WO2010010679A1 - 衣類乾燥機 - Google Patents

衣類乾燥機 Download PDF

Info

Publication number
WO2010010679A1
WO2010010679A1 PCT/JP2009/003379 JP2009003379W WO2010010679A1 WO 2010010679 A1 WO2010010679 A1 WO 2010010679A1 JP 2009003379 W JP2009003379 W JP 2009003379W WO 2010010679 A1 WO2010010679 A1 WO 2010010679A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
drying
course
laundry
condenser
Prior art date
Application number
PCT/JP2009/003379
Other languages
English (en)
French (fr)
Inventor
馬越清輝
西脇智
佐久間勉
Original Assignee
株式会社東芝
東芝コンシューマエレクトロニクス・ホールディングス株式会社
東芝ホームアプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝コンシューマエレクトロニクス・ホールディングス株式会社, 東芝ホームアプライアンス株式会社 filed Critical 株式会社東芝
Priority to EP09800195.1A priority Critical patent/EP2333141B1/en
Priority to KR1020107026421A priority patent/KR101235552B1/ko
Priority to CN200980129128.5A priority patent/CN102105631B/zh
Publication of WO2010010679A1 publication Critical patent/WO2010010679A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2101/00User input for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2101/20Operation modes, e.g. delicate laundry washing programs, service modes or refreshment cycles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/32Temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/50Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to heat pumps, e.g. pressure or flow rate
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/26Heat pumps
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/52Changing sequence of operational steps; Carrying out additional operational steps; Modifying operational steps, e.g. by extending duration of steps
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/36Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F58/38Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
    • D06F58/40Control of the initial heating of the drying chamber to its operating temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/46Control of the operating time
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/48Control of the energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a clothes dryer for drying laundry with a heat pump.
  • the washing / drying machine provided with this heat pump circulates the air in the washing tub in which the laundry is accommodated with the heat pump via the ventilation path.
  • the air in the washing tub is led to an evaporator and a condenser connected to the compressor and the squeezer and provided in the ventilation path.
  • the air flowing through the ventilation path is cooled and dehumidified in the evaporator and heated in the condenser.
  • the air heated by the condenser after being dehumidified by the evaporator in the ventilation path is sent again into the washing tub.
  • the air takes moisture from the laundry in the washing tub and is dehumidified in the ventilation path.
  • the laundry in the washing tub is dried by the circulating air.
  • the water evaporated by drying the laundry is condensed in the evaporator.
  • the latent heat obtained by the condensation of moisture is used for heating the refrigerant in the compressor.
  • the air which flows through a ventilation path is heated in a condenser with the heat
  • Japanese Laid-Open Patent Publication No. 2006-75217 discloses a laundry dryer that controls the driving frequency to change the rotational speed of the compressor of the heat pump and allows the laundry to be dried in a plurality of courses. Disclosure.
  • the delicate drying mode is a course suitable for drying a laundry with a fabric that is weak against heat. Therefore, the washing / drying machine disclosed in the publication is not intended to achieve both reduction in required time and reduction in power consumption.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a clothes dryer that achieves both a reduction in time required for drying and a reduction in power consumption for each course to be selected. .
  • a clothes dryer of the present invention comprises a washing tub, An air circulation device that has a ventilation path provided outside the washing tub, and circulates the air in the washing tub back to the washing tub through the ventilation path; A compressor and a throttle, and an evaporator and a condenser provided in the ventilation path, and the refrigerant is compressed by connecting the evaporator and the condenser to the compressor and the throttle.
  • a laundry dryer for drying the laundry by operating the air circulation device and the heat pump
  • the compressor has a variable rotational speed by controlling the frequency, By changing the driving frequency of the compressor, either a quick drying course for drying the laundry in a relatively short time or a saving course for drying the laundry in a longer time than the quick drying course is selected.
  • the compressor is driven in a frequency band having a high coefficient of performance during the saving course (invention of claim 1).
  • the clothes dryer of the present invention comprises a condenser temperature detecting means for detecting the temperature of the condenser, Either a quick drying course for drying the laundry in a relatively short time or a saving course for drying the laundry in a longer time than the quick drying course can be selected and executed.
  • the quick-drying course or the saving course is controlled by changing the driving frequency of the compressor based on the temperature of the condenser detected by the condenser temperature detecting means.
  • the set temperatures allowed for the condensers are different from each other (invention of claim 2).
  • the clothes dryer of the present invention comprises compressor discharge temperature detecting means for detecting the temperature of the refrigerant discharged from the compressor, Either a quick drying course for drying the laundry in a relatively short time or a saving course for drying the laundry in a longer time than the quick drying course can be selected and executed.
  • the quick-drying course or the saving course is controlled by changing the driving frequency of the compressor based on the temperature of the refrigerant discharged from the compressor detected by the compressor discharge temperature detecting means.
  • the set temperature allowed for the refrigerant discharged from the compressor in the course or the saving course is different.
  • the quick-drying course is executed by increasing the drive frequency of the compressor of the heat pump.
  • the rotational speed of a compressor becomes high and the circulation of the refrigerant
  • the saving course is executed by lowering the driving frequency of the compressor of the heat pump.
  • the rotational speed of a compressor becomes low and the circulation of the refrigerant
  • the saving course by driving the compressor in a frequency band with a high coefficient of performance, efficient operation is possible, and power consumption can be further saved.
  • the quick drying course is executed by setting the condenser temperature detected by the condenser temperature detecting means to be high. Thereby, a quick-dry course is performed in the state where the drive frequency of a compressor is high. For this reason, the rotational speed of the compressor increases, and the circulation of the refrigerant in the heat pump becomes active. As a result, the laundry is dried in a short time.
  • the saving course is executed by setting the condenser temperature detected by the condenser temperature detecting means to be low. Thereby, the saving course is executed in a state where the drive frequency of the compressor is low. Therefore, the rotational speed of the compressor is lowered, and the circulation of the refrigerant in the heat pump is suppressed. As a result, the laundry is dried with low power consumption. Therefore, it is possible to achieve both reduction of the time required for drying and reduction of power consumption for each course to be selected.
  • the quick-drying course is executed by setting the temperature of the refrigerant discharged from the compressor detected by the compressor discharge temperature detecting means to be high. Thereby, a quick-dry course is performed in the state where the drive frequency of a compressor is high. For this reason, the rotational speed of the compressor increases, and the circulation of the refrigerant in the heat pump becomes active. As a result, the laundry is dried in a short time.
  • the saving course is executed by setting the refrigerant temperature detected by the compressor discharge temperature detecting means to be low. Thereby, the saving course is executed in a state where the drive frequency of the compressor is low.
  • Diagram showing general changes in compressor drive frequency and evaporator temperature during drying operation Figure showing changes in compressor drive frequency and evaporator temperature in the saving course
  • FIG. 3 shows a horizontal axis type drum-type washing and drying machine to which a clothes dryer is applied.
  • the washing / drying machine accommodates a water tank 2 inside an outer box 1. Furthermore, the water tank 2 accommodates a drum-shaped rotating tank 3 therein.
  • the water tub 2 and the rotating tub 3 constitute a washing tub.
  • the rotary tub 3 is a porous shape having holes in the entire peripheral side wall.
  • Both the water tank 2 and the rotating tank 3 are in the shape of a horizontal axis whose axial direction extends back and forth.
  • the water tank 2 and the rotating tank 3 are elastically supported by a suspension (not shown) so as to rise upward.
  • both the water tank 2 and the rotating tank 3 are open at the front.
  • the outer box 1 forms a laundry doorway (not shown) at the upper part of the front surface portion. This laundry doorway is opened and closed by the door 4.
  • the laundry entrance and the opening on the front surface of the water tub 2 are connected by a bellows (not shown).
  • the motor 5 is attached to the back surface of the water tank 2.
  • the motor 5 is, for example, an outer rotor type brushless motor, and rotationally drives the rotating tub 3. Therefore, the motor 5 functions as a driving device that rotationally drives the rotating tub 3.
  • the water tank 2 has an electric drain valve 6 at the bottom of the bottom, which is the lowermost part. This drain valve 6 is connected to a drain hose 7. Thus, the water in the water tank 2 is discharged out of the machine via the drain valve 6 and the drain hose 7.
  • the ventilation duct 8 is disposed below the water tank 2.
  • This ventilation duct 8 has an air inlet 9 at the top of the front end.
  • the air inlet 9 is connected to a hot air outlet (not shown) via a return air duct 10.
  • the hot air outlet is provided in the upper part around the opening in the front part of the water tank 2.
  • the return air duct 10 is disposed around the opening on the front surface of the water tank 2.
  • the return air duct 10 has a filter 11 that captures foreign matter such as lint, for example, in the middle.
  • the circulation fan 12 is connected to the rear end portion of the ventilation duct 8.
  • the outlet of the circulation fan 12 is connected to a hot air inlet (not shown) via the air supply duct 13.
  • the hot air inlet is provided in the upper part of the rear end plate portion of the water tank 2.
  • the air supply duct 13 is arranged around the motor 5.
  • the return air duct 10, the air duct 8, the circulation fan 12, and the air supply duct 13 form an air passage 14 that connects the hot air outlet and the hot air inlet of the water tank 2.
  • This ventilation path 14 is located outside the water tank 2.
  • the circulation fan 12 circulates the air in the rotating tub 3.
  • the ventilation path 14 and the circulation fan 12 constitute an air circulation device 15 that circulates the air in the rotating tub 3.
  • the ventilation duct 8 in the ventilation path 14 accommodates the evaporator 16 on the front side inside and accommodates the condenser 17 on the rear side.
  • the evaporator 16 and the condenser 17 are constituted by meandering refrigerant circulation pipes 16a and 17a and heat transfer fins 16b and 17b, respectively.
  • the evaporator 16 and the condenser 17 are provided with a large number of heat transfer fins 16b and 17b at minute pitches in meandering tube-like refrigerant circulation pipes 16a and 17a.
  • the air flowing through the ventilation duct 8 exchanges heat by passing through the refrigerant circulation pipes 16a and 17a and the heat transfer fins 16b and 17b while being in contact therewith.
  • the evaporator 16 and the condenser 17 constitute a heat pump 20 together with the compressor 18 and the restrictor 19 shown in FIG.
  • the heat pump 20 is connected to the compressor 18, the condenser 17, the throttle 19, the evaporator 16, and the compressor 18 in this order by a connection pipe 21.
  • the heat pump 20 comprises the refrigerating cycle which circulates the refrigerant
  • an electronic throttle valve or a capillary tube is used as the throttle 19.
  • the compressor 18 is, for example, a rotary type. Although not shown in FIG. 3, the compressor 18 and the restrictor 19 are provided outside the ventilation duct 8.
  • the compressor 18 is provided with a compressor discharge temperature sensor 22 as a compressor discharge temperature detecting means at a discharge portion for discharging the refrigerant.
  • the compressor discharge temperature sensor 22 detects the temperature of the refrigerant discharged from the compressor 18.
  • the condenser 17 is provided with a condenser temperature sensor 23 as a condenser temperature detecting means at a middle part thereof.
  • the condenser temperature sensor 23 detects the temperature of the condenser 17.
  • the evaporator 16 is provided with an evaporator temperature sensor 24 as an evaporator temperature detecting means in the middle part thereof.
  • the evaporator temperature sensor 24 detects the temperature of the evaporator 16.
  • a water tank outlet temperature sensor 25 as a washing tank outlet temperature detection means is provided at an outlet portion where air circulating in the water tank 2 blows out.
  • the air discharge path 26 is provided from the front end of the ventilation duct 8 to the outside of the machine ahead.
  • a damper 27 is provided at a portion where the air discharge path 26 and the air inlet 9 are connected. The damper 27 switches the direction of the air flowing through the ventilation duct 8 to the air inlet 9 or the air discharge path 26 side.
  • the air discharge path 26 accommodates a discharge fan 28 inside.
  • An electric shutter 29 is provided in front of the discharge fan 28, that is, at the outlet of the air discharge path 26.
  • the outside air inlet 30 is provided in an upper portion between the evaporator 16 and the condenser 17 in the ventilation duct 8.
  • FIG. 5 shows the control device 31.
  • the control device 31 is composed of, for example, a microcomputer.
  • the control device 31 is provided, for example, in the upper part of the outer box 1 and functions as a control unit that controls the overall operation of the washing and drying machine.
  • the control device 31 receives various operation signals from an operation input unit 32 including various operation switches provided on an operation panel (not shown).
  • the control device 31 receives a water level detection signal from a water level sensor 33 that detects the water level in the water tank 2. Further, the controller 31 receives temperature detection signals from the water tank outlet temperature sensor 25, the compressor discharge temperature sensor 22, the condenser temperature sensor 23, and the evaporator temperature sensor 24, respectively.
  • the control device 31 includes the water supply valve 34, the motor 5, the circulation fan 12, the motor 27 for switching the damper 27, the compressor 18, The throttle 19, the drain valve 6, and the discharge blower 28 are controlled via the drive circuit 36.
  • the water supply valve 34 intermittently supplies water into the water tank 2.
  • the drive circuit 36 includes inverter devices 37 and 38 that are frequency output variable devices.
  • the inverter device 37 controls the frequency of the motor 5, and the inverter device 38 controls the frequency of the compressor 18 (particularly the drive motor thereof). Thereby, the inverter devices 37 and 38 change the rotation speed of the motor 5 or the compressor 18.
  • the rotational speeds of the motor 5 and the driving motor of the compressor 18 are varied by controlling the frequency.
  • washing / drying machine having the above configuration when a standard operation course is started, a washing operation including washing and rinsing is started first.
  • water is supplied into the water tank 2 by the water supply valve 34.
  • the motor 5 is operated, and the rotating tub 3 rotates alternately in the forward direction and the reverse direction at a low speed.
  • the dehydration operation is performed next.
  • the drain valve 6 is opened and the water in the water tank 2 is discharged. And the rotation tank 3 rotates in one direction at high speed. Thereby, the laundry in the rotating tub 3 is centrifugally dehydrated.
  • the drying operation is performed next.
  • the damper 27 opens the air inlet 9 of the ventilation duct 8 as shown by the solid line in FIG. 3 and blocks the air discharge path 26 from the ventilation duct 8.
  • rotating fan 3 is driven while rotating tank 3 is rotated in the forward and reverse directions at a low speed.
  • the air in the rotating tub 3 flows into the ventilation duct 8 from the water tank 2 through the return air duct 10 of the ventilation path 14 as shown by the solid line arrow in FIG. To do.
  • the compressor 18 of the heat pump 20 is driven. Thereby, the refrigerant
  • the refrigerant having a high temperature and a high pressure is supplied to the condenser 17, and exchanges heat with the air passing through the condenser 17 in the ventilation duct 8.
  • the air in the ventilation duct 8 is heated, and conversely, the temperature of the refrigerant is lowered and liquefied.
  • the liquefied refrigerant is decompressed through the restrictor 19 and then flows into the evaporator 16 to be vaporized.
  • the temperature of the evaporator 16 is lowered by the heat of vaporization of the refrigerant.
  • the refrigerant that has passed through the evaporator 16 is returned to the compressor 18 again.
  • the air flowing into the ventilation duct 8 from the water tank 2 is dehumidified by cooling in the evaporator 16 and then heated by the condenser 17 to be generated as warm air.
  • generated by the condenser 17 is supplied in the water tank 2 through the air supply duct 13, and is further supplied in the rotation tank 3.
  • the hot air supplied into the rotating tub 3 takes moisture from the laundry and then flows into the ventilation duct 8 from the water tub 2 through the return air duct 10.
  • the laundry in the rotating tub 3 is dried by circulating air between the rotating tub 3 and the ventilation duct 8 provided with the evaporator 16 and the condenser 17.
  • FIG. 6 shows the contents of control by the control device 31 in this drying operation.
  • a quick drying course and a saving course are set.
  • the quick-drying course consumes more power than the saving course, but the time required for drying the laundry is shorter than the saving course.
  • the saving course consumes less power than the quick-dry course, but takes longer to dry the laundry than the quick-dry course.
  • the control device 31 sets either a quick-drying course or a saving course based on an operation signal (selected by the user) from the operation input unit 32 at the start of the entire operation (step). A1).
  • the control device 31 increases the drive frequency of the compressor 18 by the inverter device 38 to a relatively high frequency.
  • the control device 31 sets the drive frequency of the compressor 18 to 100 Hz, for example (steps A3 and A4).
  • the drive frequency of 100 Hz is the maximum frequency among the drive frequencies at which the compressor 18 can be operated, that is, the maximum operable frequency.
  • the control device 31 maintains the drive frequency of the compressor 18 at the above operable maximum frequency until the temperature of the condenser 17 detected by the condenser temperature sensor 23 reaches a predetermined upper limit value (steps A5 and A6).
  • the upper limit value of the temperature set in the condenser 17 is, for example, 60 ° C.
  • the control device 31 gradually decreases the drive frequency of the compressor 18. Specifically, the control device 31 reduces the driving frequency of the compressor 18 by 1 Hz every 30 seconds until the temperature of the condenser 17 decreases from, for example, an upper limit of 60 ° C. to a predetermined value of less than 55 ° C. To do.
  • the control device 31 determines whether or not the end time of the drying operation has been reached (steps A7 and A8).
  • the control device 31 maintains the frequency reduced in steps A7 and A8 until the temperature of the condenser 17 falls below a predetermined value of 55 ° C. At this time as well, the control device 31 determines whether or not the end time of the drying operation has been reached (steps A9 and A10). When the temperature of the condenser 17 falls below a predetermined value of 55 ° C., the control device 31 increases the driving frequency of the compressor 18 by 1 Hz every 30 seconds on the condition that the temperature is less than 55 ° C. At this time as well, the control device 31 determines whether or not the end time of the drying operation has been reached (step A11).
  • control device 31 determines that the end time of the drying operation has been reached in any one of steps A7, A9, A11, the control device 31 ends the drying operation (step A12). That is, in the case of this quick-dry course, the control device 31 sets the initial value of the drive frequency of the compressor 18 to the maximum operable frequency of the compressor 18. Then, the control device 31 sets the maximum operable frequency as an upper limit value, and after the drive frequency of the compressor 18 reaches it, the controller 31 operates at a frequency equal to or lower than the maximum operable frequency according to the temperature of the condenser 17. Drive (see FIG. 1).
  • the control device 31 increases the drive frequency of the compressor 18 by the inverter device 38 to a frequency lower than that of the quick-drying course.
  • the control device 31 sets, for example, the driving frequency of the compressor 18 to 70 Hz (steps A14 and A15).
  • the driving frequency of 70 Hz is about 2/3 of the maximum frequency at which the compressor 18 can be operated.
  • the control device 31 proceeds to A12 through A16 to A22 similar to A5 to A11 of the quick drying course. That is, in the case of the saving course, the initial value of the driving frequency of the compressor 18 is set to about 2/3 70 Hz, which is lower than the initial value 100 Hz in the quick-drying course. In the case of the saving course, the control device 31 sets the 70 Hz as an upper limit value, and after the drive frequency of the compressor 18 reaches the upper limit value, according to the temperature of the condenser 17 as in the case of the quick drying course, The compressor 18 is driven at a frequency of about 2/3 or less of the maximum operable frequency (see FIG. 1).
  • the lower limit value of the driving frequency of the compressor 18 is set to 50 Hz.
  • FIG. 2 shows the relationship between the driving frequency of the compressor 18 and the coefficient of performance.
  • the coefficient of performance (hereinafter abbreviated as COP: Coefficient Of performance) represents the efficiency of the heat pump based on the input work or the relationship between heat and heat transfer, and is used as a measure of energy consumption efficiency. Is a coefficient. This COP represents the cooling and heating capacity per 1 kW of power consumption.
  • the driving frequency is 50 to 70 Hz, and the efficiency is highest. Therefore, in the case of a saving course in which the driving frequency of the compressor 18 is lower than that of the quick-drying course, the initial value of the upper limit of the driving frequency of the compressor 18 is set to 70 Hz as described above, and this initial value of 70 Hz is set as the upper limit value. is doing.
  • the control device 31 drives the compressor 18 at a drive frequency of 50 to 70 Hz according to the temperature of the condenser 17 with 50 Hz as the lower limit.
  • the quick-drying course is performed by increasing the drive frequency of the compressor 18 of the heat pump 20. Therefore, the rotational speed of the compressor 18 becomes high, and the circulation of the refrigerant in the heat pump 20 becomes active. As a result, dehumidification and heating of the circulating air are also promoted, and the laundry can be dried in a short time.
  • the saving course is implemented by lowering the driving frequency of the compressor 18 of the heat pump 20 as compared with the quick drying course. Therefore, the rotation speed of the compressor 18 is lower than that of the quick-dry course, and the circulation of the refrigerant in the heat pump 20 is suppressed.
  • the power consumption in the heat pump 20 is reduced, and the laundry can be dried with less power consumption than the quick-drying course.
  • the compressor 18 is driven in a high COP frequency band. Therefore, in the saving course, the heat pump 20 including the compressor 18 can be operated with high energy efficiency, and the power consumption can be further reduced.
  • cold air can be discharged outside the washing / drying machine.
  • the damper 27 is switched so that the air discharge path 26 communicates with the ventilation duct 8 and the air inlet 9 of the ventilation duct 8 is closed.
  • the compressor 18 of the heat pump 20 is driven, the shutter 29 is opened, and the discharge fan 28 is also driven.
  • the air outside the ventilation duct 8 is introduced into the ventilation duct 8 from the outside air inlet 30 and cooled through the evaporator 16.
  • the air cooled by the evaporator 16 is discharged to the front of the washing / drying machine through the air discharge path 26. As a result, the space where the washing / drying machine is installed can be cooled.
  • the second to fourth embodiments will be described with reference to FIGS.
  • the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof will be omitted, and only different parts will be described.
  • the control content of the control apparatus 31 in a drying operation differs from 1st Example. Specifically, the control device 31 determines whether or not the temperature of the condenser 17 has decreased below 57 ° C. to 57 ° C. or higher in step B 8 instead of step A 8 in the first embodiment. Moreover, the control apparatus 31 determines whether the temperature of the condenser 17 fell to less than 57 degreeC in step B10 replaced with step A10 of 1st Example. Steps B1 to B7 other than these steps B8 and B10, and steps B9, B11, and B12 are the same as steps A1 to A7 and steps A9, A11, and A12 of the first embodiment, respectively.
  • the control device 31 determines whether or not the temperature of the condenser 17 has increased to 50 ° C. in step B17 instead of step A17 of the first embodiment. In step B19 instead of step A19, it is determined whether or not the temperature of the condenser 17 has decreased to less than 50 ° C. and to 47 ° C. or more. Furthermore, the control device 31 determines whether or not the temperature of the condenser 17 has dropped below 47 ° C. in step B21 instead of step A21 of the first embodiment. Steps B13 to B16, B18, B20, and B22 other than these steps B19 and B21 are the same as steps A13 to A16, A18, A20, and A22 of the first embodiment, respectively.
  • the quick drying course is performed by setting the temperature of the condenser 17 detected by the condenser temperature sensor 23 to be high. Therefore, the compressor 18 increases the drive frequency and executes the quick drying course. As a result, the rotational speed of the compressor 18 increases, and the circulation of the refrigerant in the heat pump 20 becomes active. Therefore, the laundry can be dried in a short time.
  • the saving course is performed by setting the temperature of the condenser 17 detected by the condenser temperature sensor 23 to be lower than that of the quick drying course. Therefore, the compressor 18 lowers the drive frequency compared to the quick-dry course and executes the saving course. As a result, the rotation speed of the compressor 18 is lower than that in the quick drying course, and the circulation of the refrigerant in the heat pump 20 is suppressed. Therefore, the laundry can be dried with low power consumption.
  • the control device 31 performs compression in the quick drying course or the saving course based on the temperature of the refrigerant discharged from the compressor 18 detected by the compressor discharge temperature sensor 22.
  • the drive frequency of the machine 18 is controlled. That is, in the case of the third embodiment, the control device 31 uses the temperature of the refrigerant discharged from the compressor 18 instead of the temperature of the course-specific condenser 17 used in the second embodiment. In this case, the temperature of the refrigerant discharged from the compressor 18 is approximately 20K (20 ° C.) higher than the temperature of the condenser 17.
  • the control device 31 increases the temperature of the refrigerant discharged from the compressor 18 to, for example, 80 ° C. in Step C6 of the third embodiment instead of Step A6 or Step B6 of the above-described embodiments in the drying operation. Determine whether or not.
  • Step C8 of the third embodiment that replaces Step A8 or B8 of each embodiment, the control device 31 determines whether or not the temperature of the refrigerant discharged from the compressor 18 has decreased to less than 80 ° C and to 77 ° C or more. To do. Then, in step C10, the control device determines whether or not the temperature of the refrigerant discharged from the compressor 18 has decreased to less than 77 ° C.
  • Steps C1 to C5, C7, C9, C11, and C12 other than step C6, step C8, and step C10 are respectively steps A1 to A7 of the first embodiment or B1 to B7 of the second embodiment, and the first embodiment. Steps A9, A11, A12 of the second embodiment or B9, B11, B12 of the second embodiment.
  • the control device 31 increases the temperature of the refrigerant discharged from the compressor 18 to 70 ° C. in step C17 instead of step A17 of the first embodiment or step B17 of the second embodiment. Determine whether or not. Further, the control device 31 determines whether or not the temperature of the refrigerant discharged from the compressor 18 has decreased to less than 70 ° C. and to 67 ° C. or more in step C19 instead of step A17 or step B17. And the control apparatus 31 judges whether the temperature of the refrigerant
  • Steps C13 to C16, C18, C20, and C22 other than steps C17 and C19 are respectively steps A13 to A16, A18, A20, A22 in the first embodiment, or steps B13 to B16, B18, and B20 in the second embodiment. , B22.
  • the quick drying course is performed by setting the temperature of the refrigerant discharged from the compressor 18 detected by the compressor discharge temperature sensor 22 to be high. Therefore, the compressor 18 increases the drive frequency and executes the quick drying course. Therefore, the compressor 18 has a high rotational speed, and the refrigerant circulation in the heat pump 20 is fostering. Therefore, the laundry can be dried in a short time.
  • the saving course is performed by setting the temperature of the refrigerant discharged from the compressor 18 detected by the compressor discharge temperature sensor 22 to be lower than that of the quick drying course. Therefore, the compressor 18 lowers the drive frequency compared to the quick-dry course and executes the saving course. As a result, the rotation speed of the compressor 18 is lower than that in the quick drying course, and the circulation of the refrigerant in the heat pump 20 is suppressed. Therefore, the laundry can be dried with low power consumption.
  • the control device 31 performs compression particularly in the saving course based on the outlet temperature of the water tank 2 detected by the water tank outlet temperature sensor 25, that is, the temperature of the air flowing out of the water tank 2.
  • the drive frequency of the machine 18 is controlled. That is, in the case of the fourth embodiment, the control device 31 operates the drive frequency of the compressor 18 when the outlet temperature rises to, for example, 35 ° C. or higher in steps D1 to D4 in which the saving course in the drying operation is executed.
  • the frequency is increased to 100 Hz which is the maximum possible frequency (step D5).
  • the control apparatus 31 continues the state which maintained this drive frequency to the maximum frequency which can be drive
  • illustration of the control content of a quick-dry course is abbreviate
  • the driving operation of the compressor 18 is performed lower than the driving frequency of the quick drying course, and the drying operation is performed. Therefore, the circulation of the refrigerant in the heat pump 20 is suppressed, and the temperature of the evaporator 16 tends to be high. As a result, the dehumidifying performance is lowered and the drying performance may be lowered.
  • FIG. 10 shows a general change in the temperature of the evaporator 16 during the drying operation.
  • the driving frequency of the compressor 18 is constant, the temperature of the evaporator 16 gradually increases.
  • the temperature of the evaporator 16 appears as the temperature of the air flowing out of the water tank 2, that is, the outlet temperature.
  • the driving frequency of the compressor 18 may be increased and the amount of refrigerant circulating in the heat pump 20 may be increased.
  • the drive frequency of the compressor 18 is set to the maximum operable frequency from the beginning of the drying operation, the drive frequency of the compressor 18 cannot be increased further.
  • the driving frequency of the compressor 18 is set lower than the driving frequency of the quick-drying course, and the drying operation is performed. Therefore, the drive frequency of the compressor 18 can be further increased. Therefore, as shown in FIG. 11, in the case of the saving course, when the control device 31 performs the drying operation with the drive frequency of the compressor 18 lowered, the outlet temperature of the water tank 2 rises to, for example, 35 ° C. or more. Then, the drive frequency of the compressor 18 is increased to 100 Hz which is the maximum operable frequency. Thereby, the temperature of the evaporator 16 falls and the dehumidification performance is recovered. Therefore, the drying performance can be increased.
  • the present invention is not limited only to the embodiment described above and shown in the drawings.
  • the washing and drying machine as a whole is not limited to the drum type, and is a vertical type having a water tank and a rotating tank in a vertical axis.
  • the present invention can be carried out with appropriate modifications within a range not departing from the gist, such as a washing / drying machine.
  • various temperatures such as the temperature of the condenser, the temperature of the refrigerant, the temperature of the air discharged from the water tank 2, and the driving frequency of the compressor 18 illustrated in the above embodiments may be arbitrarily changed. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

 洗濯槽と、空気循環装置と、ヒートポンプとを備え、前記空気循環装置および前記ヒートポンプの運転により前記洗濯物の乾燥を行う衣類乾燥機であって、前記圧縮機は、周波数を制御することで回転速度が可変され、前記圧縮機の駆動周波数を変更することにより、前記洗濯物を比較的短時間で乾燥する速乾コース、または前記洗濯物を前記速乾コースより長時間で乾燥する節約コースのいずれかを選択して実行可能であり、前記圧縮機は、前記節約コースのとき、成績係数の高い周波数帯で駆動されることを特徴とする。

Description

衣類乾燥機
 本発明は、洗濯物の乾燥をヒートポンプで行う衣類乾燥機に関する。
 従来、洗濯物の乾燥用にヒートポンプを具えた衣類乾燥機は、乾燥性能が良く、エネルギーの省減に効果があるとして注目されている。このヒートポンプを具えた洗濯乾燥機は、洗濯物が収容される洗濯槽内の空気を、通風路を経由してヒートポンプとの間で循環させている。洗濯槽内の空気は、圧縮機および絞り器と接続されて通風路に設けられている蒸発器および凝縮器に導かれる。通風路を流れる空気は、蒸発器において冷却および除湿され、凝縮器において加熱される。このように通風路において蒸発器で除湿された後に凝縮器で加熱された空気は、再び洗濯槽内へ送り込まれる。これにより、洗濯槽内と通風路との間で空気を循環させることにより、空気は洗濯槽において洗濯物から水分を奪い、通風路において除湿される。その結果、洗濯槽内の洗濯物は、循環する空気によって乾燥される。
 したがって、洗濯物の乾燥によって蒸発した水分は蒸発器で凝縮する。水分の凝縮によって得られた潜熱は、圧縮機において冷媒の加熱に利用される。そして、通風路を流れる空気は、加熱された冷媒の熱によって凝縮器において加熱される。このように、ヒートポンプを利用することにより、外部へ僅かな放熱ロスがある以外、多くのエネルギーを再利用できる。その結果、ヒートポンプを利用する洗濯乾燥機は、電熱ヒータで生成した温風で洗濯物の乾燥を行う従来の洗濯乾燥機に比較して、エネルギー効率が向上し、乾燥のための所要時間の短縮および消費電力の低減を図ることができる。
 一方、地球環境に配慮した場合、更なる所要時間の短縮と消費電力の低減が望まれている。しかし、所要時間の短縮と消費電力の低減とは相反する関係にあり、これ以上の両立は非常に難しい。
 なお、例えば日本国特開2006-75217号公報は、駆動周波数を制御をすることでヒートポンプの圧縮機の回転速度を変更し、洗濯物の乾燥を複数のコースで実行可能とする洗濯乾燥機を開示している。
 日本国特開2006-75215号公報に開示されている、圧縮機の駆動周波数を変更することにより洗濯物の乾燥を複数のコースで実施する洗濯乾燥機の場合、通常乾燥モードと、デリケート乾燥モードとを含んでいる。デリケート乾燥モードは、熱に弱い布質の洗濯物の乾燥に適したコースである。そのため、当該公報に開示している洗濯乾燥機は、所要時間の短縮と消費電力の低減との両立を目的としたものではない。
 本発明は上述の事情に鑑みてなされたものであり、その目的は、選択するコースごとに乾燥に必要な所要時間の短縮と消費電力の低減とを両立する衣類乾燥機を提供することにある。
 上記目的を達成するために、本発明の衣類乾燥機は、洗濯槽と、
 前記洗濯槽外に設けられている通風路を有し、前記洗濯槽内の空気を、前記通風路を通して前記洗濯槽内へ戻して循環させる空気循環装置と、
 圧縮機および絞り器、ならびに前記通風路に設けられている蒸発器および凝縮器を有し、前記蒸発器および前記凝縮器と前記圧縮機および前記絞り器とを接続することにより、冷媒を前記圧縮機、前記凝縮器、前記絞り器および前記蒸発器を通して循環させる冷凍サイクルを構成するヒートポンプと、を備え、
 洗濯物の洗濯および脱水に加え、前記空気循環装置および前記ヒートポンプの運転により前記洗濯物の乾燥を行う洗濯乾燥機であって、
 前記圧縮機は、周波数を制御することで回転速度が可変され、
 前記圧縮機の駆動周波数を変更することにより、前記洗濯物を比較的短時間で乾燥する速乾コース、または前記洗濯物を前記速乾コースより長時間で乾燥する節約コースのいずれかを選択して実行可能であり、
 前記圧縮機は、前記節約コースのとき、成績係数の高い周波数帯で駆動されることを特徴とする(請求項1の発明)。
 本発明の衣類乾燥機は、第2に、前記凝縮器の温度を検知する凝縮器温度検知手段を備え、
 前記洗濯物を比較的短時間で乾燥する速乾コース、または前記洗濯物を前記速乾コースより長時間で乾燥する節約コースのいずれかを選択して実行可能であり、
 前記速乾コースまたは前記節約コースは、前記凝縮器温度検知手段で検知した前記凝縮器の温度に基づいて前記圧縮機の駆動周波数を変更することにより制御され、前記速乾コースまたは前記節約コースでそれぞれ前記凝縮器に許容される設定温度が異なることを特徴とする(請求項2の発明)。
 本発明の衣類乾燥機は、第3に、前記圧縮機から吐出される冷媒の温度を検知する圧縮機吐出温度検知手段を備え、
 前記洗濯物を比較的短時間で乾燥する速乾コース、または前記洗濯物を前記速乾コースより長時間で乾燥する節約コースのいずれかを選択して実行可能であり、
 前記速乾コースまたは前記節約コースは、前記圧縮機吐出温度検知手段で検知した前記圧縮機から吐出される冷媒の温度に基づいて前記圧縮機の駆動周波数を変更することにより制御され、前記速乾コースまたは前記節約コースでそれぞれ前記圧縮機から吐出される冷媒に許容される設定温度が異なることを特徴とする。
(請求項3の発明)。
 請求項1の衣類乾燥機では、速乾コースは、ヒートポンプの圧縮機の駆動周波数を高くして実行する。これにより、圧縮機の回転速度が高くなり、ヒートポンプにおける冷媒の循環は盛んになる。そのため、洗濯物は短時間で乾燥される。一方、節約コースは、ヒートポンプの圧縮機の駆動周波数を低くして実行する。これにより、圧縮機の回転速度が低くなり、ヒートポンプにおける冷媒の循環は抑えられる。そのため、洗濯物は少ない消費電力で乾燥される。したがって、選択するコースごとに乾燥に必要な所要時間の短縮と消費電力の低減とを両立することができる。また、節約コースでは、圧縮機を成績係数の高い周波数帯で駆動することにより、効率の良い運転が可能となり、消費電力をより一層節約することができる。
 請求項2の衣類乾燥機では、速乾コースは、凝縮器温度検知手段で検知される凝縮器の温度を高く設定して実行する。これにより、速乾コースは、圧縮機の駆動周波数が高い状態で実行される。そのため、圧縮機の回転速度が高くなり、ヒートポンプにおける冷媒の循環が盛んになる。その結果、洗濯物は短時間で乾燥される。一方、節約コースは、凝縮器温度検知手段で検知される凝縮器の温度を低く設定して実行する。これにより、節約コースは、圧縮機の駆動周波数が低い状態で実行される。そのため、圧縮機の回転速度が低くなり、ヒートポンプにおける冷媒の循環は抑えられる。その結果、洗濯物は少ない消費電力消費で乾燥される。したがって、選択するコースごとに乾燥に必要な所要時間の短縮と消費電力の低減とを両立することができる。
 請求項3の衣類乾燥機では、速乾コースは、圧縮機吐出温度検知手段で検知される圧縮機から吐出される冷媒の温度を高く設定して実行する。これにより、速乾コースは、圧縮機の駆動周波数が高い状態で実行される。そのため、圧縮機の回転速度が高くなり、ヒートポンプにおける冷媒の循環が盛んになる。その結果、洗濯物は短時間で乾燥される。一方、節約コースは、圧縮機吐出温度検知手段で検知される冷媒の温度を低く設定して実行する。これにより、節約コースは、圧縮機の駆動周波数が低い状態で実行される。そのため、圧縮機の回転速度が低くなり、ヒートポンプにおける冷媒の循環は抑えられる。その結果、洗濯物は少ない電力消費で乾燥される。したがって、選択するコースごとに乾燥に必要な所要時間の短縮と消費電力の低減とを両立することができる。
本発明の第1実施例を示す、乾燥運転時におけるコース別の圧縮機駆動周波数および凝縮器温度の経時変化を表した図 圧縮機の駆動周波数と成績係数との関係を示す図 衣類乾燥機全体の縦断側面図 ヒートポンプのサイクル構成図 電気的構成のブロック図 乾燥運転時の制御内容を表したフローチャート 本発明の第2実施例を示す図6相当図 本発明の第3実施例を示す図6相当図 本発明の第4実施例を示す図6部分相当図 乾燥運転における圧縮機の駆動周波数と蒸発器温度の一般的変化を示した図 節約コースにおける圧縮機の駆動周波数の変化と蒸発器温度の変化とを示した図
 (第1実施例)
 以下、本発明の第1実施例につき、図1ないし図6を参照して説明する。
 図3は、衣類乾燥機を適用した横軸形のドラム式の洗濯乾燥機を示す。洗濯乾燥機は、外箱1の内部に水槽2を収容している。さらに水槽2は、内部にドラム状の回転槽3を収容している。本実施例においては、この水槽2および回転槽3は洗濯槽を構成している。回転槽3は、詳しくは図示しないが、周側壁の全域に孔を有する多孔状である。
 水槽2および回転槽3は、ともに軸方向が前後に伸びる横軸円筒状を成している。水槽2および回転槽3は、図示しないサスペンションにより前上がりの傾斜状に弾性支持されている。また、これら水槽2および回転槽3は、ともに前面が開口している。外箱1は、前面部の上部に図示しない洗濯物出入口を形成している。この洗濯物出入口は、扉4によって開閉される。洗濯物出入口と水槽2の前面の開口部とは、図示しないベローズにより接続されている。
 モータ5は、水槽2の背面に取り付けられている。モータ5は、例えばアウターロータ形のブラシレスモータであり、回転槽3を回転駆動する。従って、モータ5は、回転槽3を回転駆動する駆動装置として機能する。
 水槽2は、最下部である底部の最後部に電動の排水弁6を有している。この排水弁6は、排水ホース7が接続される。これらにより水槽2内の水は、排水弁6および排水ホース7を経由して機外に排出される。
 通風ダクト8は、水槽2の下方に配置されている。この通風ダクト8は、前端部の上部に吸風口9を有している。この吸風口9は、還風ダクト10を経由して図示しない温風出口に接続している。温風出口は、水槽2の前面部において開口部の周りの上部に設けられている。還風ダクト10は、水槽2の前面の開口部を迂回して配置されている。還風ダクト10は、途中部に例えば糸くずなどの異物を捕獲するフィルタ11を有している。
 循環用送風機12は、通風ダクト8の後端部に接続している。循環用送風機12の出口部は、給風ダクト13を経由して図示しない温風入口に接続している。温風入口は、水槽2の後端板部において上部に設けられている。給風ダクト13は、モータ5を迂回して配置されている。
 これらの結果、還風ダクト10、通風ダクト8、循環用送風機12、および給風ダクト13は、水槽2の温風出口と温風入口とを接続する通風路14を形成している。この通風路14は、水槽2の外部に位置している。
 循環用送風機12は、回転槽3内の空気を循環させる。循環用送風機12が作動すると、空気は、水槽2内から通風路14を通して水槽2外に流出した後、再び水槽2および回転槽3内へ戻される。このように、通風路14および循環用送風機12は、回転槽3内の空気を循環させる空気循環装置15を構成している。
 通風路14のうち通風ダクト8は、内部の前方側に蒸発器16を収容し、後方側に凝縮器17を収容している。これらの蒸発器16および凝縮器17は、図4に略図にて示すように、それぞれ蛇行状の冷媒流通パイプ16a,17aおよび伝熱フィン16b,17bにより構成されている。具体的には、蒸発器16および凝縮器17は、蛇行するチューブ状の冷媒流通パイプ16a,17aに、微小なピッチで多数の伝熱フィン16b,17bが設けられている。これにより、蒸発器16および凝縮器17は、熱交換性に優れている。通風ダクト8を流れる空気は、冷媒流通パイプ16a、17aおよび伝熱フィン16b、17bに接触しつつ通過することにより、熱交換される。
 蒸発器16および凝縮器17は、図4に示す圧縮機18および絞り器19とともにヒートポンプ20を構成する。ヒートポンプ20は、接続パイプ21によって、圧縮機18、凝縮器17、絞り器19、蒸発器16、および圧縮機18の順に接続されている。これにより、ヒートポンプ20は、圧縮機18が作動することによって図示しない冷媒を矢印で示すように循環させる冷凍サイクルを構成する。絞り器19は、例えば電子式の絞り弁もしくはキャピラリチューブなどが用いられる。
 圧縮機18は、例えばロータリー形である。圧縮機18および絞り器19は、図3には図示しないが、通風ダクト8の外部に設けられている。圧縮機18は、冷媒を吐出する吐出部分に、圧縮機吐出温度検知手段としての圧縮機吐出温度センサ22が設けられている。圧縮機吐出温度センサ22は、圧縮機18から吐出される冷媒の温度を検知する。凝縮器17は、その中ほどの部分に、凝縮器温度検知手段としての凝縮器温度センサ23が設けられている。凝縮器温度センサ23は、凝縮器17の温度を検知する。蒸発器16は、その中ほどの部分に、蒸発器温度検知手段としての蒸発器温度センサ24が設けられている。蒸発器温度センサ24は、蒸発器16の温度を検知する。洗濯槽出口温度検知手段としての水槽出口温度センサ25は、水槽2において循環する空気が吹き出す出口部分に設けられている。
 吐風路26は、通風ダクト8の前端部から前方の機外へ設けられている。吐風路26と吸風口9とが接続する部分には、ダンパ27が設けられている。ダンパ27は、通風ダクト8を流れる空気の向きを吸風口9または吐風路26側へ切り替える。吐風路26は、内部に吐出用送風機28を収容している。この吐出用送風機28の前方、すなわち吐風路26の出口部は、電動のシャッタ29を有している。外気導入口30は、通風ダクト8において蒸発器16と凝縮器17との間の上部に設けられている。
 図5は、制御装置31を示している。この制御装置31は、例えばマイクロコンピュータから成る。制御装置31は、外箱1内の例えば上部に設けられ、洗濯乾燥機の作動全般を制御する制御手段として機能する。
 この制御装置31は、図示しない操作パネルに設けられている各種操作スイッチからなる操作入力部32から各種の操作信号が入力される。また、制御装置31は、水槽2内の水位を検知する水位センサ33から水位検知信号が入力される。さらに、制御装置31は、水槽出口温度センサ25、圧縮機吐出温度センサ22、凝縮器温度センサ23、および蒸発器温度センサ24からそれぞれ温度検知信号が入力される。
 制御装置31は、上述の各種センサから入力された各種信号、およびあらかじめ記憶した制御プログラムに基づいて、給水弁34、モータ5、循環用送風機12、ダンパ27の切り替え用モータ35、圧縮機18、絞り器19、排水弁6および吐出用送風機28を駆動回路36を介して制御する。給水弁34は、水槽2内への給水を断続する。
 駆動回路36は、周波数出力可変装置であるインバータ装置37,38を有している。インバータ装置37はモータ5の周波数を制御し、インバータ装置38は圧縮機18(特にはこれの駆動モータ)の周波数を制御する。これにより、インバータ装置37,38は、モータ5または圧縮機18の回転速度を変更する。このように、モータ5および圧縮機18の駆動モータは、周波数を制御をすることにより、回転速度が可変される。
 次に、上記構成の洗濯乾燥機の作用を述べる。
 上記構成の洗濯乾燥機では、標準的な運転コースが開始されると、最初に洗いおよびすすぎを含む洗濯運転が開始される。この洗濯運転の場合、給水弁34により水槽2内への給水が行われる。続いて、モータ5が作動し、回転槽3は低速で正方向および逆方向へ交互に回転する。
 洗濯運転が終了すると、次に脱水運転が実施される。この脱水運転の場合、排水弁6が開放され水槽2内の水が排出される。そして、回転槽3は、高速で一方向に回転する。これにより、回転槽3内の洗濯物は遠心脱水される。
 脱水運転が終了すると、次に乾燥運転が実施される。この乾燥運転の場合、ダンパ27は、図3の実線で示すように通風ダクト8の吸風口9を開放し、吐風路26を通風ダクト8から遮断する。この状態で回転槽3は低速で正方向および逆方向へ回転されつつ、循環用送風機12が駆動される。すると、循環用送風機12の送風作用により、図3の実線の矢印で示すように、回転槽3内の空気は、水槽2内から通風路14の還風ダクト10を経て通風ダクト8内に流入する。
 このとき、ヒートポンプ20の圧縮機18が駆動されている。これにより、ヒートポンプ20に封入されている冷媒は、圧縮機18により圧縮されて高温および高圧となる。高温および高圧となった冷媒は、凝縮器17へ供給され、通風ダクト8内において凝縮器17を通過する空気との間で熱交換する。その結果、通風ダクト8内の空気は加熱され、反対に冷媒の温度は低下して液化される。この液化された冷媒は、絞り器19を通って減圧された後、蒸発器16に流入して気化する。冷媒の気化熱によって蒸発器16の温度は低下している。これにより、通風ダクト8内を流れる空気は、蒸発器16を通過することにより冷却される。蒸発器16を通過した冷媒は、再び圧縮機18に戻される。
 これらにより、水槽2内から通風ダクト8内に流入した空気は、蒸発器16における冷却によって除湿され、その後に凝縮器17で加熱されて温風として生成される。そして、凝縮器17で生成された温風は、給風ダクト13を経て水槽2内に供給され、更に回転槽3内へ供給される。
 回転槽3内へ供給された温風は、洗濯物から水分を奪った後、水槽2内から還風ダクト10を経て通風ダクト8内に流入する。こうして、回転槽3と、蒸発器16および凝縮器17が設けられている通風ダクト8との間を空気が循環することにより、回転槽3内の洗濯物は乾燥される。
 図6は、この乾燥運転における、制御装置31による制御内容を示している。図6に示すように、乾燥運転は、速乾コースおよび節約コースが設定されている。速乾コースは、節約コースに比較して消費電力が大きいものの、節約コースに比較して洗濯物の乾燥に要する所要時間が短い。一方、節約コースは、速乾コースに比較して消費電力が小さいものの、速乾コースに比較して洗濯物の乾燥に要する時間が長い。制御装置31は、乾燥運転の最初に、全運転の開始時における操作入力部32からの操作信号(使用者による選択)に基づいて、速乾コースまたは節約コースのいずれかが設定される(ステップA1)。
 速乾コースが設定され、設定された速乾コースが開始されると(ステップA2)、制御装置31はインバータ装置38による圧縮機18の駆動周波数を比較的高い周波数まで上昇させる。本実施例の場合、制御装置31は、例えば圧縮機18の駆動周波数を100Hzに設定する(ステップA3、A4)。この100Hzという駆動周波数は、圧縮機18の運転が可能な駆動周波数のうち最大の周波数すなわち運転可能最大周波数である。
 制御装置31は、凝縮器温度センサ23で検知される凝縮器17の温度が所定の上限値に達するまで圧縮機18の駆動周波数を上記の運転可能最大周波数に維持する(ステップA5、A6)。本実施例の場合、凝縮器17に設定されている温度の上限値は、例えば60℃である。制御装置31は、凝縮器17の温度が所定の上限値に到達すると、圧縮機18の駆動周波数を徐々に低下させる。具体的には、制御装置31は、凝縮器17の温度が例えば上限値である60℃から所定値である55℃未満に低下するまで、圧縮機18の駆動周波数を30秒ごとに1Hzずつ低減する。そして、同時に制御装置31は、乾燥運転の終了時間に達したか否かについても判断する(ステップA7、A8)。
 乾燥運転が終了時間に達していない場合、制御装置31は、凝縮器17の温度が所定値である55℃未満に低下するまで、ステップA7、A8で低減した周波数を維持する。制御装置31は、このときも同時に乾燥運転の終了時間に達したか否かを判断する(ステップA9、A10)。
 制御装置31は、凝縮器17の温度が所定値である55℃未満に低下すると、55℃未満であることを条件に圧縮機18の駆動周波数を30秒ごとに1Hzずつ上昇させる。制御装置31は、このときも、同時に乾燥運転の終了時間に達したか否かを判断する(ステップA11)。
 制御装置31は、上記ステップA7、A9、A11のいずれかで、乾燥運転の終了時間に達したと判断すると、乾燥運転を終了する(ステップA12)。
 すなわち、この速乾コースの場合、制御装置31は、圧縮機18の駆動周波数の初期値を、圧縮機18の運転可能最大周波数に設定している。そして、制御装置31は、この運転可能最大周波数を上限値として、圧縮機18の駆動周波数がそれに到達した後、凝縮器17の温度に応じて、圧縮機18を運転可能最大周波数以下の周波数で駆動する(図1参照)。
 一方、節約コースが設定され、設定された節約コースが開始されると(ステップA13)、制御装置31はインバータ装置38による圧縮機18の駆動周波数を速乾コースよりも低い周波数まで上昇させる。本実施例の場合、制御装置31は、例えば圧縮機18の駆動周波数を70Hzに設定する(ステップA14、A15)。この70Hzという駆動周波数は、圧縮機18の運転が可能な最大の周波数の約2/3である。
 そして、制御装置31は、速乾コースのA5~A11と同様なA16~A22を経て、A12に進む。
 すなわち、節約コースの場合、圧縮機18の駆動周波数の初期値は、速乾コースにおける初期値100Hzよりも低い、約2/3の70Hzに設定されている。そして、節約コースの場合、制御装置31は、この70Hzを上限値として、圧縮機18の駆動周波数が上限値に到達した後、速乾コースの場合と同様に凝縮器17の温度に応じて、圧縮機18を運転可能最大周波数の約2/3以下の周波数で駆動している(図1参照)。
 但し、この場合、圧縮機18の駆動周波数の下限値は50Hzに設定している。図2は、圧縮機18の駆動周波数と成績係数との関係を示している。成績係数(以下、COP:Coefficient Of performanceと略する。)は、投入された仕事または熱と熱の移動量との関係に基づいてヒートポンプの効率を表すものであり、エネルギー消費効率の目安として用いられる係数である。このCOPは、消費電力1kW当たりの冷却および加熱能力を表している。
 従って、COPが高いほどヒートポンプのエネルギー消費効率は高くなる。図2の関係を示す圧縮機18の場合、駆動周波数は50~70Hzで最も効率が高くなる。そこで、速乾コースよりも圧縮機18の駆動周波数が低い節約コースの場合、上述のように圧縮機18の駆動周波数の上限の初期値は70Hzとし、この初期値である70Hzを上限値に設定している。そして、駆動周波数が上限値である70Hzに到達すると、制御装置31は、50Hzを下限値として、凝縮器17の温度に応じて、50~70Hzの駆動周波数で圧縮機18を駆動する。
 以上のように、本実施例では、速乾コースは、ヒートポンプ20の圧縮機18の駆動周波数を高くして実施する。そのため、圧縮機18の回転速度は高くなり、ヒートポンプ20における冷媒の循環は盛んになる。その結果、循環する空気の除湿および加熱も促進され、洗濯物を短時間で乾燥させることができる。一方、節約コースは、ヒートポンプ20の圧縮機18の駆動周波数を速乾コースに比較して低くして実施する。そのため、圧縮機18の回転速度は速乾コースに比較して低くなり、ヒートポンプ20における冷媒の循環は抑えられる。その結果、ヒートポンプ20における消費電力が減少し、速乾コースに比較して洗濯物を少ない電力消費で乾燥させることができる。節約コースの場合、圧縮機18はCOPの高い周波数帯で駆動される。したがって、節約コースでは圧縮機18を含むヒートポンプ20を高いエネルギー効率で運転することができ、消費電力をより一層の低減することができる。
 上述の本実施例では、乾燥運転に加えて、洗濯乾燥機の外部に冷風を吐出することもできる。この場合、ダンパ27は、図3の二点鎖線で示すように、吐風路26を通風ダクト8に連通させ、通風ダクト8の吸風口9を閉塞するように切換えられる。この状態でヒートポンプ20の圧縮機18が駆動されるとともに、シャッタ29が開放され、吐出用送風機28も駆動される。これらにより、図3の破線の矢印で示すように、通風ダクト8外の空気は、外気導入口30から通風ダクト8内に導入されて蒸発器16を通り冷却される。そして、蒸発器16で冷却された空気は、吐風路26を通って洗濯乾燥機の前方に吐出される。その結果、洗濯乾燥機が設置されたスペースの冷房を実施することができる。
 以下、図7から図11に基づいて、第2実施例から第4実施例について説明する。第1実施例と同一の部分には同一の符号を付して説明を省略し、異なる部分についてのみ説明する。
 (第2実施例)
 第2実施例では、図7に示すように、乾燥運転における制御装置31の制御内容が第1実施例と異なる。具体的には、制御装置31は、第1実施例のステップA8に代わるステップB8において、凝縮器17の温度が60℃未満で57℃以上まで低下したか否かを判断する。また、制御装置31は、第1実施例のステップA10に代わるステップB10において、凝縮器17の温度が57℃未満まで低下したか否かを判断する。これらステップB8およびB10以外のステップB1~B7、ならびにステップB9、B11、B12は、それぞれ第1実施例のステップA1~A7、ならびにステップA9、A11、A12と同一である。
 また、第2実施例の場合、制御装置31は、第1実施例のステップA17に代わるステップB17において、凝縮器17の温度が50℃に上昇したか否かを判断し、第1実施例のステップA19に代わるステップB19において、凝縮器17の温度が50℃未満で47℃以上まで低下したか否かを判断する。さらに、制御装置31は、第1実施例のステップA21に代わるステップB21において、凝縮器17の温度が47℃未満に降下したか否かを判断する。これらステップB19およびB21以外のステップB13~B16、B18、B20、B22は、それぞれ第1実施例のステップA13~A16、A18、A20、A22と同一である。
 このように第2実施例では、速乾コースは、凝縮器温度センサ23で検知される凝縮器17の温度を高く設定して実施される。そのため、圧縮機18は、駆動周波数を高くして速乾コースを実行することになる。その結果、圧縮機18の回転速度は高くなり、ヒートポンプ20における冷媒の循環が盛んになる。したがって、洗濯物を短時間で乾燥させることができる。一方、節約コースは、凝縮器温度センサ23で検知される凝縮器17の温度を速乾コースに比較して低く設定して実施される。そのため、圧縮機18は、駆動周波数を速乾コースに比較して低くして節約コースを実行することになる。その結果、圧縮機18の回転速度は速乾コースに比較して低くなり、ヒートポンプ20における冷媒の循環が抑えられる。したがって、洗濯物を少ない消費電力で乾燥させることができる。
 (第3実施例)
 第3実施例では、図8に示すように、制御装置31は、圧縮機吐出温度センサ22で検知される圧縮機18から吐出される冷媒の温度に基づいて、速乾コースまたは節約コースにおける圧縮機18の駆動周波数を制御している。すなわち、第3実施例の場合、制御装置31は、上述の第2実施例において用いたコース別の凝縮器17の温度に変えて、圧縮機18から吐出される冷媒の温度を用いている。この場合、圧縮機18から吐出される冷媒の温度は、凝縮器17の温度より約20K(20℃)高い。
 詳細には、制御装置31は、乾燥運転における上記した各実施例のステップA6またはステップB6に代わる第3実施例のステップC6において、圧縮機18から吐出される冷媒の温度が例えば80℃に上昇したか否かを判断する。各実施例のステップA8またはB8に代わる第3実施例のステップC8において、制御装置31は、圧縮機18から吐出される冷媒の温度が80℃未満で77℃以上まで低下したか否かを判断する。そして、制御装置は、ステップC10において、圧縮機18から吐出される冷媒の温度の温度が77℃未満まで低下したか否かを判断する。これらステップC6、ステップC8およびステップC10以外のステップC1~C5、C7、C9、C11、C12は、それぞれ第1実施例のステップA1~A7または第2実施例のB1~B7、ならびに第1実施例のステップA9、A11、A12または第2実施例のB9、B11、B12と同一である。
 また、第2実施例の場合、制御装置31は、第1実施例のステップA17または第2実施例のステップB17に代わるステップC17において、圧縮機18から吐出される冷媒の温度が70℃に上昇したか否かを判断する。さらに、制御装置31は、ステップA17またはステップB17に代わるステップC19において、圧縮機18から吐出される冷媒の温度が70℃未満で67℃以上まで低下したか否かを判断する。そして、制御装置31は、ステップA21またはステップB21に代わるステップC21において、圧縮機18から吐出される冷媒の温度が67℃未満まで低下したか否かを判断する。これらステップC17およびC19以外のステップC13~C16、C18、C20、C22は、それぞれ第1実施例におけるステップA13~A16、A18、A20、A22、または第2実施例におけるステップB13~B16、B18、B20、B22と同一である。
 このように第3実施例では、速乾コースは、圧縮機吐出温度センサ22で検知される圧縮機18から吐出される冷媒の温度を高く設定して実施される。そのため、圧縮機18は、駆動周波数を高くして速乾コースを実行することになる。そのため、圧縮機18は、回転速度は高くなり、ヒートポンプ20における冷媒の循環が盛んになる。したがって、洗濯物を短時間で乾燥させることができる。一方、節約コースは、圧縮機吐出温度センサ22で検知される圧縮機18から吐出される冷媒の温度を速乾コースに比較して低く設定して実施される。そのため、圧縮機18は、駆動周波数を速乾コースに比較して低くして節約コースを実行することになる。その結果、圧縮機18の回転速度は速乾コースに比較して低くなり、ヒートポンプ20における冷媒の循環が抑えられる。したがって、洗濯物を少ない消費電力で乾燥させることができる。
 (第4実施例)
 第4実施例では、図9に示すように、制御装置31は、水槽出口温度センサ25で検知される水槽2の出口温度すなわち水槽2から流出する空気の温度に基づいて、特に節約コースにおける圧縮機18の駆動周波数を制御している。すなわち、第4実施例の場合、制御装置31は、乾燥運転における節約コースを実行しているステップD1~D4において、出口温度が例えば35℃以上まで上昇したとき、圧縮機18の駆動周波数を運転可能最大周波数である100Hzまで上昇させる(ステップD5)。そして、制御装置31は、この駆動周波数を運転可能最大周波数に維持した状態を乾燥運転の終了時間に達するまで継続し(ステップD6)、乾燥運転を終了する(ステップD7)。
 なお、第4実施例では、速乾コースの制御内容の図示は省略している。
 第4実施例の場合、節約コースでは、圧縮機18の駆動周波数は速乾コースの駆動周波数よりも低くして乾燥運転が実施される。そのため、ヒートポンプ20における冷媒の循環が抑えられ、蒸発器16の温度が高くなりがちとなる。その結果、除湿性能の低下を招き、乾燥性能が低くなるおそれがある。
 図10は、乾燥運転における蒸発器16の温度の一般的な変化を示している。圧縮機18の駆動周波数が一定であるとき、蒸発器16の温度は徐々に上昇する。この蒸発器16の温度は、水槽2から流出する空気の温度すなわち出口温度として現れる。蒸発器16の温度を低下させるには、圧縮機18の駆動周波数を高め、ヒートポンプ20における冷媒の循環量を増加させればよい。しかし、圧縮機18の駆動周波数を乾燥運転の初期から運転可能最大周波数に設定していると、それ以上に圧縮機18の駆動周波数を上げることはできない。
 これに対し、節約コースの場合、圧縮機18の駆動周波数は、速乾コースの駆動周波数より低く設定して乾燥運転を実施している。そのため、圧縮機18の駆動周波数は、さらに上昇させることができる。そこで、図11に示すように、節約コースの場合、制御装置31は、圧縮機18の駆動周波数を低くして乾燥運転を行っているとき、水槽2の出口温度が例えば35℃以上まで上昇すると、圧縮機18の駆動周波数を運転可能最大周波数である100Hzまで上昇させる。これにより、蒸発器16の温度は低下し、除湿性能が回復する。したがって、乾燥性能を高くすることができる。
 このほか、本発明は上記し且つ図面に示した実施例にのみ限定されるものではなく、特に洗濯乾燥機全体としては、ドラム式に限られず、水槽や回転槽を縦軸状に有する縦形の洗濯乾燥機であっても良いなど、要旨を逸脱しない範囲内で適宜変更して実施し得る。
 例えば、上記の複数の実施例において例示した凝縮器の温度、冷媒の温度、水槽2から吐出される空気の温度などの各種の温度、ならびに圧縮機18の駆動周波数などは、任意に変更することができる。

Claims (3)

  1.  洗濯槽と、
     前記洗濯槽外に設けられている通風路を有し、前記洗濯槽内の空気を、前記通風路を通して前記洗濯槽内へ戻して循環させる空気循環装置と、
     圧縮機および絞り器、ならびに前記通風路に設けられている蒸発器および凝縮器を有し、前記蒸発器および前記凝縮器と前記圧縮機および前記絞り器とを接続することにより、冷媒を前記圧縮機、前記凝縮器、前記絞り器および前記蒸発器を通して循環させる冷凍サイクルを構成するヒートポンプと、を備え、
     洗濯物の洗濯および脱水に加え、前記空気循環装置および前記ヒートポンプの運転により前記洗濯物の乾燥を行う洗濯乾燥機であって、
     前記圧縮機は、周波数を制御することで回転速度が可変され、
     前記圧縮機の駆動周波数を変更することにより、前記洗濯物を比較的短時間で乾燥する速乾コース、または前記洗濯物を前記速乾コースより長時間で乾燥する節約コースのいずれかを選択して実行可能であり、
     前記圧縮機は、前記節約コースのとき、成績係数の高い周波数帯で駆動されることを特徴とする衣類乾燥機。
  2.  洗濯槽と、
     前記洗濯槽外に設けられている通風路を有し、前記洗濯槽内の空気を、前記通風路を通して前記洗濯槽内に戻して循環させる空気循環装置と、
     圧縮機および絞り器、ならびに前記通風路に設けられている蒸発器および凝縮器を有し、前記蒸発器および前記凝縮器と前記圧縮機および前記絞り器とを接続することにより、冷媒を前記圧縮機、前記凝縮器、前記絞り器および前記蒸発器を通して循環させる冷凍サイクルを構成するヒートポンプと、
     前記凝縮器の温度を検知する凝縮器温度検知手段と、を備え、
     洗濯物の洗濯および脱水に加え、前記空気循環装置および前記ヒートポンプの運転により前記洗濯物の乾燥を行う洗濯乾燥機であって、
     前記圧縮機は、周波数を制御することで回転速度が可変され、
     前記洗濯物を比較的短時間で乾燥する速乾コース、または前記洗濯物を前記速乾コースより長時間で乾燥する節約コースのいずれかを選択して実行可能であり、
     前記速乾コースまたは前記節約コースは、前記凝縮器温度検知手段で検知した前記凝縮器の温度に基づいて前記圧縮機の駆動周波数を変更することにより制御され、前記速乾コースまたは前記節約コースでそれぞれ前記凝縮器に許容される設定温度が異なることを特徴とする衣類乾燥機。
  3.  洗濯槽と、
     前記洗濯槽外に設けられている通風路を有し、前記洗濯槽内の空気を、前記通風路を通して前記洗濯槽内へ戻して循環させる空気循環装置と、
     圧縮機および絞り器、ならびに前記通風路に設けられている蒸発器および凝縮器を有し、前記蒸発器および前記凝縮器と前記圧縮機および前記絞り器とを接続することにより、冷媒を前記圧縮機、前記凝縮器、前記絞り器および前記蒸発器を通して循環させる冷凍サイクルを構成したヒートポンプと、
     前記圧縮機から吐出される冷媒の温度を検知する圧縮機吐出温度検知手段と、を備え、
     洗濯物の洗濯および脱水に加え、前記空気循環装置および前記ヒートポンプの運転により前記洗濯物の乾燥を行う洗濯乾燥機であって、
     前記圧縮機は、周波数を制御することで回転速度が可変され、
     前記洗濯物を比較的短時間で乾燥する速乾コース、または前記洗濯物を前記速乾コースより長時間で乾燥する節約コースのいずれかを選択して実行可能であり、
     前記速乾コースまたは前記節約コースは、前記圧縮機吐出温度検知手段で検知した前記圧縮機から吐出される冷媒の温度に基づいて前記圧縮機の駆動周波数を変更することにより制御され、前記速乾コースまたは前記節約コースでそれぞれ前記圧縮機から吐出される冷媒に許容される設定温度が異なることを特徴とする衣類乾燥機。
PCT/JP2009/003379 2008-07-25 2009-07-17 衣類乾燥機 WO2010010679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09800195.1A EP2333141B1 (en) 2008-07-25 2009-07-17 Clothes dryer
KR1020107026421A KR101235552B1 (ko) 2008-07-25 2009-07-17 의류 건조기
CN200980129128.5A CN102105631B (zh) 2008-07-25 2009-07-17 衣物干燥机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008192153A JP5253909B2 (ja) 2008-07-25 2008-07-25 洗濯乾燥機
JP2008-192153 2008-07-25

Publications (1)

Publication Number Publication Date
WO2010010679A1 true WO2010010679A1 (ja) 2010-01-28

Family

ID=41570150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003379 WO2010010679A1 (ja) 2008-07-25 2009-07-17 衣類乾燥機

Country Status (5)

Country Link
EP (1) EP2333141B1 (ja)
JP (1) JP5253909B2 (ja)
KR (1) KR101235552B1 (ja)
CN (1) CN102105631B (ja)
WO (1) WO2010010679A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455526A1 (en) * 2010-11-17 2012-05-23 BSH Bosch und Siemens Hausgeräte GmbH Machine comprising a heat pump and related set of processes
WO2013011606A1 (ja) * 2011-07-15 2013-01-24 パナソニック株式会社 ドラム式洗濯機
JP2013085788A (ja) * 2011-10-20 2013-05-13 Panasonic Corp ドラム式洗濯乾燥機およびそのプログラム
JP2014104264A (ja) * 2012-11-29 2014-06-09 Toshiba Corp 洗濯乾燥機
EP4172399A4 (en) * 2020-06-24 2024-07-03 Lg Electronics Inc LAUNDRY TREATMENT DEVICE

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078922A1 (de) * 2011-07-11 2013-01-17 BSH Bosch und Siemens Hausgeräte GmbH Abluft-Wäschetrocknung mit Zusatzheizung und Wärmetauscheraggregat
EP2586906B1 (en) * 2011-10-25 2020-06-24 Electrolux Home Products Corporation N.V. A laundry dryer with a heat pump system
EP2612963B1 (en) 2012-01-05 2016-03-30 Electrolux Home Products Corporation N.V. Appliance for drying laundry
EP2612965B1 (en) 2012-01-05 2018-04-25 Electrolux Home Products Corporation N.V. Appliance and method for drying laundry
EP2612966B1 (en) * 2012-01-05 2017-08-23 Electrolux Home Products Corporation N.V. Appliance for drying laundry
EP2612964B1 (en) 2012-01-05 2015-03-04 Electrolux Home Products Corporation N.V. Appliance for drying laundry
CN102677441B (zh) * 2012-04-27 2016-12-28 青岛海尔滚筒洗衣机有限公司 一种热泵干衣机控制方法及热泵干衣机
JP5947103B2 (ja) * 2012-05-16 2016-07-06 シャープ株式会社 衣類乾燥装置
JP5978522B2 (ja) * 2012-06-19 2016-08-24 東芝ライフスタイル株式会社 洗濯乾燥機
KR102009278B1 (ko) 2012-10-22 2019-08-09 엘지전자 주식회사 운전모드에 따라 변경이 가능한 팽창변을 구비한 의류건조기 및 이의 운전방법
EP2733257B1 (en) * 2012-11-16 2021-10-13 Electrolux Home Products Corporation N.V. Method for operating a laundry treatment apparatus and laundry treatment apparatus
EP2735641A1 (en) * 2012-11-26 2014-05-28 Electrolux Home Products Corporation N.V. A method for controlling a laundry dryer including a fan-drum motor or fan motor with a variable speed
CN103882665B (zh) * 2012-12-21 2018-03-30 青岛海尔洗衣机有限公司 一种热泵干衣机变频压缩机的控制方法及热泵干衣机
JP6111411B2 (ja) * 2013-01-15 2017-04-12 パナソニックIpマネジメント株式会社 洗濯乾燥機
JP6293411B2 (ja) * 2013-01-21 2018-03-14 東芝ライフスタイル株式会社 衣類乾燥機
JP6111413B2 (ja) * 2013-02-01 2017-04-12 パナソニックIpマネジメント株式会社 乾燥機
KR102058995B1 (ko) * 2013-02-28 2019-12-24 엘지전자 주식회사 의류처리장치 및 이의 제어방법
CN104120591B (zh) * 2013-04-24 2018-05-01 青岛海尔洗衣机有限公司 一种干衣机控制方法
JP6199687B2 (ja) * 2013-10-07 2017-09-20 東芝ライフスタイル株式会社 衣類乾燥機
CN104631069A (zh) * 2013-11-07 2015-05-20 杭州三花研究院有限公司 干衣机及其控制方法
JP6466093B2 (ja) * 2014-07-18 2019-02-06 東芝ライフスタイル株式会社 衣類乾燥機
US9670612B2 (en) 2014-08-13 2017-06-06 Lg Electronics Inc. Laundry treatment apparatus and method for controlling a laundry treatment apparatus
KR101698857B1 (ko) * 2014-08-13 2017-01-24 엘지전자 주식회사 의류처리장치 및 의류처리장치의 제어방법
CN105648723B (zh) * 2014-11-13 2019-10-25 青岛海尔智能技术研发有限公司 洗衣机及烘干方法
KR101613966B1 (ko) * 2014-12-29 2016-04-20 엘지전자 주식회사 의류처리장치
CN105839376B (zh) * 2015-01-12 2020-01-24 青岛海尔洗衣机有限公司 一种变频热泵干衣机控制方法
CN105986455B (zh) * 2015-02-11 2019-11-26 青岛海尔洗衣机有限公司 一种变频热泵干衣机膨胀阀控制方法
CN106592185A (zh) * 2015-10-20 2017-04-26 杭州三花家电热管理系统有限公司 烘干装置、烘干装置的控制方法及控制系统
KR102658780B1 (ko) * 2016-09-21 2024-04-19 엘지전자 주식회사 건조기의 제어 방법
KR102432108B1 (ko) * 2017-10-26 2022-08-16 삼성전자주식회사 건조 기기 및 이를 제어하는 방법
CN110438778B (zh) * 2018-05-04 2023-08-11 青岛海尔洗涤电器有限公司 干衣机及其烘干控制方法
CN108570838A (zh) * 2018-05-09 2018-09-25 海信(山东)冰箱有限公司 一种干衣机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236965A (ja) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd 衣類乾燥装置
JP2006075217A (ja) 2004-09-07 2006-03-23 Sanyo Electric Co Ltd 乾燥機
JP2007289558A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd 洗濯乾燥機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116526A (ja) * 1991-10-30 1993-05-14 Zexel Corp 電気ヒータを有する空気調和装置の制御装置
CN1205415A (zh) * 1997-12-21 1999-01-20 叶可 个人空调器
JP2004313765A (ja) * 2003-04-02 2004-11-11 Matsushita Electric Ind Co Ltd 乾燥装置及びその運転方法
WO2004090431A1 (ja) * 2003-04-02 2004-10-21 Matsushita Electric Industrial Co., Ltd. 乾燥装置及びその運転方法
JP4719432B2 (ja) * 2004-07-12 2011-07-06 日立アプライアンス株式会社 空気調和機及びそれに用いられるロータリ式2段圧縮機
DE102005041145A1 (de) * 2005-08-29 2007-03-01 Alpha-Innotec Gmbh Wäschetrockner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236965A (ja) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd 衣類乾燥装置
JP2006075217A (ja) 2004-09-07 2006-03-23 Sanyo Electric Co Ltd 乾燥機
JP2007289558A (ja) * 2006-04-27 2007-11-08 Matsushita Electric Ind Co Ltd 洗濯乾燥機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2333141A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455526A1 (en) * 2010-11-17 2012-05-23 BSH Bosch und Siemens Hausgeräte GmbH Machine comprising a heat pump and related set of processes
WO2012065916A1 (en) * 2010-11-17 2012-05-24 BSH Bosch und Siemens Hausgeräte GmbH Machine comprising a heat pump and related set of processes
CN103221604A (zh) * 2010-11-17 2013-07-24 Bsh博世和西门子家用电器有限公司 包括热泵的机器和相关的一组过程
WO2013011606A1 (ja) * 2011-07-15 2013-01-24 パナソニック株式会社 ドラム式洗濯機
JP2013085788A (ja) * 2011-10-20 2013-05-13 Panasonic Corp ドラム式洗濯乾燥機およびそのプログラム
JP2014104264A (ja) * 2012-11-29 2014-06-09 Toshiba Corp 洗濯乾燥機
EP4172399A4 (en) * 2020-06-24 2024-07-03 Lg Electronics Inc LAUNDRY TREATMENT DEVICE

Also Published As

Publication number Publication date
EP2333141B1 (en) 2021-06-30
KR101235552B1 (ko) 2013-02-21
EP2333141A4 (en) 2015-11-04
CN102105631B (zh) 2014-06-04
JP5253909B2 (ja) 2013-07-31
JP2010029275A (ja) 2010-02-12
CN102105631A (zh) 2011-06-22
KR20100132080A (ko) 2010-12-16
EP2333141A1 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
WO2010010679A1 (ja) 衣類乾燥機
JP4976965B2 (ja) 衣類乾燥機
EP3040470A1 (en) Clothes treating apparatus
JP4388088B2 (ja) 衣類乾燥機
JP2012115297A (ja) 衣類乾燥機
JP6013095B2 (ja) 乾燥装置
JP2009195364A (ja) 衣類乾燥装置
JP4384203B2 (ja) 衣類乾燥機
JP2010012073A (ja) 衣類乾燥装置
JP2011087623A (ja) 衣類乾燥機
JP2009195362A (ja) 衣類乾燥装置
JP4777218B2 (ja) 衣類乾燥機
JP4507966B2 (ja) 洗濯乾燥機
JP7488035B2 (ja) 衣類乾燥機
WO2015056416A1 (ja) 洗濯乾燥機
JP4690936B2 (ja) 衣類乾燥機
JP6104567B2 (ja) 衣類乾燥機
JP2010012074A (ja) 衣類乾燥装置
JP7173719B2 (ja) 衣類乾燥機
JP2009195361A (ja) 衣類乾燥装置
JP2009034306A (ja) 衣類乾燥装置
JP2018033841A (ja) 衣類乾燥機
JP6685180B2 (ja) 洗濯乾燥機
JP6466093B2 (ja) 衣類乾燥機
JP2015042208A (ja) 衣類乾燥機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129128.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107026421

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009800195

Country of ref document: EP