WO2010001471A1 - Evoh複合体の製造方法 - Google Patents

Evoh複合体の製造方法 Download PDF

Info

Publication number
WO2010001471A1
WO2010001471A1 PCT/JP2008/062020 JP2008062020W WO2010001471A1 WO 2010001471 A1 WO2010001471 A1 WO 2010001471A1 JP 2008062020 W JP2008062020 W JP 2008062020W WO 2010001471 A1 WO2010001471 A1 WO 2010001471A1
Authority
WO
WIPO (PCT)
Prior art keywords
evoh
water
ethylene
vinyl ester
ester copolymer
Prior art date
Application number
PCT/JP2008/062020
Other languages
English (en)
French (fr)
Inventor
昭一 可児
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to EP08790824.0A priority Critical patent/EP2301998B1/en
Priority to US13/001,808 priority patent/US8722785B2/en
Priority to PCT/JP2008/062020 priority patent/WO2010001471A1/ja
Publication of WO2010001471A1 publication Critical patent/WO2010001471A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit

Definitions

  • the present invention relates to a method for producing an EVOH composite having a saponified ethylene-vinyl ester copolymer and a water-swellable layered inorganic compound.
  • water swellability such as montmorillonite in ethylene-vinyl ester copolymer saponified products (hereinafter sometimes abbreviated as EVOH) in foods, medicine packaging films, containers and the like that require high oxygen gas barrier properties.
  • EVOH ethylene-vinyl ester copolymer saponified products
  • a technique for dispersing a layered inorganic compound has been devised.
  • the water-swellable layered inorganic compound has a structure in which the inorganic compound is superposed in a plurality of layers, and such a technique is such that the plate-like layer of the water-swellable layered inorganic compound is dispersed in the same direction in EVOH,
  • This is a technique in which a film having a high gas barrier property can be obtained because it acts to inhibit oxygen diffusion in the EVOH resin.
  • Patent Document 1 Japanese Patent Document 1.
  • a high water content composition containing a specific EVOH and a water-swellable phyllosilicate are mixed, and the layered structure of the phyllosilicate is partially separated and dispersed in the EVOH to produce a large number of plate-like particles.
  • a composition excellent in gas barrier properties and transparency can be obtained (see, for example, Patent Document 2 and Patent Document 3).
  • an EVOH composition in a specific water-containing state and a water-swellable layered inorganic compound are mixed in a molten state to obtain a master batch, and further, such a master batch is diluted with an EVOH resin, thereby providing gas barrier properties and transparency.
  • Techniques have been proposed for obtaining a laminate excellent in the above. JP-A-5-39392 JP 2007-290378 A JP 2007-290379 A
  • a high-grade barrier is required if none of (1) high gas barrier property, (2) excellent film rigidity, and (3) excellent fisheye generation suppression is satisfied. It cannot be a film.
  • the present inventors first obtained a masterbatch by mixing a composition containing EVOH and having a relatively high water content of 50% by weight or more and a water-swellable layered inorganic compound.
  • a composition containing EVOH and having a relatively high water content of 50% by weight or more and a water-swellable layered inorganic compound.
  • the EVOH composite obtained by mixing with EVOH in a state where the obtained master batch is not dried too much for example, water content of 10% by weight or more
  • the gist of the present invention is as follows.
  • [1] Mixing a composition ( ⁇ ) containing a saponified ethylene-vinyl ester copolymer (A1) and having a water content of 50% by weight or more with a water-swellable layered inorganic compound (B), A composition (C) of 10% by weight or more and less than 60% by weight is obtained, and then the composition (C) and an ethylene-vinyl ester copolymer saponified product (A2) are mixed.
  • a method for producing an ester copolymer saponified compound composite [2] The ethylene-vinyl ester copolymer saponified product composite according to [1], wherein the water content of the saponified ethylene-vinyl ester copolymer (A2) is less than 0.5% by weight Manufacturing method.
  • the mixing ratio (A1) / (B) of the saponified ethylene-vinyl ester copolymer (A1) and the water-swellable layered inorganic compound (B) is 90/10 to 50/50 by weight.
  • the ethylene content of the saponified ethylene-vinyl ester copolymer (A1) and the saponified ethylene-vinyl ester copolymer (A2) is 20 to 60 mol%.
  • the saponification degree of the saponified ethylene-vinyl ester copolymer (A1) and the saponified ethylene-vinyl ester copolymer (A2) is 90 to 100 mol% [1] ]
  • the MFR value of the saponified ethylene-vinyl ester copolymer (A1) and the saponified ethylene-vinyl ester copolymer (A2) is 1 to 100 g / in a measured value at 210 ° C. under a load of 2160 g.
  • the ethylene-vinyl ester copolymer according to any one of [1] to [11], wherein the water content of the saponified composite of ethylene-vinyl ester copolymer is 0.001 to 5% by weight A method for producing a copolymer saponified compound composite.
  • the saponified ethylene-vinyl ester copolymer (A1) and the saponified ethylene-vinyl ester copolymer (A2) are saponified copolymers of vinyl acetate and ethylene.
  • [14] A molded article containing an ethylene-vinyl ester copolymer saponified compound composite obtained by the production method according to any one of [1] to [13].
  • [15] A laminate comprising at least one layer containing an ethylene-vinyl ester copolymer saponified compound composite obtained by the production method according to any one of [1] to [13].
  • composition ( ⁇ ) containing EVOH (A1) and having a water content of 50% by weight or more and a water-swellable layered inorganic compound are mixed to obtain a master batch (composition (C)).
  • a composition (C) containing EVOH (A1) and having a water content of 50% by weight or more and a water-swellable layered inorganic compound are mixed to obtain a master batch (composition (C)).
  • the EVOH composite obtained by further mixing with EVOH (A2) in a state where the obtained composition (C) is not excessively dried (for example, a water content of 10% by weight or more) is used as a film This is because the fluidity is insufficient and the composition (C) cannot be uniformly diffused in the EVOH (A2) and is prevented from agglomerating.
  • the film obtained from the EVOH composite obtained according to the present invention is a film alone or a laminated film with other resin films such as polyolefin and polyamide, or a laminated body with various substrates, for example, cups, trays, Molded containers such as tubes and bottles, and bags and lids made of stretched film are general foods, seasonings such as mayonnaise and dressings, fermented foods such as miso, fats and oils such as salad oil, beverages, cosmetics, and pharmaceuticals It can be suitably used for various containers such as detergents, cosmetics, industrial chemicals, agricultural chemicals and fuels.
  • the composition ( ⁇ ) containing EVOH (A1) and having a relatively high water content of 50% by weight or more and the water-swellable layered inorganic compound (B) are mixed, and then the water content obtained
  • the EVOH composite is produced by mixing the composition (C) having a rate of 10% by weight or more and less than 60% by weight with EVOH (A2), and the obtained EVOH composite is EVOH (A), that is, ⁇ EVOH
  • the water-swellable layered inorganic compound (B) is dispersed in (A1) + EVOH (A2) ⁇ .
  • the moisture content in the composition ( ⁇ ) of EVOH (A1) and water in the present invention is measured and calculated by the following method.
  • Method of measuring moisture content A composition ( ⁇ ) of EVOH (A1) and water was weighed (W 1 ) with an electronic balance, dried in a hot air dryer at 150 ° C. for 5 hours, and weighed after being allowed to cool in a desiccator for 30 minutes. (W 2 ) and calculated from the following equation.
  • Water content (% by weight) [(W 1 ⁇ W 2 ) / W 1 ] ⁇ 100
  • the moisture content of the composition (C) obtained by mixing the composition ( ⁇ ) of EVOH (A1) and water and the water-swellable layered compound (B), and the composition (C) and EVOH is calculated in the same manner.
  • EVOH is a hydrophilic resin having a hydroxyl group
  • EVOH produced by a known production method usually contains a very small amount of water of less than 0.5% by weight, particularly 0.3% by weight or less. It is.
  • EVOH used in the present invention is usually obtained by saponifying a copolymer of vinyl acetate and ethylene, and is obtained by saponifying an ethylene structural unit and a vinyl alcohol structural unit produced by saponification, and optionally remaining acetic acid. It is a polymer having a copolymer structure having a vinyl structural unit. In some cases, a small amount of a structural unit derived from another copolymerizable vinyl monomer may be included.
  • the saponified ethylene-vinyl ester copolymer itself is represented as EVOH (A).
  • EVOH (A) first mixed with the water-swellable layered compound (B) is represented as EVOH (A1) for convenience
  • EVOH (A) mixed with the composition (C) is represented as EVOH (A2). Therefore, EVOH (A) in the EVOH complex obtained by the present invention is ⁇ EVOH (A1) + EVOH (A2) ⁇ .
  • EVOH (A) used in the present invention may be a conventionally known general EVOH.
  • the ethylene content thereof is usually 20 to 60 mol%, preferably 20 to 45 mol%, Particularly preferred is 20 to 35 mol%.
  • the saponification degree of the EVOH (A) is usually 90 to 100 mol%, preferably 95 to 100 mol%, particularly preferably 99 to 100 mol%. When the saponification degree is too low, the gas barrier property tends to be lowered.
  • the MFR value of EVOH (A) is usually 1 to 100 g / 10 minutes, preferably 2 to 50 g / 10 minutes, particularly preferably 5 to 40 g / 10 minutes, measured at 210 ° C. under a load of 2160 g. It is. When the MFR value is too low, the load at the time of melt processing tends to increase and the workability tends to decrease. When it is too high, the viscosity becomes insufficient at the time of melt processing, causing problems such as sagging and forming films and the like. Tend to decrease.
  • EVOH (A) used in the present invention is a known ethylenically unsaturated monomer capable of copolymerization within a range that does not impair the effects of the present invention, for example, a content in EVOH (A) of about 10 mol% or less.
  • the body may be copolymerized. Further, it may be subjected to known post-modification treatment such as urethanization, acetalization, cyanoethylation, oxyalkyleneation, etc. within the range not impairing the gist of the present invention.
  • the structural unit (1) shown below is 0.1 to 10 It is also preferable to use those copolymerized in the range of mol%.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group
  • X represents a single bond or a bonded chain
  • R 4 , R 5 , and R 6 represent Each independently represents a hydrogen atom or an organic group.
  • the main chain substituents R 1 to R 3 and the side chain substituents R 4 to R 6 in the structural unit (1) are typically all hydrogen atoms.
  • the atoms may be substituted with an organic group that does not significantly impair the resin properties.
  • the organic group is not particularly limited, but is preferably an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, If necessary, it may have a substituent such as a halogen group, a hydroxyl group, an ester group, a carboxyl group, or a sulfonic acid group.
  • the bond chain X of the structural unit (1) is typically a single bond, but may be a bond chain that does not significantly impair the resin properties.
  • the bonding chain is not particularly limited.
  • non-aromatic hydrocarbon chains such as alkylene, alkenylene and alkynylene
  • aromatic hydrocarbon chains such as phenylene and naphthylene (these hydrocarbons are halogens such as fluorine, chlorine and bromine).
  • a hydrogen atom and an alkyl group are preferable, and m is a natural number.
  • a non-aromatic hydrocarbon chain is preferable from the viewpoint of heat melting stability, and an alkylene is particularly preferable.
  • An alkylene having a number of 3 or less is preferably used.
  • EVOH (A) is added to an organic acid such as acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, behenic acid or the like, or sulfuric acid, sulfurous acid, carbonic acid, boric acid, phosphorous, as long as the object of the invention is not impaired
  • an inorganic acid such as an acid, or a salt such as an alkali metal, alkaline earth metal, or transition metal thereof from the viewpoint of improving the thermal stability during melt molding.
  • EVOH (A1) and EVOH (A2) used in the present invention two or more kinds of those having different structural units, those having different ethylene contents, those having different saponification degrees, those having different molecular weights, and the like were mixed.
  • a blend may be used.
  • the production method of two or more different EVOHs (blends) is not particularly limited.
  • a method of saponifying each paste of an ethylene-vinyl ester copolymer before saponification examples thereof include a method of mixing alcohol or a solution dissolved in a mixed solvent of water and alcohol, a method of mixing each EVOH in the form of pellets or powder, and then melt-kneading.
  • EVOH (A1) and EVOH (A2) may be the same in the above-mentioned ranges, with the same ethylene content, degree of saponification, modified group type and modified group content. Different ones can be used depending on the case. When those having different ethylene contents are used, the difference in the ethylene contents is usually 1 to 30 mol%, more preferably 2 to 25 mol%, and particularly preferably 2 to 20 mol%. If the difference in ethylene content is too large, the stretchability tends to be poor.
  • the EVOH (A) content in the EVOH complex of the present invention ie, the amount of ⁇ EVOH (A1) + EVOH (A2) ⁇ is usually 70 to 99.5% by weight, preferably based on the total weight of the EVOH complex. It is 80 to 99% by weight, particularly preferably 90 to 98% by weight. If the EVOH (A) content is too low, the melt viscosity of the EVOH composite tends to increase and the melt moldability tends to decrease. Conversely, if too high, the gas barrier property improving action characteristic of the present invention is sufficient. There is a tendency not to be obtained.
  • the water-swellable layered inorganic compound (B) used in the present invention is known as a swellable clay mineral such as phyllosilicate, and has a layered structure in which unit crystal layers are stacked on each other. Since the bond between them is relatively weak, it means a compound in which the unit crystal layer is swollen by water and the unit crystal layer can be peeled off.
  • the water-swellable layered inorganic compound (B) may be a natural product or a synthetic product.
  • Natural products are based on a tetrahedral sheet formed by coordinating oxygen ions to silicon or aluminum ions, and an octahedral sheet formed by coordinating oxygen, hydroxide or ions to aluminum, magnesium or iron ions.
  • inorganic compounds having a layered structure formed by repeating units cations (eg, H + , Na + , Ca 2+ , Mg 2+ , etc.) are interposed between the negatively charged inorganic compound layers.
  • Any layered inorganic compound having a water-swelling property formed by interlaminar bonding to form a laminated structure can be used without particular limitation.
  • a layered inorganic compound having water swellability obtained by a method in which K of the interlayer cation of fluorine phlogopite is replaced with Na or Li and the cation in the tetrahedron is made only Si at the same time. It is done.
  • water-swellable layered inorganic compounds include montmorillonite, beidellite, nontronite, saponite, hectorite, soconite, stevensite, and other smectites and vermiculites, Na-type fluorotetrasilicon mica, Na-type teniolite, Li-type Examples thereof include water-swellable fluoromica-based minerals such as teniolite and Na-type hectorite, and clay minerals such as synthetic mica. From the viewpoint of swelling with water, smectites are preferable, and montmorillonite is particularly preferable.
  • examples of the interlayer cation of montmorillonite include sodium ions and calcium ions. Among them, the sodium ion type which is excellent in water swellability is preferable. It is known that phyllosilicates, which are representative examples of these water-swellable layered inorganic compounds, are blended with EVOH.
  • the swelling ability of the water-swellable layered inorganic compound (B) in water can be evaluated by the Japan Bentonite Industry Association Standard Test Method (volume method) (JBAS-104-77) [1977], and this value is usually 40 ml / 2 g or more. Particularly, those having a capacity of 50 ml / 2 g or more are preferably used. If the swelling power to water is too small, the peelability of the layered inorganic compound is lowered, and a sufficient gas barrier property improving effect is not obtained, which is not preferred.
  • Swelling power refers to the volume of montmorillonite deposited at the bottom of the graduated cylinder after adding 2.0 g of montmorillonite powder into a graduated cylinder containing 100 ml of water and settling in 10 portions and allowing it to settle for 24 hours. The unit is expressed in ml / 2g.
  • the water-swellable layered inorganic compound (B) has a cation exchange capacity of usually 100 to 150 meq / 100 g, preferably 100 to 130 meq / 100 g, particularly preferably 105 to 120 meq / 100 g, the effects of the present invention can be obtained. It can be obtained more significantly and is preferable.
  • the cation exchange capacity is too small, the water swellability tends to decrease, and when it is too large, the interlayer bonding strength becomes strong and the peelability of the layered inorganic compound tends to decrease.
  • the water-swellable layered inorganic compound (B) used in the present invention those having an aspect ratio of usually 50 or more are used.
  • those having a large aspect ratio are preferred, preferably 100 or more, particularly 200 or more.
  • the particle diameter is 10 to 3000 nm, preferably 20 to 2500 nm, particularly preferably 100 to 2000 nm, as measured by JIS R 1629.
  • the water-swellable layered inorganic compound (B) may be subjected to an organic treatment, and as a method of the organic treatment, a compound having an onium ion group such as a quaternary ammonium salt is water-swollen. And a method of mixing with the inorganic layered inorganic compound (B). Further, the water-swellable layered inorganic compound (B) has a water content of usually 5 to 10% by weight because it has a property of easily absorbing moisture.
  • the water content of the water-swellable layered inorganic compound (B) when the water-swellable layered inorganic compound (B) is blended with the EVOH (A1) and water composition ( ⁇ ) and kneaded is usually less than 25% by weight. Preferably, it is less than 15% by weight, particularly preferably less than 10% by weight. If the amount of water is too large, the water-swellable layered inorganic compound (B) tends to aggregate in a dumpling form, which may make it difficult to stably and quantitatively blend.
  • EVOH (A) in the EVOH composite of the present invention that is, the ratio ⁇ (A1) + (A2) ⁇ / (B) of ⁇ EVOH (A1) + EVOH (A2) ⁇ to the water-swellable layered inorganic compound (B) is
  • the weight ratio is usually 85/15 to 99.5 / 0.5, preferably 90/10 to 99/1, particularly preferably 93/7 to 98/2, and if the ratio is too small, the composite
  • the melt viscosity tends to increase and the melt moldability tends to decrease.
  • the melt viscosity is too large, there is a tendency that a sufficient gas barrier property improving effect cannot be obtained.
  • the content of the other resin in the EVOH composite of the present invention is usually 30% by weight or less, preferably 20% by weight or less, particularly preferably 10% by weight or less, based on the total weight of the EVOH composite.
  • the amount is too large, it becomes difficult for EVOH to form a continuous phase in the EVOH complex, and the gas barrier property of the EVOH complex may be significantly lowered.
  • thermoplastic resins examples include thermoplastic resins.
  • polyolefin resins examples include polyolefin resins, polyester resins (including copolyesters), polyamide resins (including copolyamides), and polystyrene resins.
  • examples include resins, polyvinyl chloride resins, polyvinylidene chloride, acrylic resins, vinyl ester resins, polyester elastomers, polyurethane elastomers, chlorinated polyethylene, chlorinated polypropylene, aromatic and aliphatic polyketones, and aliphatic polyalcohols.
  • it is preferable to mix a polyamide resin when hot water resistance and retort resistance are required.
  • polyolefin resin and polyester elastomer are required. It is preferable to mix polyurethane elastomer and the like.
  • polystyrene resin examples include linear low density polyethylene (LLDPE), low density polyethylene (LDPE), very low density polyethylene (VLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and ethylene.
  • polyamide resin examples include polycapramide (nylon 6), poly- ⁇ -aminoheptanoic acid (nylon 7), poly- ⁇ -aminononanoic acid (nylon 9), polyundecanamide (nylon 11), polylauryl lactam.
  • nylon 12 polyethylene diamine adipamide (nylon 26), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide (nylon 610), polyhexa Methylene dodecamide (nylon 612), polyoctamethylene adipamide (nylon 86), polydecamethylene adipamide (nylon 108), caprolactam / lauryl lactam copolymer (nylon 6/12), caprolactam / ⁇ -aminononanoic acid Copolymer (Nair 6/9), caprolactam / hexamethylene diammonium adipate copolymer (nylon 6/66), lauryl lactam / hexamethylene diammonium adipate copolymer (nylon 12/66), ethylenediamine adipamide / hexamethylene diammonium adipate Copolymer (nylon 26/66),
  • polycapramide nylon 6
  • caprolactam. / Lauryl lactam copolymer nylon 6/12
  • caprolactam / hexamethylene diammonium adipate copolymer nylon 6/66
  • nylon 6/66 polycapramide
  • the obtained EVOH composite is excellent in hot water resistance, retort resistance and the like.
  • a polyamide resin having a terminal adjusted with a carboxyl group or an amino group is preferably used.
  • the polyamide resin whose terminal is adjusted with a carboxyl group or an amino group caproamide is the main structural unit, and the terminal carboxyl group content [Y] and the terminal amino group content [Z] are obtained using a terminal adjusting agent.
  • ⁇ (100 ⁇ [Z]) / ([Y] + [Z]) ⁇ ⁇ 5 (where units of [Y] and [Z] are ⁇ eq / g ⁇ polymer) Resin is used.
  • a carboxylic acid having 2 to 23 carbon atoms and a diamine having 2 to 20 carbon atoms are used.
  • the monocarboxylic acid having 2 to 23 carbon atoms include aliphatic monocarboxylic acids (acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, capric acid, pelargonic acid, undecanoic acid, lauric acid.
  • Tridecanoic acid myristic acid, myroleic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, arachidic acid, behenic acid, etc.
  • alicyclic monocarboxylic acids cyclohexanecarboxylic acid, methylcyclohexanecarboxylic acid, etc.
  • aromatic Group monocarboxylic acids benzoic acid, toluic acid, ethylbenzoic acid, phenylacetic acid, etc.
  • diamine having 2 to 20 carbon atoms examples include aliphatic diamines [ethylene diamine, trimethylene diamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, octamethylene diamine, decamethylene diamine, dodecamethylene diamine, hexadecamethylene diamine, 2 , 2,4- (or 2,4,4-) trimethylhexamethylenediamine], etc.], alicyclic diamines [cyclohexanediamine, bis- (4,4′-aminocyclohexyl) methane, etc.], aromatic diamines (xylylene Range amine etc.).
  • aliphatic dicarboxylic acids malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedione Acid, hexadecenedioic acid, octadecanedioic acid, octadecenedioic acid, eicosadioic acid, eicosenedioic acid, docosandioic acid, 2,2,4-trimethyladipic acid, etc.), alicyclic dicarboxylic acid (1,4-cyclohexanedicarboxylic acid) Acid) and aromatic dicarboxylic acids (terephthalic acid, isophthalic acid, phthalic acid, xylylene dicarboxylic acid, etc.) can be used
  • the EVOH composite of the present invention containing EVOH (A) and the water-swellable layered inorganic compound (B) is conventionally used at the time of mixing raw materials, kneading or molding, as long as the object of the present invention is not impaired.
  • plasticizers heat stabilizers, light stabilizers, UV absorbers, anti-aging agents, pigments, colorants, natural fibers, various inorganic particles, various fillers, antistatic agents, mold release agents, plasticizers, fragrances, lubricants
  • Various additions such as crosslinking (vulcanizing) agents, crosslinking (vulcanizing) accelerators, crystal nucleating agents, crystallization accelerators, flame retardants, foaming agents, softeners, preservatives, antibacterial / antifungal agents, oxygen absorbers, etc.
  • An agent may be blended.
  • the method for producing an EVOH composite of the present invention comprises mixing a composition ( ⁇ ) containing EVOH (A1) and a relatively high water content ( ⁇ ) and a water-swellable layered inorganic compound (B) ( Hereinafter, the composition (C)) is then mixed with EVOH (A2), which is a method of production through a two-stage mixing process.
  • a mixing method is not particularly limited, but melt mixing is preferable because uniform mixing is possible and productivity is excellent.
  • composition ( ⁇ ) containing EVOH (A1) and having a water content of 50% by weight or more is blended with the water-swellable layered inorganic compound (B), melt-kneaded, and then the resulting composition In this method, (C) and EVOH (A2) are mixed.
  • the composition ( ⁇ ) of EVOH (A1) and water when introduced into the melt mixing apparatus needs to have a relatively high water content, and the water content at this time is 50% by weight or more, preferably Is 50 to 70% by weight, particularly preferably 55 to 70% by weight.
  • the torque when the composition ( ⁇ ) of EVOH (A1) and water and the water-swellable layered inorganic compound (B) are mixed becomes high, and the water-swellable layered inorganic compound becomes There is a tendency to be crushed too much.
  • the resin component in the composition ( ⁇ ) is usually EVOH (A1).
  • EVOH (A1) is usually 50 to 30% by weight.
  • the mixing ratio (A1) / (B) of the EVOH (A1) and the water-swellable layered inorganic compound (B) is usually 90/10 to 50/50, preferably 90/10 to 60/40, particularly preferably by weight. Is a ratio satisfying 90/10 to 70/30.
  • the mixing ratio (A1) / (B) is too large, the solid component and water are easily separated during mixing, resulting in a non-uniform mixed state, and the production stability tends to decrease due to occurrence of strand breakage.
  • the mixing ratio (A1) / (B) is too small, the fluidity of the composition (C) is lowered. Therefore, when the composition (C) and EVOH (A2) are mixed, the composition (C) Cannot be diffused uniformly, and fish eyes may be generated when the EVOH composite is formed into a film.
  • a composition ( ⁇ ) containing EVOH (A1) and having a water content of 50% by weight or more and a water-swellable layered inorganic compound (B) (2) A method in which another resin is allowed to coexist in the step of mixing the composition (C) and EVOH (A2), (3) A blender before molding the EVOH composite of the present invention. Etc., and a method of mixing other resins.
  • the productivity of the EVOH complex and the uniform dispersibility of the other resin mixed in the EVOH complex it is preferable to obtain the EVOH complex by mixing the other resin by the method (2).
  • the other resin include resins similar to other resins that may be mixed in the EVOH composite of the present invention according to the purpose.
  • a method of containing water (ii) a method of treating EVOH in pressurized hot water for about 1 to 3 hours, and (iii) a paste after saponification of an ethylene-vinyl acetate copolymer in water during the production of EVOH.
  • Examples thereof include a method of introducing and precipitating into a solid form such as a strand to contain water, and among these, the method (iii) is preferably used.
  • grains or a pellet and water may be mixed directly, it is necessary to pay attention to mixing conditions, such as temperature and stirring, so that water may be uniformly contained in EVOH.
  • EVOH is obtained by saponification of an ethylene-vinyl acetate copolymer as is well known.
  • Such saponification reaction is carried out by converting the ethylene-vinyl acetate copolymer into, for example, a saturated hydrocarbon alcohol having 1 to 4 carbon atoms.
  • it is usually dissolved in the alcohol-containing medium to a concentration of about 20 to 60% by weight, preferably 30 to 60% by weight, particularly preferably 35 to 55% by weight, and a known alkali catalyst or acid catalyst is added.
  • the reaction is usually carried out at a temperature of 40 to 140 ° C., preferably 80 to 140 ° C., particularly preferably 100 to 130 ° C. If consideration is given so that EVOH after the reaction does not precipitate at the solution temperature, the concentration of the EVOH is not particularly limited, but the concentration is usually 10 to 55% by weight, preferably 15 to 50% by weight. It ’s fine.
  • the saturated hydrocarbon alcohol solution having 1 to 4 carbon atoms of EVOH obtained as described above may be used as it is, but preferably, water is added directly, or the alcohol solution of EVOH is appropriately concentrated or diluted and then the water is added. In addition, it is adjusted to a solution for strand production.
  • the water / alcohol mixed solution the water / alcohol mixing weight ratio is usually in the range of 80/20 to 5/95, and the alcohol content ⁇ (% by weight) is usually 2.55E-40.75.
  • E is the ethylene content (mol%) of EVOH
  • the amount is usually 20 to 55% by weight, preferably 25 to 50% by weight, from the viewpoint of the stability of the subsequent solidification operation.
  • the EVOH solution obtained above is extruded into pellets to form pellets.
  • the coagulating liquid to be precipitated examples include water or a water / alcohol mixed solvent, aromatic hydrocarbons such as benzene, ketones such as acetone and methyl ethyl ketone, ethers such as dipropyl ether, methyl acetate, ethyl acetate, and methyl propionate.
  • water or a water / alcohol mixed solvent is preferable from the viewpoint of easy handling.
  • the alcohol an alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol or the like is used, and methanol is preferably used industrially.
  • the weight ratio of the coagulation liquid to the EVOH strand in the coagulation liquid is usually from 50 to 10,000, preferably from 100 to 1,000. By setting the weight ratio within this range, EVOH pellets having a uniform size distribution can be obtained. Furthermore, it is also preferable to contain at least one of carboxylic acid, carboxylic acid metal salt and carboxylic acid ester in the coagulation liquid.
  • the temperature at which the EVOH solution is brought into contact with the coagulation liquid is usually ⁇ 10 to 40 ° C., preferably 0 to 20 ° C., particularly preferably 0 to 10 ° C. in terms of precipitation.
  • the EVOH solution is extruded in a strand form into the coagulating liquid as described above by a nozzle having an arbitrary shape.
  • the shape of such a nozzle is not particularly limited, but a cylindrical shape is industrially preferable.
  • the length is usually 1 to 100 cm, preferably 3 to 30 cm, and the inner diameter is usually 0.1 to 10 cm, preferably 0.2. ⁇ 5.0 cm.
  • the EVOH solution is extruded from the nozzle in the form of a strand, but the number of strands is not necessarily one, and any number between several to several hundreds can be extruded.
  • the EVOH extruded in a strand form is cut after sufficiently solidifying, pelletized, and then washed with water.
  • the shape of the pellet is 1 to 10 mm in diameter in the case of a cylindrical shape, 1 to 10 mm in length, 2 to 6 mm in each case, and 1 to 10 mm in diameter in the case of a spherical shape.
  • a thickness of 2 to 6 mm is preferable from the viewpoint of stability of melt kneading.
  • the pellets are usually washed in a water bath at 10 to 40 ° C., preferably 20 to 40 ° C.
  • the acid or metal salt may be contained in EVOH by treatment in an aqueous solution containing acetic acid, phosphoric acid, boric acid or a metal salt thereof subsequent to or instead of the water washing treatment.
  • this component is particularly preferred as acetic acid.
  • Phosphoric acid, boric acid, alkali metal salts thereof, and alkaline earth metal salts are preferably used because of their excellent effects.
  • a composition ( ⁇ ) containing EVOH (A1) and having a water content of 50% by weight or more can be obtained.
  • a known drying treatment It is also preferable to perform hot air drying, dielectric heating drying, microwave irradiation drying, etc.), or to perform the surface adhering water removal operation of the hydrous pellets in advance of melt kneading in order to improve the stability of melt kneading.
  • melt-mixing is publicly known. What is necessary is just to mix using this melt-kneading apparatus.
  • mixing (mixing) apparatuses such as an extruder, a kneader, a mixing roll, a Banbury mixer, a plast mill, a Brabender, can be used.
  • kneading apparatuses may be used alone or in combination of two or more apparatuses. Moreover, the apparatus to be used may be appropriately selected depending on the type, nature, shape, etc. of EVOH (A1) and the water-swellable layered inorganic compound (B).
  • a shaft extruder, a Banbury mixer, a kneader or the like is preferably used. Among these, a twin screw extruder excellent in uniformity and stability of mixing is most preferably used.
  • the twin screw extruder used in the present invention will be described.
  • Such an extruder is known and is not particularly limited.
  • the inner diameter of the barrel of the twin-screw extruder is usually 10 mm or more, preferably 15 mm to 150 mm.
  • L / D is usually 10 to 80, and when such a value is too small, the mixing ability of the EVOH (A1) and water composition ( ⁇ ) component and the water-swellable layered inorganic compound (B) component is low. If it is too large, the kneading time will increase, so that the water-swellable layered inorganic compound tends to be crushed and the desired resin cannot be obtained.
  • the screw configuration of the twin screw extruder is not particularly limited, but when the inner diameter of the barrel is 20 mm or more, the composition ( ⁇ ) of EVOH (A1) and water is changed from a solid state to a molten state. It is preferable to form at least one kneading section.
  • the number of rotations of the screw is not particularly limited, but is usually 10 to 400 rpm, preferably 30 to 300 rpm.
  • the composition ( ⁇ ) of EVOH (A1) and water There is a tendency that the mixing ability of the water-swellable layered inorganic compound (B) component tends to be insufficient, and when it is too large, the generation of shearing heat causes the strands to break due to foaming, resulting in a decrease in productivity, There is a tendency that when the amount of water is lowered and mixed, the torque increases and the water-swellable layered inorganic compound is crushed and the desired resin cannot be obtained.
  • the residence time in the extruder is usually 10 to 600 seconds, preferably 10 to 300 seconds.
  • the vent is not particularly limited, but it is preferable to close the vent port in order to suppress water vapor volatilization during processing.
  • a screw feeder single or biaxial
  • a liquid addition chia pump or a plunger pump may be installed in the extruder.
  • the location of the side feeder is not particularly limited, but it is the first to bring the composition ( ⁇ ) of EVOH (A1) and water into a molten state from the viewpoint of suppressing crushing of the water-swellable layered inorganic compound during mixing. It is preferable to install after the kneading part. Further, in order to remove moisture (liquid) generated by being separated from the solid content during kneading, at least one of exhaust and drainage means such as a slit barrel, a drainage port, and a drainage pump may be provided.
  • the temperature at the time of the melt kneading is not particularly limited, but the die portion from the lower portion of the hopper is usually less than 100 ° C., preferably the lower portion of the hopper is 50 to 80 ° C., and the barrel portion and the die portion are 80 to 100 ° C.
  • the strand tends to break due to foaming and the productivity decreases, and the water content in the mixing system decreases and the torque when mixing is increased and the water-swellable layered inorganic If the compound is crushed and the desired complex cannot be obtained, and the temperature at the lower part of the hopper is too high, the EVOH pellets in the water-containing state are fused to each other in the sample charging section, blocking occurs, and productivity is reduced. There is a tendency to decrease.
  • the resin composition temperature during the melt kneading is usually 80 ° C. to 105 ° C., preferably 90 ° C. to 100 ° C. If the temperature is too high, the strands are broken by foaming and the productivity is lowered, or the water content in the mixing system is reduced and the torque when mixing is increased, and the water-swellable layered inorganic compound is crushed. There is a tendency that the desired resin cannot be obtained, and when it is too low, the meltability of the composition ( ⁇ ) of EVOH (A1) and water is lowered, so that the strand breaks and the productivity tends to be lowered. There is.
  • the resin composition temperature at the time of a process can be measured by installing a resin thermometer in a die
  • EVOH (A1) and water A method in which the composition ( ⁇ ) and a water-swellable layered inorganic compound (B) in a solid state such as powder and flakes are collectively charged into the hopper of the extruder, (2) Composition of EVOH (A1) and water (3) EVOH (A1), wherein the product ( ⁇ ) is charged from the hopper of the extruder and the water-swellable layered inorganic compound (B) in a solid state is fed from a part of the barrel of the extruder (side feed).
  • the composition (C) in which the composition ( ⁇ ) of EVOH (A1) and water and the water-swellable layered inorganic compound (B) are mixed is obtained by being discharged from the extruder.
  • the shape of the composition (C) is not particularly limited, but it is preferably a pellet shape from the viewpoint of handleability.
  • the pelletization method is not particularly limited. (1) A pelletizer is used after discharging in a strand state and cooling and solidifying (contacting in a coagulation bath such as water, or carrying on a belt and air cooling). And (2) a method in which the resin is melted in air or in water.
  • the water content of the composition (C) immediately after discharging from the extruder is usually 40% by weight or more and less than 70% by weight, preferably 45 to 65% by weight, particularly preferably 45 to 60% by weight.
  • the torque becomes high when the EVOH (A1) and water composition ( ⁇ ) component and the water-swellable layered inorganic compound (B) component are mixed, and the water-swellable layered inorganic compound is crushed.
  • the EVOH composite film has a tendency to deteriorate the appearance of the film and to deteriorate the workability due to strand breakage.
  • the amount of the water-swellable layered inorganic compound (B) in the composition (C) is defined below as the amount relative to the total weight of the composition (C ′) when the moisture content is 0.3% by weight. That is, the amount of the water-swellable layered inorganic compound (B) in the composition (C) is usually 10 to 50% by weight with respect to the total weight of the composition (C ′) having a water content of 0.3% by weight. The amount is preferably 15 to 40% by weight, more preferably 17 to 30% by weight.
  • the amount of the water-swellable layered inorganic compound (B) component is too small, the resin component and water are easily separated during mixing of the composition (C) and EVOH (A2) described later, resulting in a non-uniform mixed state. There is a tendency to deteriorate the appearance of the film of the composite and to deteriorate the workability due to strand breakage.
  • the amount is too large, the composition (C) obtained is mixed with EVOH (A2) to obtain the EVOH composite of the present invention. At that time, the dispersion state of the water-swellable layered inorganic compound (B) tends to be insufficient and the film appearance tends to deteriorate.
  • the ratio (A1) / (B) of EVOH (A1) to the water-swellable layered inorganic compound (B) in the composition (C) is usually 50/50 to 90/10, preferably 60/40 by weight. It is preferably from 85/15, particularly from 70/30 to 83/17.
  • the mixing ratio is too large, the solid component and water are easily separated during mixing, resulting in a non-uniform mixed state, and production stability tends to be reduced due to occurrence of strand breakage.
  • the mixing ratio (A1) / (B) is too small, the fluidity of the composition (C) is lowered. Therefore, when the composition (C) and EVOH (A2) are mixed, the composition (C) Cannot be diffused uniformly, and fish eyes may be generated when the EVOH composite is formed into a film.
  • the composition (C) obtained as described above is mixed with EVOH (A2).
  • the mixing ratio with the composition (C ′) when the moisture content of the composition (C) is 0.3% by weight It is defined below. That is, the mixing ratio (C ′) / (A2) of the composition (C ′) and EVOH (A2) in which the water content of the composition (C) is 0.3% by weight is usually 1 in weight ratio. / 99 to 50/50, preferably 5/95 to 45/55, particularly preferably 10/90 to 40/60.
  • the mixing ratio (C ′) / (A2) is too large, the composition (C) cannot be uniformly diffused when the composition (C) and EVOH (A2) are mixed, and the EVOH composite Fish eyes may occur when the body is film-formed.
  • the mixing ratio (C ′) / (A2) is too small, the gas barrier property improving action, which is a feature of the present invention, tends not to be sufficiently obtained.
  • EVOH (A1) / EVOH (A2) is usually 1/99 to 45/55, preferably 5/95 to 40/60, particularly by weight ratio.
  • the ratio is preferably 10/90 to 35/65.
  • the EVOH (A2) is a known general EVOH similar to the EVOH (A).
  • Such EVOH (A2) may be a commercially available EVOH resin itself, or as a composition of EVOH (A2) and water, similarly to the composition ( ⁇ ) of EVOH (A1) and water. It may be used.
  • a generally used EVOH resin for molding instead of a composition of EVOH (A2) and water.
  • the moisture content of the generally used EVOH resin for molding is usually less than 0.5% by weight, preferably 0.3% by weight or less.
  • the water content of the composition (C) when mixing the composition (C) and EVOH (A2) is 10% by weight or more. Less than 60% by weight. It is particularly preferably 20% by weight or more and less than 60% by weight, particularly preferably 45% by weight or more and less than 60% by weight. If the water content is too low, the fluidity of the composition (C) is poor, the composition (C) cannot be uniformly diffused in the EVOH (A2), and the EVOH composite is caused by aggregation. Fish eyes may be generated when the film is formed.
  • compositions (C) are fused to each other by heat from the extruder and blocking tends to occur, making it difficult to supply stably.
  • it may be slightly dried or humidified as necessary.
  • composition (C) As a method of mixing the composition (C) with EVOH (A2), (1) the composition (C) prepared by drying the composition (C) in advance and adjusting the water content is melt-kneaded with the EVOH (A2). (2) Mixing with a melt-kneading apparatus in which the composition ( ⁇ ) of EVOH (A1) and water and the water-swellable layered inorganic compound (B) component are set at a set temperature of 100 ° C.
  • the composition (C) and EVOH (A2) in a melt kneader The method of drying the moisture at the same time as kneading while mixing can reduce the excessive crushing of the water-swellable layered inorganic compound at the time of melt mixing to suppress the deterioration of gas barrier performance, and the generation of fish eyes during film forming
  • the method of (3) is the point which suppresses Preferred.
  • the method for supplying each component to the apparatus is also not particularly limited.
  • a twin screw extruder as in the case of mixing the composition ( ⁇ ) of EVOH (A1) and water and the water-swellable layered inorganic compound (B) component.
  • the inner diameter of the barrel of the twin screw extruder, L / D, screw configuration, screw rotation speed, residence time in the extruder, vent and side feeder are not particularly limited, and the above-mentioned EVOH (A1) and water
  • the same composition as when the composition ( ⁇ ) component and the water-swellable layered inorganic compound (B) component are mixed can be used.
  • a screw feeder (single or biaxial) or the like may be installed in the extruder.
  • the installation location of the side feeder is not particularly limited, but it is preferable to install it after the first kneading section for bringing EVOH into a molten state from the viewpoint of suppressing crushing of the water-swellable layered inorganic compound during mixing. .
  • the temperature at the time of the melt kneading is not particularly limited, but the die portion from the lower part of the hopper is usually 150 to 250 ° C., preferably 160 to 240 ° C., particularly preferably 180 to 230 ° C. If the temperature is too low, the resin tends to be in an unmelted state and the processing state tends to be unstable. If the temperature is too high, the quality of the EVOH composite tends to deteriorate due to thermal degradation.
  • the EVOH composite after discharge is normally discharged in the state of a composition of the EVOH composite and water. For the purpose of reducing the water content, a vent having at least one location during melt kneading is used. In particular, it is preferable to perform vacuum suction using a vacuum pump or the like in terms of drying efficiency and suppression of thermal deterioration of the EVOH composite.
  • drying method Since the EVOH composite of the present invention thus obtained is usually obtained in the state of a composition of the EVOH composite and water, drying is performed before molding as necessary.
  • Various methods can be adopted as the drying method.
  • fluidized drying in which a substantially pellet-like EVOH composite is stirred and dispersed mechanically or with hot air, or a substantially pellet-like EVOH composite is subjected to dynamic actions such as stirring and dispersion.
  • a dryer for fluidized drying a cylindrical / grooved stirrer, a circular tube dryer, a rotary dryer, a fluidized bed dryer, a vibrating fluidized bed dryer, a cone Examples include a rotary dryer, etc.
  • a dryer for performing stationary drying a batch type box dryer is used as a stationary material type, a band dryer, a tunnel dryer, and a saddle type are used as a material transfer type.
  • a drier etc. can be mentioned, it is not limited to these. It is also possible to combine fluidized drying and stationary drying.
  • the heating gas used in the drying treatment air or an inert gas (nitrogen gas, helium gas, argon gas, etc.) is used, and the temperature of the heating gas is usually 40 to 150 ° C. Further, drying in a reduced pressure state (specifically, 10 ⁇ 2 to 10 5 Pa, for example) is preferable from the viewpoint of preventing thermal deterioration of the EVOH composite because it can be dried at a lower temperature or in a shorter time.
  • the drying treatment time is usually about 15 minutes to 200 hours, preferably 20 minutes to 20 minutes from the viewpoint of productivity and prevention of thermal deterioration of the EVOH complex, although it depends on the water content of EVOH complex and its treatment amount. 50 hours, particularly preferably 30 minutes to 10 hours.
  • the water content of the EVOH complex of the present invention is usually 0.001 to 5% by weight, preferably 0.01 to 1% by weight, particularly preferably 0.1 to If the water content is too low, the long-run moldability tends to decrease when the EVOH composite is melt-molded. If it is too high, foaming tends to occur during extrusion molding. is there.
  • the EVOH (A) in the EVOH composite of the present invention that is, the content of ⁇ EVOH (A1) + EVOH (A2) ⁇ is usually 70 to 99.5% by weight based on the total weight of the EVOH composite. It is preferably 80 to 99% by weight, particularly preferably 90 to 98% by weight. If the EVOH (A) content is too small, EVOH does not form a continuous phase and gas barrier properties tend to decrease. Conversely, if it is too large, the gas barrier property improving action that is a feature of the present invention is sufficiently obtained. There is no tendency.
  • the EVOH composite of the present invention is usually formed into a film, a sheet, a container, a fiber, a rod, a tube, various molded products, etc. by melt molding and used for various applications. Further, these pulverized products (for example, when the recovered product is reused) can be used for melt molding again.
  • melt molding methods extrusion molding methods (T-die extrusion, inflation extrusion, blow molding, melt spinning, profile extrusion, etc.) and injection molding methods are mainly employed.
  • the melt molding temperature is usually selected from the range of 150 to 300 ° C., preferably 160 to 250 ° C., particularly preferably 170 to 230 ° C.
  • the melt molding temperature is too low, the melt moldability tends to decrease due to insufficient fluidity. If the melt molding temperature is too high, the EVOH composite tends to be thermally deteriorated and appearance defects such as generation of fish eyes and coloring tend to occur. Further, the EVOH composite of the present invention can be used as a single molded product, but it is particularly useful to use it by molding it into various molded products as a laminate having at least one layer containing the EVOH composite. .
  • (Laminate) As a method for producing the laminate, for example, a method of melt-extruding a thermoplastic resin to a film or sheet containing the EVOH composite of the present invention, and a method of melt-extruding the EVOH composite to a base material such as a thermoplastic resin.
  • a method of co-extrusion of the EVOH composite and another thermoplastic resin, and further, a film or sheet containing the EVOH composite and a film or sheet of another substrate are combined with an organic titanium compound, an isocyanate compound, or a polyester compound.
  • a dry lamination method using a known adhesive such as a polyurethane compound.
  • the EVOH composite obtained by the production method of the present invention is also preferably subjected to coextrusion molding.
  • thermoplastic resins such as polyolefin resins, polyester resins, polyamide resins, copolymerized polyamides, polystyrene resins, polyvinyl chloride resins, polyvinylidene chloride, acrylic resins , Vinyl ester resins, polyester elastomers, polyurethane elastomers, chlorinated polyethylene, chlorinated polypropylene, aromatic and aliphatic polyketones, aliphatic polyalcohols, etc., preferably with excellent mechanical properties and extrudability.
  • Polyolefin resins are used in that they can be used for various types of molding.
  • polyolefin-based resin As such a polyolefin-based resin, the same resin as that described above is used. Among these, linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), very low-density polyethylene (VLDPE), ethylene-vinyl acetate copolymer (EVA), ionomer, and the bending resistance of laminated packaging materials from which they are obtained. This is preferable in terms of excellent fatigue resistance, vibration fatigue resistance, and the like.
  • LLDPE linear low-density polyethylene
  • LDPE low-density polyethylene
  • VLDPE very low-density polyethylene
  • EVA ethylene-vinyl acetate copolymer
  • ionomer ethylene-vinyl acetate copolymer
  • the layer structure of the laminate is such that a layer containing the EVOH composite of the present invention is a (a1, a2,%), And another base material, for example, a thermoplastic resin layer is b (b1, b2,). If it is a film, sheet or bottle, not only a / b two-layer structure, but also b / a / b, a / b / a, a1 / a2 / b, a / b1 / b2, b2 / Arbitrary combinations such as b1 / a / b1 / b2, b1 / b2 / a / b3 / b4, a1 / b1 / a2 / b2 are possible.
  • a and b are bimetal type, core (a) -sheath (b) type, core (b) -sheath (a) type, or eccentric. Arbitrary combinations such as a core-sheath type are possible.
  • an adhesive resin layer can be provided between the respective layers as necessary.
  • Various adhesive resins can be used, and differ depending on the type of the resin b, and cannot be generally stated.
  • an unsaturated carboxylic acid or an anhydride thereof is an olefin polymer (the above-mentioned broadly defined polyolefin).
  • a modified olefin polymer containing a carboxyl group obtained by chemically bonding to a resin by an addition reaction or a graft reaction.
  • maleic anhydride graft-modified polyethylene maleic anhydride graft-modified polypropylene, maleic anhydride graft-modified ethylene-propylene (block or random) copolymer, maleic anhydride graft-modified ethylene-ethyl acrylate copolymer, anhydrous
  • the amount of the unsaturated carboxylic acid or anhydride thereof contained in the olefin polymer is preferably 0.001 to 3% by weight, more preferably 0.01 to 1% by weight, and particularly preferably 0. 03 to 0.5% by weight. If the amount of modification in the modified product is small, the adhesiveness may be insufficient. On the other hand, if the amount is large, a crosslinking reaction may occur and the moldability may deteriorate.
  • adhesive resins are blended with EVOH composites obtained by the production method of the present invention, other EVOH, polyisobutylene, rubber / elastomer components such as ethylene-propylene rubber, and the resin of the above-mentioned b layer. It is also possible to do.
  • a polyolefin resin different from the base polyolefin resin of the adhesive resin can be blended.
  • each layer of the laminate cannot be generally specified depending on the layer structure, the type of b, the use and container form, the required physical properties, etc.
  • the a layer is 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m, b
  • the layer is suitably selected from the range of about 5 to 5000 ⁇ m, more preferably 30 to 1000 ⁇ m
  • the adhesive resin layer is about 5 to 400 ⁇ m, more preferably about 10 to 150 ⁇ m.
  • the thickness ratio of the a layer and the adhesive resin layer is usually larger in the a layer, and is usually 1 to 100, preferably 1 to 50, particularly preferably 1 to 10 as the a layer / adhesive resin layer.
  • the thickness ratio of the a layer and the b layer is the sum of the same kind of layer thicknesses in the multilayer film, the b layer is usually thicker, and the b layer / a layer is usually 1 to 100, preferably It is 3 to 20, particularly preferably 6 to 15.
  • the a layer is too thin, the gas barrier property is insufficient, and the thickness control becomes unstable.
  • the bending fatigue resistance is inferior and is not economical and not preferable, and when the b layer is too thin. If the rigidity is insufficient and the thickness is too thick, the bending fatigue resistance is inferior and the weight increases, which is undesirable.
  • the adhesive resin layer is too thin, the interlayer adhesion is insufficient and the thickness control is unstable.
  • Such stretching may be either uniaxial stretching or biaxial stretching, and it is better to perform stretching at as high a magnification as possible, and stretching that does not cause pinholes, cracks, stretching unevenness, delamination, etc. during stretching. Molded products such as films, stretched sheets, stretched containers, and stretched bottles are obtained.
  • a stretching method in addition to a roll stretching method, a tenter stretching method, a tubular stretching method, a stretching blow method, and the like, a deep drawing method, a vacuum / pressure forming method, or the like that has a high stretching ratio can be employed.
  • both a simultaneous biaxial stretching method and a sequential biaxial stretching method can be employed.
  • the stretching temperature is usually selected from the range of about 60 to 170 ° C., preferably about 80 to 160 ° C. If the stretching temperature is less than 60 ° C, the stretchability becomes poor, and if it exceeds 170 ° C, it tends to be difficult to maintain a stable stretched state.
  • the heat setting can be carried out by a known means, and the heat treatment is performed, for example, usually at 80 to 170 ° C., preferably 100 to 160 ° C. for about 2 to 600 seconds, while maintaining the stretched film in a tension state.
  • the heat treatment is usually carried out at 50 to 130 ° C., preferably 70 to 120 ° C., usually for about 2 to 300 seconds, and the film is heat-shrinked for close-packaging.
  • the laminate can be used in various shapes as it is.
  • the shape of the laminate may be any shape, and examples thereof include films, sheets, tapes, bottles, pipes, filaments, and irregular cross-section extrudates.
  • a drawing method is employed, specifically, a vacuum forming method, a pressure forming method, a vacuum / pressure forming method, a plug assist type vacuum / pressure forming method. Law.
  • a blow molding method is adopted, specifically, an extrusion blow molding method (double-headed, mold transfer, Parison shift type, rotary type, accumulator type, horizontal parison type, etc.), cold parison type blow molding method, injection blow molding method, biaxial stretch blow molding method (extrusion type cold parison biaxial stretch blow molding method, injection type cold) Parison biaxial stretch blow molding method, injection molding inline biaxial stretch blow molding method, etc.).
  • the obtained laminate is subjected to heat treatment, cooling treatment, rolling treatment, printing treatment, dry lamination treatment, solution or melt coating treatment, bag making processing, deep drawing processing, box processing, tube processing, split processing, etc. as necessary. Can do.
  • Containers made of cups, trays, tubes, bottles, etc. and bags and lids made of stretched films obtained as above are seasonings such as mayonnaise and dressing, fermented foods such as miso, salad oil, etc. It is useful as various containers such as oil and fat foods, beverages, cosmetics, pharmaceuticals, detergents, cosmetics, industrial chemicals, agricultural chemicals, and fuels.
  • composition ( ⁇ ) containing EVOH (A1) and water To 1000 parts of methanol solution containing 40% ethylene-vinyl acetate copolymer having an ethylene content of 29 mol%, 40 parts of methanol solution containing 6% sodium hydroxide and 2500 parts of methanol are continuously fed and by-produced. While distilling off methyl acetate and excess methanol from the system, a saponification reaction was performed at 110 ° C. for 2.5 hours to obtain EVOH having a vinyl acetate component saponification degree of 99.0 mol%.
  • the strand EVOH solidified product is guided to a take-off roller attached to the end of the water tank, cut with a cutter, and white porous pellets having a diameter of 4 mm and a length of 4 mm (resin content). 30%, water content 25%, methanol content 45%). Further, the obtained white porous pellets were put into 1000 parts of hot water at 30 ° C., stirred and washed for about 240 minutes, and contained EVOH (A1), and a composition ( ⁇ ) having a moisture content of 60%. Pellets were obtained.
  • a composition containing water, natural montmorillonite as a water-swellable layered inorganic compound (B)
  • B a composition containing water, natural montmorillonite as a water-swellable layered inorganic compound
  • B water-swellable layered inorganic compound
  • the composition ( ⁇ ) containing EVOH (A1) and having a water content of 60% is supplied from the hopper, and the water-swellable layered inorganic compound (B) is supplied from the biaxial side feeder (installed at the C5 position).
  • the mixing ratio (A1) / (B) of the EVOH (A1) component and the water-swellable layered inorganic compound (B) component is 80/20.
  • composition (C) water content 46%: diameter 2.5 mm, length 3 mm cylindrical
  • composition (C) water content 46%) and EVOH (A2) (ethylene content 29 mol%, saponification degree 99.5 mol%, MFR (210 ° C.) 8 g / 10 min, water content 0.3 %)
  • EVOH (A2) was supplied from the hopper, and a composition (C) having a moisture content of 46% was supplied from a biaxial side feeder (installed at the C5 position).
  • the mixing ratio (C ′) / (A2) of the composition (C ′) and EVOH (A2) in which the water content of the composition (C) is 0.3% is 25/75 by weight. It is.
  • Composition (C) supply amount 18.5 kg / hour EVOH (A2) supply amount 30 kg / hour Screw configuration Normal kneading type screw screw rotation speed 80 rpm Dies Strand die (diameter 3.5mm ⁇ : 8 holes) Vent C8 opened, C11 part vacuum suction, others closed temperature setting C1 200 ° C C9 230 ° C C2 230 ° C C10 230 ° C C3 230 ° C C C11 230 ° C C4 230 ° C C12 230 ° C C5 230 ° C C13 230 ° C C6 230 °C AD 230 °C C7 230 ° C D 230 ° C C8 230 ° C Motor torque 110 Ampere
  • the mixture is extruded into a strand form from a strand die provided at the exit of the extruder, and is cut using a pelletizer to produce EVOH composite pellets (water content 0.3%: diameter 2.5 mm, length 3 mm cylindrical) Got.
  • EVOH composite pellets water content 0.3%: diameter 2.5 mm, length 3 mm cylindrical
  • the ratio ⁇ (A1) + (A2) ⁇ / (B) of EVOH ⁇ (A1) + (A2) ⁇ to the water-swellable layered inorganic compound (B) in the EVOH composite is 95/5 by weight.
  • Water-swellable layered inorganic compound amount (parts by weight) ⁇ Wb / (Wa ⁇ Wb) ⁇ ⁇ 100 (1)
  • the EVOH composite pellets of the present invention obtained above were supplied to a single screw extruder equipped with a T die to produce a single layer film (film thickness 30 ⁇ m).
  • Single-layer film forming conditions Extruder 40mm ⁇ single screw extruder Screw configuration Full flight (compression ratio 3.5) Screw rotation speed 40rpm Screen pack 90/120/90 mesh dice T-die (coat hanger type, die width 450mm) Temperature setting C1 210 ° C H 230 ° C C2 230 ° C D 230 ° C C3 230 ° C C4 230 ° C Cooling roll temperature 90 ° C Take-off speed 8.9m / min Air gap 100mm
  • Example 2 In Example 1, the mixing condition of the composition (C) / EVOH (A2) was changed except that the water content of the composition (C) was 25% and the supply amount of the composition (C) was 13.5 kg / hour. Was carried out in the same manner as in Example 1.
  • the composition (C) having a moisture content of 25% is a nitrogen gas having a temperature of 80 ° C. and a moisture content of 0.6% obtained by using a composition (C) having a moisture content of 46% obtained from an extruder in a fluid dryer. And dried for 45 minutes.
  • the mixing ratio of the composition (C) and EVOH (A2) is the mixing ratio of the composition (C ′) and EVOH (A2) in which the water content of the composition (C) is 0.3% ( As C ′) / (A2), the weight ratio is 25/75.
  • the moisture content of the obtained EVOH composite pellets was 0.15%, and the amount of the water-swellable layered inorganic compound relative to 100 parts by weight of EVOH was 5.0 parts by weight. That is, the ratio ⁇ (A1) + (A2) ⁇ / (B) of EVOH ⁇ (A1) + (A2) ⁇ to the water-swellable layered inorganic compound (B) in the EVOH composite is 95/5 by weight.
  • a single layer film (film thickness 30 ⁇ m) for appearance characteristic evaluation was produced under the same conditions as in Example 1, and the same evaluation was performed.
  • Example 3 In Example 1, the mixing condition of the composition (C) / EVOH (A2) was changed except that the moisture content of the composition (C) was changed to 15% and the supply amount of the composition (C) was changed to 11.7 kg / hour.
  • the composition (C) having a moisture content of 15% is a nitrogen gas having a temperature of 80 ° C. and a moisture content of 0.6% obtained from the composition (C) having a moisture content of 46% obtained from an extruder using a fluid dryer. And dried for 2 hours.
  • the mixing ratio of the composition (C) and EVOH (A2) is the mixing ratio of the composition (C ′) and EVOH (A2) in which the water content of the composition (C) is 0.3% ( As C ′) / (A2), the weight ratio is 25/75.
  • the moisture content of the obtained EVOH composite pellets was 0.15%, and the amount of the water-swellable layered inorganic compound relative to 100 parts by weight of EVOH was 5.0 parts by weight. That is, the ratio ⁇ (A1) + (A2) ⁇ / (B) of EVOH ⁇ (A1) + (A2) ⁇ to the water-swellable layered inorganic compound (B) in the EVOH composite is 95/5 by weight.
  • a single layer film (film thickness 30 ⁇ m) for appearance characteristic evaluation was produced under the same conditions as in Example 1, and the same evaluation was performed.
  • Example 1 Comparative Example 1 In Example 1, the composition (C) / EVOH (A2) mixing conditions were changed except that the moisture content of the composition (C) was changed to 5% and the supply amount of the composition (C) was changed to 10.5 kg / hour. The same operation as in Example 1 was performed.
  • the composition (C) having a moisture content of 5% is a nitrogen gas having a temperature of 80 ° C. and a moisture content of 0.6% obtained from the composition (C) having a moisture content of 46% obtained from an extruder using a fluid dryer. And dried for 16 hours.
  • the mixing ratio of the composition (C) and the EVOH (A2) is the mixing ratio of the composition (C ′) and the EVOH composition (A2) in which the water content of the composition (C) is 0.3%.
  • the ratio (C ′) / (A2) is 25/75 by weight.
  • the moisture content of the pellets of the obtained EVOH composite was 0.13%, and the amount of the water-swellable layered inorganic compound relative to 100 parts by weight of EVOH was 5.0 parts by weight. That is, the ratio ⁇ (A1) + (A2) ⁇ / (B) of EVOH ⁇ (A1) + (A2) ⁇ to the water-swellable layered inorganic compound (B) in the EVOH composite is 95/5 by weight.
  • a single layer film (film thickness 30 ⁇ m) for appearance characteristic evaluation was produced under the same conditions as in Example 1, and the same evaluation was performed. The conditions and results of the above Examples and Comparative Examples are shown in Tables 1 and 2.
  • Comparative Example 1 Although the gas barrier property and the film rigidity are excellent, the composition (C) has poor fluidity and cannot be uniformly diffused in the EVOH (A2) and remains. This was because the aggregate of the product (C) was the cause, and when the EVOH composite was formed into a film, a large amount of fish eyes (large) was generated. Therefore, the advantage by adopting the manufacturing method of the present invention is clear.
  • the film obtained from the EVOH composite obtained according to the present invention is a film alone or a laminated film with other resin films such as polyolefin and polyamide, or a laminated body with various substrates, for example, cups, trays, Molded containers such as tubes and bottles, and bags and lids made of stretched film are general foods, seasonings such as mayonnaise and dressings, fermented foods such as miso, fats and oils such as salad oil, beverages, cosmetics, and pharmaceuticals It can be suitably used for various containers such as detergents, cosmetics, industrial chemicals, agricultural chemicals and fuels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 ガスバリア性、フィルム剛性に優れ、かつフィッシュアイ抑制に優れたフィルムが得られるエチレン-ビニルエステル系共重合体ケン化物複合体を提供すること。  エチレン-ビニルエステル系共重合体ケン化物(A1)を含み、含水率が50重量%以上である組成物(α)と水膨潤性層状無機化合物(B)を混合して得られた組成物(C)を、含水率10重量%以上60重量%未満の状態でエチレン-ビニルエステル系共重合体ケン化物(A2)と混合して得られることを特徴とするエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。

Description

EVOH複合体の製造方法
 本発明は、エチレン-ビニルエステル系共重合体ケン化物と水膨潤性層状無機化合物を有するEVOH複合体の製造方法に関する。
 従来、高度な酸素ガスバリア性が求められる食品や薬品包装フィルムや容器等において、エチレン-ビニルエステル系共重合体ケン化物(以下、EVOHと略記することがある。)中にモンモリロナイト等の水膨潤性層状無機化合物を分散させる手法が考案されている。水膨潤性層状無機化合物とは、無機化合物が複数の層状に重なる構造を有しており、かかる技術は、前記水膨潤性層状無機化合物の板状の層がEVOH中に同方向に分散し、EVOH樹脂中の酸素拡散を阻害する作用をなすため、高いガスバリア性を有するフィルムが得られるという技術である。(例えば、特許文献1参照。)
 従来、特定のEVOHを含む高含水率の組成物と水膨潤性フィロケイ酸塩を混合して、EVOH中にフィロケイ酸塩の層状構造を部分的に分離、分散させて板状の粒子を多数生成することにより、ガスバリア性及び透明性に優れた組成物が得られることが知られている(例えば、特許文献2、特許文献3参照)。かかる技術では、特定の含水状態にあるEVOH組成物と水膨潤性層状無機化合物を溶融状態で混合してマスターバッチを得、さらにかかるマスターバッチをEVOH樹脂で希釈することによって、ガスバリア性、透明性に優れた積層物を得る技術が提案されている。
特開平5-39392号公報 特開2007-290378号公報 特開2007-290379号公報
 上記のような技術においては、(1)ガスバリア性を高く維持しつつ、(2)フィルム剛性に優れ、(3)フィッシュアイ発生抑制に優れる、のいずれも満足したものでなければ、高品位バリアフィルムとはなり得ない。
 本発明者は上記実情に鑑み鋭意検討した結果、まず、EVOHを含み、含水率50重量%以上という比較的高い含水率である組成物と水膨潤性層状無機化合物を混合してマスターバッチを得、得られたマスターバッチを乾燥させすぎない状態(例えば、含水率10重量%以上)でEVOHと混合して得られるEVOH複合体をフィルムとしたときに、上記の(1)~(3)全てを満足するフィルムが得られることを見出し、本発明を完成した。
 すなわち、本発明の要旨は以下の通りである。
[1] エチレン-ビニルエステル系共重合体ケン化物(A1)を含み、含水率が50重量%以上である組成物(α)と水膨潤性層状無機化合物(B)を混合して、含水率10重量%以上60重量%未満の組成物(C)を得、次いでその組成物(C)とエチレン-ビニルエステル系共重合体ケン化物(A2)とを混合することを特徴とするエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[2] エチレン-ビニルエステル系共重合体ケン化物(A2)の含水率が0.5重量%未満であることを特徴とする[1]記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[3] エチレン-ビニルエステル系共重合体ケン化物(A1)と水膨潤性層状無機化合物(B)との混合割合(A1)/(B)が、重量比で90/10~50/50を満たすような割合であることを特徴とする[1]または[2]記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[4] 組成物(C)の含水率を0.3重量%の状態にした組成物(C‘)と含水エチレン-ビニルエステル系共重合体ケン化物組成物(A2)との混合割合(C‘)/(A2)が、重量比で1/99~50/50を満たすような割合であることを特徴とする[1]~[3]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[5] エチレン-ビニルエステル系共重合体ケン化物複合体における、エチレン-ビニルエステル系共重合体ケン化物{(A1)+(A2)}と水膨潤性層状無機化合物(B)との比率{(A1)+(A2)}/(B)が、重量比で85/15~99.5/0.5であることを特徴とする[1]~[4]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[6] エチレン-ビニルエステル系共重合体ケン化物(A1)およびエチレン-ビニルエステル系共重合体ケン化物(A2)のエチレン含有量が、20~60モル%であることを特徴とする[1]~[5]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[7] エチレン-ビニルエステル系共重合体ケン化物(A1)およびエチレン-ビニルエステル系共重合体ケン化物(A2)のケン化度が、90~100モル%であることを特徴とする[1]~[6]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[8] エチレン-ビニルエステル系共重合体ケン化物(A1)およびエチレン-ビニルエステル系共重合体ケン化物(A2)のMFR値が、210℃、2160g荷重での測定値において、1~100g/10分であることを特徴とする[1]~[7]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[9] 水膨潤性層状無機化合物(B)が、スメクタイト類であることを特徴とする[1]~[8]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[10] 水膨潤性層状無機化合物(B)の水に対する膨潤力が、JBAS-104-77に記載の試験方法で測定した値で、40ml/2g以上であることを特徴とする[1]~[9]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[11] 水膨潤性層状無機化合物(B)の粒子径が、JIS R 1629で測定した値で10~3000nmであることを特徴とする[1]~[10]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[12] エチレン-ビニルエステル系共重合体ケン化物複合体の含水率が、0.001~5重量%であることを特徴とする[1]~[11]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[13] エチレン-ビニルエステル系共重合体ケン化物(A1)およびエチレン-ビニルエステル系共重合体ケン化物(A2)が、酢酸ビニルとエチレンの共重合体ケン化物であることを特徴とする[1]~[12]いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
[14] [1]~[13]いずれか記載の製造方法にて得られたエチレン-ビニルエステル系共重合体ケン化物複合体を含む成形物。
[15] [1]~[13]いずれか記載の製造方法にて得られたエチレン-ビニルエステル系共重合体ケン化物複合体を含む層を少なくとも1層有することを特徴とする積層体。
 本発明においては、EVOH(A1)を含み、含水率が50重量%以上である組成物(α)と水膨潤性層状無機化合物を混合してマスターバッチ(組成物(C))を得、得られた組成物(C)を乾燥させすぎない状態(例えば、含水率10重量%以上)でさらにEVOH(A2)と混合して得られるEVOH複合体をフィルムとした場合、組成物(C)の流動性が不足して、組成物(C)がEVOH(A2)内で均一に拡散することができずに凝集することが抑制されるためか、(1)ガスバリア性を高く維持しつつ、(2)フィルム剛性に優れ、(3)フィッシュアイ発生抑制に優れるといういずれの条件も満足するという本願記載の顕著な効果が得られるものである。
 本発明によって得られるEVOH複合体から得られるフィルムは、該フィルム単独またはポリオレフィンやポリアミドなどの他の樹脂フィルムとの積層フィルムとして、または、各種基材との積層体として、例えば、カップ、トレイ、チューブ、ボトル等の成形容器や、延伸フィルムからなる袋や蓋材は一般的な食品の他、マヨネーズ、ドレッシング等の調味料、味噌等の発酵食品、サラダ油等の油脂食品、飲料、化粧品、医薬品、洗剤、香粧品、工業薬品、農薬、燃料等各種の容器などに好適に用いることが出来る。
本発明の実施例におけるEVOH複合体の製造フロー概略図である。
 以下、本発明について具体的に説明する。
 なお、以下に記載する構成要件の説明は本発明の実施態様の一例(代表例)であり、これらの内容に特定されるものではない。
 本発明は、EVOH(A1)を含み、含水率50重量%以上の比較的高い含水率である組成物(α)と水膨潤性層状無機化合物(B)を混合し、次いで得られた、含水率が10重量%以上60重量%未満の組成物(C)とEVOH(A2)とを混合するというEVOH複合体の製造方法であり、得られるEVOH複合体は、EVOH(A)、すなわち{EVOH(A1)+EVOH(A2)}中に水膨潤性層状無機化合物(B)が分散して存在するものである。
(含水率算出法)
 なお、本発明におけるEVOH(A1)と水との組成物(α)における含水率は以下の方法により測定・算出されるものである。
〔含水率の測定方法〕
 EVOH(A1)と水との組成物(α)を電子天秤にて秤量(W1)し、150℃の熱風乾燥機中で5時間乾燥させ、デシケーター中で30分間放冷後の重量を秤量(W2)し、下記式より算出する。
 含水率(重量%)=[(W1-W2)/W1]×100
 なお、EVOH(A1)と水との組成物(α)と、水膨潤性層状化合物(B)との混合によって得られる組成物(C)の含水率、及び該組成物(C)とEVOH(A2)の混合によって得られるEVOH複合体の含水率についても同様にして算出される。
 一般に、EVOHは水酸基を有する親水性樹脂であるため、公知の製造方法にて製造したEVOHは、通常0.5重量%未満、特には0.3重量%以下というごく微量の水分を含有するものである。
(EVOH(A)の説明)
 まず、本発明で用いられるEVOHは、通常、酢酸ビニルとエチレンの共重合体をケン化して得られるものであり、エチレン構造単位とケン化により生成したビニルアルコール構造単位、および場合によって残存した酢酸ビニル構造単位を有する共重合体構造のポリマーである。また、場合により、少量の他の共重合可能なビニルモノマー由来の構造単位を含んでいてもよい。
 なお、本発明において、エチレン-ビニルエステル系共重合体ケン化物そのものをEVOH(A)と表す。中でも初めに水膨潤性層状化合物(B)と混合するEVOH(A)を便宜的にEVOH(A1)と表し、組成物(C)と混合するEVOH(A)をEVOH(A2)と表す。従って、本発明によって得られるEVOH複合体中のEVOH(A)は{EVOH(A1)+EVOH(A2)}となる。
 本発明で用いられるEVOH(A)は、従来公知の一般的なEVOHであればよく、例えば具体的には、そのエチレン含有量は、通常20~60モル%、好ましくは20~45モル%、特に好ましくは20~35モル%である。かかるエチレン含有量が少なすぎる場合には溶融成形時の熱安定性が低下する傾向があり、多すぎる場合にはガスバリア性が低下し、さらにEVOH(A1)と水との組成物(α)と水膨潤性層状無機化合物(B)を混合した際のトルクが高くなり、水膨潤性層状無機化合物が小微粒子へと破砕されすぎて十分なガスバリア性改善作用が得られない恐れがある。
 上記EVOH(A)のケン化度は、通常90~100モル%、好ましくは95~100モル%、特に好ましくは99~100モル%である。かかるケン化度が低すぎる場合にはガスバリア性が低下する傾向がある。
 また、EVOH(A)のMFR値は、210℃、2160g荷重での測定値において、通常1~100g/10分、好ましくは、2~50g/10分、特に好ましくは、5~40g/10分である。かかるMFR値が低すぎる場合には溶融加工時の負荷が高くなり加工性が低下する傾向があり、高すぎる場合には溶融加工時に粘度が不足し、垂れ等の問題が生じてフィルム等の成形性が低下する傾向がある。
 本発明で用いられるEVOH(A)は、本発明の効果を阻害しない範囲、例えば、EVOH(A)中の含有量が10モル%以下程度にて共重合可能な公知のエチレン性不飽和単量体を共重合していてもよい。
 また、本発明の趣旨を損なわない範囲で、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化等、公知の後変性処理をしたものでも差し支えない。
 また、本発明のEVOH複合体を、延伸フィルム、熱収縮フィルム、カップなどの絞り成形品、ボトルなどのブロー成形品に用いる場合には、下記に示す構造単位(1)を0.1~10モル%の範囲で共重合したものを用いることも好適である。
Figure JPOXMLDOC01-appb-C000001

[構造単位(1)において、R1、R2、及びR3はそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R4、R5、及びR6はそれぞれ独立して水素原子または有機基を示す。]
 なお、かかる構造単位(1)における主鎖の置換基であるR1~R3、および側鎖の置換基であるR4~R6は、代表的にはすべて水素原子であるが、その水素原子が樹脂特性を大幅に損なわない程度の有機基で置換されたものでもよい。その有機基としては特に限定されないが、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基が好ましく、必要に応じて、ハロゲン基、水酸基、エステル基、カルボキシル基、スルホン酸基等の置換基を有していてもよい。
 また、構造単位(1)の結合鎖Xは、代表的には単結合であるが、樹脂特性を大幅に損なわない程度の結合鎖であってもよい。かかる結合鎖は特に限定されないが、例えばアルキレン、アルケニレン、アルキニレン等の非芳香族炭化水素鎖の他、フェニレン、ナフチレン等の芳香族炭化水素鎖(これらの炭化水素はフッ素、塩素、臭素等のハロゲン等で置換されていても良い)の他、-O-、-CO-、-COCO-、-CO(CH2mCO-、-CO(C64)CO-、-S-、-CS-、-SO-、-SO2-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO4-、-Si(OR)2-、-OSi(OR)2-、-OSi(OR)2O-、-Ti(OR)2-、-OTi(OR)2-、-OTi(OR)2O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-、等が挙げられ(Rは各々独立して任意の置換基であり、水素原子、アルキル基が好ましく、またmは自然数である)、その中でも熱溶融安定性の点で好ましくは非芳香族炭化水素鎖、特に好ましくはアルキレンであり、炭素数3以下のアルキレンが好適に用いられる。
 さらには、本発明の目的を阻害しない範囲においてEVOH(A)に酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸等の有機酸あるいは硫酸、亜硫酸、炭酸、ホウ酸、リン酸等の無機酸、またはこれらのアルカリ金属、アルカリ土類金属、遷移金属等の塩を添加することが溶融成形時の熱安定性を向上させる点で好ましい。
 本発明で使用されるEVOH(A1)およびEVOH(A2)としては、異なる構造単位を有するもの、エチレン含有量が異なるもの、ケン化度が異なるもの、分子量が異なるものなどを2種以上混合したブレンド物を用いてもよい。
 異なる2種以上のEVOH(ブレンド物)の製造方法は特に限定されず、例えばケン化前のエチレン-ビニルエステル系共重合体の各ペーストを混合後ケン化する方法、ケン化後の各EVOHのアルコールまたは水とアルコールの混合溶媒に溶解させた溶液を混合する方法、各EVOHをペレット状、または粉体で混合した後、溶融混練する方法などが挙げられる。
 また、EVOH(A1)およびEVOH(A2)は、上記の範囲内でエチレン含有率、ケン化度、変性基の種類および変性基の含有量がそれぞれ同じものを使用することもできるし、目的に応じて異なるものを使用することもできる。エチレン含有量が異なるものを用いる場合、そのエチレン含有量の差は通常1~30モル%、さらには2~25モル%、特には2~20モル%であることが好ましい。かかるエチレン含有量の差が大きすぎると延伸性が不良となる傾向がある。
 本発明のEVOH複合体におけるEVOH(A)の含有量、すなわち{EVOH(A1)+EVOH(A2)}の量は、EVOH複合体の総重量に対して通常70~99.5重量%、好ましくは80~99重量%、特に好ましくは90~98重量%である。かかるEVOH(A)の含有割合が少なすぎると、EVOH複合体の溶融粘度が上昇して溶融成形性が低下する傾向があり、逆に多すぎると本発明の特徴であるガスバリア性改善作用が十分に得られない傾向がある。
(水膨潤性層状無機化合物(B)の説明)
 次に、本発明で用いられる水膨潤性層状無機化合物(B)について説明する。
 本発明に用いられる水膨潤性層状無機化合物(B)とは、フィロケイ酸塩などの膨潤性粘土鉱物として公知のものであり、単位結晶層が互いに積み重なった層状構造をしており、単位結晶層同士の結合が比較的弱いため、水によって単位結晶層間が膨潤し、単位結晶層が剥離されることが可能になる化合物を意味する。水膨潤性層状無機化合物(B)は天然品であっても合成品であってもよい。天然品としては、ケイ素やアルミニウムのイオンに酸素イオンが配位してできる四面体シートと、アルミニウム、マグネシウムまたは鉄のイオンに酸素または水酸化物のイオンが配位してできる八面体シートに基づく繰り返し単位により層状構造を形成した無機化合物のうち、負に帯電した無機化合物の層の間に陽イオン(例えば、H+、Na+、Ca2+、Mg2+、など)が介在することで層間結合して積層構造を形成した水膨潤性を有する層状無機化合物であれば特に制限されることなく用いることが出来る。また合成品としては、フッ素金雲母の層間陽イオンのKをNaやLiに置き換えて同時に四面体中の陽イオンをSiのみにする方法で得られた水膨潤性を有する層状無機化合物等が挙げられる。
 例えば具体的には、水膨潤性層状無機化合物としてモンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイト等のスメクタイト類やバーミキュライト類、Na型フッ素四ケイ素雲母、Na型テニオライト、Li型テニオライト、Na型ヘクトライト等の水膨潤性フッ素雲母系鉱物類、合成マイカ等の粘土鉱物が挙げられる。水に対する膨潤性から、好ましくはスメクタイト類であり、特に好ましくはモンモリロナイトである。殊に、モンモリロナイトの層間陽イオンとしては、ナトリウムイオン、カルシウムイオンが挙げられるが、中でも水に対する膨潤性に優れるナトリウムイオン型が好適である。なお、これら水膨潤性層状無機化合物の代表例であるフィロケイ酸塩をEVOHに配合すること自体は公知である。
 なお、水膨潤性層状無機化合物(B)の水に対する膨潤力は日本ベントナイト工業会標準試験法(容積法)(JBAS-104-77) [1977]によって評価でき、かかる値が通常40ml/2g以上、特には50ml/2g以上であるものが好ましく用いられ、水に対する膨潤力が小さすぎると層状無機化合物の剥離性が低くなり十分なガスバリア性改善作用が得られず好ましくない。
 ここで、日本ベントナイト工業会標準試験法(容積法)について詳細に説明する。
膨潤力とは、まずモンモリロナイト粉末2.0gを水100mlを入れたメスシリンダー中に10回に分けて加えて沈降させ、添加が終了して24時間放置した後のメスシリンダー下部に堆積したモンモリロナイト容積を読み取った数値であり、単位はml/2gで表される。
 さらに、かかる水膨潤性層状無機化合物(B)のカチオン交換容量が通常100~150meq/100g、好ましくは100~130meq/100g、特に好ましくは105~120meq/100gであるとき、本発明の作用効果がより顕著に得られ好ましい。かかるカチオン交換容量が少なすぎる場合には水膨潤性が低下する傾向があり、多すぎる場合には層間結合力が強くなり層状無機化合物の剥離性が低下する傾向がある。
 また、本発明で用いる水膨潤性層状無機化合物(B)としては、アスペクト比が通常50以上のものが用いられる。特に、EVOH中に分散させた際のガス分子の遮蔽効果が向上する点から、アスペクト比が大きいものが好ましく、好ましくは100以上、特には200以上である。また、通常、その粒子径はJIS R 1629で測定した値で通常10~3000nmであり、好ましくは20~2500nm、特に好ましくは100~2000nmのものが使用される。
 さらに、かかる水膨潤性層状無機化合物(B)は有機化処理を施したものであってもよく、かかる有機化処理の方法としては、4級アンモニウム塩などのオニウムイオン基を有する化合物を水膨潤性層状無機化合物(B)と混合する方法が挙げられる。
 また、水膨潤性層状無機化合物(B)は、吸湿しやすい性質を持つため、通常5~10重量%の水分量を有するものである。EVOH(A1)と水の組成物(α)に水膨潤性層状無機化合物(B)を配合して溶融混練する際の水膨潤性層状無機化合物(B)の水分量としては通常25重量%未満、好ましくは15重量%未満、特に好ましくは10重量%未満であることが好ましい。かかる水分量が多すぎる場合には、水膨潤性層状無機化合物(B)が団子状に凝集し易くなり安定に定量配合することが困難になる恐れがある。
 本発明のEVOH複合体におけるEVOH(A)、即ち、{EVOH(A1)+EVOH(A2)}と水膨潤性層状無機化合物(B)の比率{(A1)+(A2)}/(B)は、重量比で通常85/15~99.5/0.5、好ましくは90/10~99/1、特には93/7~98/2であることが好ましく、かかる比率が小さすぎると複合体の溶融粘度が上昇して溶融成形性が低下する傾向があり、逆に大きすぎると十分なガスバリア性改善作用が得られないという傾向がある。
 さらに、本発明のEVOH複合体には目的に応じて他の樹脂を混合しても良い。本発明のEVOH複合体における他樹脂の含有量は、EVOH複合体の総重量に対して通常30重量%以下、好ましくは20重量%以下、特に好ましくは10重量%以下であり、かかる含有量が多すぎる場合、EVOH複合体内でEVOHが連続相を形成することが困難になりEVOH複合体のガスバリア性が大幅に低下する恐れがある。
 上記の他の樹脂としては、例えば、熱可塑性樹脂が挙げられ、具体的には、ポリオレフィン系樹脂、ポリエステル系樹脂(共重合ポリエステルも含む)、ポリアミド系樹脂(共重合ポリアミドも含む)、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン、アクリル系樹脂、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン、芳香族及び脂肪族ポリケトン、脂肪族ポリアルコール等が挙げられる。例えば、耐熱水性・耐レトルト性が要求される場合にはポリアミド系樹脂を混合することが好ましく、柔軟性、耐屈曲疲労性、耐衝撃性が要求される場合には、ポリオレフィン系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー等を混合することが好ましい。
 上記ポリオレフィン系樹脂としては、具体的に直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、超低密度ポリエチレン(VLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、エチレン-酢酸ビニル共重合体(EVA)、アイオノマー、エチレン-プロピレン(ブロック又はランダム)共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸エステル共重合体、ポリプロピレン、プロピレン-α-オレフィン(炭素数4~20のα-オレフィン)共重合体、ポリブテン、ポリペンテン、ポリメチルペンテン等のオレフィンの単独又は共重合体、或いはこれらのオレフィンの単独又は共重合体を不飽和カルボン酸又はそのエステルでグラフト変性したものやこれらのブレンド物等を挙げることができ、なかでも、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、超低密度ポリエチレン(VLDPE)、エチレン-酢酸ビニル共重合体(EVA)、アイオノマーが、得られるEVOH複合体の柔軟性、耐屈曲疲労性、耐衝撃性等に優れる点で好ましい。
 上記ポリアミド系樹脂としては、具体的にポリカプラミド(ナイロン6)、ポリ-ω-アミノヘプタン酸(ナイロン7)、ポリ-ω-アミノノナン酸(ナイロン9)、ポリウンデカンアミド(ナイロン11)、ポリラウリルラクタム(ナイロン12)、ポリエチレンジアミンアジパミド(ナイロン26)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリオクタメチレンアジパミド(ナイロン86)、ポリデカメチレンアジパミド(ナイロン108)、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/ω-アミノノナン酸共重合体(ナイロン6/9)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)、ラウリルラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン12/66)、エチレンジアミンアジパミド/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン26/66)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン66/610)、エチレンアンモニウムアジペート/ヘキサメチレンジアンモニウムアジペート/ヘキサメチレンジアンモニウムセバケート共重合体(ナイロン6/66/610)、ポリヘキサメチレンイソフタルアミド、ポリヘキサメチレンテレフタルアミド、ヘキサメチレンイソフタルアミド/テレフタルアミド共重合体あるいはこれらのポリアミド系樹脂をメチレンベンジルアミン、メタキシレンジアミン等の芳香族アミンで変性したものやメタキシリレンジアンモニウムアジペート等が挙げることができ、なかでも、ポリカプラミド(ナイロン6)、カプロラクタム/ラウリルラクタム共重合体(ナイロン6/12)、カプロラクタム/ヘキサメチレンジアンモニウムアジペート共重合体(ナイロン6/66)が、得られるEVOH複合体の耐熱水性、耐レトルト性等に優れる点で好ましい。
 また、EVOH複合体/ポリアミド系樹脂混合物の熱安定性を改善する目的で、カルボキシル基やアミノ基で末端が調整されたポリアミド系樹脂が好適に用いられる。かかる末端がカルボキシル基やアミノ基で調整されたポリアミド系樹脂としては、カプロアミドを主たる構成単位とし、末端調整剤を使用して末端カルボキシル基含有量[Y]および末端アミノ基含有量[Z]が、{(100×[Z])/([Y]+[Z])}≧5(ただし、[Y],[Z]の単位はμeq/g・ポリマー)を満足するように調整したポリアミド系樹脂が用いられる。
 上記末端調節剤としては、炭素数2~23のカルボン酸、炭素数2~20のジアミンが用いられる。ここで炭素数2~23のモノカルボン酸としては、脂肪族モノカルボン酸(酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ペラルゴン酸、ウンデカン酸、ラウリル酸、トリデカン酸、ミリスチン酸、ミリトレイン酸、パルメチン酸、ステアリン酸、オレイン酸、リノール酸、アラキン酸、ベヘン酸等)、脂環式モノカルボン酸(シクロヘキサンカルボン酸、メチルシクロヘキサンカルボン酸等)、芳香族モノカルボン酸(安息香酸、トルイン酸、エチル安息香酸、フェニル酢酸等)などがあげられる。
 炭素数2~20のジアミンとしては、脂肪族ジアミン〔エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、ヘキサデカメチレンジアミン、2,2,4-(または2,4,4-)トリメチルヘキサメチレンジアミン〕等〕、脂環式ジアミン〔シクロヘキサンジアミン、ビス-(4,4′-アミノシクロヘキシル)メタン等〕、芳香族ジアミン(キシリレンジアミン等)などが挙げられる。
 また、上記のモノカルボン酸のほかに、脂肪族ジカルボン酸(マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、テトラデカンジオン酸、ヘキサデカンジオン酸、ヘキサデセンジオン酸、オクタデカンジオン酸、オクタデセンジオン酸、エイコサジオン酸、エイコセンジオン酸、ドコサンジオン酸、2,2,4-トリメチルアジピン酸等)、脂環式ジカルボン酸(1,4-シクロヘキサンジカルボン酸等)、芳香族ジカルボン酸(テレフタル酸、イソフタル酸、フタル酸、キシリレンジカルボン酸等)などのジカルボン酸類を使用したり併用したりすることもできる。
 また、EVOH(A)と水膨潤性層状無機化合物(B)を含有する本発明のEVOH複合体には、本発明の目的を阻害しない範囲において、原材料の混合時又は混練時もしくは成形時に、従来公知の可塑剤、熱安定剤、光安定剤、紫外線吸収剤、老化防止剤、顔料、着色剤、天然繊維、各種無機粒子、各種フィラー、帯電防止剤、離型剤、可塑剤、香料、滑剤、架橋(加硫)剤、架橋(加硫)促進剤、結晶核剤、結晶化促進剤、難燃剤、発泡剤、軟化剤、防腐剤、抗菌・抗カビ剤、酸素吸収剤等の各種添加剤を配合しても良い。
(製造法の説明:EVOH(A1)と水との組成物(α)と水膨潤性層状無機化合物(B)成分の混合)
 次に、本発明のEVOH複合体の製造法について説明する。
 本発明のEVOH複合体の製造法は、EVOH(A1)を含み、比較的含水量の多い状態の組成物(α)と水膨潤性層状無機化合物(B)を混合し、得られた混合物(以下、組成物(C)と称す)を次いでEVOH(A2)と混合するという、二段階の混合過程を経て製造する方法である。かかる混合方式としては特に限定されないが、均一な混合が可能であり、かつ生産性に優れる点で、溶融混合が好ましい。
 具体的には、EVOH(A1)を含み、含水率が50重量%以上である組成物(α)に水膨潤性層状無機化合物(B)を配合して溶融混練し、次いで得られた組成物(C)とEVOH(A2)とを混合する方法である。
 溶融混合装置に導入する際のEVOH(A1)と水との組成物(α)は、比較的高含水率であることが必要であり、このときの含水率は50重量%以上であり、好ましくは50~70重量%、特に好ましくは55~70重量%である。
 かかる含水率が少なすぎる場合には、EVOH(A1)と水との組成物(α)と水膨潤性層状無機化合物(B)を混合した際のトルクが高くなり、水膨潤性層状無機化合物が破砕されすぎる傾向がある。また、かかる含水率が多すぎる場合には、EVOH表面の水分付着量が多く、混合する際のフィード性が悪くなり生産性が低下する傾向がある。
 なお、組成物(α)中の樹脂成分は主として通常EVOH(A1)である。具体的には、EVOH(A1)が通常50~30重量%である。
 EVOH(A1)と水膨潤性層状無機化合物(B)の混合割合(A1)/(B)は、重量比で通常90/10~50/50、好ましくは90/10~60/40、特に好ましくは90/10~70/30を満たすような割合である。かかる混合割合(A1)/(B)が大きすぎる場合には、混合時に固形分成分と水が分離しやすく不均一な混合状態となり、ストランド切れ発生により製造安定性が低下する傾向がある。かかる混合割合(A1)/(B)が小さすぎる場合には、組成物(C)の流動性が低下するため、組成物(C)とEVOH(A2)を混合する際に組成物(C)を均一に拡散することができず、EVOH複合体をフィルム成形した際にフィッシュアイが発生する恐れがある。
 一方、必要に応じて他樹脂と混合する場合は、例えば(1)EVOH(A1)を含み、含水率が50重量%以上である組成物(α)と水膨潤性層状無機化合物(B)を混合する工程で他樹脂を共存させる方法、(2)組成物(C)とEVOH(A2)を混合する工程で他樹脂を共存させる方法、(3)本発明のEVOH複合体の成形前にブレンダー等を用いて他樹脂を混合する方法などが挙げられる。EVOH複合体の生産性、及びEVOH複合体中に混合された他樹脂の均一分散性を考慮すると、(2)の方法で他樹脂を混合してEVOH複合体を得ることが好ましい。
 他樹脂としては、上記の本発明のEVOH複合体に目的に応じて混合しても良い他の樹脂と同様の樹脂が挙げられる。
(含水法、含水率調整法)
 EVOH(A1)と水との組成物(α)を得るため、EVOHに水を含有させ、かかる含水率を調整する方法としては、特に制限されないが、例えばEVOH中に水を均一に含有させるような方法を採用することが好ましい。かかる方法としては、例えば(i)EVOHの炭素数1~4の飽和炭化水素アルコール/水混合溶剤溶液を水中に投入し、EVOH粒子を析出させ、濾別後充分に水洗してアルコールを除去し水を含有させる方法、(ii)EVOHを加圧熱水中で1~3時間程度処理する方法、(iii)EVOHの製造時においてエチレン-酢酸ビニル共重合体のケン化後のペーストを水中に導入してストランド等の固形状に析出させて水を含有させる方法等が挙げられ、これらの中でも(iii)の方法が好ましく用いられる。なお、EVOH粒子やペレットと水とを直接混合してもよいが、EVOH中に水が均一に含まれるように温度や攪拌等の混合条件に留意する必要がある。
 かかるEVOHと水との組成物(α)を得る(iii)の方法について詳細に説明する。EVOHは公知の通りエチレン-酢酸ビニル共重合体をケン化して得られるものであるが、かかるケン化反応は、上記エチレン-酢酸ビニル共重合体を、例えば炭素数1~4の飽和炭化水素アルコール又は該アルコール含有媒体中に通常20~60重量%程度、好ましくは30~60重量%、特に好ましくは35~55重量%の濃度になる如く溶解し、公知のアルカリ触媒、あるいは酸触媒を添加して通常40~140℃、好ましくは80~140℃、特に好ましくは100~130℃の温度で反応せしめる。該溶液温度において反応後のEVOHが析出しない様に配慮すれば、該EVOHの濃度に特に制限はないが、その濃度は通常10~55重量%、好ましくは15~50重量%となるようにすれば良い。
 次に上記で得られたEVOHの炭素数1~4の飽和炭化水素アルコール溶液はそのままでもよいが、好ましくは、直接水を加えるか、該EVOHのアルコール溶液を適宜濃縮あるいは希釈してから水を加えてストランド製造用の溶液に調整される。該水/アルコール混合溶液の場合には水/アルコールの混合重量比が通常80/20~5/95の範囲で、かつアルコールの含有量α(重量%)が、通常2.55E-40.75≦α≦2.55E-15.75なる関係(ここで、EはEVOHのエチレン含有量(モル%)である)を満足させることが溶液の安定性の点で好ましく、溶液中のEVOHの含有量としては、通常20~55重量%、好ましくは25~50重量%であることが後続の凝固作業の安定性の点で好ましい。
 次に、上記で得られたEVOH溶液をストランド状に押し出してペレット化するのであるが、この時点で、公知の滑剤、無機酸、有機酸、無機塩、有機塩、可塑剤、酸化防止剤、紫外線吸収剤、着色剤、抗菌剤、アンチブロッキング剤等を配合しても良い。
 析出させる凝固液としては、水又は水/アルコール混合溶媒、ベンゼン等の芳香族炭化水素類、アセトン、メチルエチルケトン等のケトン類、ジプロピルエーテル等のエーテル類、酢酸メチル、酢酸エチル、プロピオン酸メチル等の有機酸エステル等が用いられるが、取り扱いの容易な点で水又は水/アルコール混合溶媒が好ましい。該アルコールとしては、メタノール、エタノール、プロパノール等の炭素数1~4のアルコールが用いられるが、工業上好ましくはメタノールが用いられる。
 凝固液中の凝固液とEVOHのストランドとの重量比(凝固液/EVOHのストランド)としては、通常50~10000であり、好ましくは100~1000である。該範囲の重量比にすることにより、寸法分布が均一なEVOHペレットを得ることが可能となる。
 更に該凝固液中に、カルボン酸、カルボン酸金属塩およびカルボン酸エステルのうち少なくとも1つを含有させることも好ましい。
 EVOH溶液を凝固液と接触させる温度は、析出性の点で通常-10~40℃、好ましくは0~20℃で、特に好ましくは0~10℃である。EVOH溶液は任意の形状を有するノズルにより、上記の如き凝固液中にストランド状に押出される。かかるノズルの形状としては、特に限定されないが、円筒形状が工業的に好ましく、その長さは通常1~100cm、好ましくは3~30cmで、内径は通常0.1~10cm、好ましくは0.2~5.0cmである。かくしてノズルよりEVOH溶液がストランド状に押し出されるのであるが、ストランドは必ずしも一本である必要はなく、数本~数百本の間の任意の数で押し出し可能である。
 次いで、ストランド状に押し出されたEVOHは凝固が充分進んでから切断され、ペレット化されその後水洗される。かかるペレットの形状は、円柱状の場合は径が1~10mm、長さ1~10mmのもの、更にはそれぞれ2~6mmのものが、又球状の場合は径が1~10mmのもの、更には2~6mmのものが溶融混練の安定性の点で好ましい。
 上記水洗条件としては、該ペレットを通常10~40℃、好ましくは20~40℃の水槽中で水洗する。かかる水洗処理により、EVOH中のオリゴマーや不純物、溶剤等が除去される。さらに該水洗処理に続いて、または該水洗処理の代わりに、酢酸、リン酸、ホウ酸およびこれらの金属塩を含む水溶液中で処理して、EVOH中に該酸や金属塩を含有させることも、乾燥後のEVOHの色調、熱安定性、ロングラン成形性、積層体としたときの接着性樹脂との層間接着性、加熱延伸成形性等が改善される点で好ましく、かかる成分としては特に酢酸、リン酸、ホウ酸やそのアルカリ金属塩、アルカリ土類金属塩がその効果に優れる点で好ましく用いられる
 以上の方法により、EVOH(A1)を含み、含水率が50重量%以上である組成物(α)が得られるのであるが、含水率を微調整するために必要に応じて公知の乾燥処理(熱風乾燥、誘電加熱乾燥、マイクロ波照射乾燥等)を行うことや、溶融混練の安定性を向上するために含水ペレットの表面付着水除去操作を溶融混練の事前に行うことも、好ましい。
(溶融混合に用いる機械)
 かくして得られるEVOH(A1)を含み、含水率が50重量%以上である組成物(α)と、水膨潤性層状無機化合物(B)とを溶融混合するわけであるが、かかる溶融混合は公知の溶融混練装置を用いて混合すればよい。用いる装置・方法等に特に制限はなく、例えば押出機、ニーダー、ミキシングロール、バンバリーミキサー、プラストミル、ブラベンダーなどの公知の混練(混合)装置を使用して行う公知の方法を用いることができる。これらの混練装置は単独で使用してもよいし、2種類以上の装置を組み合わせて使用してもよい。また、用いる装置は、EVOH(A1)及び水膨潤性層状無機化合物(B)の種類、性質、形状等によって適宜選択すればよく、通常は工業的に広く用いられている単軸押出機、二軸押出機、バンバリーミキサー、ニーダー等が好適に用いられる。この中でも、混合の均一性及び安定性に優れる二軸押出機が最も好適に用いられる。
 以下、本発明に用いる二軸押出機について説明する。かかる押出機は公知のものであり、特に限定されるものではないが、例えば具体的に例示する場合、二軸押出機のバレルの内径は通常10mm以上、好ましくは15mm~150mmである。かかる内径が小さすぎる場合には十分な生産性が得られない傾向がある。さらに、L/Dは通常10~80であり、かかる数値が小さすぎる場合にはEVOH(A1)と水との組成物(α)成分と水膨潤性層状無機化合物(B)成分の混合能力が不足する傾向があり、大きすぎる場合には混練時間が増加することで水膨潤性層状無機化合物が破砕されて目的の樹脂が得られない傾向がある。
 さらに、二軸押出機のスクリュー構成に関しては特に限定はされないが、バレルの内径が20mm以上の場合には、EVOH(A1)と水との組成物(α)を固体状態から溶融状態にするために少なくとも1つ以上の混練部を構成することが好ましい。 また、スクリューの回転数に関しても特に限定はされないが、通常10~400rpm、好ましくは30~300rpmであり、かかる値が小さすぎる場合にはEVOH(A1)と水との組成物(α)成分と水膨潤性層状無機化合物(B)成分の混合能力が不足する傾向があり、大きすぎる場合には、せん断発熱が発生するために発泡によってストランドが切れて生産性が低下する傾向や、混合系内の水分量が低下して混合した際のトルクが高くなり水膨潤性層状無機化合物が破砕され目的の樹脂が得られない傾向がある。また、押出機内での滞留時間は、通常10~600秒、好ましくは10~300秒であり、かかる数値が小さすぎる場合にはEVOH(A1)と水との組成物(α)成分と水膨潤性層状無機化合物(B)成分の混合能力が不足する傾向があり、大きすぎる場合には、混合系内の水分量が低下して混合した際のトルクが高くなり水膨潤性層状無機化合物が破砕され目的の樹脂が得られない傾向がある。
 また、ベントに関しても特に限定するものではないが、加工時の水蒸気揮発を抑制するためにベント口を閉じて加工することが好ましい。さらに、サイドフィーダーとしては、水膨潤性層状無機化合物(B)成分を粉状、フレーク状で供給する場合には、スクリューフィーダー(単軸或いは二軸)等を押出機に設置すればよい。また、水膨潤性層状無機化合物(B)成分を水分散液状態にして供給する場合には、液体添加用キアポンプ或いはプランジャーポンプ等を押出機に設置すればよい。サイドフィーダーの設置場所としては、特に限定はされないが、混合時の水膨潤性層状無機化合物の破砕を抑制する点からEVOH(A1)と水との組成物(α)を溶融状態にする1番目の混練部以後に設置することが好適である。また、混練時に固形分から分離して発生する水分(液体)を除去する目的で、スリットバレル、排液口、排液ポンプ等の排気及び排液手段のうち少なくとも1つを備えてもよい。
 上記溶融混練の際の温度はとくに限定されないが、ホッパー下部からダイ部分が通常100℃未満であり、好ましくはホッパー下部が50~80℃、バレル部、ダイ部は80~100℃である。ホッパー下部からダイ部分の温度が高すぎる場合には発泡によってストランドが切れて生産性が低下する傾向や、混合系内の水分量が低下して混合した際のトルクが高くなり水膨潤性層状無機化合物が破砕され目的の複合体が得られない傾向があり、ホッパー下部の温度が高すぎる場合には、試料投入部で含水状態のEVOHペレットが互いに融着し、ブロッキングが発生して生産性が低下する傾向がある。
 上記溶融混練の際の樹脂組成物温度は、通常80℃~105℃、好ましくは90℃~100℃である。かかる温度が高すぎる場合には、発泡によってストランドが切れて生産性が低下する傾向や、混合系内の水分量が低下して混合した際のトルクが高くなり水膨潤性層状無機化合物が破砕され目的の樹脂が得られない傾向があり、低すぎる場合にはEVOH(A1)と水との組成物(α)の融着性が低下することでストランド切れが発生して生産性が低下する傾向がある。なお、加工時の樹脂組成物温度は、ダイ部分に樹脂温度計を設置することにより計測することができる。
(混合手法)
 EVOH(A1)と水との組成物(α)及び水膨潤性層状無機化合物(B)を二軸押出機に供給するにあたっては、特に制限はなく、(1)EVOH(A1)と水との組成物(α)と粉状、フレーク状等の固体状態の水膨潤性層状無機化合物(B)を一括に該押出機のホッパーに投入する方法、(2)EVOH(A1)と水との組成物(α)を押出機のホッパーから投入し、固体状態である水膨潤性層状無機化合物(B)を該押出機のバレルの一部から供給する(サイドフィード)方法、(3)EVOH(A1)と水との組成物(α)と水膨潤性層状無機化合物(B)を予め水に分散させた分散液を一括に該押出機のホッパーに投入する方法、(4)EVOH(A1)と水との組成物(α)を押出機のホッパーから投入し、水膨潤性層状無機化合物(B)を予め水に分散させた分散液を該押出機のバレルの一部から供給する(サイドフィード)方法等を挙げることができる。水膨潤性層状無機化合物(B)の配合量の増量が容易にできることから、(1)及び(2)の方法が好適であり、さらに、ホッパー投入部でのブロッキング現象を抑制して製造時のハンドリング性が良好であることから(2)の方法が最も好適である。
 かくしてEVOH(A1)と水との組成物(α)と水膨潤性層状無機化合物(B)が混合された組成物(C)が押出機から吐出されて得られる。かかる組成物(C)の形状は特に限定されるものではないが、取り扱い性からペレット形状にすることが好ましい。ペレット化の方法としては、特に限定はされず、(1)ストランド状態で吐出して冷却固化(水などの凝固浴内に接触させる、或いはベルト上に運搬して空冷)させた後にペレタイザーを用いてカッティングする方法、(2)樹脂が溶融した状態で大気中或いは水中下においてカッティングする方法などが挙げられる。
(混練終了直後の組成物(C)の含水率説明)
 上記押出機から吐出直後の組成物(C)の含水率は通常40重量%以上70重量%未満であり、好ましくは45~65重量%、特に好ましくは45~60重量%である。かかる含水率が少なすぎる場合には、EVOH(A1)と水との組成物(α)成分と水膨潤性層状無機化合物(B)成分の混合時にトルクが高くなり水膨潤性層状無機化合物が破砕されすぎて十分なガスバリア改善作用が得られない恐れがあり、多すぎる場合には後述の組成物(C)とEVOH(A2)の混合時に固形分成分と水が分離しやすく不均一な混合状態となり、EVOH複合体のフィルム外観の悪化やストランド切れによる加工性低下を生じる傾向がある。
(組成物(C)の説明)
 かかる組成物(C)における水膨潤性層状無機化合物(B)の量については、含水率0.3重量%の状態にした場合の組成物(C‘)の総重量に対する量として以下規定する。即ち、かかる組成物(C)における水膨潤性層状無機化合物(B)の量は含水率0.3重量%の状態にした組成物(C‘)の総重量に対して通常10~50重量%、好ましくは15~40重量%、さらに好ましくは17~30重量%を満たすような量である。かかる水膨潤性層状無機化合物(B)成分の配合量が少なすぎる場合、後述の組成物(C)とEVOH(A2)の混合時に樹脂成分と水が分離しやすく不均一な混合状態となり、EVOH複合体のフィルム外観の悪化やストランド切れによる加工性低下を生じる傾向があり、多すぎる場合には得られた組成物(C)をEVOH(A2)と混合して本発明のEVOH複合体を得る際に、水膨潤性層状無機化合物(B)の分散状態が不十分となりフィルム外観が悪化する傾向がある。
 また、組成物(C)におけるEVOH(A1)と水膨潤性層状無機化合物(B)の比率(A1)/(B)は、重量比で通常50/50~90/10、好ましくは60/40~85/15、特には70/30~83/17であることが好ましい。かかる混合割合大きすぎる場合には、混合時に固形分成分と水が分離しやすく不均一な混合状態となり、ストランド切れ発生により製造安定性が低下する傾向がある。かかる混合割合(A1)/(B)が小さすぎる場合には、組成物(C)の流動性が低下するため、組成物(C)とEVOH(A2)を混合する際に組成物(C)を均一に拡散することができず、EVOH複合体をフィルム成形した際にフィッシュアイが発生する恐れがある。
(組成物(C)成分とEVOH(A2)成分との混合)
 次いで、上記のようにして得た組成物(C)をEVOH(A2)とを混合する。
 このとき、組成物(C)とEVOH(A2)との混合割合について、組成物(C)の含水率を0.3重量%の状態にした時の組成物(C‘)との混合割合として以下規定する。即ち、組成物(C)の含水率を0.3重量%の状態にした組成物(C‘)とEVOH(A2)との混合割合(C‘)/(A2)が、重量比で通常1/99~50/50、好ましくは5/95~45/55、特に好ましくは10/90~40/60を満たすような割合である。かかる混合割合(C‘)/(A2)が大きすぎる場合には、組成物(C)とEVOH(A2)を混合する際に組成物(C)を均一に拡散することができず、EVOH複合体をフィルム成形した際にフィッシュアイが発生する恐れがある。かかる混合割合(C‘)/(A2)が小さすぎる場合には、本発明の特徴であるガスバリア性改善作用が十分に得られない傾向がある。
 また、組成物(C)とEVOH(A2)の混合において、EVOH(A1)/EVOH(A2)は、重量比で通常1/99~45/55、好ましくは5/95~40/60、特に好ましくは10/90~35/65を満たすような割合である。
 ここで、上記EVOH(A2)は、上記EVOH(A)と同様の公知一般EVOHである。
 かかるEVOH(A2)は、一般に流通しているEVOH樹脂そのものを用いても良いし、EVOH(A1)と水との組成物(α)と同様に、EVOH(A2)と水との組成物として用いても良い。生産性の点から、EVOH(A2)と水との組成物ではなく、一般に流通する成形用のEVOH樹脂を用いることが好ましい。このとき、一般に流通する成形用のEVOH樹脂が有する含水率は、通常0.5重量%未満、好ましくは0.3重量%以下である。かかる含水率が多すぎる場合には、試料投入部において、EVOHが融着してブロッキングが発生して生産性が低下する傾向があり、さらに吐出後の含水率が増加する傾向がある。
 また、得られるEVOH複合体から得られるフィルム外観特性をさらに向上させるためには、組成物(C)とEVOH(A2)を混合する際の組成物(C)の含水率が、10重量%以上60重量%未満である。特に好ましくは20重量%以上60重量%未満、殊に好ましくは45重量%以上60重量%未満である。
 かかる含水率が少なすぎる場合、組成物(C)の流動性が悪く、組成物(C)がEVOH(A2)内で均一に拡散することができず、凝集することが原因でEVOH複合体をフィルム成形した際にフィッシュアイが発生する恐れがある。また、公知の乾燥機等を用いて組成物(C)に含まれる多量の水分を除去するには、多量の熱エネルギー及び乾燥時間が必要となるため、乾燥効率および生産性が低下する傾向がある。
 かかる含水率が多すぎる場合、押出機からの熱によって組成物(C)同士が融着してブロッキングが発生して安定供給することが困難になる傾向がある。
 組成物(C)の含水率を調整するために、必要に応じて若干乾燥したり、加湿しても差し支えない。
 組成物(C)をEVOH(A2)と混合する方法としては、(1)組成物(C)を予め乾燥処理して含水率を調整した組成物(C)とEVOH(A2)とを溶融混練装置にて混合する方法、(2)EVOH(A1)と水との組成物(α)と水膨潤性層状無機化合物(B)成分を設定温度100℃以上にした溶融混練装置にて混合し、混練と同時に水分を乾燥させて得られる組成物(C)とEVOH(A2)とを溶融混練装置にて混合する方法、(3)組成物(C)とEVOH(A2)とを溶融混練装置にて混合しながら混練と同時に水分を乾燥する方法が挙げられるが溶融混合時の水膨潤性層状無機化合物の過剰な破砕を軽減してガスバリア性能の低下を抑制し、かつフィルム成形時のフィッシュアイ発生を抑制する点で、(3)の方法が特に好ましい。
 装置への各成分の供給法に関しても特に限定するものではなく、(1)組成物(C)とEVOH(A2)を一括に該押出機のホッパーに投入する方法、(2)EVOH(A2)を押出機のホッパーから投入し、組成物(C)を該押出機のバレルの一部から供給する(サイドフィード)方法、(3)組成物(C)を押出機のホッパーから投入し、EVOH(A2)を該押出機のバレルの一部から供給する(サイドフィード)方法等を挙げることができる。組成物(C)とEVOH(A2)の混合時の水膨潤性層状無機化合物の過剰な破砕を抑制する点からは、(1)及び(2)の方法が好ましい。
 かかる混合には、上述したEVOH(A1)と水との組成物(α)成分と水膨潤性層状無機化合物(B)成分との混合時と同じく、通常、二軸押出機を用いることが好ましい。二軸押出機のバレルの内径、L/D、スクリュー構成、スクリューの回転数、押出機内での滞留時間、ベントやサイドフィーダーに関しても特に限定するものではなく、上述したEVOH(A1)と水との組成物(α)成分と水膨潤性層状無機化合物(B)成分との混合時と同様のものを使用することが出来る。
 このとき、組成物(C)またはEVOH(A2)をサイドフィーダーで供給する場合には、スクリューフィーダー(単軸或いは二軸)等を押出機に設置すればよい。サイドフィーダーの設置場所としては、特に限定はされないが、混合時の水膨潤性層状無機化合物の破砕を抑制する点からEVOHを溶融状態にする1番目の混練部以後に設置することが好適である。
 上記溶融混練の際の温度はとくに限定されないが、ホッパー下部からダイ部分が通常150~250℃であり、好ましくは160~240℃、特に好ましくは180~230℃である。かかる温度が低すぎる場合には樹脂が未溶融状態となり加工状態が不安定になる傾向があり、高すぎる場合には、熱劣化によってEVOH複合体の品質が低下する傾向がある。
 また、吐出後のEVOH複合体は、通常、EVOH複合体と水との組成物の状態で吐出されるが、かかる含水率を低減させる目的で、溶融混練中に水分が少なくとも1箇所以上のベントから除去されるようにすることが好ましく、特には真空ポンプ等を用いて減圧吸引することが乾燥効率とEVOH複合体の熱劣化抑制の点で好ましい。
(乾燥方法)
  かくして得られる本発明のEVOH複合体は、通常、EVOH複合体と水との組成物の状態で得られるため、必要に応じて、成形前に乾燥が行われる。
 かかる乾燥方法としては種々の方法を採用することが可能である。例えば、実質的にペレット状のEVOH複合体が機械的にもしくは熱風により撹拌分散されながら行われる流動乾燥や、実質的にペレット状のEVOH複合体が撹拌、分散などの動的な作用を与えられずに行われる静置乾燥が挙げられ、流動乾燥を行うための乾燥器としては円筒・溝型撹拌乾燥器、円管乾燥器、回転乾燥器、流動層乾燥器、振動流動層乾燥器、円錐回転型乾燥器等が挙げられ、また、静置乾燥を行うための乾燥器として、材料静置型としては回分式箱型乾燥器が、材料移送型としてはバンド乾燥器、トンネル乾燥器、竪型乾燥器等を挙げることができるが、これらに限定されるものではない。流動乾燥と静置乾燥を組み合わせて行うことも可能である。
 該乾燥処理時に用いられる加熱ガスとしては空気または不活性ガス(窒素ガス、ヘリウムガス、アルゴンガス等)が用いられ、該加熱ガスの温度としては、通常40~150℃である。また、減圧状態(例えば具体的には10-2~10Pa)で乾燥を行うことも、より低温あるいはより短時間で乾燥でき、EVOH複合体の熱劣化防止の点で好ましい。該乾燥処理の時間としては、EVOH複合体の含水量やその処理量にもよるが、生産性とEVOH複合体の熱劣化防止の点で通常は15分~200時間程度、好ましくは20分~50時間、特に好ましくは30分~10時間である。
 上記の条件でEVOH複合体が得られるのであるが、本願発明のEVOH複合体の含水率は通常0.001~5重量%、好ましくは0.01~1重量%、特に好ましくは0.1~0.5重量%であり、該含水率が少なすぎる場合にはEVOH複合体を溶融成形した時のロングラン成形性が低下する傾向にあり、多すぎる場合には押出成形時に発泡が発生する傾向がある。
 また、得られた本発明のEVOH複合体におけるEVOH(A)、すなわち{EVOH(A1)+EVOH(A2)}の含有量は、EVOH複合体の総重量に対して通常70~99.5重量%、好ましくは80~99重量%、特に好ましくは90~98重量%である。かかるEVOH(A)の含有割合が少なすぎると、EVOHが連続相を形成せずガスバリア性が低下する傾向にあり、逆に多すぎると本発明の特徴であるガスバリア性改善作用が十分に得られない傾向がある。
(成形)
 本発明のEVOH複合体は、通常、溶融成形等によりフィルム、シート、容器、繊維、棒、管、各種成形品等に成形され、各種用途に用いられる。また、これらの粉砕品(回収品を再使用する時など)を用いて再び溶融成形に供することもできる。かかる溶融成形方法としては、押出成形法(T-ダイ押出、インフレーション押出、ブロー成形、溶融紡糸、異型押出等)、射出成形法が主として採用される。溶融成形温度は、通常150~300℃の範囲、好ましくは160~250℃、特に好ましくは170~230℃から選ぶことが多い。かかる溶融成形温度が低すぎると、流動性不足により溶融成形性が低下する傾向がある。かかる溶融成形温度が高すぎると、EVOH複合体が熱劣化してフィッシュアイの発生や着色など外観不良が発生する傾向がある。
 また、本発明のEVOH複合体は、単体の成形物として用いることができるが、特に該EVOH複合体を含む層を少なくとも1層有する積層体として各種成形物に成形して用いることが有用である。
(積層体)
 該積層体の製造方法としては、例えば本発明のEVOH複合体を含むフィルムやシートに熱可塑性樹脂を溶融押出する方法、逆に熱可塑性樹脂等の基材に該EVOH複合体を溶融押出する方法、該EVOH複合体と他の熱可塑性樹脂とを共押出する方法、更には該EVOH複合体を含むフィルムやシートと他の基材のフィルム、シートとを有機チタン化合物、イソシアネート化合物、ポリエステル系化合物、ポリウレタン化合物等の公知の接着剤を用いてドライラミネートする方法等が挙げられる。また、本発明の製造法で得られるEVOH複合体は、共押出成形に供することも好ましい。
 共押出の場合の相手側樹脂としては公知の熱可塑性樹脂、たとえばポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、共重合ポリアミド、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン、アクリル系樹脂、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン、芳香族及び脂肪族ポリケトン、脂肪族ポリアルコール等が挙げられ、好適には、優れた機械的性質、押出加工性を有し、多種多様な成形に対応できる点でポリオレフィン系樹脂が用いられる。
 かかるポリオレフィン系樹脂としては、上述した樹脂と同様の樹脂が用いられる。なかでも、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、超低密度ポリエチレン(VLDPE)、エチレン-酢酸ビニル共重合体(EVA)、アイオノマーが、得られる積層包装材の耐屈曲疲労性、耐振動疲労性等に優れる点で好ましい。
 積層体の層構成は、本発明のEVOH複合体を含む層をa(a1、a2、・・・)、他の基材、例えば熱可塑性樹脂層をb(b1、b2、・・・)とするとき、フィルム、シート、ボトル状であれば、a/bの二層構造のみならず、b/a/b、a/b/a、a1/a2/b、a/b1/b2、b2/b1/a/b1/b2、b1/b2/a/b3/b4、a1/b1/a2/b2等任意の組み合わせが可能である。また、繊維やフィラメント状にする場合も同様の樹脂を用いることができ、a、bがバイメタル型、芯(a)-鞘(b)型、芯(b)-鞘(a)型、或いは偏心芯鞘型等任意の組み合わせが可能である。
 尚、上記の層構成において、それぞれの層間には、必要に応じて接着性樹脂層を設けることができる。かかる接着性樹脂としては、種々のものを使用することができ、上記bの樹脂の種類によって異なり一概に言えないが、不飽和カルボン酸又はその無水物をオレフィン系重合体(上述の広義のポリオレフィン系樹脂)に付加反応やグラフト反応等により化学的に結合させて得られるカルボキシル基を含有する変性オレフィン系重合体を挙げることができる。
 具体的には、無水マレイン酸グラフト変性ポリエチレン、無水マレイン酸グラフト変性ポリプロピレン、無水マレイン酸グラフト変性エチレン-プロピレン(ブロック又はランダム)共重合体、無水マレイン酸グラフト変性エチレン-エチルアクリレート共重合体、無水マレイン酸グラフト変性エチレン-酢酸ビニル共重合体等から選ばれた1種又は2種以上の混合物が好適なものとして挙げられる。このときの、オレフィン系重合体に含有される不飽和カルボン酸又はその無水物の量は、0.001~3重量%が好ましく、更に好ましくは0.01~1重量%、特に好ましくは0.03~0.5重量%である。該変性物中の変性量が少ないと、接着性が不充分となることがあり、逆に多いと架橋反応を起こし、成形性が悪くなることがある。
 またこれらの接着性樹脂には、本発明の製造方法で得られたEVOH複合体や他のEVOH、ポリイソブチレン、エチレン-プロピレンゴム等のゴム・エラストマー成分、更には上記b層の樹脂等をブレンドすることも可能である。特に、接着性樹脂の母体のポリオレフィン系樹脂と異なるポリオレフィン系樹脂をブレンドすることも可能である。
 積層体の各層の厚みは、層構成、上記bの種類、用途や容器形態、要求される物性などにより一概に言えないが、通常は、a層は5~500μm、更には10~200μm、b層は5~5000μm、更には30~1000μm、接着性樹脂層は5~400μm、更には10~150μm程度の範囲から好適に選択される。また、a層と接着性樹脂層の厚み比は、通常a層の方が厚く、a層/接着性樹脂層として通常1~100、好ましくは1~50、特に好ましくは1~10である。
 また、a層とb層の厚み比は、多層フィルム中の同種の層厚みを全て足し合わせた状態で、通常、b層の方が厚く、b層/a層として通常1~100、好ましくは3~20、特に好ましくは6~15である。
 a層が薄すぎる場合はガスバリア性が不足し、またその厚み制御が不安定となり、逆に厚すぎる場合耐屈曲疲労性が劣り、かつ経済的でなく好ましくなく、またb層が薄すぎる場合は剛性が不足し、逆に厚すぎた場合は耐屈曲疲労性が劣り、かつ重量が大きくなり好ましくなく、接着性樹脂層が薄すぎる場合では層間接着性が不足し、またその厚み制御が不安定となり、逆に厚すぎる場合は重量が大きくなり、かつ経済的でなく好ましくない。また、積層体の各層には、成形加工性や諸物性の向上のために、前述の各種添加剤や改質剤、充填材、他樹脂等を本発明の効果を阻害しない範囲で添加することもできる。
 更に該積層体の物性を改善するためには延伸処理を施すことも好ましい。かかる延伸については、一軸延伸、二軸延伸のいずれであってもよく、できるだけ高倍率の延伸を行ったほうが物性的に良好で、延伸時にピンホールやクラック、延伸ムラ、デラミ等の生じない延伸フィルムや延伸シート、延伸容器、延伸ボトル等の成形物が得られる。延伸方法としては、ロール延伸法、テンター延伸法、チューブラー延伸法、延伸ブロー法等の他、深絞成形、真空圧空成形等のうち延伸倍率の高いものも採用できる。二軸延伸の場合は同時二軸延伸方式、逐次二軸延伸方式のいずれの方式も採用できる。延伸温度は通常60~170℃、好ましくは80~160℃程度の範囲から選ばれる。延伸温度が60℃未満では延伸性が不良となり、170℃を越えると安定した延伸状態を維持することが困難となる傾向がある。
 延伸が終了した後、延伸フィルムに寸法安定性を付与する目的で、次いで熱固定を行うことも好ましい。熱固定は周知の手段で実施可能であり、上記延伸フィルムを緊張状態を保ちながら例えば通常80~170℃、好ましくは100~160℃で通常2~600秒間程度熱処理を行う。また、生肉、加工肉、チーズ等の熱収縮包装用途に用いる場合には、延伸後の熱固定は行わずに製品フィルムとし、上記の生肉、加工肉、チーズ等を該フィルムに収納した後、通常50~130℃、好ましくは70~120℃で、通常2~300秒程度の熱処理を行って、該フィルムを熱収縮させて密着包装をする。
 該積層体は、そのまま各種形状のものに使用することができる。積層体の形状としては任意のものであってよく、フィルム、シート、テープ、ボトル、パイプ、フィラメント、異型断面押出物等が例示される。また、多層シートや多層フィルムからカップやトレイ状の多層容器を得る場合は、絞り成形法が採用され、具体的には真空成形法、圧空成形法、真空圧空成形法、プラグアシスト式真空圧空成形法等が挙げられる。更に多層パリソン(ブロー前の中空管状の予備成形物)からチューブやボトル状の多層容器を得る場合はブロー成形法が採用され、具体的には押出ブロー成形法(双頭式、金型移動式、パリソンシフト式、ロータリー式、アキュムレーター式、水平パリソン式等)、コールドパリソン式ブロー成形法、射出ブロー成形法、二軸延伸ブロー成形法(押出式コールドパリソン二軸延伸ブロー成形法、射出式コールドパリソン二軸延伸ブロー成形法、射出成形インライン式二軸延伸ブロー成形法等)などが挙げられる。得られる積層体は必要に応じ、熱処理、冷却処理、圧延処理、印刷処理、ドライラミネート処理、溶液又は溶融コート処理、製袋加工、深絞り加工、箱加工、チューブ加工、スプリット加工等を行うことができる。
 上記の如く得られたカップ、トレイ、チューブ、ボトル等からなる容器や延伸フィルムからなる袋や蓋材は一般的な食品の他、マヨネーズ、ドレッシング等の調味料、味噌等の発酵食品、サラダ油等の油脂食品、飲料、化粧品、医薬品、洗剤、香粧品、工業薬品、農薬、燃料等各種の容器として有用である。
 以下、実施例を挙げて本発明を具体的に説明する。
 なお、実施例中「部」、「%」とあるのは特に断りのない限り重量基準を示す。
(EVOH(A1)と水を含む組成物(α)の作製)
 エチレン含有量29モル%のエチレン-酢酸ビニル共重合体を40%含むメタノール溶液1000部に、水酸化ナトリウムを6%含むメタノール溶液40部およびメタノール2500部を連続的に供給すると共に、副生する酢酸メチルおよび余分のメタノールを系から留出させながら、110℃で2.5時間ケン化反応を行い、酢酸ビニル成分のケン化度99.0モル%のEVOHを得た。次に該ケン化反応終了液に、30%含水メタノール450部を共沸点下で供給しながら余分のメタノールを留去させ、EVOHの水/メタノール混合溶液(水/メタノール=50/50(重量比)、樹脂濃度40%)を得た。続いて該EVOHの水/メタノール混合溶液(液温50℃)を孔径4mmのノズルより5℃に維持された凝固液(水95%、メタノール5%)槽にストランド状に押し出して、該EVOH溶液をストランド状に凝固させた後、該ストランド状のEVOH凝固物を水槽の端部に付設された引き取りローラーに導き、カッターで切断し、直径4mm、長さ4mmの白色の多孔性ペレット(樹脂分30%、含水率25%、メタノール含有量45%)を得た。更に、得られた白色の多孔性ペレットを、30℃の温水1000部に投入して、約240分間撹拌洗浄して、EVOH(A1)を含み、含水率が60%である組成物(α)のペレットを得た。
実施例1
 含水率60%のEVOH(A1)と水を含む組成物(α)と、水膨潤性層状無機化合物(B)として天然モンモリロナイト〔クニミネ工業株式会社製『クニピアF』膨潤力62ml/2g、カチオン交換容量109meq/100g、アスペクト比320〕を二軸押出機(スクリュー径57mm、L/D=44、大阪精機工作製OTE-57-II)に供給して溶融混合を行った。この際、EVOH(A1)を含み、含水率が60%である組成物(α)はホッパー部より供給、水膨潤性層状無機化合物(B)は2軸サイドフィーダー(C5位置に設置)より供給した。ここで、EVOH(A1)成分と水膨潤性層状無機化合物(B)成分の混合割合(A1)/(B)は、80/20である。
〔混合条件〕
EVOH(A1)と水との組成物(α)供給量  130kg/時間
                (EVOH(A1)として52kg/時間)
水膨潤性層状無機化合物(B)供給量      13kg/時間
スクリュー構成                通常混練型スクリュー
            (C1~C5間、C6~C13間にニーディングディスクを配置)
スクリュー回転数   250rpm
ダイス        ストランドダイ(径3.5mmφ:8穴)
ベント        C8、C11部のみ開放、その他は閉
温度設定       C1 65℃    C9  95℃
           C2 90℃    C10 95℃
           C3 95℃    C11 95℃
           C4 95℃    C12 95℃
           C5 95℃    C13 95℃
           C6 95℃    AD  95℃
           C7 95℃    D   95℃
           C8 95℃
モータートルク    54Ampere
 押出機出口に設けられたストランドダイから混合物をストランド状に押出して、ペレタイザーを用いてカッティングして組成物(C)のペレット(含水率46%:直径2.5mm、長さ3mmの円筒状)を得た。次に組成物(C)(含水率46%)とEVOH(A2)(エチレン含有量29モル%、ケン化度99.5モル%、MFR(210℃)8g/10分、含水率0.3%)を二軸押出機(スクリュー径57mm、L/D=44、大阪精機工作製OTE-57-II)に供給して溶融混合を行った。EVOH(A2)はホッパー部より供給、含水率46%の組成物(C)は2軸サイドフィーダー(C5位置に設置)より供給した。ここで、組成物(C)の含水率を0.3%の状態にした組成物(C‘)とEVOH(A2)の混合割合(C‘)/(A2)は、重量比で25/75である。
〔(C)/(A2)混合条件〕
組成物(C)供給量      18.5kg/時間
EVOH(A2)供給量    30kg/時間
スクリュー構成    通常混練型スクリュー
スクリュー回転数   80rpm
ダイス        ストランドダイ(径3.5mmφ:8穴)
ベント        C8を開放、C11部を真空吸引、その他は閉
温度設定       C1 200℃    C9  230℃
           C2 230℃    C10 230℃
           C3 230℃    C11 230℃
           C4 230℃    C12 230℃
           C5 230℃    C13 230℃
           C6 230℃    AD  230℃
           C7 230℃    D   230℃
           C8 230℃
モータートルク    110Ampere
 押出機出口に設けられたストランドダイから混合物をストランド状に押出して、ペレタイザーを用いてカッティングしてEVOH複合体のペレット(含水率0.3%:直径2.5mm、長さ3mmの円筒状)を得た。
 得られたペレットを白金容器に入れて電子天秤にてフィルム重量を秤量(Wa:単位g)した後、700℃に維持された電気炉内に1.5時間入れてEVOH成分を焼却させた後、さらに炉から取り出してデシケーター内で30分間放冷させた後の重量を同様に秤量(Wb)して、EVOH100重量部に対する水膨潤性層状無機化合物量を以下の(1)式から算出した結果、5.0重量部であった。即ち、EVOH複合体におけるEVOH{(A1)+(A2)}と水膨潤性層状無機化合物(B)の比率{(A1)+(A2)}/(B)は、重量比で、95/5であった。
 水膨潤性層状無機化合物量(重量部)={Wb/(Wa―Wb)}×100 …(1)
 上記で得られた本発明のEVOH複合体のペレットを、Tダイを取り付けた単軸押出機に供給して単層フィルム(膜厚30μm)を作製した。
〔単層フィルム成形条件〕
 押出機       40mmφ単軸押出機
 スクリュー構成   フルフライト(圧縮比3.5)
 スクリュー回転数  40rpm
 スクリーンパック  90/120/90メッシュ
 ダイス       Tダイ(コートハンガータイプ、ダイ巾450mm)
 温度設定      C1 210℃    H 230℃
           C2 230℃    D 230℃
           C3 230℃
           C4 230℃
 冷却ロール温度   90℃
 引き取り速度    8.9m/min
 エアギャップ    100mm
(I)酸素バリア性の評価
 酸素透過度測定装置(MOCON社製『OXTRAN TWIN』)を用いて、23℃・80%RHの条件下で酸素透過度を測定した。なお、テストガスとしては100%濃度の酸素ガスを使用した。結果を表2に示す。
(II)引張特性の評価
オートグラフ(島津製作所製『AGS-H 5kN』)を用いて、JIS K7161に準じてフィルムMD方向の引張特性について評価した。結果を表2に示す。
   フィルム試料  23℃・50%RH調湿フィルム
   試験片形状   JIS K7127-type5
   引張速度    50mm/min
(III)フィルム外観特性の評価
 デジタル欠陥検査装置(MAMIYA-OP製『GX-70LT』)を用いて、10cm×10cm内におけるフィッシュアイ数を、フィッシュアイ(小)[直径0.1mm以上0.19mm未満]、フィッシュアイ(大)[直径0.2mm以上]、の2種類に分類して計測した。結果を表2に示す。
実施例2
 実施例1において、組成物(C)/EVOH(A2)の混合条件を、組成物(C)の含水率を25%、組成物(C)の供給量を13.5kg/時間に変更した以外は実施例1と同様に行った。なお、含水率25%の組成物(C)は、押出機より得られた含水率46%の組成物(C)を流動乾燥機にて温度80℃、水分含有率0.6%の窒素ガスを通過させて45分間乾燥を行ったものを用いた。ここで、組成物(C)とEVOH(A2)の混合割合は、組成物(C)の含水率を0.3%の状態にした組成物(C‘)とEVOH(A2)の混合割合(C‘)/(A2)として、重量比で25/75である。得られたEVOH複合体のペレットの含水率は0.15%、EVOH100重量部に対する水膨潤性層状無機化合物量は5.0重量部であった。即ち、EVOH複合体におけるEVOH{(A1)+(A2)}と水膨潤性層状無機化合物(B)の比率{(A1)+(A2)}/(B)は、重量比で、95/5であった。
 得られたEVOH複合体について、実施例1と同様の条件にて外観特性評価用の単層フィルム(膜厚30μm)を作製して、同様の評価を行った。
実施例3
 実施例1において、組成物(C)/EVOH(A2)の混合条件を、組成物(C)の含水率を15%、組成物(C)の供給量を11.7kg/時間に変更した以外は実施例1と同様に行った。なお、含水率15%の組成物(C)は、押出機より得られた含水率46%の組成物(C)を流動乾燥機にて温度80℃、水分含有率0.6%の窒素ガスを通過させて2時間乾燥を行ったものを用いた。ここで、組成物(C)とEVOH(A2)の混合割合は、組成物(C)の含水率を0.3%の状態にした組成物(C‘)とEVOH(A2)の混合割合(C‘)/(A2)として、重量比で25/75である。得られたEVOH複合体のペレットの含水率は0.15%、EVOH100重量部に対する水膨潤性層状無機化合物量は5.0重量部であった。即ち、EVOH複合体におけるEVOH{(A1)+(A2)}と水膨潤性層状無機化合物(B)の比率{(A1)+(A2)}/(B)は、重量比で、95/5であった。
 得られたEVOH複合体について、実施例1と同様の条件にて外観特性評価用の単層フィルム(膜厚30μm)を作製して、同様の評価を行った。
比較例1
 実施例1において、組成物(C)/EVOH(A2)混合条件を、組成物(C)の含水率を5%、組成物(C)の供給量を10.5kg/時間に変更した以外は実施例1と同様に行った。なお、含水率5%の組成物(C)は、押出機より得られた含水率46%の組成物(C)を流動乾燥機にて温度80℃、水分含有率0.6%の窒素ガスを通過させて16時間乾燥を行ったものを用いた。ここで、組成物(C)とEVOH(A2)の混合割合は、組成物(C)の含水率を0.3%の状態にした組成物(C‘)とEVOH組成物(A2)の混合割合(C‘)/(A2)として、重量比で25/75である。得られたEVOH複合体のペレットの含水率は0.13%、EVOH100重量部に対する水膨潤性層状無機化合物量は5.0重量部であった。即ち、EVOH複合体におけるEVOH{(A1)+(A2)}と水膨潤性層状無機化合物(B)の比率{(A1)+(A2)}/(B)は、重量比で、95/5であった。
 得られたEVOH複合体について、実施例1と同様の条件にて外観特性評価用の単層フィルム(膜厚30μm)を作製して、同様の評価を行った。
 以上の実施例、比較例の条件および結果を表1および2に表わす。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 例えば、延伸フィルムや真空圧空成形で絞り容器を作製するなど二次加工を施す場合には、直径0.2mm以上のフィッシュアイ(大)が多く存在すると、EVOH複合体層に欠点が多量に発生してガスバリア性が低下する傾向がある。また、食品包装の分野では内容物の透視性や包装体の美観が必要とされるが、フィッシュアイ(小)が多く存在すると透視性や美観を妨げる原因となる。
 実施例1~3は、EVOH(A2)に混合する際の組成物(C)の含水率を適度に調整することによって、ガスバリア性、フィルム剛性が優れているのに加え、さらに組成物(C)に含まれる水分の乾燥効率を改善でき、なおかつフィッシュアイ発生量の少ない高品位フィルムが得られた。これに対して、比較例1では、ガスバリア性、フィルム剛性に関しては優れているものの、組成物(C)の流動性が悪くEVOH(A2)内で均一に拡散することができずに残存した組成物(C)の凝集物が原因となったためか、EVOH複合体をフィルム成形した際にフィッシュアイ(大)が特に多量に発生する結果となった。従って、本願発明の製造方法を採用することによる優位性は明らかである。
 本発明によって得られるEVOH複合体から得られるフィルムは、該フィルム単独またはポリオレフィンやポリアミドなどの他の樹脂フィルムとの積層フィルムとして、または、各種基材との積層体として、例えば、カップ、トレイ、チューブ、ボトル等の成形容器や、延伸フィルムからなる袋や蓋材は一般的な食品の他、マヨネーズ、ドレッシング等の調味料、味噌等の発酵食品、サラダ油等の油脂食品、飲料、化粧品、医薬品、洗剤、香粧品、工業薬品、農薬、燃料等各種の容器などに好適に用いることが出来る。

Claims (15)

  1.  エチレン-ビニルエステル系共重合体ケン化物(A1)を含み、含水率が50重量%以上である組成物(α)と水膨潤性層状無機化合物(B)を混合して、含水率10重量%以上60重量%未満の組成物(C)を得、次いでその組成物(C)とエチレン-ビニルエステル系共重合体ケン化物(A2)とを混合することを特徴とするエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  2.  エチレン-ビニルエステル系共重合体ケン化物(A2)の含水率が0.5重量%未満であることを特徴とする請求項1記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  3.  エチレン-ビニルエステル系共重合体ケン化物(A1)と水膨潤性層状無機化合物(B)との混合割合(A1)/(B)が、重量比で90/10~50/50を満たすような割合であることを特徴とする請求項1または2記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  4.  組成物(C)の含水率を0.3重量%の状態にした組成物(C‘)と含水エチレン-ビニルエステル系共重合体ケン化物組成物(A2)との混合割合(C‘)/(A2)が、重量比で1/99~50/50を満たすような割合であることを特徴とする請求項1~3いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  5.  エチレン-ビニルエステル系共重合体ケン化物複合体における、エチレン-ビニルエステル系共重合体ケン化物{(A1)+(A2)}と水膨潤性層状無機化合物(B)との比率{(A1)+(A2)}/(B)が、重量比で85/15~99.5/0.5であることを特徴とする請求項1~4いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  6.  エチレン-ビニルエステル系共重合体ケン化物(A1)およびエチレン-ビニルエステル系共重合体ケン化物(A2)のエチレン含有量が、20~60モル%であることを特徴とする請求項1~5いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  7.  エチレン-ビニルエステル系共重合体ケン化物(A1)およびエチレン-ビニルエステル系共重合体ケン化物(A2)のケン化度が、90~100モル%であることを特徴とする請求項1~6いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  8.  エチレン-ビニルエステル系共重合体ケン化物(A1)およびエチレン-ビニルエステル系共重合体ケン化物(A2)のMFR値が、210℃、2160g荷重での測定値において、1~100g/10分であることを特徴とする請求項1~7いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  9.  水膨潤性層状無機化合物(B)が、スメクタイト類であることを特徴とする請求項1~8いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  10.  水膨潤性層状無機化合物(B)の水に対する膨潤力が、JBAS-104-77に記載の試験方法で測定した値で、40ml/2g以上であることを特徴とする請求項1~9いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  11.  水膨潤性層状無機化合物(B)の粒子径が、JIS R 1629で測定した値で10~3000nmであることを特徴とする請求項1~10いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  12.  エチレン-ビニルエステル系共重合体ケン化物複合体の含水率が、0.001~5重量%であることを特徴とする請求項1~11いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  13.  エチレン-ビニルエステル系共重合体ケン化物(A1)およびエチレン-ビニルエステル系共重合体ケン化物(A2)が、酢酸ビニルとエチレンの共重合体ケン化物であることを特徴とする請求項1~12いずれか記載のエチレン-ビニルエステル系共重合体ケン化物複合体の製造方法。
  14.  請求項1~13いずれか記載の製造方法にて得られたエチレン-ビニルエステル系共重合体ケン化物複合体を含む成形物。
  15.  請求項1~13いずれか記載の製造方法にて得られたエチレン-ビニルエステル系共重合体ケン化物複合体を含む層を少なくとも1層有することを特徴とする積層体。
PCT/JP2008/062020 2008-07-02 2008-07-02 Evoh複合体の製造方法 WO2010001471A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08790824.0A EP2301998B1 (en) 2008-07-02 2008-07-02 Process for producing evoh composite material
US13/001,808 US8722785B2 (en) 2008-07-02 2008-07-02 Process for producing EVOH composite
PCT/JP2008/062020 WO2010001471A1 (ja) 2008-07-02 2008-07-02 Evoh複合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/062020 WO2010001471A1 (ja) 2008-07-02 2008-07-02 Evoh複合体の製造方法

Publications (1)

Publication Number Publication Date
WO2010001471A1 true WO2010001471A1 (ja) 2010-01-07

Family

ID=41465587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/062020 WO2010001471A1 (ja) 2008-07-02 2008-07-02 Evoh複合体の製造方法

Country Status (3)

Country Link
US (1) US8722785B2 (ja)
EP (1) EP2301998B1 (ja)
WO (1) WO2010001471A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570266B2 (en) 2014-12-05 2020-02-25 Mitsubishi Chemical Corporation Saponified ethylene-vinyl ester copolymer composition pellet, and production method therefor
WO2023058761A1 (ja) * 2021-10-08 2023-04-13 株式会社クラレ エチレン-ビニルアルコール共重合体を含有するペレット及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084607A1 (ja) * 2007-12-27 2009-07-09 The Nippon Synthetic Chemical Industry Co., Ltd. Evoh樹脂組成物の製造方法
EP2407491B8 (en) 2009-03-09 2013-08-21 The Nippon Synthetic Chemical Industry Co., Ltd. Process for manufacturing composition of solvolysis product of ethylene-vinyl ester copolymer
AU2010253022B2 (en) 2009-05-28 2015-04-09 Mitsubishi Chemical Corporation EVOH resin composition, and molded article and multilayer structure both comprising same
CN109311183A (zh) * 2016-08-12 2019-02-05 株式会社Tbm 树脂成型体的制造方法、树脂成型用颗粒的制造方法及提高平滑性的方法
JP7015792B2 (ja) * 2016-12-29 2022-02-03 株式会社クラレ 熱水殺菌処理された包装体及びその製造方法
WO2018164146A1 (ja) * 2017-03-06 2018-09-13 日本合成化学工業株式会社 樹脂組成物およびそれからなる成形材料並びに多層構造体
AT519866B1 (de) * 2017-05-05 2018-11-15 Constantia Hueck Folien Gmbh & Co Kg Recyclingfreundliches, einfach reißbares Verpackungslaminat mit guter Barrierewirkung und Verfahren zu dessen Herstellung
CN110963172A (zh) * 2018-09-28 2020-04-07 派迪莱工业有限公司 涂抹器组件和用于溶剂胶结剂产品的多层容器
CN111959047A (zh) * 2019-05-20 2020-11-20 株式会社可乐丽 原油及天然气输送用复合柔性管的结构及其铺设方法
US20210017312A1 (en) * 2019-07-18 2021-01-21 Kuraray Co., Ltd. Multilayer article with heat-sealable barrier layer
CA3169646A1 (en) * 2020-02-07 2021-08-12 Berry Global, Inc. Laminate container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539392A (ja) 1990-09-21 1993-02-19 Kuraray Co Ltd 樹脂組成物、その製法および積層体
JPH1010867A (ja) * 1996-06-21 1998-01-16 Ricoh Co Ltd 画像形成装置
JP2007290378A (ja) 2006-03-28 2007-11-08 Nippon Synthetic Chem Ind Co Ltd:The ブロー成形容器
JP2007290379A (ja) 2006-03-28 2007-11-08 Nippon Synthetic Chem Ind Co Ltd:The 多層延伸フィルム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479031B1 (en) * 1990-09-21 1996-12-11 Kuraray Co., Ltd. Resin composition, process for its production and multilayered structure
US5260371A (en) * 1991-07-23 1993-11-09 E. I. Du Pont De Nemours And Company Process for making melt stable ethylene vinyl alcohol polymer compositions
CA2158945A1 (en) * 1994-01-24 1995-07-27 Kozo Kotani Laminate, laminated film and molding
JP4002676B2 (ja) 1998-06-12 2007-11-07 日本合成化学工業株式会社 樹脂組成物及びその用途
JP4527208B2 (ja) 1998-12-25 2010-08-18 日本合成化学工業株式会社 樹脂組成物の製造方法
US6353048B1 (en) 1999-04-06 2002-03-05 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Resin composition and laminate
JP2001001476A (ja) 1999-06-23 2001-01-09 Showa Denko Kk ガスバリア性二軸延伸ブローボトル
JP4627354B2 (ja) 2000-06-23 2011-02-09 日本合成化学工業株式会社 樹脂組成物の製造法
JP5153029B2 (ja) 2000-06-23 2013-02-27 日本合成化学工業株式会社 樹脂組成物の製造法
JP2002003609A (ja) * 2000-06-23 2002-01-09 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物の製造法
JP4330254B2 (ja) * 2000-06-29 2009-09-16 株式会社クラレ エチレン−酢酸ビニル共重合体ケン化物の製造方法
JP4642198B2 (ja) 2000-08-28 2011-03-02 株式会社クラレ 樹脂組成物、その製造法および用途
JP3746998B2 (ja) 2001-01-22 2006-02-22 株式会社クラレ エチレン−ビニルアルコール共重合体樹脂組成物の製造方法
ATE269377T1 (de) * 2001-01-22 2004-07-15 Kuraray Co Verfahren zur herstellung einer ethylen- vinylalkohol copolymer harzzusammensetzung
ATE475525T1 (de) * 2001-01-22 2010-08-15 Kuraray Co Verfahren zur herstellung einer evoh- zusammensetzung
JP3762703B2 (ja) 2001-01-22 2006-04-05 株式会社クラレ エチレン−ビニルアルコール共重合体樹脂組成物の製造方法
JP2004131574A (ja) 2002-10-10 2004-04-30 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物およびその用途
WO2004092234A1 (ja) 2003-03-31 2004-10-28 Kuraray Co., Ltd. エチレンービニルアルコール系共重合体およびその製造方法
JP2004315793A (ja) * 2003-04-04 2004-11-11 Nippon Synthetic Chem Ind Co Ltd:The 樹脂組成物及び積層体
DE602004019852D1 (de) * 2003-08-07 2009-04-23 Kuraray Co Harzzusammensetzung und Verfahren zur Herstellung
JP4704708B2 (ja) 2004-08-13 2011-06-22 日本合成化学工業株式会社 樹脂組成物及びその製造方法
JP4744834B2 (ja) 2004-09-28 2011-08-10 日本合成化学工業株式会社 樹脂組成物およびそれを用いた多層構造体および容器
ATE465215T1 (de) 2006-02-24 2010-05-15 Nippon Synthetic Chem Ind Harzzusammensetzung und ihre verwendung
JP5388429B2 (ja) 2007-01-31 2014-01-15 日本合成化学工業株式会社 樹脂複合体およびその製造方法
WO2008139863A1 (ja) 2007-05-11 2008-11-20 The Nippon Synthetic Chemical Industry Co., Ltd. 多層延伸フィルムの製造方法
JP5334567B2 (ja) 2008-01-15 2013-11-06 日本合成化学工業株式会社 樹脂組成物および積層体
CN102007179B (zh) 2008-04-14 2012-10-10 日本合成化学工业株式会社 树脂组合物和使用其的多层结构体
US20100163654A1 (en) * 2008-12-30 2010-07-01 Bass Gary S Pneumatic Spray Gun

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539392A (ja) 1990-09-21 1993-02-19 Kuraray Co Ltd 樹脂組成物、その製法および積層体
JPH1010867A (ja) * 1996-06-21 1998-01-16 Ricoh Co Ltd 画像形成装置
JP2007290378A (ja) 2006-03-28 2007-11-08 Nippon Synthetic Chem Ind Co Ltd:The ブロー成形容器
JP2007290379A (ja) 2006-03-28 2007-11-08 Nippon Synthetic Chem Ind Co Ltd:The 多層延伸フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2301998A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570266B2 (en) 2014-12-05 2020-02-25 Mitsubishi Chemical Corporation Saponified ethylene-vinyl ester copolymer composition pellet, and production method therefor
WO2023058761A1 (ja) * 2021-10-08 2023-04-13 株式会社クラレ エチレン-ビニルアルコール共重合体を含有するペレット及びその製造方法

Also Published As

Publication number Publication date
US20110178222A1 (en) 2011-07-21
EP2301998A1 (en) 2011-03-30
US8722785B2 (en) 2014-05-13
EP2301998A4 (en) 2011-12-28
EP2301998B1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2010001471A1 (ja) Evoh複合体の製造方法
JP5835226B2 (ja) 燃料バリア性に優れた成形加工品の製造方法
WO2012121295A1 (ja) ポリエチレン系構造体
JP4642195B2 (ja) 樹脂組成物ペレットおよび成形物
JP3746998B2 (ja) エチレン−ビニルアルコール共重合体樹脂組成物の製造方法
JP2011162684A (ja) 中空容器の製造方法及び中空容器
JP4627354B2 (ja) 樹脂組成物の製造法
JP2002003609A (ja) 樹脂組成物の製造法
JP2006241299A (ja) バリア性に優れた熱可塑性樹脂組成物及びそれからなる成形体
CN110382616B (zh) 树脂组合物和由其构成的成型材料以及多层结构体
JP5388429B2 (ja) 樹脂複合体およびその製造方法
JP5153029B2 (ja) 樹脂組成物の製造法
JP2004315793A (ja) 樹脂組成物及び積層体
JP4704708B2 (ja) 樹脂組成物及びその製造方法
JP5110742B2 (ja) 樹脂組成物の製造法
JP2002146135A (ja) 樹脂組成物
JP2002069259A (ja) 樹脂組成物ペレットおよび成形物
JP2000212369A (ja) 樹脂組成物およびその用途
JP4869120B2 (ja) 多層延伸フィルム
JP2001288323A (ja) 樹脂組成物ペレットおよびその用途
JP2001081262A (ja) 樹脂組成物および積層体
JP5110743B2 (ja) 樹脂組成物の製造法
JP5116186B2 (ja) エチレン−酢酸ビニル共重合体ケン化物組成物ペレットの製造法
JP2001302799A (ja) 樹脂組成物ペレットおよび用途
JP4520557B2 (ja) エチレン−酢酸ビニル共重合体ケン化物組成物の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08790824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008790824

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13001808

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP