WO2010025590A1 - Catalyseur pour la synthèse de polysuccinate de butylène et de ses copolyesters, et méthodes de synthèse du catalyseur - Google Patents

Catalyseur pour la synthèse de polysuccinate de butylène et de ses copolyesters, et méthodes de synthèse du catalyseur Download PDF

Info

Publication number
WO2010025590A1
WO2010025590A1 PCT/CN2008/002110 CN2008002110W WO2010025590A1 WO 2010025590 A1 WO2010025590 A1 WO 2010025590A1 CN 2008002110 W CN2008002110 W CN 2008002110W WO 2010025590 A1 WO2010025590 A1 WO 2010025590A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reaction
titanium
mol
mixture
Prior art date
Application number
PCT/CN2008/002110
Other languages
English (en)
Chinese (zh)
Inventor
孔凡滔
杨景辉
吴秋芳
马新胜
李福清
Original Assignee
上海华明高技术(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华明高技术(集团)有限公司 filed Critical 上海华明高技术(集团)有限公司
Priority to US13/062,695 priority Critical patent/US20110162205A1/en
Publication of WO2010025590A1 publication Critical patent/WO2010025590A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49345Catalytic device making

Definitions

  • the invention relates to a catalyst for the preparation of polybutylene succinate and its copolyester.
  • Aliphatic polyesters have attracted a lot of attention and research because of their good biodegradability and environmental pollution.
  • PBS polybutylene succinate
  • copolyester have the good mechanical properties and processing properties, and become the most easy to realize practical application in aliphatic polyester, which is the focus of the industry. .
  • the production of polybutylene succinate and its copolyesters generally employs two methods: chain extension and direct polycondensation.
  • the chain extension method uses a chain extender to react with an organic group of the polyester to increase the molecular weight of the polyester.
  • the main chain extenders currently used are diisocyanate alkoxides, which are toxic and therefore cannot be used in the field of contact with foods, and to some extent limit polybutylene succinate and its Copolyester application.
  • the direct polycondensation method does not use a toxic chain extender, and the production process and production equipment are very similar to other polyesters (such as polyethylene terephthalate), so it is likely to become a future gathering. Mainstream process for the production of butylene succinate and its copolyesters.
  • the direct polycondensation method is used for the synthesis of polybutylene succinate and its copolyester. It is necessary to add a polycondensation catalyst to the reaction system.
  • the catalyst used is mainly a titanium catalyst or a mixture of a titanium catalyst and other metal catalysts.
  • the catalysts used in CN1424339 are tin oxide, antimony trioxide, cadmium acetate and titanium alkoxide; and the catalysts used in the patent CN1861660A are n-butyl titanate, isopropyl titanate, antimony trioxide and tannic acid. N-butyl ester.
  • the individual titanate catalysts often do not fully meet the requirements, and need to be compounded with other compounds to form a composite catalyst.
  • the above catalyst systems all have certain technical defects, mainly as follows: (1) The activity of the catalyst is low, and the amount of addition is high, which affects the quality of the final product.
  • titanium alkoxide catalyst is used, and the active ingredient (titanium element) is added in an amount of more than 500 ppm based on polybutylene succinate (ie, 500 X 10- 6 g Ti/g PBS, the same below), and sometimes even exceeds 700 ppm, such a high addition amount will lead to the occurrence of more side reactions and increase the melt mass flow rate of the product, the mechanical properties are degraded, and the color is severely yellowed.
  • the catalyst is inconvenient to use and causes difficulties in production operations. Titanium alkoxides are precipitated when exposed to water at normal temperature. In the synthesis of PBS, the product in the esterification stage is water.
  • titanium alkoxides can be added as esters after esterification but not in esterification. Pre-addition; On the other hand, the simultaneous use of multiple substances as catalysts also poses certain difficulties in the addition. The operator needs to prepare the catalyst in advance, which is far less convenient than using a single catalyst. Summary of the invention
  • An object of the present invention is to provide a catalyst for preparing polybutylene succinate and a copolyester thereof and a process for the preparation thereof, which overcome the above-mentioned drawbacks of the prior art.
  • One of the preparation methods of the catalyst of the present invention comprises the following steps:
  • the titanium alkoxide, the silicon alkoxide, the diol and the metal promoter are added to the solvent, and the reaction is carried out for 0.5 to 2.5 hours, the reaction temperature is 80 to 180 ° C, and the reaction temperature is preferably 85 to 160 ° C, and the reaction system is separated and removed.
  • the reacted substance and the small molecule product are then added to the complexing agent for 0.5 to 2.5 hours, the reaction temperature is 80 to 180 ° C, and the preferred reaction temperature is 85 to 160 ° C, and the small molecules are separated and removed, and then collected from the reaction product.
  • the catalyst is
  • the second method for preparing the catalyst of the present invention comprises the following steps:
  • the titanium alkoxide, the glycol and the metal promoter are added to the solvent, and the reaction is carried out for 0.5 to 2.5 hours, the reaction temperature is 80 to 180 ° C, and the reaction temperature is preferably 85 to 160 ° C, and the unreacted substances in the reaction system are separated and removed.
  • the small molecule product is then reacted for 0.5 to 2.5 hours, the reaction temperature is 80 to 180 ° C, preferably the reaction temperature is 85 to 160 ° C, and the small molecule is separated and removed, and then the reaction is carried out for 0.5 to 2.5 hours. Collecting the catalyst in the reaction product;
  • the method for separating and removing unreacted substances and small molecule products in the reaction system is a conventional method such as a conventional distillation or rectification method;
  • the titanium alkoxide is a mixture of one or both of n-butyl titanate or isopropyl titanate; the silicon alkoxide is one of methyl orthosilicate or ethyl orthosilicate. Or a mixture of the two; the inventors have surprisingly found that the choice of metal promoter and complexing agent has a greater impact on the present invention and will directly affect the activity and selectivity of the catalyst. To this end, the inventors have selected a large number of tests to select as follows:
  • the metal promoter is selected from one or more of the acetate or alkoxide of a metal element of the group of lanthanum, cerium, IIB, VIIIB, preferably zinc acetate, aluminum isopropoxide, calcium acetate, magnesium acetate. Or a mixture of one or more of manganese acetate;
  • the diol is 1,4-butanediol, ethylene glycol, 1,3-propanediol, 2-methyl-2,4-pentanediol, 1,5-pentanediol or 1,6- a mixture of one or any of several hexanediols;
  • the complexing agent is a phosphate ester and a hydroxycarboxylic acid
  • the phosphate ester is preferably one or a mixture of any of trimethyl phosphate, trimethyl phosphite, triethyl phosphate or triethyl phosphite;
  • the hydroxycarboxylic acid is preferably one or a mixture of any of citric acid, tartaric acid or lactic acid;
  • the solvent is one or a mixture of any one of ethanol, n-butanol or isopropanol; the molar ratio of the titanium atom to the total amount of the diol is 1:5 to 1:30, preferably 1:20. ⁇ 1:30; the molar ratio of the titanium atom to the total amount of the promoter metal element is 1:0.05 ⁇ 1:2, preferably 1:0.05-1:0.5;
  • the molar ratio of the titanium atom to the hydroxycarboxylic acid is 1:0.5 ⁇ 1:2, preferably l:0.5 ⁇ l.5;
  • the molar ratio of the titanium atom to the silicon atom is 1:0.01 to 1:2, preferably 1:0.05 to 1:1;
  • the molar ratio of the titanium atom to the phosphorus atom is 1:0.01 to 1:2, preferably 1:0.01 to 1 : 1.5;
  • the molar ratio of the titanium atom to the total amount of the solvent is 1:5 to 1:50, preferably 1:5. ⁇ 1 :30.
  • the catalyst prepared by the above method can be used for preparing polybutylene succinate and its copolyester.
  • succinic acid and 1,4-butanediol are used as main monomers
  • polybutyl succinate is prepared.
  • the catalyst may be directly added to the reaction system or diluted in 1,4-butanediol and added to the reaction system, and may be added to the reaction system before the esterification reaction. After the end of the esterification reaction, the reaction system is added before the start of the pre-polycondensation reaction.
  • the catalyst is added in an amount of 80 X 10- 6 to 200 X 10' 6 o by weight of the titanium atom to polybutylene succinate and its copolyester.
  • the catalyst is added in an amount such that the weight ratio of the titanium atom to the polybutylene succinate and the copolyester thereof is preferably 100 ⁇ 1 ( ⁇ 6 ⁇ 150 ⁇ 1 ( ⁇ ⁇ .
  • the catalyst adopts a complexing technique and directly introduces a metal promoter in the catalyst, it has the following advantages compared with the currently used titanium alkoxide catalyst: (1) high catalytic activity, low added amount, product Good quality; (2) The synthesis of polybutylene succinate and its copolyester can be used alone, without the use of other materials, eliminating the need for mixing of different catalysts; (3) The catalyst does not react with water at normal temperature, and may be added before the esterification reaction or after the esterification reaction, before the pre-polycondensation reaction, and is easy to store for a long period of time.
  • the catalyst has good industrial application prospects and value.
  • melt mass flow rate of polybutylene succinate is measured according to GB/T 3682-2000 Thermoplastic melt mass flow rate and melt volume flow rate. Determine the method.
  • the color of polybutylene succinate was evaluated using the L, a, b color system. In this system, L is the lightness factor and a and b are the color measurements. b indicates the balance of yellow and blue, which is very important for the color of polyester. The lower the b value, the better the color.
  • Example 10 In the same manner as in Example 10, except that 2.5 g of the liquid catalyst prepared in Example 3 (ti content of 100 ppm) was added, after a final polycondensation reaction time of 140 minutes, a melt mass flow rate of 16 g/10 min was obtained.
  • Polybutylene succinate having a b value of 5.6.
  • Example 10 In the same manner as in Example 10, except that 7 g of the liquid catalyst prepared in Example 4 (Ti content: 140 ppm) was added, after a final polycondensation reaction time of 105 minutes, a melt mass flow rate of 20 g/10 min was obtained, b. A polybutylene succinate having a value of 4.5.
  • Example 9 In the same manner as in Example 9, except that 4 g of the liquid catalyst prepared in Example 5 (Ti content: 130 ppm) was added, after a final polycondensation reaction time of 108 minutes, a melt mass flow rate of 18 g/10 min was obtained, b.
  • Example 10 In the same manner as in Example 10, except that 3 g of the liquid catalyst prepared in Example 6 (Ti content: 105 ppm) was added, after a final polycondensation reaction time of 134 minutes, a melt mass flow rate of 16 g/10 min was obtained, b. A polybutylene succinate having a value of 5.3.
  • Example 7 In the same manner as in Example 10, except that 3.5 g of the liquid catalyst prepared in Example 7 (Ti content: 120 ppm) was added, after a final polycondensation reaction time of 125 minutes, a melt mass flow rate of 19 g/10 min was obtained. Polybutylene succinate having a b value of 3.9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Méthodes de synthèse d'un catalyseur destiné à la synthèse de polysuccinate de butylène et de ses copolyesters, lesdites méthodes comprenant (1) l'ajout d'alcoolate de titane, d'alcoolate de silicium, de glycol et d’un co-catalyseur métallique à un solvant, la mise en œuvre de la réaction à une température comprise entre 80 et 180 °C, et l'élimination du système réactionnel des substances n'ayant pas réagi et des petites molécules produites, (2) l’ajout d'un agent de complexation et la poursuite de la réaction, puis l’élimination des petites molécules et la récupération du catalyseur parmi les produits de la réaction; ou comprenant (1) l'ajout d'alcoolate de titane, de glycol et de co-catalyseur métallique à un solvant, la mise en œuvre de la réaction à une température comprise entre 80 et 180 °C, et l'élimination du système réactionnel des substances n'ayant pas réagi et des petites molécules produites, (2) l'ajout d'alcoolate de silicium et d'un agent de complexation et la poursuite de la réaction, puis l’élimination des petites molécules et la récupération du catalyseur parmi les produits de la réaction.
PCT/CN2008/002110 2008-09-08 2008-12-29 Catalyseur pour la synthèse de polysuccinate de butylène et de ses copolyesters, et méthodes de synthèse du catalyseur WO2010025590A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/062,695 US20110162205A1 (en) 2008-09-08 2008-12-29 Catalyst for producing polybutylene succinate or copolyester thereof, and preparing mehtods of the catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810042621.0 2008-09-08
CN200810042621.0A CN101671435B (zh) 2008-09-08 2008-09-08 制备聚丁二酸丁二醇酯及其共聚酯的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2010025590A1 true WO2010025590A1 (fr) 2010-03-11

Family

ID=41796710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/002110 WO2010025590A1 (fr) 2008-09-08 2008-12-29 Catalyseur pour la synthèse de polysuccinate de butylène et de ses copolyesters, et méthodes de synthèse du catalyseur

Country Status (3)

Country Link
US (1) US20110162205A1 (fr)
CN (1) CN101671435B (fr)
WO (1) WO2010025590A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280011A (zh) * 2020-11-13 2021-01-29 营口康辉石化有限公司 一种低熔指聚丁二酸丁二醇酯的制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012766A (zh) * 2011-09-26 2013-04-03 常州化学研究所 用于聚酯合成铝系催化剂的制备方法及其应用
CN103897355B (zh) * 2012-12-27 2015-08-26 天津世起科技发展有限公司 一种超薄聚酯薄膜及其制造方法
LT2765149T (lt) * 2013-02-06 2019-03-12 Uhde Inventa-Fischer Gmbh Katalizatoriaus, kurio sudėtyje yra titano, gamybos būdas, katalizatorius, kurio sudėtyje yra titano, poliesterio gamybos būdas ir poliesteris
CN103214659B (zh) * 2013-03-25 2015-05-13 山东汇盈新材料科技有限公司 高分子量生物基聚丁二酸丁二醇酯合成方法
CN103333328A (zh) * 2013-06-05 2013-10-02 新疆蓝山屯河化工股份有限公司 生物降解聚酯复合催化剂及其制备方法和使用方法
CN103435794B (zh) * 2013-07-26 2015-08-12 旭阳化学技术研究院有限公司 一种缩聚催化剂的制备方法、由其制备的催化剂以及以该催化剂制备pbs及其共聚物的方法
CN103408736B (zh) * 2013-08-08 2015-12-09 山东汇盈新材料科技有限公司 高分子量生物可降解聚酯的制备方法
CN104761707B (zh) * 2015-04-14 2016-08-31 江苏钟腾化工有限公司 一种聚丁二酸丁二醇酯的制备方法
CN106084189A (zh) * 2015-04-28 2016-11-09 安庆和兴化工有限责任公司 液态钛系催化剂及使用其制造聚酯聚合物的制备方法
CN105061744B (zh) * 2015-08-17 2019-04-26 中国石油天然气集团公司 聚丁二酸丁二醇酯的制备方法
CN107459785B (zh) * 2016-12-20 2018-09-28 金发科技股份有限公司 一种pbs树脂组合物及其制备方法
CN112280012B (zh) * 2020-11-13 2021-09-07 康辉新材料科技有限公司 一种聚丁二酸丁二醇酯的制备方法
CN112876662B (zh) * 2021-01-19 2023-03-24 中国纺织科学研究院有限公司 一种生物可降解半芳香族聚酯合成用的催化剂、制备方法及应用
CN115466378B (zh) * 2021-10-19 2023-12-15 源创核新(北京)新材料科技有限公司 一种钛铝复合催化剂在聚草酸酯合成中的应用
CN114163626B (zh) * 2021-12-10 2023-05-05 中化学科学技术研究有限公司 一种聚合催化剂及其制备方法和在制备聚丁二酸丁二醇酯中的应用
CN114790282B (zh) * 2021-12-30 2023-03-21 康辉新材料科技有限公司 一种纳米微颗粒原位聚合催化剂的制备方法及其应用
CN114672005A (zh) * 2022-03-16 2022-06-28 中国石油化工股份有限公司 一种钛系复合催化剂及合成聚对苯二甲酸-共-己二酸丁二醇酯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068497A1 (fr) * 2001-02-23 2002-09-06 E.I. Du Pont De Nemours And Company Composition contenant des metaux et procede correspondant
CN1415643A (zh) * 2002-11-12 2003-05-07 上海华明高技术(集团)有限公司 聚酯与共聚酯的制备方法
CN1644601A (zh) * 2004-12-29 2005-07-27 中国石化集团天津石油化工公司 一种液态钛系聚酯缩聚催化剂的制备方法
CN101270185A (zh) * 2007-03-20 2008-09-24 上海华明高技术(集团)有限公司 用于制备聚酯与共聚酯的液态钛系催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1861660B (zh) * 2006-06-16 2010-07-28 清华大学 一种生物可降解共聚酯及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068497A1 (fr) * 2001-02-23 2002-09-06 E.I. Du Pont De Nemours And Company Composition contenant des metaux et procede correspondant
CN1415643A (zh) * 2002-11-12 2003-05-07 上海华明高技术(集团)有限公司 聚酯与共聚酯的制备方法
CN1644601A (zh) * 2004-12-29 2005-07-27 中国石化集团天津石油化工公司 一种液态钛系聚酯缩聚催化剂的制备方法
CN101270185A (zh) * 2007-03-20 2008-09-24 上海华明高技术(集团)有限公司 用于制备聚酯与共聚酯的液态钛系催化剂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112280011A (zh) * 2020-11-13 2021-01-29 营口康辉石化有限公司 一种低熔指聚丁二酸丁二醇酯的制备方法

Also Published As

Publication number Publication date
US20110162205A1 (en) 2011-07-07
CN101671435A (zh) 2010-03-17
CN101671435B (zh) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2010025590A1 (fr) Catalyseur pour la synthèse de polysuccinate de butylène et de ses copolyesters, et méthodes de synthèse du catalyseur
CN1069662C (zh) 制备聚酯和共聚酯的方法
WO2008113230A1 (fr) Procédé de préparation de catalyseur liquide contenant du titane pour le polyester ou le copolyester
WO2016173092A1 (fr) Catalyseur à base de titane liquide et procédé de préparation de polymère de polyester l'utilisant
TW200911875A (en) Polycondensation catalyst for producing polyester and method for producing the same and method for producing polyester
JPH06510320A (ja) 錫触媒によるポリエステルの製造
CN113388100B (zh) 一种用于脂肪族-芳香族共聚酯合成的催化剂体系及其应用
CN114835886B (zh) 一种固态双金属钛系聚酯催化剂及其制备方法、应用
TW440574B (en) Process for preparing 1,3-propanediol-based polyesters
TWI395617B (zh) Method for producing ester condensates
CN111187401B (zh) 一种聚酯多元醇的制备方法
CN104497282A (zh) 一种粉末涂料用聚酯热熔胶及其制备方法
JPS6050208B2 (ja) フイルム成形用ポリエステルの製造方法
CN102702497B (zh) 一种聚酯催化剂的制备方法
TW201245208A (en) Method for preparing poly(1,4:3,6-dianhydrohexitol esters)
CN101234355A (zh) 合成对苯二甲酸二辛酯的高效催化剂
WO2020097879A1 (fr) Procédé de préparation d'un polyol de polyester
CN1047187C (zh) 对苯二甲酸常压酯化生产聚酯漆包线漆的方法
CN114989405A (zh) 一种dmt法合成聚酯的钛系催化剂及其制备方法和应用
CN101045722A (zh) 一种清洁制备天然维生素e琥珀酸单酯的方法
TWI291474B (en) Catalytic composition of organotin compounds
JP2833094B2 (ja) 改質ポリエステルの製造法
CN113429549B (zh) 一种复合催化剂、制备方法以及应用其制备的聚对苯二甲酸亚环己基二亚甲酯
CN109666147A (zh) 一种线性无规可生物降解共聚酯以及制备方法
CN1415643A (zh) 聚酯与共聚酯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876867

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08876867

Country of ref document: EP

Kind code of ref document: A1