスT内に設けられた複数のバイパスダイオードDが取り出し線13を介して電気的に並列接続され、それら複数のバイパスダイオードDが相互に電気的に直列接続される。
 このような接続により、ホットスポット耐性を維持しながら高電圧出力の集積型薄膜太陽電池を得ることができる。
 なお、実施形態3において、このような構成以外は実施形態1と同様であり、実施形態1の製造方法に準じて製造することができる。
(他の実施形態)
1.非導電性表面領域12の形成の際のトリミング(セル部分の除去)が万が一不十分であった場合、第2集電電極7と接合したセル5bの第1電極層2が、太陽電池の金属フレームに短絡する可能性がある。そのため、図2で示した構造の太陽電池(実施形態1)において、最下流側のセル5bの第1電極層2の第2集電電極7よりも上流側に、絶縁ラインを形成することにより、万が一セル5bの第1電極層2が金属フレームに短絡しても、太陽電池からの電流が金属フレームへ流れることを防止することができる。
2.ストリングの数、集電電極の取り付け位置および数等は、上述の実施形態に限定されず、例えば、中間集電電極を残し、直列接続方向両端の第1および第2集電電極を第1電極層(p側電極、n側電極)に接続してもよい。
 また、ストリングの直列接続方向の複数箇所に中間集電電極を設けてもよい。
 また、同一の透光性絶縁基板のストリング形成領域を4区画とし、各区画にストリングのグループを形成し、複数のグループを所望の形態に接続してもよい。
 1 透光性絶縁基板
 2、2b、2c、2d、2e 透光性第1電極層
 2a 延出部
 3 光電変換層
 4 第2電極層
 4a 導電部
 5、5a、5b、5c 薄膜光電変換素子(セル)
 6 第1集電電極
 7 第2集電電極
 8、18A、18B ストリング分離溝
 9 素子分離溝
 10 電極分離ライン
 11 絶縁ライン
 14 中間集電電極
 A 直列接続方向
 B 直列接続方向と直交する方向
 D バイパスダイオード
 E 電流方向
 S ストリング

Claims (9)

  1.  透光性絶縁基板上に形成されて互いに電気的に直列接続された複数の薄膜光電変換素子で構成されたストリングと、ストリングに電気的に接合された1つ以上の集電電極とを備え、
     薄膜光電変換素子は、透光性絶縁基板上に積層された透光性第1電極層と、第1電極層上に積層された光電変換層と、光電変換層上に積層された第2電極層とを有し、
     集電電極は、ストリングにおける任意の薄膜光電変換素子の第2電極層上に電気的に接合され、
     ストリングは、隣接する2つの薄膜光電変換素子の間に第2電極層および光電変換層が除去されて形成された素子分離溝を有し、
     一つの薄膜光電変換素子の第1電極層は、その一端が素子分離溝を横切って隣接する他の薄膜光電変換素子の領域まで延びた延出部を有し、かつ隣接する薄膜光電変換素子の第1電極層とは電極分離ラインによって電気的に絶縁され、
     一つの薄膜光電変換素子の第2電極層は、光電変換層を貫通する導電部を介して隣接する薄膜光電変換素子の第1電極層の延出部と電気的に接続し、
     集電電極と接合した薄膜光電変換素子は、第1電極層の少なくとも集電電極直下部分と他部分とが、電極分離ラインおよび絶縁ラインの少なくとも一方によって絶縁分離されている集積型薄膜太陽電池。
  2.  集電電極が、第1集電電極と第2集電電極とで構成され、第1集電電極および第2集電電極が、ストリングにおける直列接続方向の両端の2つの薄膜光電変換素子の第2電極層上に接合され、
     第1集電電極と接合した薄膜光電変換素子は、第1電極層の少なくとも第1集電電極直下よりもストリングを流れる電流の電流方向下流側に絶縁ラインが形成され、
     第2集電電極と接合した薄膜光電変換素子は、第1電極層の少なくとも第2集電電極直下よりも電流方向上流側に電極分離ラインが形成されている請求項1に記載の集積型薄膜太陽電池。
  3.  集電電極が、1つ以上の中間集電電極で構成され、中間集電電極が、ストリングにおける直列接続方向の両端の2つの薄膜光電変換素子の間の1つ以上の薄膜光電変換素子の第2電極層上に接合され、
     中間集電電極と接合した薄膜光電変換素子は、第1電極層の少なくとも中間集電電極直下よりもストリングを流れる電流の電流方向上流側に電極分離ラインを有し、かつ電流方向下流側に絶縁ラインが配置されている請求項1に記載の集積型薄膜太陽電池。
  4.  ストリングが、同一の前記透光性絶縁基板上に、直列接続方向に延びる1本以上のストリング分離溝を挟んで直列接続方向と直交する方向に複数並列して配置され、
     複数のストリングが電気的に並列接続あるいは直列接続されている請求項1に記載の集積型薄膜太陽電池。
  5.  ストリングが、同一の前記透光性絶縁基板上に、直列接続方向に延びる1本以上のストリング分離溝を挟んで直列接続方向と直交する方向に複数並列して配置され、
     複数のストリングが、少なくとも1本のストリング分離溝によって複数のグループ毎に完全に絶縁分離され、
     各グループにおける複数のストリングが、第1集電電極および第2集電電極によって電気的に並列接続され、
     複数のグループが電気的に直列接続された請求項2に記載の集積型薄膜太陽電池。
  6.  複数のストリングからなるグループにおいて、直列接続方向の両端に位置し、かつ直列接続方向と直交する方向に隣接する複数の薄膜光電変換素子が、ストリング分離溝によって分離されずに一体状に繋がっている請求項5に記載の集積型薄膜太陽電池。
  7.  ストリングが、同一の前記透光性絶縁基板上に、直列接続方向に延びる1本以上のストリング分離溝を挟んで直列接続方向と直交する方向に複数並列して配置され、
     第1集電電極、中間集電電極および第2集電電極によって複数のストリングが電気的に並列接続され、
     電気的に並列接続された複数のストリングにバイパスダイオードが電気的に並列接続され、
     それら複数のバイパスダイオードが電気的に直列接続された請求項3に記載の集積型薄膜太陽電池。
  8.  複数のストリングにおいて、直列接続方向の両端に位置し、かつ直列接続方向と直交する方向に隣接する複数の薄膜光電変換素子が、ストリング分離溝によって分離されずに一体状に繋がっている請求項7に記載の集積型薄膜太陽電池。
  9.  ストリング分離溝が、第1電極層を除去して形成された第1溝と、光電変換層および第2電極層を第1溝の幅よりも広い幅で除去して形成された第2溝とからなる請求項4に記載の集積型薄膜太陽電池。
PCT/JP2009/063869 2008-09-04 2009-08-05 集積型薄膜太陽電池 WO2010026849A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801347806A CN102144299B (zh) 2008-09-04 2009-08-05 集成薄膜太阳能电池
EP09811378A EP2323168A1 (en) 2008-09-04 2009-08-05 Integrated thin film solar cell
US13/061,210 US8907203B2 (en) 2008-09-04 2009-08-05 Integrated thin-film solar battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-227071 2008-09-04
JP2008227071A JP5171490B2 (ja) 2008-09-04 2008-09-04 集積型薄膜太陽電池

Publications (1)

Publication Number Publication Date
WO2010026849A1 true WO2010026849A1 (ja) 2010-03-11

Family

ID=41797021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063869 WO2010026849A1 (ja) 2008-09-04 2009-08-05 集積型薄膜太陽電池

Country Status (5)

Country Link
US (1) US8907203B2 (ja)
EP (1) EP2323168A1 (ja)
JP (1) JP5171490B2 (ja)
CN (1) CN102144299B (ja)
WO (1) WO2010026849A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD877060S1 (en) * 2016-05-20 2020-03-03 Solaria Corporation Solar module

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376873B2 (ja) * 2008-09-03 2013-12-25 シャープ株式会社 集積型薄膜太陽電池
JP2010074071A (ja) * 2008-09-22 2010-04-02 Sharp Corp 集積型薄膜太陽電池およびその製造方法
JP2011243842A (ja) * 2010-05-20 2011-12-01 Mitsubishi Heavy Ind Ltd 光電変換パネル
WO2012173574A1 (en) * 2011-06-15 2012-12-20 National University Of Singapore Photovoltaic module, method of manufacturing thereof, and peripheral member
TWI478361B (zh) * 2011-10-20 2015-03-21 Au Optronics Corp 太陽能電池模組
US9147794B2 (en) * 2011-11-30 2015-09-29 First Solar, Inc. Three terminal thin film photovoltaic module and their methods of manufacture
USD767484S1 (en) 2014-11-19 2016-09-27 Sunpower Corporation Solar panel
USD933584S1 (en) 2012-11-08 2021-10-19 Sunpower Corporation Solar panel
USD1009775S1 (en) 2014-10-15 2024-01-02 Maxeon Solar Pte. Ltd. Solar panel
USD750556S1 (en) * 2014-11-19 2016-03-01 Sunpower Corporation Solar panel
EP3013483B8 (en) * 2013-06-28 2021-07-07 SolarWindow Technologies, Inc. Coating for aircraft fuselage surfaces to produce electricity for mission-critical systems on military aircraft
USD896747S1 (en) 2014-10-15 2020-09-22 Sunpower Corporation Solar panel
USD933585S1 (en) 2014-10-15 2021-10-19 Sunpower Corporation Solar panel
USD999723S1 (en) 2014-10-15 2023-09-26 Sunpower Corporation Solar panel
USD913210S1 (en) 2014-10-15 2021-03-16 Sunpower Corporation Solar panel
CN106328737A (zh) * 2016-09-19 2017-01-11 中国电子科技集团公司第十八研究所 柔性铜铟镓硒薄膜太阳电池单片集成组件的制备方法
CN108717951A (zh) * 2018-08-15 2018-10-30 汉能新材料科技有限公司 一种太阳能电池和太阳能组件
CN113894432A (zh) * 2021-12-06 2022-01-07 中国华能集团清洁能源技术研究院有限公司 一种激光划刻方法和一种太阳能电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049369A (ja) 1998-07-30 2000-02-18 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池モジュール
JP2001068713A (ja) 1999-08-25 2001-03-16 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール
JP2005353767A (ja) 2004-06-09 2005-12-22 Mitsubishi Heavy Ind Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2008109041A (ja) * 2006-10-27 2008-05-08 Sharp Corp 薄膜太陽電池および薄膜太陽電池の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100482A (ja) 1983-11-05 1985-06-04 Semiconductor Energy Lab Co Ltd 光電変換半導体装置の作製方法
JP2001135836A (ja) 1999-11-02 2001-05-18 Kanegafuchi Chem Ind Co Ltd 薄膜のスクライブ方法、その装置及び太陽電池モジュール
AU766727B2 (en) * 1999-06-14 2003-10-23 Kaneka Corporation Method of fabricating thin-film photovoltaic module
EP2835834A3 (en) * 1999-08-25 2015-06-10 Kaneka Corporation Thin film photoelectric conversion module and method of manufacturing the same
ATE423395T1 (de) * 1999-09-01 2009-03-15 Kaneka Corp Dünnschichtsolarzellenmodul und entsprechendes herstellungsverfahren
JP3146203B1 (ja) 1999-09-06 2001-03-12 鐘淵化学工業株式会社 薄膜太陽電池モジュール及びその製造方法
JP3720254B2 (ja) 2000-10-13 2005-11-24 シャープ株式会社 薄膜太陽電池及びその製造方法
JP4340246B2 (ja) 2005-03-07 2009-10-07 シャープ株式会社 薄膜太陽電池およびその製造方法
US20080099063A1 (en) * 2006-10-23 2008-05-01 Ascent Solar Technologies, Inc. Flexible High-Voltage Adaptable Current Photovoltaic Modules And Associated Methods
JP5376873B2 (ja) * 2008-09-03 2013-12-25 シャープ株式会社 集積型薄膜太陽電池
JP2010074071A (ja) * 2008-09-22 2010-04-02 Sharp Corp 集積型薄膜太陽電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049369A (ja) 1998-07-30 2000-02-18 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池モジュール
JP2001068713A (ja) 1999-08-25 2001-03-16 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール
JP2005353767A (ja) 2004-06-09 2005-12-22 Mitsubishi Heavy Ind Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2008109041A (ja) * 2006-10-27 2008-05-08 Sharp Corp 薄膜太陽電池および薄膜太陽電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD877060S1 (en) * 2016-05-20 2020-03-03 Solaria Corporation Solar module

Also Published As

Publication number Publication date
US20110146750A1 (en) 2011-06-23
CN102144299A (zh) 2011-08-03
JP5171490B2 (ja) 2013-03-27
CN102144299B (zh) 2013-05-08
US8907203B2 (en) 2014-12-09
JP2010062373A (ja) 2010-03-18
EP2323168A1 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP5171490B2 (ja) 集積型薄膜太陽電池
WO2010032713A1 (ja) 集積型薄膜太陽電池およびその製造方法
JP5410050B2 (ja) 太陽電池モジュール
US11152519B2 (en) Manufacturing method for solar cell
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
JP2014017447A (ja) 集積型薄膜太陽電池およびその製造方法
JP4791098B2 (ja) 集積型薄膜太陽電池モジュール
JP2009529236A (ja) 薄膜型太陽電池及びその製造方法
JP2010251667A (ja) 太陽電池
WO2012117765A1 (ja) 太陽電池モジュール
WO2015040780A1 (ja) 太陽電池および太陽電池モジュール
JP6656225B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP5376873B2 (ja) 集積型薄膜太陽電池
WO2008026581A1 (en) Solar battery module
KR101550927B1 (ko) 태양전지 및 이의 제조방법
JP2009004683A (ja) 集積形太陽電池
JP3520425B2 (ja) 太陽電池モジュール及びその製造方法
JP6590165B2 (ja) 太陽電池セルの製造方法
JP2001308362A (ja) 集積型ハイブリッド薄膜太陽電池の製造方法
JP4904320B2 (ja) 集積型薄膜太陽電池の製造方法
JP2001068696A (ja) 薄膜光電変換モジュール
JP6311911B2 (ja) 太陽電池、太陽電池モジュールおよび太陽電池の製造方法
JP2005033006A (ja) 集積型タンデム接合太陽電池及び集積型タンデム接合太陽電池の製造方法
JP6167414B2 (ja) 太陽電池および太陽電池モジュール
JP2014135358A (ja) 薄膜太陽電池およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134780.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13061210

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009811378

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE