이하에서는 상술한 바와 같은 본 발명을 보다 더 상세히 설명하도록 한다.
<폴리올레핀 중합용 촉매의 제조방법 및 이에 의해 제조된 촉매>
1. 마그네슘 할라이드 전구체 용액 제조
본 발명에 따른 마그네슘 할라이드 전구체 용액은, 마그네슘 할라이드에 알코올(제1알코올)과 소정량의 탄화수소(제1탄화수소)를 투입한 후, 고온에서 교반하여 균질하게 용해시키는 방법으로 얻을 수 있다.
이때, 사용 가능한 마그네슘 할라이드는 특별히 한정되지 않으나, 환원성을 갖지 않는 화합물로서 염화마그네슘, 불화마그네슘, 브롬화마그네슘, 요오드화마그네슘, 페녹시 마그네슘 클로라이드, 이소프록시 마그네슘 클로라이드, 부톡시 마그네슘 클로라이드로 이루어진 군에서 선택될 수 있으며, 그 중에서도 주 활성금속인 사염화 티탄과 구조적, 배위적으로 안정한 염화마그네슘을 사용하는 것이 바람직하다. 이러한 염화마그네슘을 사용한 촉매는 높은 겉보기 밀도를 가지는 중합체(폴리올레핀)를 제조하는데 용이하다.
또한, 사용 가능한 알코올(제1알코올)은 특별히 한정되지 않으나, 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, n-펜탄올, 이소펜탄올, 네오펜탄올, 시클로펜탄올, n-헥산올, n-헵탄올, n-옥탄올, 데칸올, 도데칸올, 2-메틸펜탄올, 2-에틸부탄올, 2-에틸헥산올 등의 알리파틱 알코올; 시클로헥산올, 메틸시클로헥산올 등과 같은 화학식 ROH(이때, R은 탄소수 1 ~ 12의 지방족 탄화수 소(구체적으로 알킬기)이다.)로 표시되는 지방족 알코올; 및 벤질알코올, 메틸벤질알코올, 이소프로필벤질알코올, α-메틸벤질알코올 등과 같은 화학식 ROH(이때, R은 탄수소 6 ~ 12의 방향족 탄화수소이다.)로 표시되는 방향족 알코올로 이루어진 군에서 1종 또는 2종 이상 선택하여 사용할 수 있다.
이때, 상기 지방족 알코올로부터 선택된 1종 또는 2종 이상의 알코올은 단독 또는 혼합하여 사용하는 것이 바람직하며, 지방족 알코올 중에서도 2-에틸헥산올을 사용하는 것이 좋다. 여기서, 2종 이상의 알코올을 혼합하여 사용할 경우에 혼합 비율은 특별히 한정되지 않으나, 마그네슘 할라이드 1몰을 기준으로 전체 사용되는 알코올량이 1 ~ 6몰, 구체적으로는 2 ~ 4몰이 되도록 사용하는 것이 바람직하다.
한편, 마그네슘 할라이드와 알코올을 탄화수소 존재하에 반응시켜 균질한 전구체 용액을 제조함에 있어, 사용 가능한 탄화수소(제1탄화수소)는 특별히 한정되지 않으나. 탄소수 6 ~ 20의 지방족 탄화수소가 바람직하다. 여기서, 상기 탄소수 6 ~ 20의 지방족 탄화수소의 비제한적인 예로는 헥산, 헵탄, 옥탄, 데칸, 도데칸, 테트라데칸, 미네랄 오일, 시클릭헥산, 시클릭옥탄, 메틸 시클릭펜탄, 메틸 시클릭헥산 등을 들 수 있다.
이때, 지방족 탄화수소로부터 선택된 1종 또는 2종 이상의 탄화수소는 단독 또는 혼합하여 사용하는 것이 바람직하며, 지방족 탄화수소에서 2종 이상의 탄화소수를 선택하여 혼합할 경우에 혼합 비율은 특별히 한정되지 않는다. 한편, 상기 지방족 탄화수소의 탄소수는 6 ~ 20인 것이 바람직하고, 그 중에서도 8 ~ 15인 것이 좋다. 지방족 탄화수소의 탄소수가 상기한 범위보다 작으면 탄화수소 용매의 끓는 점이 낮아 반응온도의 제약이 생기게 되고, 상기한 범위를 초과하면 탄화수소 용매의 점도 및 녹는점이 높아 사용하기가 어려워 바람직하지 않기 때문이다.
이와 같은 마그네슘 할라이드 전구체 용액을 제조함에 있어, 마그네슘 할라이드, 알코올 및 탄화수소의 사용량은 마그네슘 할라이드 1중량부에 대하여 1 ~ 10중량부의 알코올과 1 ~ 20중량부의 탄화수소를 사용하는 것이 바람직하다. 알코올이 상기한 범위보다 적으면 마그네슘 할라이드가 잘 용해되지 않고, 상기한 범위보다 많으면 촉매 합성 시, 재결정 반응이 잘 일어나지 않을 수 있다. 또한, 탄화수소가 상기 범위보다 적으면 알코올에 녹은 마그네슘 할라이드가 잘 분산되지 않아 촉매 합성 시, 2성분계 담체가 형성되지 못하고 마그네슘 할라이드 단독 담체가 형성되게 되며, 상기 범위보다 많으면 마그네슘 할라이드 전구체 용액의 부피가 늘어나 촉매 합성시 모든 반응물들의 농도에 영향을 주어 바람직하지 않기 때문이다.
이외에 마그네슘 할라이드와 알코올이 탄화수소 존재하에 반응하는 반응온도(용해온도)는 70 ~ 150℃가 바람직하며, 구체적으로는 100℃ 이상일 때가 좋으며, 반응온도의 상한은 사용하는 탄화수소와 알코올의 끓는점보다 높지 않도록 하는 것이 바람직하다. 또한, 제조되는 전구체 용액의 분산을 위하여 반응기에 교반기를 설치하여 충분한 교반이 이루어지도록 하는 것이 바람직하다.
2. 디알콕시마그네슘 담체의 제조
본 발명에 따른 디알콕시마그네슘 담체는 반응개시제인 할로겐 화합물의 존재하에 금속 마그네슘과 알코올(제2알코올)을 반응시켜 입자 형태로 얻을 수 있다.
여기서, 상기 금속 마그네슘은 입자 형태인 것이 바람직한데, 그 크기는 10 ~ 1000㎛, 구체적으로는 30 ~ 500㎛인 분말상인 것이 좋다.
상기 반응개시제인 할로겐 화합물은 할로겐 분자, 알킬 할라이드 화합물, 아실 할라이드 화합물 또는 금속 할라이드 화합물을 사용하는 것이 바람직하며, 사용량은 금속 마그네슘 1중량부 대하여 0.01 ~ 10중량부, 구체적으로는 0.1 ~ 5중량부로 사용되는 것이 좋다. 할로겐 화합물이 상기 범위보다 적으면 반응속도가 느려지고 상기 범위를 초과하면 생성물의 입자크기가 너무 커지거나 미세입자가 다량 생성될 수 있기 때문이다.
또한, 사용 가능한 알코올(제2알코올)은 특별히 한정되지 않으나, 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, n-펜탄올, 이소펜탄올, 네오펜탄올, 시클로펜탄올, n-헥산올, 시클로헥산올 등의 화학식 R’OH(이때, 상기 R’은 탄소수 1 ~ 6의 지방족 탄화수소(구체적으로 알킬기)이다)로 표시되는 지방족 알코올; 및 페놀 등의 화학식 R’OH(이때, 상기 R’은 탄소수 6의 방향족 탄화수소이다)로 표시되는 방향족 알코올로 이루어진 군에서부터 1종 또는 2종 이상을 선택하여 단독 또는 혼합하여 사용할 수 있다. 이때, 지방족 알코올 중에서도 메탄올, 에탄올, 프로판올 또는 부탄올로부터 선택된 1종 또는 2종 이상을 단독 또는 혼합하여 사용하는 것이 바람직하며, 그 중에서도 에탄올을 사용하는 것이 가장 바람직하다. 여기서, 2종 이상의 알코올을 선택하여 혼합할 경우에 혼합 비율은 특별히 한정되지 않는다.
이와 같은 알코올(제2알코올)은 상기 금속 마그네슘 1중량부에 대하여 5 ~ 50중량부, 구체적으로는 7 ~ 20중량부로 사용되는 것이 좋다. 알코올(제2알코올)의 사용량이 5중량부 미만인 경우에는 슬러리(즉, 액상의 알코올과 고상의 디알콕시마그네슘 및 미반응 금속 마그네슘의 혼합물)의 점도가 급격히 증가하여 균일한 교반이 어렵게 되고, 50중량부를 초과하는 경우에는 생성되는 담체의 겉보기 밀도가 급격히 감소하거나 담체 입자의 표면이 거칠어질 수 있다. 구체적으로, 담체의 겉보기 밀도가 낮아지면 촉매의 겉보기 밀도가 낮아지게 되고, 이에 따라 최종적으로 제조되는 중합체(폴리올레핀)의 겉보기 밀도도 낮아지는 결과를 초래할 수 있으며, 담체 입자의 표면이 거칠어지면 중합 반응시 공정 안정성을 저해하는 요인으로 작용할 수 있다.
이러한 본 발명에 따른 디알콕시마그네슘 담체 제조 시, 반응온도는 25 ~ 110℃인 것이 바람직하고, 구체적으로는 45 ~ 90℃인 것이 좋은데, 반응온도가 25℃ 미만이면 반응이 너무 느려지고 110℃를 초과하면 반응이 너무 급격하여 미세입자가 증가할 수 있기 때문이다.
3. 마그네슘 할라이드 전구체 용액과 디알콕시마그네슘 담체를 반응시켜 폴리올레핀 중합용 촉매 제조
본 발명의 폴리올레핀 중합용 촉매는 상기와 같이 준비된 마그네슘 할라이드 전구체 용액과 입자 형태(구형)의 디알콕시마그네슘 담체를 탄화수소(제2탄화수소) 존재하에 사염화티타늄 및 내부전자공여체와 반응시켜 제조할 수 있다.
또한, 상기와 같이 준비된 마그네슘 할라이드 전구체 용액과 입자 형태(구 형)의 디알콕시마그네슘 담체를 탄화수소(제2탄화수소) 존재하에 사염화티타늄과 1차 반응시켜서 고체생성물(2성분계 담체)을 제조한 다음, 다시 탄화수소(제2탄화수소) 존재하에 사염화티타늄 및 내부전자공여체와 2차 반응시켜 제조하는 것도 가능하다.
이때, 사용 가능한 탄화수소(제2탄화수소)는 특별히 한정되지 않으나. 탄소수 6 ~ 12인 지방족 탄화수소 및 탄소수 6 ~ 12인 방향족 탄화수소로 이루어진 군에서부터 선택된 1종 또는 2종 이상의 탄화수소를 단독 또는 혼합하여 사용할 수 있다. 구체적으로는 탄소수 7 ~ 10인 포화 지방족 탄화수소 또는 탄소수 6 ~ 12인 방향족 탄화수소에서 1종 또는 2종 이상을 선택하여 단독 또는 혼합시켜 사용하는 것이 바람직하다.
한편, 상기 내부전자공여체로 사용 가능한 물질 또한 특별히 한정되지 않으나, 프탈레이트계 화합물, 카르복실산에스테르 화합물 및 다이에테르 화합물로 이루어진 군에서 1종 또는 2종 이상 선택하는 것이 바람직하다.
상기 프탈레이트계 화합물의 비제한적인 예로는, 모노에톡시프탈레이트, 다이케틸프탈레이트, 메틸에틸프탈레이트, 다이에틸프탈레이트, 다이노말프로필프탈레이트, 다이아이소프로필프탈레이트, 다이노말부틸프탈레이트, 다이아소부틸프탈레이트, 다이노말옥틸프탈레이트, 디펜틸프탈레이트, 또는 이들의 혼합물 등이 있으며, 상기 카르복실산에스테르 화합물의 비제한적인 예로는, 메틸아세테이트, 에틸아세테애트, 페닐아세테애트, 에틸프로판네이트, 에틸부틸레이트, 에틸마니셈이트, 디에틸말로네이트, 또는 이들의 혼합물이 있으며, 상기 다이에테르 화합물의 비제한적인 예로는, 1,3-다이에테르 형태의 2,2-다이메틸-1,3-다이메톡시프로판, 2,2-다이이소프로필-1,3-다이메톡시프로판, 2,2-다이이소부틸-1,3-다이메톡시프로판, 2,2-다이이소부틸-1,3-다이에톡시프로판, 2,2-다잉소부틸-1,3-엔부톡시프로판, 또는 이들의 혼합물 등이 있다.
본 발명에서는 먼저, 디알콕시마그네슘 담체를 탄화수소(제2탄화수소) 용매에 현탁시킨 현탁 용액에 마그네슘 할라이드 전구체 용액과 사염화티타늄 화합물을 투입하여 1차로 반응시키는 것이 바람직한데, 이때, 반응온도는 -50 ~ 50℃, 구체적으로는, -30 ~ 20℃의 범위인 것이 바람직하다. 반응온도가 상기 범위를 벗어날 경우에는 최종 생성물인 촉매의 입자 형상이 파괴되어 미세입자가 다량 생성될 수 있는데, 이와 같이 미세입자 함유량이 많은 촉매를 사용하는 경우 상업적인 생산시 공정안정성이 낮아질 수 있다.
여기서, 마그네슘 할라이드 전구체 용액에 포함되어 있는 마그네슘 할라이드의 양은 디알콕시마그네슘 담체 1중량부에 대하여 0.01 ~ 10중량부, 구체적으로는, 0.05 ~ 0.5중량부인 것이 바람직하다. 마그네슘 할라이드의 양이 상기 범위 미만이면 2성분계 담체 중 마그네슘 할리이드의 성분이 작아져서 중합체(폴리올레핀)의 겉보기 밀도 향상 효과가 떨어질 수 있으며, 상기 범위를 초과하면 2성분계 담체뿐 아니라 마그네슘 할라이드 단독 담체가 형성되어 바람직하지 않기 때문이다.
또한, 1차 반응 시 사용되는 사염화티타늄의 양은 디알콕시마그네슘 담체 1중량부에 대하여 0.1 ~ 10 중량부, 구체적으로는, 3 ~ 8중량부인 것이 바람직하다.
한편, 마그네슘 할라이드 전구체 용액과 사염화티타늄의 주입은 30분 ~ 5시 간에 걸쳐 서서히 투입하는 것이 바람직하며, 투입이 완료된 후에는 온도를 서서히 60 ~ 100℃까지 올려 줌으로써 2성분계 담체 생성 반응을 완결시킬 수 있다.
이와 같이 담체 생성 반응이 완료된 다음에는, 상기 담체가 포함된 슬러리 상태의 혼합물을 상기 탄화수소(제2탄화수소)로 1회 이상 세척 후 여기에 다시 사염화티타늄을 투입하여 90 ~ 130℃까지 승온하여 2차 반응시킨다. 이때 사용되는 사염화티타늄의 양은 처음에 사용된 디알콕시마그네슘 담체 1중량부에 대하여 0.1 ~ 10중량부인 것이 바람직하고, 2 ~ 7중량부인 것이 더욱 바람직하다.
또한, 상기 2차 반응의 승온과정 중에 내부전자공여체를 투입하게 되는데, 이때의 투입온도 및 투입횟수는 크게 제한이 없고, 내부전자공여체의 전체 사용량은 사용된 디알콕시마그네슘 담체 1중량부에 대하여 0.1 ~ 1중량부인 것이 바람직하다. 내부전자공여체가 상기 범위를 벗어나도록 사용되면 제조되는 촉매의 중합활성 또는 제조된 촉매를 이용하여 폴리올레핀을 제조할 경우 입체규칙성을 떨어뜨릴 수 있다.
여기서, 상기 2차 반응까지 완료된 슬러리 상태의 혼합물을 상기 탄화수소(제2탄화수소)로 1회 이상 세척 후 다시 사염화티타늄을 투입하여 90 ~ 130℃까지 승온하여 반응시키는 과정을 더 추가할 수 있다. 이때, 사용되는 사염화티타늄의 양은 처음에 사용된 디알콕시마그네슘 1중량부에 대하여 0.1 ~ 10 중량부인 것이 바람직하고, 2 ~ 7중량부인 것이 더욱 바람직하며, 반응 후 탄화수소에 의해 세척과정 및 진공건조 과정을 거쳐 본 발명에 따른 결과물인 폴리올레핀 중합용 촉매를 얻을 수 있다. 이와 같이 사염화티타늄과 3차 반응을 시킴으로써 촉매의 활성을 증 가시키는 것이 가능하다.
상술한 바와 같은 방법으로 제조된 본 발명에 따른 폴리올레핀 중합용 촉매는, 마그네슘, 티타늄, 전자공여성 화합물(전자공여체) 및 할로겐원자를 포함하고, 각 성분의 함유량은 원료물질의 함량에 따라 조절가능하므로 특별히 제한되지는 않으나, 바람직하게는 마그네슘 20 ~ 40중량부, 티타늄 1 ~ 10중량부, 전자공여성 화합물 5 ~ 20중량부 및 할로겐원자 40 ~ 70중량부로 포함되는 것이 바람직하다.
<폴리올레핀의 제조방법>
본 발명은 상기한 바와 같이 제조된 폴리올레핀 중합용 촉매를 이용하여, 폴리올레핀을 제조할 수 있다. 즉, 상기한 바와 같은 방법으로 촉매를 준비하고, 이렇게 준비된 촉매의 존재 하에 올레핀과 조촉매를 중합(반응)시켜서 폴리올레핀을 제조할 수 있는 것이다. 구체적으로는, 중합 반응기에 조촉매로서 알킬알루미늄 화합물과 외부전자공여체를 넣고, 여기에 상기한 바와 같이 제조된 촉매를 첨가하며, 수소를 공급한다. 그런 다음, 여기에 올레핀 단량체를 투입하여 일정시간 중합 반응을 진행하면 폴리올레핀을 형성할 수 있다.
한편, 폴리올레핀 중합과정에서 사용되는 본 발명의 촉매는 기상, 괴상 또는 슬러리상으로 이용될 수 있으며, 괴상 또는 슬러리상에서 중합이 이루어질 경우에는 매질로 별도의 용매 또는 올레핀 자체를 사용할 수 있으며, 중합에 사용되는 올레핀은 단독 또는 2종 이상을 함께 사용할 수 있다. 여기서, 사용 가능한 용매 및 올레핀은 특별히 한정되지 않으나, 용매로는 부탄, 펜탄, 헥산, 헵탄, 탄, 시클로펜탄, 시클로헥산 등을 사용할 수 있으며, 올레핀으로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐 등을 사용할 수 있다. 또한, 폴리올레핀 중합온도는 0 ~ 200℃, 바람직하게는 30 ~ 150℃가 적당하며, 중합압력은 1 ~ 100기압, 바람직하게는 2 ~ 40기압이 적당하다.
이하, 합성예와 중합 실시예를 들어 본 발명을 보다 상세히 설명하되, 발명의 구성 범위가 하기 내용에 한정되는 것이 아니다.
[실시예 1]
1. 마그네슘 할라이드 전구체 용액의 제조
교반기와 오일 순환 히터, 냉각환류기가 장착된 350ml 크기의 초자반응기를 질소로 충분히 환기시킨 다음, 무수 염화마그네슘 9.52g, 2-에틸헥실알코올 57.85mL, 노말데칸 50mL를 투입하고 135℃에서 300rpm으로 교반하며 용융시켰다. 무수 염화마그네슘이 완전히 용융되어 균질한 용액이 되면 1시간 숙성 후, 상온으로 냉각하여 마그네슘 할라이드 전구체 용액을 얻었다.
2. 디에톡시마그네슘 담체의 제조
교반기와 오일 순환 히터, 냉각환류기가 장착된 2L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, 금속 마그네슘 36.5g, 이염화프탈산 3ml, 무수 에탄올 370ml를 투입하고, 400rpm으로 교반하면서 온도를 80℃로 올려 반응시켰다. 반응 시작 후, 30분 후에 무수 에탄올 370ml를 추가로 투입하고 발생되는 수소만 배출시키고 에탄올은 환류시키며 반응시켰다. 수소 발생이 안정된 후 2시간 후에, 에탄올 180ml와 이염화프탈산 3ml를 추가로 투입하고 충분한 시간 동안 온도를 유지하며 반응시켰다. 반응 후, 50℃에서 1회당 1L의 노말헥산으로 8회 세정하였다. 세정된 결과물을 진공 건조하여 흐름성이 좋은 백색 분말상의 디에톡시마그네슘 담체 160g을 얻었다. 얻어진 디에톡시마그네슘 구형 담체의 평균입경은 45㎛이고 겉보기밀도가 0.33 g/ml이었다.
3. 2성분계 담체에 담지된 폴리올레핀 중합용 촉매의 제조
교반기와 오일 순환 히터, 냉각환류기가 장착된 2L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, 톨루엔 1,000ml, 위에서 제조한 디에톡시마그네슘 담체 70g을 투입하고 0℃이하의 낮은 온도로 유지하며 500rpm으로 교반하면서, 사염화티타늄 185ml를 투입하였다. 투입이 끝나면 위에서 제조한 마그네슘 할라이드 전구체 용액 111.2m를 투입시켰다. 투입이 끝나고 1시간 동안 유지시킨 후, 반응기의 온도를 서서히 90℃까지 올려주고 2시간 동안 반응시켰다. 반응 후, 고체 생성물이 침전되기를 기다려 새로운 톨루엔 1,000ml로 5회 세정하였다.
상기의 고체생성물에 톨루엔 1,000ml를 첨가하고 상온에서 사염화티타늄 154.7ml를 투입하였다. 투입이 완료 되고 30분 후, 70℃까지 온도를 올려주었다. 70℃ 도달 후, 디이소부틸프탈레이트 28.2ml를 투입시키고 110℃까지 같은 속도로 올려주고 2시간 동안 반응시켰다. 반응 후, 고체 생성물이 침전되기를 기다려 새로운 톨루엔 1,000ml로 5회 세정 후, 1,000ml의 노말헥산을 이용하여 같은 방법으로 5회 세정하였다. 세정된 결과물을 진공 건조하여 촉매를 얻었으며, 이때, 티타늄 함량은 3.5%였다.
[실시예 2]
실시예 2에서는 실시예 1의 최종 고체 생성물을 톨루엔 1,000ml로 4회 세정 후, 새로운 톨루엔 1,000ml와 사염화티타늄 154.7ml를 투입하고, 110℃에서 2시간 동안 추가 반응시켰다. 반응 후, 고체 생성물이 침전되기를 기다려 톨루엔 1,000ml로 5회 세정 후, 1,000ml의 노말헥산을 이용하여 같은 방법으로 5회 세정하였다. 세정된 결과물을 진공 건조하여 촉매를 얻었으며, 이때, 티타늄 함량은 3.0%였다.
[실시예 3]
실시예 1에서 마그네슘 할라이드 전구체 용액을 55.75ml로 1시간 동안 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 촉매를 얻었으며, 이때, 티타늄 함량은 3.3%였다.
[비교예 1]
실시예 1에서 마그네슘 할라이드 전구체 용액의 투입 단계를 거치지 않은 것을 제외하고는 실시예 1 과 동일한 방법으로 촉매를 얻었으며, 이때, 티타늄 함량 은 2.8%였다.
[비교예2]
1. 마그네슘 할라이드 전구체 용액의 제조
교반기와 오일 순환 히터, 냉각환류기가 장착된 2L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, 무수 염화마그네슘 47.6g, 2-에틸헥실알코올 275mL, 노말데칸 200mL를 투입하고 135℃에서 300rpm으로 교반하며 용융시켰다. 무수 염화마그네슘이 완전히 용융되어 균질한 용액이 되면 1시간 숙성 후, 이염화프탈산 10ml를 첨가하여 1시간 추가 숙성 후, 상온으로 냉각하여 마그네슘 할라이드 전구체 용액을 얻었다.
2. 폴리올레핀 중합용 촉매의 제조
교반기와 오일 순환 히터, 냉각환류기가 장착된 2L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, 노말데칸 800ml를 0℃이하의 낮은 온도로 유지하며 500rpm으로 교반하면서, 사염화티타늄 438ml를 투입하였다. 투입이 끝나면 위에서 제조한 마그네슘 할라이드 전구체 용액 485ml를 천천히 투입시켰다. 투입이 끝나고 1시간 동안 유지시킨 후, 반응기의 온도를 서서히 110℃까지 올려주고 2시간 동안 반응시켰다. 반응 후, 고체 생성물이 침전되기를 기다려 새로운 톨루엔 1,000ml로 5회 세정하였다.
상기의 고체생성물에 노말데칸 800ml를 첨가하고 상온에서 사염화티타늄 219ml를 투입하였다. 투입이 완료 되고 30분 후, 70℃까지 온도를 올려주었다. 70℃ 도달 후, 디이소부틸프탈레이트 20ml를 투입시키고 110℃까지 같은 속도로 올려주고 2시간 동안 반응시켰다. 반응 후, 고체 생성물이 침전되기를 기다려 새로운 톨루엔 1,000ml로 5회 세정 후, 1,000ml의 노말헥산을 이용하여 같은 방법으로 5회 세정하였다. 세정된 결과물을 진공 건조하여 촉매를 얻었으며, 티타늄 함량은 2.7%였다.
[시험예] 폴리프로필렌 제조
2리터 크기의 고압용 스테인레스제 반응기내를 질소로 충분히 환기시키고, 트리에틸알루미늄 2mmol, 시클로헥실메틸디메톡시실란 0.15 mmol을 투입하였으며, 상술한 실시예 1 ~ 3 및 비교예 1 ~ 2에 따라 제조된 촉매 5mg을 각각 투입하였다. 이어서, 수소 1000ml와 액체상태의 프로필렌 500g을 차례로 투입하였고, 25℃에서 5분간 예중합 시킨 후, 70℃에서 250rpm으로 교반하며 1시간 동안 중합하였다.
얻어진 폴리프로필렌 및 촉매의 물성을 하기와 같은 방법으로 분석하여 그 결과를 표1에 나타내었다.
1) 촉매 활성 (kg-PP/g-cat) : 중합체의 생성량(kg) / 촉매의 양(g)
2) 입체규칙성 (XIS) : 혼합크실렌 중에서 결정화되어 석출된 불용성분의 중량%
3) 겉보기밀도(BD) : ASTM D1895에 의해 측정된 값
<표 1>
|
실시예1 |
실시예2 |
실시예3 |
비교예1 |
비교예2 |
촉매활성(kg-PP/g-cat,hr) |
36.7 |
45.8 |
42.2 |
35.9 |
22.6 |
겉보기 밀도(g/mL) |
0.48 |
0.49 |
0.46 |
0.42 |
0.42 |
입체규칙성(XIS) |
98.0 |
98.1 |
98.7 |
98.5 |
97.2 |
상기 표 1에 나타난 바와 같이, 겉보기 밀도에서 본 발명에 따른 실시예 1 ~ 3은 모두 비교예 1 ~ 2보다 높은 값(0.45 g/mL 이상을 나타냄)을 가지고, 촉매활성에서도 전체적으로 높은 고활성을 나타내는 것을 확인할 수 있었다.
이상과 같이, 본 발명에 대한 구체적인 설명은 첨부된 도면 및 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예에만 국한되는 것으로 이해되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.