WO2010005164A2 - 올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법 - Google Patents

올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법 Download PDF

Info

Publication number
WO2010005164A2
WO2010005164A2 PCT/KR2009/001958 KR2009001958W WO2010005164A2 WO 2010005164 A2 WO2010005164 A2 WO 2010005164A2 KR 2009001958 W KR2009001958 W KR 2009001958W WO 2010005164 A2 WO2010005164 A2 WO 2010005164A2
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
magnesium
temperature
olefin polymerization
reactor
Prior art date
Application number
PCT/KR2009/001958
Other languages
English (en)
French (fr)
Other versions
WO2010005164A3 (ko
Inventor
김은일
김종식
강솔
박준려
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to US13/003,345 priority Critical patent/US20110166394A1/en
Priority to EP09794570A priority patent/EP2301664A2/en
Priority to CN2009801268575A priority patent/CN102089078A/zh
Priority to JP2010550611A priority patent/JP2011513576A/ja
Publication of WO2010005164A2 publication Critical patent/WO2010005164A2/ko
Publication of WO2010005164A3 publication Critical patent/WO2010005164A3/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Definitions

  • the present invention is to prepare a dialkoxy magnesium carrier by reacting metal magnesium with an alcohol in the presence of a magnesium halide or a nitrogen halide compound as a reaction initiator, wherein the metal magnesium and alcohol are added in 1 to 3 times to react the olefin polymerization catalyst. It relates to a method for controlling the size of a dialkoxy magnesium carrier for use.
  • Magnesium chloride-supported Ziegler-Natta catalysts are the most widely used catalysts for olefin polymerization.
  • This magnesium chloride-supported Ziegler-Natta catalyst is generally a solid catalyst component composed of magnesium, titanium, halogens, and electron-donating organic compounds, and when used in alpha-olefin polymerization such as propylene, it is an organic aluminum compound and a steric rule. It may be mixed with the organosilane compound, which is a sex regulator, in an appropriate ratio.
  • supported solid catalysts for olefin polymerization are applied in various commercial processes such as slurry polymerization, bulk polymerization, gas phase polymerization, etc., in addition to the high activity and stereoregularity of the catalyst which are basically required, That is, it must satisfy the appropriate particle size and shape, uniformity of particle size distribution, minimization of macro and fine particles, high apparent density, and the like.
  • recrystallization and reprecipitation methods As a method for improving the particle shape of the carrier for an olefin polymerization catalyst, recrystallization and reprecipitation methods, spray drying methods, and methods using chemical reactions are known so far, but among them, recrystallization and reprecipitation methods are used for preparing the carrier. It is difficult to adjust the size arbitrarily.
  • a method of preparing a catalyst using dialkoxymagnesium obtained by reacting magnesium with an alcohol as a carrier which is a method using a chemical reaction, has a much higher activity and a higher stereoregularity than other methods.
  • polymers can be provided, which is of increasing interest in recent years.
  • dialkoxy magnesium is used as a carrier
  • the particle shape, particle size distribution and apparent density of the dialkoxy magnesium used as the carrier directly affect the particle characteristics of the catalyst and the polymer.
  • a dialkoxy magnesium carrier having a uniform size, a spherical shape, and a sufficiently high apparent density should be prepared.
  • large amounts of macroparticles can make the polymer poor in flow, making it difficult to apply to production plants.
  • the particle size of the polymer becomes excessively large. Or breakdown of the particulate form by the heat of polymerization during the polymerization process, causing serious obstacles in the process.
  • An object of the present invention in order to solve the problems of the prior art as described above, in the preparation of dialkoxy magnesium carrier for olefin polymerization catalyst, metal magnesium and alcohol by dividing 1 to 3 times to react, spherical smooth surface It is to provide a method for controlling the size of the dialkoxy magnesium carrier having a particle model of.
  • the method for controlling the size of the spherical carrier for the olefin polymerization catalyst according to the present invention when preparing a dialkoxy magnesium carrier by reacting the metal magnesium and alcohol in the presence of a magnesium halide or nitrogen halide compound as a reaction initiator, It relates to a method of controlling the size of the carrier by reacting by dividing the alcohol 1 to 3 times.
  • nitrogen halide compound used as another reaction initiator include the following (1) to (4):
  • R 1 , R 2 , R 3 and R 4 are hydrogen or C 1 -C 12 alkyl or C 6 -C 30 aryl.
  • R 1 , R 2 , R 3 and R 4 are hydrogen or C 1 -C 12 alkyl or C 6 -C 30 aryl.
  • R 1 and R 2 are hydrogen or alkyl of C 1 to C 12 or aryl of C 6 to C 30.
  • the amount of the magnesium halide or nitrogen halide compound, which is the reaction initiator is preferably 0.001 to 0.2 parts by weight based on 1 part by weight of metal magnesium. If the amount is less than 0.001 parts by weight, the reaction rate is too slow. It is undesirable because the particle size may be too large or a large amount of fine particles may be produced.
  • the metal magnesium used in preparing the carrier is not particularly limited in its particle form, but in terms of its size, it is preferable that the average particle diameter is in the form of a powder having a diameter of 10 to 300 ⁇ m. It is more preferable that the powdery shape be ⁇ 200 ⁇ m. If the average particle diameter of the metal magnesium is less than 10 mu m, the average particle size of the carrier which is a product becomes too fine. If it exceeds 300 mu m, the average particle size of the carrier becomes too large, and the shape of the carrier becomes difficult to form a uniform spherical shape.
  • the alcohol used in the preparation of the carrier for example, methanol, ethanol, normal propanol, isopropanol, normal butanol, isobutanol, normal pentanol, isopentanol
  • aromatic alcohols such as aliphatic alcohols or phenols represented by general formula ROH (here, R is an alkyl group having 1 to 6 carbon atoms), such as neopentanol, cyclopentanol, cyclohexanol, and the like.
  • the amount of total alcohol to the total metal magnesium is preferably 1: 5 to 1:50 in a metal magnesium weight: alcohol volume, and is 1: 7 to 1:20. It is more preferable. If the use ratio is less than 1: 5, the viscosity of the slurry is rapidly increased, making it difficult to uniformly stir. If the ratio is greater than 1:50, the apparent density of the resulting carrier is rapidly decreased or the surface of the particles is roughened.
  • the reaction stirring speed when the metal magnesium and the alcohol is reacted is preferably 50 ⁇ 300rpm, more preferably 70 ⁇ 250rpm, outside the above range is not preferable because the particles are not uniform.
  • reaction temperature of the metal magnesium and alcohol in the presence of the reaction initiator is preferably a reaction temperature of 60 ⁇ 90 °C, if the reaction temperature of the metal magnesium and alcohol is less than 60 °C reaction is too slow, if the reaction exceeds 90 °C This is so undesirable that the amount of fine particles rapidly increases, and the aggregation of particles occurs, so that a uniform spherical carrier of a desired size cannot be obtained.
  • a dialkoxy magnesium carrier whose size is adjusted in the range of about 15 to about 60 ⁇ m can be prepared.
  • the dialkoxy magnesium carrier in the form of spherical particles prepared according to the method of the present invention as described above is first reacted with a titanium halide compound, preferably titanium tetrachloride, in the presence of an organic solvent to replace the alkoxy group of dialkoxy magnesium with a halogen group.
  • a titanium halide compound preferably titanium tetrachloride
  • an organic solvent to replace the alkoxy group of dialkoxy magnesium with a halogen group.
  • the titanium tetrachloride and the internal electron donor are reacted in the range of 0 to 130 ° C., and then titanium tetrachloride is reacted to prepare a porous solid catalyst for olefin polymerization.
  • organic solvent used in the preparation of the catalyst for olefin polymerization aliphatic hydrocarbons or aromatic hydrocarbons having 6 to 12 carbon atoms may be used, more preferably saturated aliphatic or aromatic hydrocarbons having 7 to 10 carbon atoms may be used, and specific examples thereof may be used.
  • octane, octane, nonane, decane or toluene, xylene and the like can be used.
  • diesters particularly aromatic diesters, and more specifically, phthalic acid diesters are preferable.
  • Suitable examples of the phthalic acid diesters include dimethyl phthalate, diethyl phthalate, dinormal propyl phthalate, diisopropyl phthalate, dinormal butyl phthalate, diisobutyl phthalate, dinormal pentyl phthalate, di (2-methylbutyl) phthalate, Di (3-methylbutyl) phthalate, dinopentylphthalate, dinomalhexylphthalate, di (2-methylpentyl) phthalate, di (3-methylpentyl) phthalate, diisohexylphthalate, dinohexylphthalate, di (2 , 3-dimethylbutyl) phthalate, dinormalheptyl phthalate, di (2-methylhexyl) phthalate, di (2-ethyl
  • R is an alkyl group having 1 to 10 carbon atoms
  • the catalyst for olefin polymerization it is preferable to perform the contact and reaction of the above components in a reactor equipped with a stirrer in which water and the like are sufficiently removed in an inert gas atmosphere.
  • the primary contact reaction of the dialkoxy magnesium and the titanium halide compound is performed at 0 to 50 ° C. in a state suspended in an aliphatic or aromatic solvent, more preferably at a range of 10 to 30 ° C. If the contacting temperature is out of this range, the shape of the carrier particles may be destroyed and a large amount of fine particles may be generated.
  • the amount of the titanium halide compound to be used is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 2 parts by weight with respect to 1 part by weight of dialkoxymagnesium, and the injection rate of the titanium halide compound is 30 minutes to 3 hours. It is preferable to add slowly over, after completion of the reaction is completed by raising the temperature to 40 ⁇ 80 °C slowly.
  • the mixture in the slurry state is washed with toluene one or more times, and then titanium tetrachloride is added thereto, the temperature is raised to 90-130 ° C., and aged. It is preferable that it is 0.5-10 weight part with respect to 1 weight part of dialkoxy magnesium used initially, and, as for the quantity of titanium tetrachloride used at this time, it is more preferable to set it as 1-5 weight part.
  • the temperature increase rate is not very important, but the internal electron donor should be introduced during the temperature increase process.
  • the temperature and the number of times of the internal electron donor are not particularly limited, but the total amount of the internal electron donor is used. It is preferable to use 0.1-1.0 weight part with respect to 1 weight part of magnesium. If the amount of the internal electron donor is out of this range, the polymerization activity of the resulting catalyst or the stereoregularity of the polymer may be lowered.
  • the mixed slurry can be obtained through a third contact process with titanium tetrachloride, a washing process with an organic solvent, and a drying process, thereby obtaining a solid catalyst component for olefin polymerization.
  • the conditions of the third contact process are the same as the conditions of the second contact process.
  • the catalyst for olefin polymerization prepared by the above method contains magnesium, titanium, an electron-donating compound and a halogen atom, and the content of each component is not particularly specified, but preferably 20-30% by weight of magnesium, and 1 to titanium. It is preferable that they are 10 weight%, 5-20 weight% of electron donating compounds, and 40-70 weight% of halogen atoms.
  • component A The resulting solid catalyst component (hereinafter referred to as component A) is mixed with an alkylaluminum (hereinafter referred to as component B) and an external electron donor (hereinafter referred to as component C) to bulk polymerization of olefins and slurry. It can be used for legal or vapor phase polymerization.
  • component B an alkylaluminum
  • component C an external electron donor
  • the component B is a compound represented by general formula AlR 1 3 (wherein R 1 is an alkyl group having 1 to 4 carbon atoms), and specific examples thereof include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, Triisobutyl aluminum etc. are mentioned.
  • Component C is a general formula R 2 m Si (OR 3 ) 4-m (wherein R 2 represents an alkyl group or cycloalkyl group having 1 to 10 carbon atoms, or an aryl group, R 3 is an alkyl group having 1 to 3 carbon atoms, m is 1 or 2), and specific examples thereof include nC 3 H 5 Si (OCH 3 ) 3 , (nC 3 H 5 ) 2 Si (OCH 3 ) 2 , iC 3 H 5 Si (OCH 3 ) 3 , (iC 3 H 5 ) 2 Si (OCH 3 ) 2 , nC 4 H 9 Si (OCH 3 ) 3 , (nC 4 H 9 ) 2 Si (OCH 3 ) 2 , iC 4 H 9 Si (OCH 3 ) 3 , (iC 4 H 9 ) 2 Si (OCH 3 ) 2 , tC 4 H 9 Si (OCH 3 ) 3 , (tC 4 H 9 ) 2 Si (OCH 3
  • the appropriate ratio of the promoter (B) to the solid catalyst component (A) is slightly different depending on the polymerization method, but the molar ratio of the aluminum atom in the promoter to the titanium atom in the catalyst. Is 1-1000, and it is more preferable that it is 10-300. If the ratio of the cocatalyst (B) to the solid catalyst component (A) is out of the above ratio, there is a problem that the polymerization activity is rapidly lowered.
  • the appropriate ratio of the external electron donor (C) to the solid catalyst component (A) is 1 to 200 as the molar ratio of the silicon atom in the external electron donor to the titanium atom in the catalyst. It is preferable and it is more preferable that it is 10-100. If the ratio of the external electron donor (C) to the solid catalyst component (A) is less than 1, the stereoregularity of the resulting polyolefin polymer is significantly lowered, and if it exceeds 200, the polymerization activity of the catalyst is significantly lowered. .
  • the metal magnesium and alcohol is divided into 1 to 3 times by reacting to control the size of the dialkoxy magnesium carrier, and having a spherical particle shape
  • the solid catalyst prepared by using the same has high activity, high stereoregularity and high apparent density, thereby enabling commercial application of various processes.
  • catalysts of various sizes that can sufficiently satisfy the properties required in commercial olefin polymerization processes such as slurry polymerization, bulk polymerization and gas phase polymerization.
  • the resultant was washed three times using 2,000 ml of normal hexane per wash at 50 ° C.
  • the washed resultant was dried under flowing nitrogen for 24 hours to obtain 265 g (yield 94.3%) of a solid product in a white powdery form.
  • the particle size of the dried product suspended in normal hexane was measured by a light transmission method with a laser particle analyzer (Mastersizer X: manufactured by Malvern Instruments), the average particle diameter was 17.3 ⁇ m.
  • the titanium content in the solid catalyst component obtained by drying under flowing nitrogen for 18 hours was 2.33% by weight, and the solid catalyst suspended in normal hexane was measured by a laser particle analyzer (Mastersizer X: manufactured by Malvern Instruments) by light transmission. , The average particle size was 17.5 ⁇ m.
  • the titanium content in the solid catalyst component obtained by drying under flowing nitrogen for 18 hours was 2.13% by weight, and the particle size of the dried product suspended in normal hexane was measured by a laser particle analyzer by light transmission method. The average particle diameter was 27.6. [Mu] m.
  • Titanium content in the solid catalyst component obtained by drying under flowing nitrogen for 18 hours was 2.07% by weight, and the particle size of the dried product suspended in normal hexane was measured by a laser particle analyzer by light transmission method. The average particle diameter was 36.1. [Mu] m.
  • the titanium content in the solid catalyst component obtained by drying under flowing nitrogen for 18 hours was 2.30% by weight, and the particle size of the dried product suspended in normal hexane was measured by a laser particle analyzer by light transmission method. The average particle diameter was 45.6. [Mu] m.
  • the titanium content in the solid catalyst component obtained by drying under flowing nitrogen for 18 hours was 2.20% by weight, and the particle size of the dried product suspended in normal hexane was measured by a laser particle analyzer by light transmission method. The average particle diameter was 60.6. [Mu] m.
  • the mixture was further suspended in 58 ml of titanium tetrachloride and reacted at 110 ° C for 2 hours.
  • the reaction mixture was washed 7 times with heptane at 40 ° C. to obtain a black solid catalyst component.
  • Titanium content in the solid catalyst component obtained by drying in flowing nitrogen for 18 hours was 2.81% by weight, and the particle size of the dried product suspended in normal hexane was determined by a light transmission method using a laser particle analyzer (Mastersizer X: manufactured by Malvern Instruments). The average particle diameter was 18.5 ⁇ m.
  • catalytic activity was determined by the following method:
  • Examples 1 to 5 were prepared by reacting metal magnesium and alcohol by dividing 1 to 3 times to prepare a carrier having a size controlled, and polymerizing using a catalyst prepared using the same. It can be seen that the catalytic activity is more than two times higher than the conventional comparative example, the stereoregularity of the prepared polymer is very high, and the apparent density which greatly affects commercial productivity is also excellent.
  • a carrier having a controlled size can be easily produced by a simple method, and the catalyst prepared by using the carrier prepared by the method of the present invention can be used for olefin polymerization.
  • a polymer having excellent catalytic activity and high stereoregularity and apparent density can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 올레핀 중합용 촉매의 제조시 사용되는 디알콕시마그네슘 담체의 크기를 조절하는 방법에 관한 것으로서, 보다 상세하게는, 반응개시제로서 마그네슘할라이드 또는 질소할로겐 화합물의 존재하에 금속마그네슘과 알코올을 반응시켜 디알콕시마그네슘 담체를 제조함에 있어서, 상기 금속마그네슘과 알코올을 1~3회로 나누어 투입하여 반응시킴으로써, 올레핀 중합 촉매용 디알콕시마그네슘 담체의 크기를 조절하는 방법에 관한 것이다.

Description

올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법
본 발명은 반응개시제로서 마그네슘할라이드 또는 질소할로겐 화합물의 존재하에서 금속마그네슘과 알코올을 반응시켜 디알콕시마그네슘 담체를 제조함에 있어서, 상기 금속마그네슘과 알코올을 1~3회로 나누어 투입하여 반응시킴으로써, 올레핀 중합 촉매용 디알콕시마그네슘 담체의 크기를 조절하는 방법에 관한 것이다.
올레핀 중합용 촉매로는 염화마그네슘 담지형 지글러-나타(Ziegler-Natta) 촉매가 현재 가장 널리 사용되고 있다. 이 염화마그네슘 담지형 지글러-나타 촉매는 일반적으로, 마그네슘, 티타늄, 할로겐 및 전자공여성 유기화합물로 구성된 고체촉매성분이며, 프로필렌과 같은 알파-올레핀 중합에 사용될 때에는, 조촉매인 유기알루미늄 화합물 및 입체규칙성 조절제인 유기실란 화합물과 함께 적절한 비율로 혼합되어 투입되기도 한다. 올레핀 중합용의 담지형 고체촉매는 슬러리중합, 벌크중합, 기상중합 등과 같이 다양한 상업화된 공정에서 적용되기 때문에, 기본적으로 요구되는 촉매의 높은 활성과 입체규칙성 이외에도, 입자형상에 대한 요구조건들, 즉, 적절한 입자 크기와 모양, 입도분포의 균일성, 거대입자 및 미세입자의 극소화, 높은 겉보기밀도 등을 충족시켜야만 한다.
올레핀 중합 촉매용 담체의 입자형상을 개선하기 위한 방법으로, 지금까지는 재결정화 및 재침전 방법, 스프레이건조 방법, 화학적 반응을 이용한 방법 등이 알려져 있으나, 이 중에서 재결정화 및 재침전 방법은 담체 제조 시 임의로 크기를 조절하기가 어렵다.
한편, 화학적 반응을 이용한 방법의 하나인, 마그네슘과 알코올을 반응시켜 얻어지는 디알콕시마그네슘을 담체로 사용하여 촉매를 제조하는 방법은, 여타의 방법들에 비해 훨씬 높은 활성을 갖는 촉매와 높은 입체규칙성을 갖는 결과 중합체를 제공할 수 있어, 최근 이에 대한 관심이 커지고 있다. 그러나, 디알콕시마그네슘을 담체로 사용하는 경우에는, 담체로 사용되는 디알콕시마그네슘의 입자모양, 입도분포, 겉보기밀도 등이 촉매 및 중합체의 입자특성에 직접적으로 영향을 미치게 되므로, 마그네슘과 알코올의 반응과정에서 크기가 균일하고 구형이면서 겉보기밀도가 충분히 높은 디알콕시마그네슘 담체를 제조해야 한다. 특히 많은 량의 거대입자는 폴리머의 흐름성을 나쁘게 하여 생산 공장에 적용을 어렵게 할 수 있다.
균일한 형상의 디알콕시마그네슘을 제조하기 위한 여러 가지 방법들이 종래의 기술문헌들에 개시되어 있다. 미합중국특허 제5,162,277호 및 제5,955,396호에서는, 부정형의 디에톡시마그네슘을 이산화탄소로 카르복실화시켜 만든 마그네슘에틸카보네이트를 여러 종류의 첨가물 및 용매를 사용하여 용액 중에서 재결정하므로써 5~10㎛ 크기의 담체를 제조하는 방법을 제안하고 있다. 또한, 일본국공개특허 평06-87773호에서는, 이산화탄소에 의해 카르복실화된 디에톡시마그네슘의 알코올 용액을 스프레이건조하고, 이를 탈카르복실화하여 구형의 입자를 제조하는 방법을 개시하고 있다. 그러나, 이러한 종래의 방법들은, 많은 종류의 원료를 사용하는 복잡한 과정을 요구할 뿐만 아니라, 담체의 입자크기 및 형태를 만족할 만한 수준으로 제공하지 못하고 있다.
한편, 일본국공개특허 평03-74341호, 평04-368391호 및 평08-73388호에 의하면, 요오드의 존재하에서 금속마그네슘을 에탄올과 반응시켜 구형 또는 타원형의 디에톡시마그네슘을 합성하는 방법이 제공되고 있다. 그러나, 이 방법에 의해서 제조되는 디에톡시마그네슘은 반응과정에서 많은 반응열과 함께 다량의 수소가 발생하면서 반응이 매우 급격히 일어나기 때문에 반응속도를 적절하게 조절하는 데 어려움이 있을 뿐 아니라, 결과물인 디알콕시마그네슘 담체에 다량의 미세입자 또는 여러 개의 입자가 응집된 이형의 거대입자를 다량 포함하고 있는 문제가 있으며, 또한, 상기 담체로부터 제조된 촉매를 올레핀의 중합에 그대로 사용할 경우 중합체의 입자크기가 과도하게 커지거나 중합과정의 중합열에 의한 입자형상의 파괴현상에 의해 공정상에 심각한 장애를 야기하는 등의 문제가 있다.
본 발명의 목적은, 상기와 같은 종래기술의 문제점들을 해결하기 위하여, 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조에 있어서, 금속마그네슘과 알코올을 1~3회로 나누어 투입하여 반응시킴으로써, 표면이 매끄러운 구형의 입자모형을 갖는 디알콕시마그네슘 담체의 크기를 조절하는 방법을 제공하는 것이다.
본 발명에 따른 올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법은, 반응개시제로서 마그네슘할라이드 또는 질소할로겐 화합물의 존재하에 금속마그네슘과 알코올을 반응시켜 디알콕시마그네슘 담체를 제조할 때, 상기 금속마그네슘과 알코올을 1~3회로 나누어 투입하여 반응시킴으로써 담체의 크기를 조절하는 방법에 관한 것이다.
본 발명에 따른 담체의 크기를 조절하는 방법에 있어서, 담체 제조시 반응개시제로서 사용되는 마그네슘할라이드의 구체예로는 일반식 MgX2(X = Cl, Br 또는 I)의 마그네슘할라이드를 들 수 있다.
또 다른 반응개시제로서 사용되는 질소할로겐 화합물의 구체예로는 다음의 (1)~(4)를 들 수 있다:
(1) N-할라이드 숙신이미드계 화합물,
Figure PCTKR2009001958-appb-I000001
(여기에서, X는 할로겐, R1, R2, R3 및 R4는 수소 또는 C1~C12의 알킬 또는 C6~C30의 아릴이다.)
(2) 트리할로이소시아눌산계 화합물,
Figure PCTKR2009001958-appb-I000002
(여기에서, X는 할로겐이다.)
(3) N-할로프탈이미드계 화합물,
Figure PCTKR2009001958-appb-I000003
(여기에서, X는 할로겐, R1, R2, R3 및 R4는 수소 또는 C1~C12의 알킬 또는 C6~C30의 아릴이다.)
(4) 히단토인계 화합물,
Figure PCTKR2009001958-appb-I000004
(여기에서, X는 할로겐, R1 및 R2는 수소 또는 C1~C12의 알킬 또는 C6~C30의 아릴이다.)
상기 반응개시제인 마그네슘할라이드 또는 질소할로겐 화합물의 사용량은 금속마그네슘 1중량부에 대하여 0.001~0.2중량부인 것이 바람직한데, 0.001중량부 미만이면 반응속도가 너무 느려져 바람직하지 않고, 0.2중량부를 초과하면 생성물의 입자크기가 너무 커지거나 미세입자가 다량 생성될 수 있어 바람직하지 않다.
본 발명의 담체의 크기를 조절하는 방법에 있어서, 담체 제조시 사용되는 상기 금속마그네슘은 그 입자 형태에는 크게 제한이 없으나, 그 크기에 있어서는 평균입경이 10~300㎛인 분말상인 것이 바람직하며, 50~200㎛인 분말상의 것이 보다 바람직하다. 금속마그네슘의 평균입경이 10㎛ 미만이면 생성물인 담체의 평균 입자크기가 너무 미세해지고, 300㎛를 초과하면 담체의 평균입자크기가 너무 커지고, 담체의 모양이 균일한 구형의 형태로 되기 어려워진다.
본 발명에 따른 담체의 크기를 조절하는 방법에 있어서, 담체 제조시 사용되는 상기 알코올로는, 예를 들면, 메탄올, 에탄올, 노말프로판올, 이소프로판올, 노말부탄올, 이소부탄올, 노말펜탄올, 이소펜탄올, 네오펜탄올, 시클로펜탄올, 시클로헥산올 등과 같은, 일반식 ROH(여기에서, R은 탄소수 1~6의 알킬기이다)로 표시되는 지방족 알코올 또는 페놀과 같은 방향족 알코올로부터 선택되는 1종류 또는 2종류 이상의 알코올을 단독 또는 혼합하여 사용하는 것이 바람직하고, 메탄올, 에탄올, 프로판올 또는 부탄올로부터 선택되는 1종류 또는 2종류 이상의 알코올을 단독 또는 혼합하여 사용하는 것이 보다 바람직하며, 그 중에서도 에탄올을 사용하는 것이 가장 바람직하다.
본 발명의 담체의 크기 조절방법에 있어서, 상기 전체 금속마그네슘에 대한 전체 알코올의 사용량은, 금속마그네슘 중량:알코올 부피로 1:5~1:50인 것이 바람직하며, 1:7~1:20인 것이 보다 바람직하다. 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵게 되고, 1:50을 초과하면 생성되는 담체의 겉보기밀도가 급격히 감소하거나 입자표면이 거칠어지는 문제가 발생한다.
상기 금속마그네슘과 알코올을 반응시킬 때의 반응교반속도는 50~300rpm인 것이 바람직하며, 70~250rpm이 보다 바람직한데, 상기 범위를 벗어나면 입자가 균일하지 않아 바람직하지 않다.
상기 반응개시제의 존재하에서 금속마그네슘과 알코올을 반응시킬 때 반응온도는 60~90℃인 것이 바람직하며, 상기 금속마그네슘과 알코올의 반응온도가 60℃ 미만이면 반응이 너무 느려지고, 90℃를 초과하면 반응이 너무 급격하게 일어나 미세입자의 양이 급격히 증가하고, 또한 입자의 뭉침 현상이 일어나 원하는 크기의 균일한 구형 담체를 얻을 수 없어 바람직하지 않다.
본 발명의 담체 크기 조절방법에 의하면, 평균입경이 약 15 ~ 약 60㎛의 범위내에서 크기가 조절된 디알콕시마그네슘 담체를 제조할 수 있다.
상기와 같은 본 발명의 방법에 따라 제조되는 구형 입자형태의 디알콕시마그네슘 담체를 유기용매의 존재하에 티타늄할라이드 화합물, 바람직하게는 사염화티타늄과 일차 접촉반응시켜 디알콕시마그네슘의 알콕시기를 할로겐기로 치환시킨 다음, 유기용매의 존재하에 사염화티타늄 및 내부전자공여체를 0~130℃의 범위에서 반응시킨 후, 다시 사염화티타늄을 반응시킴으로써, 다공성의 올레핀 중합용 고체촉매를 제조할 수 있다.
상기의 올레핀 중합용 촉매 제조시 사용되는 유기용매로서는, 탄소수 6~12의 지방족 탄화수소 또는 방향족 탄화수소가 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10인 포화 지방족 또는 방향족 탄화수소가 사용될 수 있고, 그 구체적인 예로는, 옥탄, 옥탄, 노난, 데칸 또는 톨루엔, 크실렌 등이 사용될 수 있다.
상기의 올레핀 중합용 촉매 제조시 사용되는 내부전자공여체로는, 디에스테르류, 특히 방향족 디에스테르류, 보다 구체적으로는 프탈산디에스테르류가 바람직하다. 프탈산디에스테르류의 적당한 예로는, 디메틸프탈레이트, 디에틸프탈레이트, 디노말프로필프탈레이트, 디이소프로필프탈레이트, 디노말부틸프탈레이트, 디이소부틸프탈레이트, 디노말펜틸프탈레이트, 디(2-메틸부틸)프탈레이트, 디(3-메틸부틸)프탈레이트, 디네오펜틸프탈레이트, 디노말헥실프탈레이트, 디(2-메틸펜틸)프탈레이트, 디(3-메틸펜틸)프탈레이트, 디이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, 디노말헵틸프탈레이트, 디(2-메틸헥실)프탈레이트, 디(2-에틸펜틸)프탈레이트, 디이소헵틸프탈레이트, 디네오헵틸프탈레이트, 디노말옥틸프탈레이트, 디(2-메틸헵틸)프탈레이트, 디이소옥틸프탈레이트, 디(3-에틸헥실)프탈레이트, 디네오헥실프탈레이트, 디노말헵틸프탈레이트, 디이소헵틸프탈레이트, 디네오헵틸프탈레이트, 디노말옥틸프탈레이트, 디이소옥틸프탈레이트, 디네오옥틸프탈레이트, 디노말노닐프탈레이트, 디이소노닐프탈레이트, 디노말데실프탈레이트, 디이소데실프탈레이트 등과 같이, 다음의 일반식으로 표시되는 화합물로부터 선택된 하나 또는 두가지 이상을 혼합하여 사용할 수 있다.
Figure PCTKR2009001958-appb-I000005
(여기서, R은 탄소수 1~10의 알킬기이다)
상기 올레핀 중합용 촉매의 제조에 있어서, 상기의 각 성분의 접촉 및 반응은, 불활성 기체 분위기에서, 수분 등을 충분히 제거시킨 교반기가 장착된 반응기 중에서 행하는 것이 바람직하다.
상기의 디알콕시마그네슘과 티타늄할라이드 화합물의 일차 접촉반응은 지방족 또는 방향족 용매에 현탁시킨 상태에서 0~50℃에서 이루어지는 것이 바람직하고, 10~30℃의 범위에서 이루어지는 것이 더욱 바람직하다. 만일 접촉하는 온도가 이 범위를 벗어나게 되면 담체입자의 형상이 파괴되어 미세입자가 다량 생성되는 문제가 발생할 수 있다. 이 때 사용하는 티타늄할라이드 화합물의 양은 디알콕시마그네슘 1중량부에 대하여 0.1~10중량부인 것이 바람직하고, 0.3~2중량부로 하는 것이 더욱 바람직하며, 티타늄할라이드 화합물의 주입속도는 30분~3시간에 걸쳐 서서히 투입하는 것이 바람직하며, 투입이 완료된 후에는 온도를 서서히 40~80℃까지 올려줌으로써 반응을 완결시킨다.
반응이 완결된 슬러리 상태의 혼합물은 톨루엔으로 1회 이상 세척한 다음, 사염화티타늄을 투입하여 90~130℃까지 승온하여 숙성시킨다. 이 때 사용하는 사염화티타늄의 양은 처음에 사용된 디알콕시마그네슘 1중량부에 대하여 0.5~10중량부인 것이 바람직하고, 1~5중량부로 하는 것이 더욱 바람직하다.
또한, 상기의 승온속도는 그다지 중요하지 않으나 승온과정 중에 내부전자공여체를 투입하여야 하는데, 이 때 내부전자공여체의 투입온도 및 투입횟수는 크게 제한되지 않으나, 내부전자공여체의 전체 사용량은 사용된 디알콕시마그네슘 1중량부에 대하여 0.1~1.0중량부를 사용하는 것이 바람직하다. 내부전자공여체의 양이 이 범위를 벗어나면, 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있다.
상기의 반응종료후의 혼합 슬러리는, 사염화티타늄과의 3차 접촉과정 및 유기용매에 의한 세척과정, 건조과정을 거쳐 결과물인 올레핀 중합용 고체촉매성분을 얻을 수 있다. 상기 3차 접촉과정의 조건은 2차 접촉과정의 조건과 동일하다.
상기의 방법으로 제조한 올레핀 중합용 촉매는, 마그네슘, 티타늄, 전자공여성 화합물 및 할로겐원자를 함유하며, 각 성분의 함유량은 특별히 규정되지는 않으나, 바람직하게는 마그네슘 20~30중량%, 티타늄 1~10중량%, 전자공여성 화합물 5~20중량%, 할로겐원자 40~70중량%인 것이 바람직하다.
상기의 결과물인 고체촉매성분(이하, 성분 A라고 한다)은 알킬알루미늄(이하, 성분 B라 한다), 외부전자공여체(이하, 성분 C라 한다)와 혼합하여, 올레핀의 벌크중합법, 슬러리중합법 또는 기상중합법에 사용할 수 있다.
상기 성분 B는, 일반식 AlR1 3(여기서, R1은 탄소수 1~4의 알킬기이다)로 표시되는 화합물로서, 그 구체적인 예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 등을 들 수 있다.
상기의 성분 C는 일반식 R2 mSi(OR3)4-m(여기서, R2는 탄소수 1~10의 알킬기 또는 시클로알킬기, 또는 아릴기를 나타내며, R3은 탄소수 1~3의 알킬기이고, m은 1 또는 2이다)로 표시되는 화합물로서, 그 구체적인 예로는, n-C3H5Si(OCH3)3, (n-C3H5)2Si(OCH3)2, i-C3H5Si(OCH3)3, (i-C3H5)2Si(OCH3)2, n-C4H9Si(OCH3)3, (n-C4H9)2Si(OCH3)2, i-C4H9Si(OCH3)3, (i-C4H9)2Si(OCH3)2, t-C4H9Si(OCH3)3, (t-C4H9)2Si(OCH3)2, n-C5H11Si(OCH3)3, (n-C5H11)2Si(OCH3)2, (시클로펜틸)Si(OCH3)3, (시클로펜틸)2Si(OCH3)2, (시클로펜틸)(CH3)Si(OCH3)2, (시클로펜틸)(C2H5)Si(OCH3)2, (시클로펜틸)(C3H5)Si(OCH3)2, (시클로헥실)Si(OCH3)3, (시클로헥실)2Si(OCH3)2, (시클로헥실)(CH3)Si(OCH3)2, (시클로헥실)(C2H5)Si(OCH3)2, (시클로헥실)(C3H5)Si(OCH3)2, (시클로헵틸)Si(OCH3)3, (시클로헵틸)2Si(OCH3)2, (시클로헵틸)(CH3)Si(OCH3)2, (시클로헵틸)(C2H5)Si(OCH3)2, (시클로헵틸)(C3H5)Si(OCH3)2, PhSi(OCH3)3, Ph2Si(OCH3)2(Ph는 페닐기), n-C3H5Si(OC2H5)3, (n-C3H5)2Si(OC2H5)2, i-C3H5Si(OC2H5)3, (i-C3H5)2Si(OC2H5)2, n-C4H9Si(OC2H5)3, (n-C4H9)2Si(OC2H5)2, i-C4H9Si(OC2H5)3, (i-C4H9)2Si(OC2H5)2, t-C4H9Si(OC2H5)3, (t-C4H9)2Si(OC2H5)2, n-C5H11Si(OC2H5)3, (n-C5H11)2Si(OC2H5)2, (시클로펜틸)Si(OC2H5)3, (시클로펜틸)2Si(OC2H5)2, (시클로펜틸)(CH3)Si(OC2H5)2, (시클로펜틸)(C2H5)Si(OC2H5)2, (시클로펜틸)(C3H5)Si(OC2H5)2, (시클로헥실)Si(OC2H5)3, (시클로헥실)2Si(OC2H5)2, (시클로헥실)(CH3)Si(OC2H5)2, (시클로헥실)(C2H5)Si(OC2H5)2, (시클로헥실)(C3H5)Si(OC2H5)2, (시클로헵틸)Si(OC2H5)3, (시클로헵틸)2Si(OC2H5)2, (시클로헵틸)(CH3)Si(OC2H5)2, (시클로헵틸)(C2H5)Si(OC2H5)2, (시클로헵틸)(C3H5)Si(OC2H5)2, (페닐)Si(OC2H5)3, (페닐)2Si(OC2H5)2 등이 있다.
상기 올레핀 중합방법에 있어서, 상기의 고체촉매성분(A)에 대한 조촉매(B)의 적절한 비율은, 중합방법에 따라서 다소 차이는 있으나 촉매중의 티타늄원자에 대한 조촉매중의 알루미늄원자의 몰비가 1~1000인 것이 바람직하고, 10~300인 것이 더욱 바람직하다. 만일, 고체촉매성분(A)에 대한 조촉매(B)의 비율이 상기의 비율을 벗어나게 되면 중합활성이 급격히 저하되는 문제가 있다.
상기의 올레핀 중합방법에 있어서, 상기의 고체촉매성분(A)에 대한 외부전자공여체(C)의 적절한 비율은 촉매중의 티타늄원자에 대한 외부전자공여체중의 실리콘원자의 몰비로서 1~200인 것이 바람직하고, 10~100인 것이 더욱 바람직하다. 만일, 고체촉매성분(A)에 대한 외부전자공여체(C)의 비율이 1 미만이면 생성되는 폴리올레핀 중합체의 입체규칙성이 현저히 낮아지며, 200을 초과하는 경우에는 촉매의 중합활성이 현저히 떨어지는 문제점이 있다.
본 발명의 담체의 크기를 조절하는 방법은 금속마그네슘과 알코올의 반응시, 금속마그네슘과 알코올을 1~3회로 나누어 투입하여 반응시킴으로써 디알콕시마그네슘 담체의 크기를 조절하고, 구형의 입자 모양을 가짐으로써, 이를 이용하여 제조된 고체촉매는 고활성, 고입체 규칙성 및 높은 겉보기 밀도를 가지게 되어 다양한 공정의 상업 적용을 가능하게 한다.
또한, 슬러리중합, 벌크중합, 기상중합 등 상용의 올레핀 중합공정에서 요구되는 특성을 충분히 만족시킬 수 있는 다양한 크기의 촉매를 제조하는데 적합하다.
이하 실시예 및 비교예에 의해 본 발명을 상세히 설명하나, 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 3.8g, 금속마그네슘(평균입경 100㎛인 분말제품) 60g, 무수 에탄올 800ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 78℃로 올려 에탄올이 환류되는 상태를 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하였다(숙성처리). 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 265g(수율 94.3%)을 얻었다. 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균입경은 17.3㎛이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 17.3㎛인 구형이고, 입도분포지수가 0.78이고, 겉보기밀도가 0.32g/cc인 디에톡시마그네슘 25g을 투입하고, 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.33중량%이었고, 노말헥산에 현탁시킨 상태의 고체촉매를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과, 평균 입자크기는 17.5㎛이었다.
실시예 2
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 3.8g, 금속마그네슘(평균입경 100㎛인 분말제품) 30g, 무수 에탄올 400ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 78℃로 올려 에탄올이 환류되는 상태를 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 금속마그네슘(평균입경이 100㎛인 분말형 제품) 30g과 에탄올 400ml를 투입하였다. 금속마그네슘과 에탄올의 주입이 모두 끝나면 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하였다(숙성처리). 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 264g(수율 93.6%)을 얻었다. 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과, 평균입경은 27.2㎛이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 27.2㎛인 구형이고, 입도분포지수가 0.75이고, 겉보기밀도가 0.33g/cc인 디에톡시마그네슘 25g을 투입하고, 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고, 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.13중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기로 측정결과, 평균입경은 27.6㎛이었다.
실시예 3
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 3.8g, 금속마그네슘(평균입경 100㎛인 분말제품) 20g, 무수 에탄올 400ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 78℃로 올려 에탄올이 환류되는 상태를 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 금속마그네슘(평균입경이 100㎛인 분말형 제품) 40g과 에탄올 400ml를 투입하였다. 금속마그네슘과 에탄올의 주입이 모두 끝나면 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하였다(숙성처리). 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 268g(수율 95.0%)을 얻었다. 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기로 측정결과, 평균입경은 35.6㎛이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 35.6㎛인 구형이고, 입도분포지수가 0.79이고, 겉보기밀도가 0.30g/cc인 디에톡시마그네슘 25g을 투입하고, 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고, 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.07중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기로 측정결과, 평균입경은 36.1㎛이었다.
실시예 4
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 3.8g, 금속마그네슘(평균입경 100㎛인 분말제품) 10g, 무수 에탄올 400ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 78℃로 올려 에탄올이 환류되는 상태를 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 금속마그네슘(평균입경이 100㎛인 분말형 제품) 50g과 에탄올 400ml를 투입하였다. 금속마그네슘과 에탄올의 주입이 모두 끝나면 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하였다(숙성처리). 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 268g(수율 95.0%)을 얻었다. 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과, 평균입경은 45.2㎛이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 45.2㎛인 구형이고, 입도분포지수가 0.77이고, 겉보기밀도가 0.32g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.30중량% 이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기로 측정결과, 평균입경은 45.6㎛이었다.
실시예 5
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, MgCl2 4.2g, 금속마그네슘(평균입경 100㎛인 분말제품) 10g, 무수 에탄올 150ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 78℃로 올려 에탄올이 환류되는 상태를 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 2차로 금속마그네슘(평균입경이 100㎛인 분말형 제품) 20g과 에탄올 400ml를 투입하였다. 수소 발생이 끝나면 3차로 금속마그네슘(평균입경이 100㎛인 분말형 제품) 40g과 에탄올 400ml를 투입하였다. 금속마그네슘과 에탄올의 주입이 모두 끝나면 반응기 온도 및 교반속도를 환류상태로 2시간 동안 유지하였다(숙성처리). 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 305.8g(수율 92.8%)을 얻었다. 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기로 측정결과, 평균입경은 60.3㎛이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 60.3㎛인 구형이고, 입도분포지수가 0.83이고, 겉보기밀도가 0.33g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.20중량% 이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기로 측정결과, 평균입경은 60.6㎛이었다.
비교예
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 데칸 100ml, 2-에틸헥실알코올 82g과 이염화마그네슘 20g을 투입하고, 130℃에서 2시간 유지하였다. 이 용액에 무수프탈산 4.5g을 첨가하여 다시 1시간 교반을 하여 균일한 혼합 용액을 얻었다. 실온으로 냉각 후, 이 균일 용액 중 15.8ml를 사염화티타늄 42ml에 적가하고, 110℃로 승온하여 프탈산이소부틸 1.1g을 첨가하여 2시간 교반하여 반응시켰다. 반응 종료 후 다시 58ml의 사염화티타늄에 현탁시켜서 110℃에서 2시간 반응시켰다. 다음, 반응 혼합물을 40℃에서 헵탄으로 7회 세척하여 검은색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.81중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과, 평균입경은 18.5㎛이었다.
[올레핀 중합]
2리터 크기의 고압용 스테인레스제 반응기내에 각각 상기 실시예 또는 비교예의 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시킨다. 트리에틸알루미늄 3mmol을 시클로헥실메틸디메톡시실란 0.15mmol과 함께 투입하였다(여기서, 시클로헥실메틸디메톡시실란은 외부전자 공여체로서 사용됨). 이어서, 수소 1000ml와 액체상태의 올레핀 1.2L를 차례로 투입한 후 온도를 70℃까지 올리고, 교반기를 작동시켜 내부에 장착되었던 유리관이 깨어져 중합이 시작되도록 하였다. 중합 개시 후 1시간이 경과하면, 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 올레핀을 완전히 탈기시켰다.
얻어진 중합체를 분석하여, 그 결과를 표 1에 정리하였다.
여기서, 촉매활성, 입체규칙성, 겉보기밀도(BD) 등은 다음과 같은 방법으로 결정하였다:
① 촉매활성(kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)
② 입체규칙성(X.I.): 혼합크실렌 중에서 결정화되어 석출된 불용성분의 중량%
③ 겉보기밀도(BD) = ASTM D1895에 의해 측정된 값
표 1
Figure PCTKR2009001958-appb-T000001
표 1에 나타난 바와 같이, 실시예 1~5는 금속마그네슘과 알코올을 1~3회 나누어 투입하여 반응시킴으로써 각각 크기가 조절된 담체를 제조하고, 이를 사용하여 제조된 촉매를 이용하여 중합한 결과, 촉매활성이 기존의 비교예에 비하여 2배 이상 높으며, 또한 제조된 중합체의 입체규칙성이 매우 높고, 상업 생산성에 크게 영향을 주는 겉보기밀도도 우수함을 알 수 있다.
본 발명의 올레핀 중합 촉매용 담체의 크기 조절 방법에 의하면 크기가 조절된 담체를 간단한 방법으로 용이하게 제조할 수 있으며, 본 발명의 방법에 의해 제조되는 담체를 사용하여 제조된 촉매를 올레핀 중합에 이용할 경우, 촉매활성이 매우 우수하고, 또한 입체규칙성 및 겉보기밀도가 높은 중합체를 제조할 수 있다.

Claims (3)

  1. 반응개시제로서 마그네슘할라이드 또는 질소할로겐 화합물의 존재하에, 금속마그네슘과 알코올을 반응시켜, 올레핀 중합 촉매용 구형 담체를 제조함에 있어서, 상기 금속마그네슘과 알코올을 1~3회로 나누어 투입하여 반응시킴으로써 담체의 크기를 조절하는 것을 특징으로 하는, 올레핀 중합 촉매용 구형 담체의 크기 조절 방법.
  2. 제 1항에 있어서, 상기 질소 할로겐화합물이 다음 (1)~(4) 중 어느 것의 일반식을 가지는 것을 특징으로 하는 올레핀 중합 촉매용 구형 담체의 크기 조절 방법:
    (1) N-할라이드 숙신이미드계 화합물,
    Figure PCTKR2009001958-appb-I000006
    (여기에서, X는 할로겐, R1, R2, R3 및 R4는 수소 또는 C1~C12의 알킬 또는 C6~C30의 아릴이다)
    (2) 트리할로이소시아눌산계 화합물,
    Figure PCTKR2009001958-appb-I000007
    (여기에서, X는 할로겐이다)
    (3) N-할로프탈이미드계 화합물,
    Figure PCTKR2009001958-appb-I000008
    (여기에서, X는 할로겐, R1, R2, R3 및 R4는 수소 또는 C1~C12의 알킬 또는 C6~C30의 아릴이다)
    (4) 히단토인계 화합물,
    Figure PCTKR2009001958-appb-I000009
    (여기에서, X는 할로겐, R1 및 R2는 수소 또는 C1~C12의 알킬 또는 C6~C30의 아릴이다).
  3. 제 1항에 있어서, 상기 담체의 크기가 약 15㎛ ~ 약 60㎛의 범위내에서 조절되는 것을 특징으로 하는 올레핀 중합 촉매용 구형 담체의 크기 조절 방법.
PCT/KR2009/001958 2008-07-11 2009-04-16 올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법 WO2010005164A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/003,345 US20110166394A1 (en) 2008-07-11 2009-04-16 Method for controlling size of spherical carrier for olefin polymerization catalyst
EP09794570A EP2301664A2 (en) 2008-07-11 2009-04-16 Method for controlling size of spherical carrier for olefin polymerization catalyst
CN2009801268575A CN102089078A (zh) 2008-07-11 2009-04-16 调整烯烃聚合催化剂球形载体大小的方法
JP2010550611A JP2011513576A (ja) 2008-07-11 2009-04-16 オレフィン重合触媒用球形担体のサイズを調節する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0067525 2008-07-11
KR1020080067525A KR20100007076A (ko) 2008-07-11 2008-07-11 올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법

Publications (2)

Publication Number Publication Date
WO2010005164A2 true WO2010005164A2 (ko) 2010-01-14
WO2010005164A3 WO2010005164A3 (ko) 2010-03-11

Family

ID=41507528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001958 WO2010005164A2 (ko) 2008-07-11 2009-04-16 올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법

Country Status (6)

Country Link
US (1) US20110166394A1 (ko)
EP (1) EP2301664A2 (ko)
JP (1) JP2011513576A (ko)
KR (1) KR20100007076A (ko)
CN (1) CN102089078A (ko)
WO (1) WO2010005164A2 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954056B1 (ko) * 2007-12-12 2010-04-20 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법
KR101126946B1 (ko) * 2009-12-28 2012-03-20 호남석유화학 주식회사 폴리올레핀 중합용 촉매 및 이의 제조방법
KR101126918B1 (ko) * 2009-12-28 2012-03-20 호남석유화학 주식회사 폴리올레핀 중합용 촉매의 제조방법, 이에 따른 촉매 및 이를 이용한 폴리올레핀의 제조방법
KR101309457B1 (ko) * 2011-07-15 2013-09-23 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체의 제조방법
CN107098794A (zh) * 2017-05-18 2017-08-29 山西大学 一种固体乙醇镁的制备方法
CN109206545B (zh) * 2017-07-01 2021-07-02 中国石油化工股份有限公司 丙烯类聚合物微粒和用于烯烃聚合的固体催化剂组分及烯烃聚合催化剂
KR102178630B1 (ko) * 2018-12-20 2020-11-13 한화토탈 주식회사 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법
KR20240056988A (ko) * 2022-10-24 2024-05-02 한화토탈에너지스 주식회사 프로필렌계 중합용 고체 촉매 및 이를 이용한 프로필렌계 중합체의 제조방법
CN115925513A (zh) * 2022-11-22 2023-04-07 任国辉 一种球形二烷氧基镁载体的制备方法和应用
CN115894174A (zh) * 2022-11-22 2023-04-04 任国辉 一种用于烯烃聚合催化剂的二烷氧基镁载体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374341A (ja) 1989-08-16 1991-03-28 Korukooto Eng Kk 球形で粒度分布の狭いマグネシウムアルコラートの合成方法
US5162277A (en) 1990-10-18 1992-11-10 Shell Oil Company Olefin polymerization catalyst
JPH04368391A (ja) 1991-06-18 1992-12-21 Idemitsu Petrochem Co Ltd マグネシウムジアルコキシドの製造方法
JPH0687773A (ja) 1990-01-12 1994-03-29 Huels Ag マグネシウム−アルコキシドの球状粒子の製造方法
JPH0873388A (ja) 1994-09-07 1996-03-19 Nippon Soda Co Ltd マグネシウムエチラート球状微粒品の製造方法
US5955396A (en) 1995-10-17 1999-09-21 Bp Amoco Corporation Morphology-controlled olefin polymerization catalyst formed from an emulsion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624027B1 (ko) * 2004-09-23 2006-09-15 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법
KR100807895B1 (ko) * 2006-08-30 2008-02-27 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법
KR100822610B1 (ko) * 2006-12-28 2008-04-16 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374341A (ja) 1989-08-16 1991-03-28 Korukooto Eng Kk 球形で粒度分布の狭いマグネシウムアルコラートの合成方法
JPH0687773A (ja) 1990-01-12 1994-03-29 Huels Ag マグネシウム−アルコキシドの球状粒子の製造方法
US5162277A (en) 1990-10-18 1992-11-10 Shell Oil Company Olefin polymerization catalyst
JPH04368391A (ja) 1991-06-18 1992-12-21 Idemitsu Petrochem Co Ltd マグネシウムジアルコキシドの製造方法
JPH0873388A (ja) 1994-09-07 1996-03-19 Nippon Soda Co Ltd マグネシウムエチラート球状微粒品の製造方法
US5955396A (en) 1995-10-17 1999-09-21 Bp Amoco Corporation Morphology-controlled olefin polymerization catalyst formed from an emulsion

Also Published As

Publication number Publication date
EP2301664A2 (en) 2011-03-30
WO2010005164A3 (ko) 2010-03-11
JP2011513576A (ja) 2011-04-28
KR20100007076A (ko) 2010-01-22
US20110166394A1 (en) 2011-07-07
CN102089078A (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2010005164A2 (ko) 올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법
KR100874089B1 (ko) 프로필렌 중합용 촉매의 제조방법
EP1869091A1 (en) Method for producing a propylene polymer having a very high melt flowability
RU2293088C2 (ru) Активаторы катализаторов полимеризации, способ их приготовления и их применение в процессах полимеризации
KR100624027B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
CN103923237B (zh) 用于烯烃聚合的催化剂组分及其应用
WO2011071237A2 (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR101140112B1 (ko) 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법
WO2011087231A2 (ko) 프로필렌 중합용 고체촉매의 제조 방법 및 그에 의해 제조된 촉매
WO2011081404A2 (ko) 폴리올레핀 중합용 촉매 및 이의 제조방법
KR100822610B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
JP2008518075A (ja) プロピレン重合用触媒およびこれを利用したプロピレンの重合方法
KR101207622B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체
KR20120097100A (ko) 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체 제조방법
WO2011081405A2 (ko) 폴리올레핀 중합용 촉매의 제조방법, 이에 따른 촉매 및 이를 이용한 폴리올레핀의 제조방법
WO2011149153A1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체
KR101309457B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체의 제조방법
KR100612107B1 (ko) 프로필렌의 중합방법
JP3361579B2 (ja) オレフィン重合用触媒およびオレフィン重合体の製造法
KR101491231B1 (ko) 올레핀 중합촉매용 구형 담체의 제조방법과 상기 담체를 이용한 고체 촉매 및 프로필렌 중합체
KR100612106B1 (ko) 프로필렌의 중합방법
JPS58109506A (ja) オレフイン重合法
CN117430738A (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN116023549A (zh) 预聚合催化剂及其制备方法和应用
CA3151380A1 (en) Catalyst composition and system having extended lifetime

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126857.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794570

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010550611

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009794570

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE