WO2011071237A2 - 프로필렌 중합용 고체촉매의 제조 방법 - Google Patents

프로필렌 중합용 고체촉매의 제조 방법 Download PDF

Info

Publication number
WO2011071237A2
WO2011071237A2 PCT/KR2010/006720 KR2010006720W WO2011071237A2 WO 2011071237 A2 WO2011071237 A2 WO 2011071237A2 KR 2010006720 W KR2010006720 W KR 2010006720W WO 2011071237 A2 WO2011071237 A2 WO 2011071237A2
Authority
WO
WIPO (PCT)
Prior art keywords
diethyl
succinate
isobutyl
isopropyl
cyclohexyl
Prior art date
Application number
PCT/KR2010/006720
Other languages
English (en)
French (fr)
Other versions
WO2011071237A3 (ko
Inventor
김상열
박준려
김은일
이진우
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to JP2012539796A priority Critical patent/JP5554416B2/ja
Priority to US13/514,673 priority patent/US8664142B2/en
Priority to EP10836133.8A priority patent/EP2511303B1/en
Priority to CN201080061607.0A priority patent/CN102712705B/zh
Publication of WO2011071237A2 publication Critical patent/WO2011071237A2/ko
Publication of WO2011071237A3 publication Critical patent/WO2011071237A3/ko
Priority to US14/016,537 priority patent/US9062135B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing a solid catalyst for propylene polymerization, and more particularly, a solid catalyst for propylene polymerization, which exhibits a high melt flow index and a wide molecular weight distribution and can polymerize polypropylene having excellent stereoregularity with a high yield. It relates to a method for producing.
  • Polypropylene is an industrially useful material, and has been widely applied to various applications, particularly for materials related to automobiles and electronic products. In order to expand the application of polypropylene, it is important to improve stereoregularity, widen the molecular weight distribution, and improve it to have high rigidity and excellent workability.
  • olefins such as propylene
  • a solid catalyst containing magnesium, titanium, an electron donor and a halogen as essential components is known, and olefins are polymerized or copolymerized with a catalyst system composed of the solid catalyst, an organoaluminum compound and an organosilicon compound.
  • Many methods to make it have been proposed. However, this method is not satisfactory enough to obtain high stereoregular polymers in high yield, and improvements are required in this respect.
  • the present invention has been made to solve the above problems, the problem to be solved of the present invention is to exhibit a high melt flow index and a wide molecular weight distribution and at the same time can be polymerized polypropylene excellent in stereoregularity with a high yield It is to provide a method for producing a solid catalyst for propylene polymerization.
  • the present invention provides a method for producing a solid catalyst comprising the following steps:
  • R 1 , R 2 , R 3 and R 4 are independently a linear, branched or cyclic alkyl group or hydrogen atom of 1 to 10 carbon atoms
  • R 1 and R 2 are independently 1 to 10 linear, branched or cyclic alkyl groups or hydrogen atoms, and R 3 and R 4 are independently 1 to 10 linear, branched or carbon atoms Cyclic alkyl group
  • R 1 , R 2 and R 4 are independently a linear, branched or cyclic alkyl group or hydrogen atom of 1 to 10 carbon atoms, and R 3 is a linear, branched or cyclic type of 1 to 10 carbon atoms Alkyl group);
  • step (3) reacting the result of step (2) with titanium halide at a temperature of 80 ⁇ 130 °C, washing the result.
  • organic solvent used in the step (1) there is no particular limitation on the kind, and C6-C12 aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, etc. may be used, and more preferably C7-C10 saturated aliphatic compounds. Or an aromatic hydrocarbon or a halogenated hydrocarbon, and specific examples thereof may be used alone or in combination of one or more selected from octane, nonane, decane, toluene and xylene, chlorobutane, chlorohexane, chloroheptane, and the like. have.
  • the dialkoxy magnesium used in the step (1) has an average particle diameter of 10 to 200 ⁇ m obtained by reacting metal magnesium with anhydrous alcohol in the presence of magnesium chloride, and the surface is spherical particles, the spherical particle shape of propylene It is preferable to maintain it as it is during the polymerization. If the average particle diameter is less than 10 mu m, the fine particles of the prepared catalyst increase, which is not preferable. If the average particle diameter exceeds 200 mu m, the apparent density tends to decrease, which is not preferable.
  • the use ratio of the organic solvent to the dialkoxy magnesium is preferably 1: 5 to 50, more preferably 1: 7 to 20, in terms of dialkoxy magnesium weight: organic solvent volume. If it is less than: 5, the viscosity of the slurry is rapidly increased to make it difficult to uniformly stir, and if it is more than 1:50, the apparent density of the resulting carrier decreases rapidly or the surface of the particles is rough, which is not preferable.
  • the titanium halide used in step (1) of the solid catalyst preparation process is preferably represented by the following general formula (I):
  • R is an alkyl group of 1 to 10 carbon atoms
  • X is a halogen element
  • a is for matching the valence of general formula, and is an integer of 0-3.
  • titanium halide it is preferable to use titanium tetrachloride.
  • step (1) of the solid catalyst preparation process is preferably carried out by slowly adding titanium halide in a state in which the dialkoxy magnesium is suspended in an organic solvent in the temperature range of 0 ⁇ 30 °C.
  • the amount of titanium halide to be used is preferably 0.1 to 10 moles, more preferably 0.3 to 2 moles per 1 mole of dialkoxy magnesium. If less than 0.1 mole, the reaction of dialkoxy magnesium to magnesium chloride is smooth. It is not preferable because it does not proceed, and exceeding 10 moles is not preferable because excessively many titanium components are present in the catalyst.
  • the internal electron donor used in the step (2) is an internal electron donor selected from the following general formula (II), and the internal electron donor selected from the general formula (III) or general formula (IV) Electron donors can be mixed and used.
  • R 1 , R 2 , R 3 and R 4 are independently a linear, branched or cyclic alkyl group or hydrogen atom of 1 to 10 carbon atoms
  • R 1 and R 2 are independently 1 to 10 linear, branched or cyclic alkyl groups or hydrogen atoms, and R 3 and R 4 are independently 1 to 10 linear, branched or carbon atoms Cyclic alkyl group
  • R 1 , R 2 and R 4 are independently a linear, branched or cyclic alkyl group or hydrogen atom of 1 to 10 carbon atoms, and R 3 is a linear, branched or cyclic type of 1 to 10 carbon atoms Alkyl group
  • Examples of the internal electron donor include diethyl-2,3-dimethylsuccinate, diethyl-2,3-diethylsuccinate, diethyl-2,3-dipropylsuccinate, diethyl-2,3- Diisopropylsuccinate, diethyl-2,3-dibutylsuccinate, diethyl-2,3-diisobutylsuccinate, diethyl-2,3-dipentylsuccinate, diethyl-2,3- Dihexylsuccinate, diethyl-2,3-dicyclopentylsuccinate, diethyl-2,3-dicyclohexylsuccinate, diethyl-2-cyclopentyl-3-methylsuccinate, diethyl-2- Cyclohexyl-3-methylsuccinate, diethyl-2-isopropyl-3-methylsuccinate, diethyl-2-isobutyl-3-methylsuccinate, die
  • the step (2) is preferably carried out by reacting for 1 to 3 hours by adding an internal electron donor during the temperature increase process while gradually increasing the temperature of the resultant of step (1) to 80 ⁇ 130 °C, the temperature is If the reaction time is less than 80 ° C. or less than 1 hour, the reaction is difficult to complete. If the temperature exceeds 130 ° C. or if the reaction time is more than 3 hours, the polymerization reaction of the resulting catalyst or the stereoregularity of the polymer may be lowered by side reactions. Can be.
  • the temperature and the number of the inputs are not particularly limited, and the total amount of the internal electron donor uses 0.1 to 1.0 mole based on 1 mole of dialkoxy magnesium used. It is preferable that outside the above range, the polymerization activity of the resulting catalyst or the stereoregularity of the polymer may be lowered.
  • Step (3) of the solid catalyst production process is a step of secondary reaction between the resultant of step (2) and titanium halide at a temperature of 80 ⁇ 130 °C.
  • titanium halide to be used include titanium halides of the general formula (I).
  • the solid catalyst prepared as described above comprises magnesium, titanium, halogen and internal electron donor, and considering the catalytic activity, 5 to 40 wt% magnesium, 0.5 to 10 wt% titanium, 50 to halogen It is preferred to comprise 85% by weight and 2.5-30% by weight of the internal electron donor.
  • the solid catalyst prepared by the catalyst preparation method of the present invention may be suitably used in the propylene polymerization or copolymerization method, and the propylene polymerization or copolymerization method using the solid catalyst prepared according to the present invention may be used for the solid catalyst, the cocatalyst and the external electron.
  • the solid catalyst may be prepolymerized with ethylene or alpha olefin before being used as a component of the polymerization reaction.
  • the prepolymerization reaction can be carried out in the presence of a hydrocarbon solvent (eg hexane), the catalyst component and an organoaluminum compound (eg triethylaluminum) at sufficiently low temperatures and ethylene or alphaolefin pressure conditions.
  • a hydrocarbon solvent eg hexane
  • an organoaluminum compound eg triethylaluminum
  • Prepolymerization helps to improve the shape of the polymer after polymerization by surrounding the catalyst particles with a polymer to maintain the catalyst shape.
  • the weight ratio of polymer / catalyst after prepolymerization is preferably about 0.1 to 20: 1.
  • an organometallic compound of Group II or Group III of the periodic table may be used as the cocatalyst component.
  • an alkylaluminum compound is used.
  • the alkylaluminum compound is represented by general formula (V):
  • R is a C1-C6 alkyl group.
  • alkyl aluminum compound examples include trimethyl aluminum, triethyl aluminum, tripropyl aluminum, tributyl aluminum, triisobutyl aluminum, trioctyl aluminum and the like.
  • the ratio of the promoter component to the solid catalyst component is somewhat different depending on the polymerization method, but the molar ratio of metal atoms in the promoter component to titanium atoms in the solid catalyst component is preferably in the range of 1 to 1000, More preferably, it is good that it is the range of 10-300. If the molar ratio of the metal atom in the promoter component, for example, the aluminum atom, to the titanium atom in the solid catalyst component is out of the range of 1 to 1000, there is a problem that the polymerization activity is greatly reduced.
  • At least one of the alkoxysilane compounds represented by the following general formula (VI) may be used as the external electron donor:
  • R 1 , R 2 may be the same or different, a linear or branched or cyclic alkyl group having 1 to 12 carbon atoms, or an aryl group
  • R 3 is a linear or branched alkyl group having 1 to 6 carbon atoms
  • m and n are 0 or 1, respectively
  • m + n is 1 or 2, respectively.
  • the external electron donor include normal propyl trimethoxy silane, dinormal propyl dimethoxy silane, isopropyl trimethoxy silane, diisopropyl dimethoxy silane, normal butyl trimethoxy silane and di normal butyl dimethoxy Silane, isobutyltrimethoxysilane, diisobutyldimethoxysilane, tertiarybutyltrimethoxysilane, dietarybutyldimethoxysilane, normalpentyltrimethoxysilane, dinormalpentyldimethoxysilane, cyclopentyltrimethoxy Silane, dicyclopentyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclopentylethyldimethoxysilane, cyclopentylpropyldimethoxysilane, cyclohexyltrimethoxysilane, dicyclobut
  • the amount of the external electron donor to the solid catalyst varies slightly depending on the polymerization method, but the molar ratio of the silicon atom in the external electron donor to the titanium atom in the catalyst component is preferably in the range of 0.1 to 500, 1 to 100 It is more preferable that it is the range of. If the molar ratio of silicon atoms in the external electron donor to the titanium atoms in the solid catalyst component is less than 0.1, the stereoregularity of the resulting propylene polymer is significantly lowered, and if it exceeds 500, the polymerization activity of the catalyst is significantly lowered. There is this.
  • the temperature of the polymerization reaction is 20 to 120 ° C. If the temperature of the polymerization reaction is less than 20 ° C, the reaction does not proceed sufficiently, and if it exceeds 120 ° C, It is not preferable because the deterioration is severe and adversely affects the polymer physical properties.
  • solid catalyst prepared by the method of the present invention it is possible to polymerize polypropylene having high melt flowability and wide molecular weight distribution and excellent stereoregularity with high yield without containing environmentally harmful substances.
  • the resulting polymer was analyzed and shown in Table 1.
  • catalytic activity was determined by the following method.
  • Example 1 In the preparation of the solid catalyst, 2.9 g of diethyl-2,3-diisopropylidene succinate and 2.9 g of diethyl-2,3-diisopropyl succinate were used instead of di- A catalyst was prepared using a mixture of 2.3 g of ethyl-2,3-diisopropylidene succinate and 3.5 g of diethyl-2,3-diisopropylsuccinate. The titanium content in the solid catalyst component was 3.2% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 1 In the preparation of the solid catalyst, 2.9 g of diethyl-2,3-diisopropylidene succinate and 2.9 g of diethyl-2,3-diisopropyl succinate were used instead of di- A catalyst was prepared using a mixture of 1.4 g of ethyl-2,3-diisopropylidene succinate and 4.3 g of diethyl-2,3-diisopropylsuccinate. The titanium content in the solid catalyst component was 3.1% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 1 In the preparation of the solid catalyst, 2.9 g of diethyl-2,3-diisopropylidene succinate and 2.9 g of diethyl-2,3-diisopropyl succinate were used instead of di- A catalyst was prepared using a mixture of 2.9 g of ethyl-2-isopropylidene-3-isopropylsuccinate and 2.9 g of diethyl-2,3-diisopropylsuccinate. The titanium content in the solid catalyst component was 3.1% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • the temperature was lowered to 90 ° C. to stop stirring, the supernatant was removed, and further washed once using the same method using 200 ml of toluene.
  • 150 ml of toluene and 50 ml of titanium tetrachloride were added thereto, and the temperature was raised to 110 ° C. and maintained for 1 hour.
  • the slurry mixture was washed twice with 200 ml of toluene ⁇ each time, and washed 5 times with 200 ml of hexane each time at 40 ° C. to obtain a pale yellow solid catalyst component.
  • the titanium content in the solid catalyst component obtained by drying for 18 hours in flowing nitrogen was 3.3% by weight.
  • Example 1 In the preparation of the solid catalyst, 2.9 g of diethyl-2,3-diisopropylidene succinate and 2.9 g of diethyl-2,3-diisopropyl succinate were used instead of di- The catalyst was prepared using 5.8 g of ethyl-2,3-diisopropylsuccinate. The titanium content in the solid catalyst component was 2.8% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • Example 1 In the preparation of the solid catalyst, 2.9 g of diethyl-2,3-diisopropylidene succinate and 2.9 g of diethyl-2,3-diisopropyl succinate were used instead of di- The catalyst was prepared using 4.8 g of ethyl-2-cyclohexylsuccinate. The titanium content in the solid catalyst component was 3.8% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.
  • Examples 1 to 4 according to the present invention show excellent melt flow index and broad molecular weight distribution while having high activity and stereoregularity, whereas Comparative Examples 1 and 3 have very low activity.
  • Narrow molecular weight distribution, comparative example 2 shows that the melt flow index was inferior while the molecular weight distribution was narrower compared with Examples 1 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 프로필렌 중합용 고체촉매의 제조 방법에 관한 것으로서, 보다 상세하게는 높은 용융흐름지수와 넓은 분자량분포를 나타내고, 입체규칙성이 우수한 폴리프로필렌을 높은 수율로 중합할 수 있는 프로필렌 중합용 고체촉매의 제조 방법에 관한 것이다.

Description

프로필렌 중합용 고체촉매의 제조 방법
본 발명은 프로필렌 중합용 고체촉매의 제조 방법에 관한 것으로서, 보다 상세하게는 높은 용융흐름지수와 넓은 분자량분포를 나타내고, 입체규칙성이 우수한 폴리프로필렌을 높은 수율로 중합할 수 있는 프로필렌 중합용 고체촉매의 제조 방법에 관한 것이다.
폴리프로필렌은 산업적으로 매우 유용한 물질인데, 특히 자동차와 전자 제품 등과 관련된 소재에 다양한 용도로 폭넓게 적용되고 있다. 폴리프로필렌의 적용이 보다 확대되기 위해서는 입체규칙성을 높이고, 분자량분포를 넓혀서, 높은 강성과 우수한 가공성을 갖도록 개선시키는 것이 중요하다.
프로필렌 등의 올레핀류의 중합에 있어서는 마그네슘, 티타늄, 전자공여체 및 할로겐을 필수 성분으로서 함유하는 고체촉매가 알려져 있고, 이 고체촉매와 유기알루미늄 화합물 및 유기실리콘 화합물로 이루어지는 촉매계로 올레핀류를 중합 또는 공중합시키는 방법이 많이 제안되고 있다. 그러나, 이러한 방법은 고입체규칙성 중합체를 높은 수율로 얻기에는 충분히 만족스러운 것이 아니며, 이러한 측면에서 개선이 요구되고 있다.
촉매 활성 증가를 통해 원가를 낮추고, 입체규칙성 등의 촉매 성능을 향상시켜 중합체의 물성을 개선시키기 위하여, 내부전자공여체로서 방향족 디카르복실산의 디에스테르를 사용하는 것은 보편적으로 널리 알려진 방법이며, 이에 관한 특허들이 출원되었다. 미국 특허 제4,562,173호, 미국 특허 제4,981,930호, 한국 특허 제 0072844호 등은 그 예라고 할 수 있으며, 상기 특허들은 방향족 디알킬디에스테르 또는 방향족 모노알킬모노에스테르를 사용하여 고활성, 고입체규칙성을 발현하는 촉매 제조 방법을 소개하고 있다. 그러나, 이러한 방법의 경우에도 고입체규칙성 중합체를 높은 수율로 얻기에는 충분히 만족스러운 것이 아니며 개선이 요구되고 있다.
분자량 분포를 증가시키기 위해서도 많은 시도들이 있어 왔는데, 미국 특허 제 6376628 B1호에서는 마그네슘, 티타늄, 할로겐 성분과 전자공여체로 구성된 고체 촉매 성분과 유기알루미늄 화합물 및 이소퀴놀린실리콘 화합물의 존재 하에 프로필렌을 중합시켜서 분자량 분포를 넓히는 방법에 대해서 제안하고 있는데, 촉매 활성 및 흐름성에서 개선되어야할 여지가 있다.
국제 특허 WO 00/63261호에서는 숙시네이트를 내부 전자공여체로 사용하여 높은 입체규칙성과 넓은 분자량 분포를 갖는 중합체의 제조 방법을 주장하고 있으나, 디알킬알킬리덴숙시네이트를 사용한 예는 나타나 있지 않으며, 분자량분포 측면에서 개선되어야할 여지가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 해결하고자 하는 과제는 높은 용융흐름지수와 넓은 분자량분포를 나타냄과 동시에 입체규칙성이 우수한 폴리프로필렌을 높은 수율로 중합할 수 있는 프로필렌 중합용 고체촉매의 제조 방법을 제공하고자 하는 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명은 다음의 단계들을 포함하는 것을 특징으로 하는 고체촉매의 제조 방법을 제공한다:
(1) 유기용매의 존재 하에서 디알콕시마그네슘과 티타늄할라이드를 반응시키는 단계;
(2) 80~130℃의 온도로 승온시키면서, 상기 단계 (1)의 결과물에 하기 일반식(Ⅱ)로부터 선택되는 내부전자공여체와 함께 일반식(III) 또는 일반식(Ⅳ)로부터 선택되는 내부전자공여체를 혼합투입하여 반응시키는 단계,
Figure PCTKR2010006720-appb-I000001
 ‥‥‥ (II)
(여기에서, R1, R2, R3 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이다)
Figure PCTKR2010006720-appb-I000002
 ‥‥‥ (III)
(여기에서, R1 및 R2는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이고, R3 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기이다)
 
Figure PCTKR2010006720-appb-I000003
 ‥‥‥ (IV)
(여기에서, R1, R2 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이고, R3은 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기이다); 및
(3) 80~130℃의 온도에서 상기 단계 (2)의 결과물과 티타늄할라이드를 반응시키고, 결과물을 세척하는 단계.
상기 (1)단계에서 사용되는 유기용매로서는, 그 종류에 특별히 한정이 없고, 탄소수 6~12개의 지방족 탄화수소 및 방향족 탄화수소, 할로겐화 탄화수소 등이 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10개의 포화 지방족 또는 방향족 탄화수소, 또는 할로겐화 탄화수소가 사용될 수 있고, 그 구체적인 예로는, 옥탄, 노난, 데칸, 톨루엔 및 크실렌, 클로로부탄, 클로로헥산, 클로로헵탄 등으로부터 선택되는 1종 이상을 단독으로 또는 혼합하여 사용할 수 있다.
상기 단계 (1)에서 사용되는 디알콕시마그네슘은 금속마그네슘을 염화마그네슘의 존재하에서 무수알코올과 반응시켜 얻어지는 평균입경이 10~200㎛이고, 표면이 매끄러운 구형입자로서, 상기 구형의 입자형상은 프로필렌의 중합시에도 그대로 유지되는 것이 바람직한데, 상기 평균입경이 10㎛ 미만이면 제조된 촉매의 미세입자가 증가하여 바람직하지 않고, 200㎛를 초과하면 겉보기 밀도가 작아지는 경향이 있어 바람직하지 않다.
또한, 상기 디알콕시마그네슘에 대한 상기 유기용매의 사용비는, 디알콕시마그네슘 중량:유기용매 부피로 1:5~50인 것이 바람직하며, 1:7~20인 것이 보다 바람직한데, 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵게 되어 바람직하지 않고, 1:50을 초과하면 생성되는 담체의 겉보기 밀도가 급격히 감소하거나 입자표면이 거칠어지는 문제가 발생하여 바람직하지 않다.
상기 고체촉매의 제조공정 중 단계 (1)에서 사용되는 티타늄할라이드는, 바람직하게는 하기 일반식(I)로 표시된다:
Ti(OR)aX(4-a)‥‥‥ (I)
여기에서, R은 탄소원자 1~10개의 알킬기이고, X는 할로겐 원소이고, a는 일반식의 원자가를 맞추기 위한 것으로 0~3의 정수이다. 상기 티타늄할라이드로는, 특히 사염화티타늄을 사용하는 것이 바람직하다.
상기 고체촉매의 제조공정 중 단계 (1)에서의 반응은 0~30℃의 온도범위에서 디알콕시마그네슘을 유기용매에 현탁시킨 상태에서 티타늄할라이드를 서서히 투입하여 수행하는 것이 바람직하다.
이 때 사용하는 티타늄할라이드의 사용량은 디알콕시마그네슘 1몰에 대하여 0.1~10몰, 더욱 바람직하게는 0.3~2몰로 하는 것이 바람직한데, 0.1몰 미만이면 디알콕시마그네슘이 마그네슘클로라이드로 변화하는 반응이 원활하게 진행되지 않아서 바람직하지 않고, 10몰을 초과하면 과도하게 많은 티타늄 성분이 촉매내에 존재하게 되므로 바람직하지 않다.
상기 고체촉매의 제조공정에 있어서, 상기 (2)단계에서 사용되는 내부전자공여체는 하기 일반식(Ⅱ)로부터 선택되는 내부전자공여체와, 일반식(III) 또는 일반식(Ⅳ)로부터 선택되는 내부전자공여체를 혼합 선택하여 사용할 수 있다. 
Figure PCTKR2010006720-appb-I000004
 ‥‥‥ (II)
(여기에서, R1, R2, R3 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이다)
Figure PCTKR2010006720-appb-I000005
 ‥‥‥ (III)
(여기에서, R1 및 R2는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이고, R3 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기이다)
 
Figure PCTKR2010006720-appb-I000006
 ‥‥‥ (IV)
(여기에서, R1, R2 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이고, R3은 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기이다)
상기 내부전자공여체의 예로는, 디에틸-2,3-디메틸숙시네이트, 디에틸-2,3-디에틸숙시네이트, 디에틸-2,3-디프로필숙시네이트, 디에틸-2,3-디이소프로필숙시네이트, 디에틸-2,3-디부틸숙시네이트, 디에틸-2,3-디이소부틸숙시네이트, 디에틸-2,3-디펜틸숙시네이트, 디에틸-2,3-디헥실숙시네이트, 디에틸-2,3-디시클로펜틸숙시네이트, 디에틸-2,3-디시클로헥실숙시네이트, 디에틸-2-시클로펜틸-3-메틸숙시네이트, 디에틸-2-시클로헥실-3-메틸숙시네이트, 디에틸-2-이소프로필-3-메틸숙시네이트, 디에틸-2-이소부틸-3-메틸숙시네이트, 디에틸-2-시클로펜틸-3-에틸숙시네이트, 디에틸-2-시클로헥실-3-에틸숙시네이트, 디에틸-2-이소프로필-3-에틸숙시네이트, 디에틸-2-이소부틸-3-에틸숙시네이트, 디에틸-2-시클로펜틸-3-프로필숙시네이트, 디에틸-2-시클로헥실-3-프로필숙시네이트, 디에틸-2-이소프로필-3-프로필숙시네이트, 디에틸-2-이소부틸-3-프로필숙시네이트, 디에틸-2-시클로펜틸-3-이소프로필숙시네이트, 디에틸-2-시클로헥실-3-이소프로필숙시네이트, 디에틸-2-이소부틸-3-이소프로필숙시네이트, 디에틸-2-시클로펜틸-3-이소부틸숙시네이트, 디에틸-2-시클로헥실-3-이소부틸숙시네이트, 디에틸-2-이소프로필-3-이소부틸필숙시네이트, 디에틸-2,3-디메틸리덴숙시네이트, 디에틸-2,3-디에틸리덴숙시네이트, 디에틸-2,3-디프로필리덴숙시네이트, 디에틸-2,3-디이소프로필리덴숙시네이트, 디에틸-2,3-디부틸리덴숙시네이트, 디에틸-2,3-디이소부틸리덴숙시네이트, 디에틸-2,3-디펜틸리덴숙시네이트, 디에틸-2,3-디헥실리덴숙시네이트, 디에틸-2,3-디시클로펜틸리덴숙시네이트, 디에틸-2,3-디시클로헥실리덴숙시네이트, 디에틸-2-시클로펜틸-3-메틸리덴숙시네이트, 디에틸-2-시클로헥실-3-메틸리덴숙시네이트, 디에틸-2-이소프로필-3-메틸리덴숙시네이트, 디에틸-2-이소부틸-3-메틸리덴숙시네이트, 디에틸-2-시클로펜틸-3-에틸리덴숙시네이트, 디에틸-2-시클로헥실-3-에틸리덴숙시네이트, 디에틸-2-이소프로필-3-에틸리덴숙시네이트, 디에틸-2-이소부틸-3-에틸리덴숙시네이트, 디에틸-2-시클로펜틸-3-프로필리덴숙시네이트, 디에틸-2-시클로헥실-3-프로필리덴숙시네이트, 디에틸-2-이소프로필-3-프로필리덴숙시네이트, 디에틸-2-이소부틸-3-프로필리덴숙시네이트, 디에틸-2-시클로펜틸-3-이소프로필리덴숙시네이트, 디에틸-2-시클로헥실-3-이소프로필리덴숙시네이트, 디에틸-2-이소부틸-3-이소프로필리덴숙시네이트, 디에틸-2-시클로펜틸-3-이소부틸리덴숙시네이트, 디에틸-2-시클로헥실-3-이소부틸리덴숙시네이트, 디에틸-2-이소프로필-3-이소부틸리덴필숙시네이트, 디에틸-2-시클로펜틸리덴-3-메틸숙시네이트, 디에틸-2-시클로헥실리덴-3-메틸숙시네이트, 디에틸-2-이소프로필리덴-3-메틸숙시네이트, 디에틸-2-이소부틸리덴-3-메틸숙시네이트, 디에틸-2-시클로펜틸리덴-3-에틸숙시네이트, 디에틸-2-시클로헥실리덴-3-에틸숙시네이트, 디에틸-2-이소프로필리덴-3-에틸숙시네이트, 디에틸-2-이소부틸리덴-3-에틸숙시네이트, 디에틸-2-시클로펜틸리덴-3-프로필숙시네이트, 디에틸-2-시클로헥실리덴-3-프로필숙시네이트, 디에틸-2-이소프로필리덴-3-프로필숙시네이트, 디에틸-2-이소부틸리덴-3-프로필숙시네이트, 디에틸-2-시클로펜틸리덴-3-이소프로필숙시네이트, 디에틸-2-시클로헥실리덴-3-이소프로필숙시네이트, 디에틸-2-이소부틸리덴-3-이소프로필숙시네이트, 디에틸-2-시클로펜틸리덴-3-이소부틸숙시네이트, 디에틸-2-시클로헥실리덴-3-이소부틸숙시네이트, 디에틸-2-이소프로필리덴-3-이소부틸필숙시네이트 등을 들 수 있다.
상기 단계 (2)는 상기 단계 (1)의 결과물의 온도를 80~130℃까지 서서히 승온시키면서, 승온 과정 중에 내부전자공여체를 투입하여 1~3시간 동안 반응시킴으로써 수행되는 것이 바람직한데, 상기 온도가 80℃ 미만이거나 반응시간이 1시간 미만이면 반응이 완결되기 어렵고, 상기 온도가 130℃를 초과하거나 반응시간이 3시간을 초과하면 부반응에 의해 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있다.
상기 내부전자공여체는, 상기 승온과정 중에 투입되는 한, 그 투입 온도 및 투입 횟수는 크게 제한되지 않으며, 상기 내부전자공여체의 전체 사용량은 사용된 디알콕시마그네슘 1몰에 대하여 0.1~1.0몰을 사용하는 것이 바람직한데, 상기 범위를 벗어나면, 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있어 바람직하지 않다.
상기 고체촉매의 제조공정 중 단계 (3)은, 80~130℃의 온도에서 단계 (2)의 결과물과 티타늄할라이드를 2차로 반응시키는 공정이다. 이때 사용되는 티타늄할라이드의 예로는 상기의 일반식(Ⅰ)의 티타늄할라이드를 들 수 있다.
고체촉매의 제조공정에 있어서, 각 단계에서의 반응은, 질소 기체 분위기에서, 수분 등을 충분히 제거시킨 교반기가 장착된 반응기 중에서 실시하는 것이 바람직하다.
상기와 같이 제조되는 고체촉매는, 마그네슘, 티타늄, 할로겐 및 내부전자공여체를 포함하여 이루어지며, 촉매 활성의 측면을 고려해 볼 때, 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량% 및 내부전자공여체 2.5~30중량%를 포함하여 이루어지는 것이 바람직하다.
본 발명의 촉매 제조방법에 의하여 제조되는 고체촉매는 프로필렌 중합 또는 공중합 방법에 적합하게 사용될 수 있으며, 본 발명에 의해 제조되는 고체촉매를 이용한 프로필렌 중합 또는 공중합 방법은 상기 고체촉매와 조촉매 및 외부전자공여체의 존재하에 프로필렌을 중합 또는 프로필렌과 다른 알파올레핀을 공중합시키는 것을 포함한다.
상기 고체촉매는 중합 반응의 성분으로서 사용되기 전에 에틸렌 또는 알파올레핀으로 전중합하여 사용할 수 있다.
전중합 반응은 탄화수소 용매(예를 들어, 헥산), 상기 촉매 성분 및 유기알루미늄 화합물(예를 들어, 트리에틸알루미늄)의 존재 하에서, 충분히 낮은 온도와 에틸렌 또는 알파올레핀 압력 조건에서 수행될 수 있다. 전중합은 촉매 입자를 중합체로 둘러싸서 촉매 형상을 유지시켜 중합 후에 중합체의 형상을 좋게 하는데 도움을 준다. 전중합 후의 중합체/촉매의 중량비는 약 0.1~20:1인 것이 바람직하다.
상기 프로필렌 중합 또는 공중합 방법에서 조촉매 성분으로는 주기율표 제II족 또는 제III족의 유기금속 화합물이 사용될 수 있으며, 그 예로서, 바람직하게는 알킬알루미늄 화합물이 사용된다. 상기 알킬알루미늄 화합물은 일반식 (Ⅴ)로 표시된다:
AlR3 ‥‥‥ (Ⅴ)
여기에서, R은 탄소수 1~6개의 알킬기이다.
상기 알킬알루미늄 화합물의 구체예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 및 트리옥틸알루미늄 등을 들 수 있다.
상기 고체촉매 성분에 대한 상기 조촉매 성분의 비율은, 중합 방법에 따라서 다소 차이는 있으나, 고체 촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자의 몰비가 1~1000의 범위인 것이 바람직하며, 보다 바람직하게는 10~300의 범위인 것이 좋다. 만약, 고체촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자, 예를 들어 알루미늄 원자의 몰비가 상기 1~1000의 범위를 벗어나게 되면, 중합 활성이 크게 저하되는 문제가 있다.
상기 프로필렌 중합 또는 공중합 방법에서, 상기 외부전자공여체로는 다음의 일반식 (Ⅵ)으로 표시되는 알콕시실란 화합물 중 1종 이상을 사용할 수 있다:
R1 mR2 nSi(OR3)(4-m-n) ‥‥‥ (Ⅵ)
여기에서, R1, R2은 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다.
상기 외부전자공여체의 구체예로는, 노르말프로필트리메톡시실란, 디노르말프로필디메톡시실란, 이소프로필트리메톡시실란, 디이소프로필디메톡시실란, 노르말부틸트리메톡시실란, 디노르말부틸디메톡시실란, 이소부틸트리메톡시실란, 디이소부틸디메톡시실란, 터셔리부틸트리메톡시실란, 디터셔리부틸디메톡시실란, 노르말펜틸트리메톡시실란, 디노르말펜틸디메톡시실란, 시클로펜틸트리메톡시실란, 디시클로펜틸디메톡시실란, 시클로펜틸메틸디메톡시실란, 시클로펜틸에틸디메톡시실란, 시클로펜틸프로필디메톡시실란, 시클로헥실트리메톡시실란, 디시클로헥실디메톡시실란, 시클로헥실메틸디메톡시실란, 시클로헥실에틸디메톡시실란, 시클로헥실프로필디메톡시실란, 시클로헵틸트리메톡시실란, 디시클로헵틸디메톡시실란, 시클로헵틸메틸디메톡시실란, 시클로헵틸에틸디메톡시실란, 시클로헵틸프로필디메톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 페닐메틸디메톡시실란, 페닐에틸디메톡시실란, 페닐프로필디메톡시실란, 노르말프로필트리에톡시실란, 디노르말프로필디에톡시실란, 이소프로필트리에톡시실란, 디이소프로필디에톡시실란, 노르말부틸트리에톡시실란, 디노르말부틸디에톡시실란, 이소부틸트리에톡시실란, 디이소부틸디에톡시실란, 터셔리부틸트리에톡시실란, 디터셔리부틸디에톡시실란, 노르말펜틸트리에톡시실란, 디노르말펜틸디에톡시실란, 시클로펜틸트리에톡시실란, 디시클로펜틸디에톡시실란, 시클로펜틸메틸디에톡시실란, 시클로펜틸에틸디에톡시실란, 시클로펜틸프로필디에톡시실란, 시클로헥실트리에톡시실란, 디시클로헥실디에톡시실란, 시클로헥실메틸디에톡시실란, 시클로헥실에틸디에톡시실란, 시클로헥실프로필디에톡시실란, 시클로헵틸트리에톡시실란, 디시클로헵틸디에톡시실란, 시클로헵틸메틸디에톡시실란, 시클로헵틸에틸디에톡시실란, 시클로헵틸프로필디에톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 페닐메틸디에톡시실란, 페닐에틸디에톡시실란 및 페닐프로필디에톡시실란 등이며 이 중에서 1종 이상을 단독 또는 혼합하여 사용할 수 있다.
상기 고체촉매에 대한 상기 외부전자공여체의 사용량은 중합 방법에 따라서 다소 차이는 있으나, 촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1~500의 범위인 것이 바람직하며, 1~100의 범위인 것이 보다 바람직하다. 만일, 상기 고체촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1 미만이면 생성되는 프로필렌 중합체의 입체규칙성이 현저히 낮아져 바람직하지 않고, 500을 초과하면 촉매의 중합 활성이 현저히 떨어지는 문제점이 있다.
상기 프로필렌 중합 또는 공중합 방법에 있어서, 중합 반응의 온도는 20~120℃인 것이 바람직한데, 중합 반응의 온도가 20℃ 미만이면 반응이 충분하게 진행되지 못하여 바람직하지 않고, 120℃를 초과하면 활성의 저하가 심하고, 중합체 물성에도 좋지 않은 영향을 주므로 바람직하지 않다.
본 발명의 방법에 의하여 제조된 고체촉매를 사용하면, 환경유해물질을 함유하지 않으면서, 높은 용융흐름성과 넓은 분자량분포를 가지며, 입체규칙성이 우수한 폴리프로필렌을 높은 수율로 중합할 수 있다.
이하에서는 구체적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예들은 예시적인 목적일 뿐 본 발명이 이들 실시예에 한정되는 것은 아니다.
[실시예]
실시예 1
1. 고체촉매의 제조
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 디에톡시마그네슘(평균입경 20㎛인 구형이고, 입도분포지수가 0.86이고, 겉보기밀도가 0.35g/cc인 것) 20g을 투입하고 10℃로 유지하였다. 사염화티타늄 40ml를 톨루엔 60ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 110℃까지 올려 주면서 디에틸-2,3-디이소프로필리덴숙시네이트 2.9g과 디에틸-2,3-디이소프로필숙시네이트 2.9g을 혼합하여 주입하였다. 110℃에서 2시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 2시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 3.3중량%였다.
2. 폴리프로필렌 중합
4리터 크기의 고압용 스테인레스제 반응기내에 상기의 고체촉매 10mg과 트리에틸알루미늄 6.6mmol, 디시클로펜틸디메톡시실란 0.66mmol을 투입하였다. 이어서 수소 1000ml와 액체상태의 프로필렌 2.4L를 차례로 투입한 후, 온도를 70℃까지 올려서 중합을 실시하였다. 중합 개시 후 2시간이 경과하면 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 프로필렌을 완전히 탈기시켰다.
그 결과 얻어진 중합체를 분석하여, 표 1에 나타내었다.
여기서, 촉매활성, 입체규칙성, 용융흐름지수, 분자량분포는 다음과 같은 방법으로 결정하였다.
① 촉매활성(kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)
② 입체규칙성(X.I.): 혼합크실렌 중에서 결정화되어 석출된 불용성분의 중량%
③ 용융흐름지수(MFR) : ASTM1238에 의해, 230℃, 2.16㎏ 하중에서 측정한 값
④ 분자량분포(P.I.) : 200℃의 온도에서 패러렐 플레이트 레오미터를 이용하여 얻어진 모듈러스 세퍼레이션 값으로부터 다음의 계산식을 이용하여 산출
P.I.= 54.6×(모듈러스 세퍼레이션)-1.76
실시예 2
실시예 1의 1. 고체촉매의 제조에 있어서, 디에틸-2,3-디이소프로필리덴숙시네이트 2.9g과 디에틸-2,3-디이소프로필숙시네이트 2.9g을 혼합 사용한 것 대신에 디에틸-2,3-디이소프로필리덴숙시네이트 2.3g과 디에틸-2,3-디이소프로필숙시네이트 3.5g을 혼합 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 3.2중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
실시예 3
실시예 1의 1. 고체촉매의 제조에 있어서, 디에틸-2,3-디이소프로필리덴숙시네이트 2.9g과 디에틸-2,3-디이소프로필숙시네이트 2.9g을 혼합 사용한 것 대신에 디에틸-2,3-디이소프로필리덴숙시네이트 1.4g과 디에틸-2,3-디이소프로필숙시네이트 4.3g을 혼합 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 3.1중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
실시예 4
실시예 1의 1. 고체촉매의 제조에 있어서, 디에틸-2,3-디이소프로필리덴숙시네이트 2.9g과 디에틸-2,3-디이소프로필숙시네이트 2.9g을 혼합 사용한 것 대신에 디에틸-2-이소프로필리덴-3-이소프로필숙시네이트 2.9g과 디에틸-2,3-디이소프로필숙시네이트 2.9g을 혼합 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 3.1중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
비교예 1
1. 고체촉매의 제조
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml, 테트라하이드로퓨란 12ml, 부탄올 20ml, 마그네슘클로라이드 21g을 투입하고 110℃로 승온 후, 1시간을 유지시켜 균일 용액을 얻었다. 용액의 온도를 15℃로 냉각하고, 사염화티타늄 25ml를 투입한 후 반응기의 온도를 60℃에서 1시간에 걸쳐 승온하고, 10분 동안 숙성 후 15분간 정치시켜 담체를 가라앉히고, 상부의 용액을 제거하였다. 반응기 내에 남은 슬러리는 200ml의 톨루엔을 투입하고, 교반, 정치, 상등액 제거 과정을 2회 반복하여 세척하였다.
이렇게 얻어진 슬러리에 톨루엔 150ml를 주입한 후 15℃에서 사염화티타늄 25ml를 톨루엔 50ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 30℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 30℃에서 1시간 동안 유지한 다음, 디이소부틸프탈레이트 7.5ml를 주입하고, 다시 분당 0.5℃의 속도로 110℃까지 승온시켰다. 
110℃에서 1시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 3.3중량%였다.
 2. 폴리프로필렌 중합
상기의 고체촉매 10mg을 사용하여 실시예 1과 동일한 방법으로 중합을 실시하였고, 그 결과를 표 1에 나타내었다.
비교예 2
실시예 1의 1. 고체촉매의 제조에 있어서, 디에틸-2,3-디이소프로필리덴숙시네이트 2.9g과 디에틸-2,3-디이소프로필숙시네이트 2.9g을 혼합 사용한 것 대신에 디에틸-2,3-디이소프로필숙시네이트 5.8g을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.8중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
비교예 3
실시예 1의 1. 고체촉매의 제조에 있어서, 디에틸-2,3-디이소프로필리덴숙시네이트 2.9g과 디에틸-2,3-디이소프로필숙시네이트 2.9g을 혼합 사용한 것 대신에 디에틸-2-시클로헥실숙시네이트 4.8g을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 3.8중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
표 1
활성(kg-PP/g-Cat) 입체규칙성(X.I., wt.%) 용융흐름지수(MFR, g/10 min) 분자량 분포(P.I.)
실시예 1 42.0 98.0 2.2 7.0
실시예 2 44.8 98.5 1.9 6.9
실시예 3 45.9 98.6 1.7 6.8
실시예 4 40.8 97.8 3.0 7.5
비교예 1 26.0 97.3 5.6 4.8
비교예 2 45.5 98.5 0.8 6.3
비교예 3 22.7 97.8 2.5 5.0
상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예 1 내지 실시예 4는 활성과 입체규칙성이 모두 높으면서 우수한 용융흐름지수와 넓은 분자량분포를 나타내는 반면, 비교예 1, 3은 활성이 매우 낮고, 좁은 분자량분포를 나타내며, 비교예 2는 실시예 1~4 대비 분자량분포가 좁으면서 용융흐름지수가 열세한 것을 알 수 있다.

Claims (4)

  1. 다음의 단계들을 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조 방법:
    (1) 유기용매의 존재 하에서 디알콕시마그네슘과 티타늄할라이드를 반응시키는 단계;
    (2) 80~130℃의 온도로 승온시키면서, 상기 단계 (1)의 결과물에 하기 일반식(Ⅱ)로부터 선택되는 내부전자공여체와 함께 일반식(III) 또는 일반식(Ⅳ)로부터 선택되는 내부전자공여체를 혼합투입하여 반응시키는 단계,
    Figure PCTKR2010006720-appb-I000007
     ‥‥‥ (II)
    (여기에서, R1, R2, R3 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이다)
    Figure PCTKR2010006720-appb-I000008
     ‥‥‥ (III)
    (여기에서, R1 및 R2는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이고, R3 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기이다)
     
    Figure PCTKR2010006720-appb-I000009
     ‥‥‥ (IV)
    (여기에서, R1, R2 및 R4는 독립적으로 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기 또는 수소원자이고, R3은 탄소원자 1~10개의 선형, 가지형 또는 고리형 알킬기이다); 및
    (3) 80~130℃의 온도에서 상기 단계 (2)의 결과물과 티타늄할라이드를 반응시키고, 결과물을 세척하는 단계.
  2. 제1항에 있어서, 상기 고체촉매는 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량% 및 내부전자공여체 2.5~30중량%를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조 방법.
  3. 제1항에 있어서, 상기 내부전자공여체는 디에틸-2,3-디메틸숙시네이트, 디에틸-2,3-디에틸숙시네이트, 디에틸-2,3-디프로필숙시네이트, 디에틸-2,3-디이소프로필숙시네이트, 디에틸-2,3-디부틸숙시네이트, 디에틸-2,3-디이소부틸숙시네이트, 디에틸-2,3-디펜틸숙시네이트, 디에틸-2,3-디헥실숙시네이트, 디에틸-2,3-디시클로펜틸숙시네이트, 디에틸-2,3-디시클로헥실숙시네이트, 디에틸-2-시클로펜틸-3-메틸숙시네이트, 디에틸-2-시클로헥실-3-메틸숙시네이트, 디에틸-2-이소프로필-3-메틸숙시네이트, 디에틸-2-이소부틸-3-메틸숙시네이트, 디에틸-2-시클로펜틸-3-에틸숙시네이트, 디에틸-2-시클로헥실-3-에틸숙시네이트, 디에틸-2-이소프로필-3-에틸숙시네이트, 디에틸-2-이소부틸-3-에틸숙시네이트, 디에틸-2-시클로펜틸-3-프로필숙시네이트, 디에틸-2-시클로헥실-3-프로필숙시네이트, 디에틸-2-이소프로필-3-프로필숙시네이트, 디에틸-2-이소부틸-3-프로필숙시네이트, 디에틸-2-시클로펜틸-3-이소프로필숙시네이트, 디에틸-2-시클로헥실-3-이소프로필숙시네이트, 디에틸-2-이소부틸-3-이소프로필숙시네이트, 디에틸-2-시클로펜틸-3-이소부틸숙시네이트, 디에틸-2-시클로헥실-3-이소부틸숙시네이트, 디에틸-2-이소프로필-3-이소부틸필숙시네이트, 디에틸-2,3-디메틸리덴숙시네이트, 디에틸-2,3-디에틸리덴숙시네이트, 디에틸-2,3-디프로필리덴숙시네이트, 디에틸-2,3-디이소프로필리덴숙시네이트, 디에틸-2,3-디부틸리덴숙시네이트, 디에틸-2,3-디이소부틸리덴숙시네이트, 디에틸-2,3-디펜틸리덴숙시네이트, 디에틸-2,3-디헥실리덴숙시네이트, 디에틸-2,3-디시클로펜틸리덴숙시네이트, 디에틸-2,3-디시클로헥실리덴숙시네이트, 디에틸-2-시클로펜틸-3-메틸리덴숙시네이트, 디에틸-2-시클로헥실-3-메틸리덴숙시네이트, 디에틸-2-이소프로필-3-메틸리덴숙시네이트, 디에틸-2-이소부틸-3-메틸리덴숙시네이트, 디에틸-2-시클로펜틸-3-에틸리덴숙시네이트, 디에틸-2-시클로헥실-3-에틸리덴숙시네이트, 디에틸-2-이소프로필-3-에틸리덴숙시네이트, 디에틸-2-이소부틸-3-에틸리덴숙시네이트, 디에틸-2-시클로펜틸-3-프로필리덴숙시네이트, 디에틸-2-시클로헥실-3-프로필리덴숙시네이트, 디에틸-2-이소프로필-3-프로필리덴숙시네이트, 디에틸-2-이소부틸-3-프로필리덴숙시네이트, 디에틸-2-시클로펜틸-3-이소프로필리덴숙시네이트, 디에틸-2-시클로헥실-3-이소프로필리덴숙시네이트, 디에틸-2-이소부틸-3-이소프로필리덴숙시네이트, 디에틸-2-시클로펜틸-3-이소부틸리덴숙시네이트, 디에틸-2-시클로헥실-3-이소부틸리덴숙시네이트, 디에틸-2-이소프로필-3-이소부틸리덴필숙시네이트, 디에틸-2-시클로펜틸리덴-3-메틸숙시네이트, 디에틸-2-시클로헥실리덴-3-메틸숙시네이트, 디에틸-2-이소프로필리덴-3-메틸숙시네이트, 디에틸-2-이소부틸리덴-3-메틸숙시네이트, 디에틸-2-시클로펜틸리덴-3-에틸숙시네이트, 디에틸-2-시클로헥실리덴-3-에틸숙시네이트, 디에틸-2-이소프로필리덴-3-에틸숙시네이트, 디에틸-2-이소부틸리덴-3-에틸숙시네이트, 디에틸-2-시클로펜틸리덴-3-프로필숙시네이트, 디에틸-2-시클로헥실리덴-3-프로필숙시네이트, 디에틸-2-이소프로필리덴-3-프로필숙시네이트, 디에틸-2-이소부틸리덴-3-프로필숙시네이트, 디에틸-2-시클로펜틸리덴-3-이소프로필숙시네이트, 디에틸-2-시클로헥실리덴-3-이소프로필숙시네이트, 디에틸-2-이소부틸리덴-3-이소프로필숙시네이트, 디에틸-2-시클로펜틸리덴-3-이소부틸숙시네이트, 디에틸-2-시클로헥실리덴-3-이소부틸숙시네이트, 및 디에틸-2-이소프로필리덴-3-이소부틸필숙시네이트 중에서 선택되는 것을 특징으로 하는 프로필렌 중합용 고체촉매의 제조방법.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 디알콕시마그네슘 1몰에 대하여 상기 내부전자공여체 0.1~1.0몰을 사용하는 것을 특징으로 하는 프로필렌 중합용 고체촉매 제조방법.
PCT/KR2010/006720 2009-12-08 2010-10-01 프로필렌 중합용 고체촉매의 제조 방법 WO2011071237A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012539796A JP5554416B2 (ja) 2009-12-08 2010-10-01 プロピレン重合用固体触媒の製造方法
US13/514,673 US8664142B2 (en) 2009-12-08 2010-10-01 Manufacturing method of solid catalyst for propylene polymerization
EP10836133.8A EP2511303B1 (en) 2009-12-08 2010-10-01 Manufacturing method of solid catalyst for propylene polymerization
CN201080061607.0A CN102712705B (zh) 2009-12-08 2010-10-01 丙烯聚合用固体催化剂的制备方法
US14/016,537 US9062135B2 (en) 2009-12-08 2013-09-03 Manufacturing method of solid catalyst for propylene polymerization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090121300A KR101114073B1 (ko) 2009-12-08 2009-12-08 프로필렌 중합용 고체촉매의 제조 방법
KR10-2009-0121300 2009-12-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/514,673 A-371-Of-International US8664142B2 (en) 2009-12-08 2010-10-01 Manufacturing method of solid catalyst for propylene polymerization
US14/016,537 Division US9062135B2 (en) 2009-12-08 2013-09-03 Manufacturing method of solid catalyst for propylene polymerization

Publications (2)

Publication Number Publication Date
WO2011071237A2 true WO2011071237A2 (ko) 2011-06-16
WO2011071237A3 WO2011071237A3 (ko) 2011-08-25

Family

ID=44146001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006720 WO2011071237A2 (ko) 2009-12-08 2010-10-01 프로필렌 중합용 고체촉매의 제조 방법

Country Status (6)

Country Link
US (2) US8664142B2 (ko)
EP (1) EP2511303B1 (ko)
JP (1) JP5554416B2 (ko)
KR (1) KR101114073B1 (ko)
CN (1) CN102712705B (ko)
WO (1) WO2011071237A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125504A1 (ja) * 2012-02-20 2013-08-29 サンアロマー株式会社 シート成形用ポリプロピレン系樹脂組成物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593184B2 (en) 2014-10-28 2017-03-14 Formosa Plastics Corporation, Usa Oxalic acid diamides as modifiers for polyolefin catalysts
US20160188825A1 (en) * 2014-12-30 2016-06-30 Covidien Lp System and method for cytopathological and genetic data based treatment protocol identification and tracking
CN106317268A (zh) * 2015-06-19 2017-01-11 中国石油天然气股份有限公司 一种用于合成高流动聚丙烯的催化剂及其制备方法与应用
US9777084B2 (en) 2016-02-19 2017-10-03 Formosa Plastics Corporation, Usa Catalyst system for olefin polymerization and method for producing olefin polymer
US11427660B2 (en) 2016-08-17 2022-08-30 Formosa Plastics Corporation, Usa Organosilicon compounds as electron donors for olefin polymerization catalysts and methods of making and using same
US9815920B1 (en) 2016-10-14 2017-11-14 Formosa Plastics Corporation, Usa Olefin polymerization catalyst components and process for the production of olefin polymers therewith
US10822438B2 (en) 2017-05-09 2020-11-03 Formosa Plastics Corporation Catalyst system for enhanced stereo-specificity of olefin polymerization and method for producing olefin polymer
US10124324B1 (en) 2017-05-09 2018-11-13 Formosa Plastics Corporation, Usa Olefin polymerization catalyst components and process for the production of olefin polymers therewith
JP7429097B2 (ja) * 2019-06-07 2024-02-07 サンアロマー株式会社 ポリプロピレン系樹脂組成物の製造方法及びシート成形体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4562173A (en) 1984-08-24 1985-12-31 Toho Titanium Co., Ltd. Catalyst component for the polymerization of olefins and catalyst therefor
US4981930A (en) 1987-03-23 1991-01-01 Idemitsu Petrochemical Company Limited Method of production of polyolefins
WO2000063261A1 (en) 1999-04-15 2000-10-26 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
US6376628B1 (en) 1998-05-21 2002-04-23 Grand Polymer Co., Ltd. Process for polymerization of alpha-olefin and alpha-olefin polymer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138709A (ja) * 1982-02-12 1983-08-17 Mitsui Petrochem Ind Ltd オレフインの重合方法
FI90985C (fi) 1991-10-02 1994-04-25 Neste Oy Tehokkaan elektronidonorin sisältävä polymerointikatalyytin prokatalyyttikompositio
JP3399067B2 (ja) * 1992-12-23 2003-04-21 フイナ・テクノロジー・インコーポレーテツド ポリオレフインの多分散度の制御を行うためのチグラー・ナツタ触媒と組み合わせる電子供与体
JP3690765B2 (ja) * 1996-11-20 2005-08-31 三井化学株式会社 オレフィン重合用触媒、予備重合触媒、オレフィンの重合方法
BR0107335B1 (pt) 2000-10-13 2011-09-06 componentes catalìticos para a polimerização de olefinas, catalisador para a polimerização de olefinas e processo para a preparação de polìmeros de propileno.
BR0205610B1 (pt) 2001-06-07 2012-08-07 processo para preparar Ésteres de Ácido succÍnico substituÍdos com alquilideno.
WO2004014838A1 (en) 2002-08-05 2004-02-19 Basell Poliolefine Italia S.P.A. Process for preparing alkylidene-substituted-1,4-dions derivatives
US6962889B2 (en) * 2004-01-28 2005-11-08 Engelhard Corporation Spherical catalyst for olefin polymerization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4562173A (en) 1984-08-24 1985-12-31 Toho Titanium Co., Ltd. Catalyst component for the polymerization of olefins and catalyst therefor
US4981930A (en) 1987-03-23 1991-01-01 Idemitsu Petrochemical Company Limited Method of production of polyolefins
US6376628B1 (en) 1998-05-21 2002-04-23 Grand Polymer Co., Ltd. Process for polymerization of alpha-olefin and alpha-olefin polymer
WO2000063261A1 (en) 1999-04-15 2000-10-26 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2511303A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125504A1 (ja) * 2012-02-20 2013-08-29 サンアロマー株式会社 シート成形用ポリプロピレン系樹脂組成物
JPWO2013125504A1 (ja) * 2012-02-20 2015-07-30 サンアロマー株式会社 シート成形用ポリプロピレン系樹脂組成物

Also Published As

Publication number Publication date
CN102712705B (zh) 2014-03-12
CN102712705A (zh) 2012-10-03
US9062135B2 (en) 2015-06-23
EP2511303A2 (en) 2012-10-17
JP5554416B2 (ja) 2014-07-23
US8664142B2 (en) 2014-03-04
KR101114073B1 (ko) 2012-02-22
JP2013510941A (ja) 2013-03-28
US20140005038A1 (en) 2014-01-02
US20120264593A1 (en) 2012-10-18
WO2011071237A3 (ko) 2011-08-25
EP2511303B1 (en) 2014-10-15
KR20110064618A (ko) 2011-06-15
EP2511303A4 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2011071237A2 (ko) 프로필렌 중합용 고체촉매의 제조 방법
WO2011087231A2 (ko) 프로필렌 중합용 고체촉매의 제조 방법 및 그에 의해 제조된 촉매
KR20110080616A (ko) 프로필렌 중합용 고체촉매의 제조 방법
WO2011081404A2 (ko) 폴리올레핀 중합용 촉매 및 이의 제조방법
WO2011081407A2 (ko) 폴리프로필렌 중합용 고체 촉매의 제조방법, 및 이에 따른 고체 촉매
CN108148153B (zh) 固体催化剂以及使用其制备丙烯聚合物或共聚物的方法
KR101795317B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
WO2011081405A2 (ko) 폴리올레핀 중합용 촉매의 제조방법, 이에 따른 촉매 및 이를 이용한 폴리올레핀의 제조방법
KR101395471B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
KR100612108B1 (ko) 프로필렌 중합용 촉매 및 이를 이용한 프로필렌의 중합방법
KR101255913B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101123523B1 (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR20110050906A (ko) 프로필렌 중합용 고체촉매의 제조 방법
WO2012070753A2 (ko) 프로필렌 중합용 고체촉매 및 그 제조 방법
KR100612107B1 (ko) 프로필렌의 중합방법
KR101171532B1 (ko) 프로필렌 중합용 고체촉매의 제조방법
KR101965982B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
KR101207672B1 (ko) 프로필렌 중합용 고체촉매의 제조방법
KR101139024B1 (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR101540513B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101454516B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR20100058126A (ko) 프로필렌 중합체의 제조방법
KR101374480B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101251801B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
KR101169532B1 (ko) 프로필렌 중합용 고체촉매의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061607.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539796

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13514673

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010836133

Country of ref document: EP