WO2009157099A1 - 電子部品のはんだ付け装置およびはんだ付け方法 - Google Patents

電子部品のはんだ付け装置およびはんだ付け方法 Download PDF

Info

Publication number
WO2009157099A1
WO2009157099A1 PCT/JP2008/066019 JP2008066019W WO2009157099A1 WO 2009157099 A1 WO2009157099 A1 WO 2009157099A1 JP 2008066019 W JP2008066019 W JP 2008066019W WO 2009157099 A1 WO2009157099 A1 WO 2009157099A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
molten
solder alloy
copper
liquid
Prior art date
Application number
PCT/JP2008/066019
Other languages
English (en)
French (fr)
Inventor
石川 久雄
正德 横山
Original Assignee
日本ジョイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ジョイント株式会社 filed Critical 日本ジョイント株式会社
Priority to EP08810074.8A priority Critical patent/EP2302083B1/en
Priority to US12/600,399 priority patent/US8011562B2/en
Publication of WO2009157099A1 publication Critical patent/WO2009157099A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • B23K1/085Wave soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0646Solder baths
    • B23K3/0653Solder baths with wave generating means, e.g. nozzles, jets, fountains
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3468Applying molten solder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/08Refining

Definitions

  • This effort is based on spraying molten tin or solder alloy onto the surface of copper land or the surface of copper alloy lead of electronic components such as printed circuit boards, semiconductor packages, and electronic elements.
  • the copper oxide flux component dissolves as an impurity in the molten tin or solder alloy liquid circulating from the storage tank, and the copper concentration and impurity concentration increase over time.
  • the technology to avoid is related to the device.
  • the bonding strength of the tin or solder alloy used for tin or solder bonding is also increased, especially the bonding area of the lead of electronic elements and electronic components and the height of the tin or solder micro-joint due to the smaller pitch. Reliability is required.
  • solder-free solder alloys that do not contain lead are used as solder. In particular, it is widely used for soldering.
  • ⁇ 'Silver' copper-based solder alloy, solder alloy with added antimony (Patent Document 1), tin 'silver' copper-based solder alloy such as nickel or germanium A solder alloy (Patent Document 2) and the like to which is added has been proposed and put to practical use.
  • solder alloys such as a tin 'zinc' nickel-based solder alloy and a solder alloy further added with silver, copper, bismuth, etc.
  • Patent Document 3 a number of various solder alloys have been proposed, such as a tin 'zinc' nickel-based solder alloy and a solder alloy further added with silver, copper, bismuth, etc.
  • Patent Document 3 a number of various solder alloys.
  • the shell Ht The tin or solder alloy is heated to a temperature equal to or higher than the melting point to be melted to form a liquid, and then supplied with a pump, and the tin or solder alloy liquid is jetted from the nozzle slit to cause tin coating on printed circuit boards and electronic parts.
  • tin or solder is sprayed onto the copper land or copper lead on the surface of the solder joint, and the overflow is returned to the original storage tank for circulation.
  • the above copper land or copper lead is used.
  • the flux and oxide film, etc., present on the surface of the part are mixed as impurities in the overflow of the molten tin or molten solder alloy liquid, and the copper concentration and impurity concentration in the molten tin or molten solder alloy liquid change over time.
  • the solder composition changes, the physical properties as well as the chemical properties change, and the solder wettability deteriorates.
  • Patent Document 4 JP-A-5-50286 (Patent 3027441)
  • Patent Document 2 Japanese Patent Laid-Open No. 11-77366 (Patent 3296289)
  • Patent Document 3 JP-A-9-94688 (Patent 3299091)
  • Patent Document 4 JP 2001-237536 (Patent 32216709)
  • tin or a solder alloy is attached to the surface of a copper land portion or the surface of a copper optocopper alloy lead portion of an electronic component such as a printed circuit board, a semiconductor package, or an electronic element.
  • the molten tin or solder alloy solution 1 is dedicated from the storage tank 2 to the surface of the copper land or the surface of the copper and copper alloy lead of the electronic component 5 to be tinned.
  • the liquid is supplied by the pump 3 and sprayed from the nozzle or slit 4 in a jet form.
  • the overflowed molten tin or solder alloy liquid 6 is received by the guide rod 7 and transferred into the agitator 9.
  • a solution 8 having a temperature of 180 to 350 ° C. containing 1 to 80% by weight of an organic fatty acid having 12 to 20 carbon atoms is stored in a storage tank (from 10 into a stirrer 9 by a dedicated pump 13 and a stirrer.
  • the molten tin or solder alloy solution 6 overflowing inside and the columnar fatty acid solution 8 are brought into contact with each other and vigorously stirred and mixed, whereby the surface of the copper land of the tinned or solder alloy bonded electronic component or the copper Depending on the copper oxide and flux components present on the surface of the copper alloy lead
  • the contaminated molten molten tin or solder alloy liquid is purified (at this time, the oxide of copper oxide, tin oxide or other additive metal originally present in the molten tin or solder alloy liquid) And oxidation impurities such as iron, lead, silicon, potassium and the like mixed in a trace amount are also removed and cleaned by the organic fatty acid solution), and then this mixed liquid is introduced into the organic fatty acid-containing solution storage tank 10, Purified molten tin or solder alloy liquid 11 separated by specific gravity difference in the columnar fatty acid-containing solution storage tank is pumped from the bottom of the organic fatty acid-containing solution storage tank by the pump 1 2.
  • the organic fatty acid used in the present invention can be used even with a carbon number of 12 or less, it has a water absorption property and is not so preferable because it is used at a high temperature.
  • organic fatty acids having 21 or more carbon atoms have a high melting point and poor permeability and are difficult to handle, and the antifouling effect on the surface of the tin or solder alloy after treatment is insufficient.
  • palmitic acid having a carbon number of 16 and stearic acid having a carbon number of 1 ⁇ are optimal, and a liquid temperature of 1 to 80% by weight of any one of them and the remaining ester synthetic oil is 180 to 3 5 0.
  • the solution selectively captures impurities such as oxide flux components present in the overflow melt or molten solder alloy liquid, and cleans the overflow molten tin or molten solder alloy liquid.
  • the concentration of the organic fatty acid is 1% by weight or less, this effect is low, and the replenishment management is complicated, and if it is 80% by weight or more, the liquid viscosity becomes remarkably high, and the temperature is 300 ° C or more. In the high temperature range, smoke and odor problems occur, and stirring and mixing with molten tin or solder alloy liquids. Therefore, the concentration range of 5 to 60% by weight is preferable.
  • the liquid temperature is determined by the melting point of the tin or solder alloy used, and is at least a high temperature region above the melting point. It is necessary to vigorously stir and mix the organic fatty acid solution and the molten tin or solder alloy solution in the region.
  • the upper limit temperature is about 35 ° C. from the viewpoint of smoke generation and energy saving, and is preferably a temperature not lower than the melting point of the tin or solder alloy to be used up to 300 ° C.
  • the reasons for mixing the ester synthetic oil are to reduce the liquid viscosity and facilitate uniform stirring and mixing, and to suppress the high-temperature fuming of organic fatty acids.
  • the concentration is determined by the organic fatty acid concentration.
  • stirrer and the stirring method a batch type stainless steel impeller stirrer or the like is used while the above-mentioned organic fatty acid and ester synthetic oil are put in a stainless steel container equipped with a heating device and heated to a predetermined temperature.
  • a static mixer is optimal, and when this is used, mixing and stirring can be efficiently performed in a short time, and the copper oxide and flux components in the overflow molten tin or molten solder alloy liquid, or the reaction product thereof. Impurities can be removed efficiently.
  • the stirring time depends on the amount of molten tin or molten solder alloy overflow, the structure of the stirrer, and the stirring conditions. If a static mixer is used, the stirring time is about 1 to 50 seconds. It is enough. After that, when this stirred and mixed solution is introduced into the if ⁇ of the organic fatty acid solution, the molten tin or molten solder alloy solution that is naturally cleaned at the bottom (lower layer) of the organic fatty acid storage tank due to the difference in specific gravity is added to the upper layer.
  • Copper oxide, tin oxide, or other added metal oxide present in the overflow solution which is incorporated in the form of a saponified product by reacting with the carbonyl group of the organic fatty acid, and a trace amount is mixed.
  • Organic fatty acid solutions containing oxidative impurities such as iron, lead, silicon, and potassium are separated.
  • the cleaned molten tin or molten solder alloy liquid at the bottom (lower layer) of the storage tank is returned to the original molten tin or molten solder alloy liquid storage tank by a dedicated pump and supplied to the nozzle or slit by another dedicated pump. Jet and circulate the overflow liquid inside an agitator such as a static mixer.
  • the organic fatty acid solution is also circulated and fed to the stirrer section of the static mixer with a dedicated pump.
  • tin or solder alloy any of those usually used for joining electronic components can be used, but from the viewpoint of environmental problems and joining reliability, it is desirable that tin, Or tin, silver, copper, zinc, bismuth, antimony, nickel, germanium It is preferable to use a molten bell-free solder alloy to which one or more of these metals are added.
  • silver is 1 to 3% by weight
  • copper is 0.1 to 1%
  • nickel is 0.01 to 0.5%
  • germanium is 0.01 to 0.02. /.
  • the solder alloy is good.
  • the above organic fatty acids with 12 to 20 carbon atoms ! ⁇ 80 wt% and liquid temperature consisting of the remaining ester synthesis 1 80 (temperature above the melting point of the lead solder alloy material used) ⁇ 3 0 0
  • the above-mentioned overflow liquid of ordinary molten tin or molten solder alloy liquid which is currently in wide use, are poured into a stirring mixer such as a static mixer and mixed with the molten tin or molten solder.
  • the molten tin or molten solder alloy liquid cleaned by the pump from the bottom is returned to the molten tin or molten solder alloy liquid storage tank of the soldering device, and is then transferred to the tin or soldering nozzle or slit by another pump. It is generated when continuous tin or soldering is used in conventional equipment by supplying and pouring the liquid and pouring the overflow liquid into an agitator such as a static mixer. This makes it possible to prevent inferior bonding quality over time between lots, and enables long-term continuous processing of highly reliable and highly reliable tin or solder alloy joints with extremely small variations in bonding quality.
  • the amount of solder to be joined to the multi-layer printed circuit board is large.
  • a necessary amount of solder having the same composition as that in the initial stage may be simply added, and continuous processing as in the conventional method is required. It is not necessary to prepare a low copper concentration solder to adjust the increased copper concentration due to the There is no need to repeat frequent disposal and renewal of building baths due to deterioration, and the apparatus and method of the present invention are very efficient from the environmental and economic viewpoints of resource saving and energy saving, and industrial. It is beneficial to.
  • Examples 1 and 2 When the changes in copper concentration and impurity concentration over time in the molten tin or molten solder alloy liquid storage solution of the present invention treated under the above conditions were examined, the effects of the present invention (Examples 1 and 2) were as follows. Currently used jet circulation type continuous automatic tin or soldering equipment, that is, after spraying molten tin or solder alloy liquid onto the object to be soldered, the overflow liquid is directly injected into the molten tin or molten solder. Compared with the case of returning to the liquid storage tank and circulating (Comparative Examples 1 and 2), the copper concentration of Comparative Examples 1 and 2 and the concentration of mixed impurities such as flux components and reaction products and metal oxides increase over time. On the other hand, it was found that in Examples 1 and 2 of the present invention, the copper concentration clearly changes little even after long-term continuous use, and the other impurity concentrations are reduced.
  • solder wettability is hardly deteriorated over time, the solder wettability at the time of soldering is much better, the viscosity at the time of melting is low, and it is optimal for soldering of minute parts. confirmed.
  • FIG. 1 is a schematic diagram of an example of a conventional circulating jet automatic continuous soldering apparatus for electronic components.
  • FIG. 2 A schematic diagram of an example of a circulating jet automatic continuous soldering apparatus for electronic parts according to the present invention.
  • Example 1 of the present invention in the improved circulating jet automatic continuous soldering apparatus of the present invention shown in [Fig. 2], 2.5% by weight of silver having the same composition as Comparative Example 1 above is used.
  • a lead-free solder alloy composed of 0.5% by weight of copper and the remaining tin was melted in a storage tank 2, and the molten lead-free solder alloy liquid 1 was transferred to the nozzle 4 by a pump 3, and the above Comparative Example 1
  • the molten lead-free alloy solution 1 is sprayed from the nozzle to the ⁇ land and through-hole portions of the multilayer printed circuit board surface 5 of the same type and lot, and all the overflow solution 6 is ⁇ 7
  • this mixed liquid is introduced into the palmitic acid solution storage tank 10 from the lower part of the static mixer, and the molten lead-free solder liquid 11 deposited on the bottom of the palmitic acid solution storage tank due to the difference in specific gravity is recovered by the dedicated pump 1 2.
  • the molten lead-free solder solution storage tank 2 is circulated and used continuously, and the palmitic acid solution 8 in the upper part of the palmitic acid solution storage tank is supplied to the upper part of the static mixer 1 9 by another pump 13 and circulated continuously. used.
  • Comparative Example 2 a lead-free solder alloy consisting of 2.5% by weight of silver, 0.5% by weight of copper, 0.1% by weight of nickel, 0.05% by weight of germanium, and the balance tin Is the same as Comparative Example 1 in a conventional circulating jet automatic soldering apparatus [Fig. 1] and melted, and the molten lead-free solder alloy liquid 1 is transferred to the nozzle 4 by the pump 3.
  • the molten lead-free solder alloy solution 1 is sprayed from the nozzle onto the copper land and through-hole portions of the multilayer printed circuit board surface 5 of the same type and lot, and all of the overflow solution 6 is reduced to 7 Then, it was directly returned to the storage tank 2 and circulated for continuous use.
  • Example 2 2.5% by weight of silver and 0.5% of copper having the same composition as Comparative Example 2 above.
  • a lead-free solder alloy consisting of 5% by weight, nickel 0.01% by weight, germanium 0.05% by weight and the balance tin is the same as in Example 1 [Fig. 2].
  • a continuous soldering device storage tank 2 is melted, and the molten lead-free solder alloy solution 1 is sent to the nozzle 4 by the pump 3.
  • the molten lead-free solder alloy solution 1 is jetted from the nozzle to the through hole, and all of the overflow solution 6 is received by the trough 7, and the overflow solution 6 and palmitic acid 5% by weight are received.
  • the solution 8 consisting of the remaining ester synthesis solution at a temperature of 28 ° C.
  • the physical-mechanical evaluation method is to sample from each solder shell before the continuous use and after the soldering number of the printed circuit board is 50,000 and 100,000 after passing.
  • Example 1 and Example 2 of the present invention there is almost no increase in the copper concentration even after the continuous pass processing amount of the printed circuit board is 50,000 sheets and after 100,000 sheets, On the contrary, the solder wettability is improved and the physical and mechanical properties are slightly increased in elongation, but the upper volume (nono, llara), bridgeover (leakage), and non-attachment are not seen at all. Concentration decreased on the contrary, and it was found that the elongation of the physical and mechanical properties was slightly increased.
  • Example 0.49 2.46 0.2 0.1 ⁇ Good 2.72 58.7 29.4 440,000 0.51 2.46 0.2 0.2 2.83 56.0 32.2 32 sheets
  • Example 0.48 2.46 0.01 0.3 0.2 ⁇ Good 2.90 52.5 28.3 19

Abstract

電子部品の銅表面に溶融錫液または溶融はんだ合金液を噴流状に吹きつけて錫またははんだ合金皮膜を形成させた後、溢流する該溶融錫または溶融はんだ合金液を撹拌器に移送し、該撹拌器内部において循環する炭素数12~20の有機脂肪酸を1~80重量%を含有する温度180~350℃の溶液と接触させながら激しく撹拌混合することにより、該溢流溶融錫または溶融はんだ合金液中に混入した酸化銅等を該有機脂肪酸含有液中に取り込ませて該溢流溶融錫または溶融はんだ合金液を清浄化し、その混合液を該有機脂肪酸含有溶液貯槽に導入し、該有機脂肪酸含有溶液貯槽中において比重差で分離された清浄化溶融錫液または溶融はんだ合金液を該有機脂肪酸含有溶液貯槽の底部からポンプで該溶融錫または溶融はんだ液貯槽に戻して循環使用することにより、該溶融錫または溶融はんだ液中に銅が蓄積されることを防止し、安定したはんだ接合を長期継続的に行う。

Description

明 細 書
電子部品のはんだ付け装置およびはんだ付け方法
技術分野
[0001] 本努明は、 プリント回路板、 半導体パッケージ、 電子素子等の電子部品の銅ラン ド部表面または銅おょぴ銅合金リ―ド部表面に溶融錫またははんだ合金を吹き付け て錫またははんだ合金を被覆接合する装置および錫またははんだ付け方法において、 貯槽から循環する溶融錫またははんだ合金液中に酸化銅ゃフラックス成分が不純物 として溶解し銅濃度や不純物濃度が経時的に上昇することを回避する技術ならぴに 装置に関するものである。
背景技術
[0002] 近年、 電子機器はますます高信頼性化と小型軽量化が要求され、 トランジスタ、 ダイオード、 I c、 抵抗器、 コンデンサーなどの電子素子、 コネクターなどの電子 部品やプリント回路板を錫またははんだ接合して電子回路を形成させて、 半導体装 置や電子装置として広く使用されているが、 これら電子素子、 電子部品、 プリント 基板の小型微小化に伴 V、はんだ接合部も微細化され、 ますます高品質信頼性が要求 されている。 とりわけプリント回路板と電子素子部品間の微小はんだ接合品質には 極めて厳しい信頼性が要求されている。
このため、 錫またははんだ接合に使用する錫またははんだ合金側にも接合強度、 とりわけ電子素子、 電子部品のリードの接合面積おょぴピッチの微小化に伴う錫ま たははんだ微小接合部の高信頼性が要求されている。
[0003] また一方では、 近年、 環境汚染ならびに人体に対する有害性の問題で鉛の使用禁 止または規制化が進み、 特に電子部品分野においては鉛を含有しない所謂 「鉛フリ 一はんだ合金」 がはんだ付け加工に広く使用されており、 特に、 餳 '銀 '銅系はんだ 合金、及ぴそれにアンチモンを添加したはんだ合金(特許文献 1 )、錫'銀 '銅系はん だ合金にニッケルまたはゲルマニウムなどを添加したはんだ合金 (特許文献 2 ) な どが提案され、 実用化されている。 このほかにも、 錫 '亜鉛'ニッケル系はんだ合金 及び更に銀、 銅、 ビスマスなどを添加したはんだ合金 (特許文献 3 )など数多くの各 種はんだ合金が提案されている。 [0004] 一般に、 プリント回路板、 半導体パッケージ、 電子素子等の電子部品の銅ランド 部表面または銅および銅合金リード部表面に錫またははんだ合金を接合する方法と しては、 貝 Ht内で該錫またははんだ合金を融点以上の温度に加熱して融解させ液状 にした後、 ポンプで給液しノズルゃスリットから該錫またははんだ合金液を噴流さ せてプリント回路板や電子部品などの被錫またははんだ接合物表面の銅ランドまた は銅リ一ドに吹付けて錫またははんだ付し、 その溢液を元の貯槽に戻し循環使用す るが、 はんだ付時に上記銅ランドまたは銅リ一ド部の表面に存在するフラックスと 酸化鲖皮膜などが該溶融錫または溶融はんだ合金液の溢流液中に不純物として混入 し該溶融錫または溶融はんだ合金液中の銅濃度や不純物濃度が経時的にどんどん高 くなり、 はんだ組成が変化し物理的物性はもとより化学的物性も変化し、 特にはん だぬれ性が悪くなり、 接合部に必要以上の容量ではんだが盛り上がる所謂 「オーバ 一ボリューム」 (ッノ、 ッララ)やリード間ピッチが狭小の回路では隣接リードにブ リッジォ一パーしてリークを生じやすい難点があるばかり力、 はんだ未着などの外 観的現象を生ずる難点もある (特許文献 4 )。 また、接合はんだの物理的機械的特性 の 1つである伸びが小さくなるために電子回路として半導体装置などに組み込まれ た後、 通電 o n— o f f を繰返すと、 ヒ一トサイクルによりはんだ接合部が疲労破 断して導通不良など生じやすく、 微小化した電子機器の接続信頼性を損なうことが 広く知られている。 従って、 連続はんだ付け加工後に銅濃度が一定の上限を超えて 上記はんだ特性劣化し異常現象 (品質不良) が生じると、 一般的には劣ィヒしたはん だを比較的頻繁に廃棄し、 はんだを更新して使用することになるため、 資源上から もまた作業性、 品質安定性からも、 更には経済的にも極めて効率が悪い。
[0005] このため、 特に、 プリント回路板などの連続加工時の銅濃度上昇を抑制し効率化 する方法として、 連続加工時には貯液槽内の溶融はんだ液が一定の液面まで低下し た際に、 銅を除いた合金を主成分とする第 2のはんだを補給する方法などが提案さ れ実用化されているが、 この方法でも銅の増加をある程度抑制できるが経時的に增 加する傾向は変わらず、 したがって、 はんだ接合品質的にも経時的に劣化傾向にあ り、 第 2のはんだを用意し管理する煩雑さもあり、 使用寿命が延びるメリットはあ るもが、 必ずしも充分満足できる方法とはいえない。 (特許文献 4 ) 特許文献 1: 特開平 5— 50286 (特許 3027441)
特許文献 2: 特開平 11— 77366 (特許 3296289)
特許文献 3: 特開平 9— 94688 (特許 3299091)
特許文献 4: 特開 2001— 237536 (特許 32216709)
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、 現在、実用化されている溶融錫または溶融はんだ液循環噴流式自動はんだ 付装置および方法における錫またははんだ合金液中のフラックスや酸化銅など不純物 が経時的に混入蓄積することを防止することにより、微小リード ·極狭リ一ドピッチ回 路などの微小部錫またははんだ接合時の難点である上記オーバーボリュームの問題 (ッ ノ、 ッララ)、 ブリッジオーバーによる隣接リードとのリークの問題、 はんだ未着など の外観的現象、 更には該接合部の繰返しヒートサイクルによる経時劣化的疲労破断によ る導通不良の問題を解決し、 更に劣化したはんだを比較的頻繁な廃棄更新使用すること に伴う資源上 ·作業性上 ·品質安定性上および経済的不効率を改善することを目的とし、 微小電子部品の微細接合部の接合信頼性を飛躍的に向上させる技術方法および装置を 提供するものである。
課題を解決するための手段
[0007] 本発明の装置おょぴ方法は、 プリント回路板、 半導体パッケージ、 電子素子等の電子 部品の銅ランド部表面または銅おょぴ銅合金リ一ド部表面に錫またははんだ合金を接 合する装置において、 [図 2] に示すとおり、 被錫またははんだ接合電子部品 5の該銅 ランド部表面または銅および銅合金リード部表面に、 溶融した錫またははんだ合金液 1 を貯槽 2から専用ポンプ 3により給液してノズルまたはスリット 4から噴流状に吹き つけて、 溢流した該溶融錫またははんだ合金液 6をガイド樋 7で受けて撹拌器 9の中に 移送する。 一方、 炭素数 12〜 20の有機脂肪酸を 1〜 80重量%を含有する温度 18 0〜350°Cの溶液 8を貯槽 (10から専用ポンプ 13により撹拌器 9の中に移送して 、 撹拌器内部で溢流した該溶融錫またははんだ合金液 6と有欄旨肪酸溶液 8とを接触さ せて激しく撹拌混合することにより、 被錫またははんだ合金接合電子部品の該銅ランド 部表面または銅およぴ銅合金リ一ド部表面に存在する酸化銅とフラックス成分により 汚染された該溢流溶融錫またははんだ合金液を淸浄化し (その際、 元々該溶融錫または はんだ合金液中に存在している銅酸化物、 錫酸化物、 あるいはその他の添加金属の酸化 物、 および微量混入している鉄、 鉛、 珪素、 カリウムなどの酸化不純物も該有機脂肪酸 溶液により除去清浄化される)、 しかる後にこの混合液を該有機脂肪酸含有溶液貯槽 1 0に導入し、 該有欄旨肪酸含有溶液貯槽中において比重差で分離した清浄化溶融錫また ははんだ合金液 1 1を該有機脂肪酸含有溶液貯槽の底部からポンプ 1 2で該鈴フリ一 はんだ液貝宁槽 2に戻すことで、 循環噴流する該溶融鉛フリ一はんだ液中の銅濃度および 不純物濃度の経時的上昇を抑制し、 かつ酸化銅やはんだフラックス残渣などの不純物を 本液貯槽に持ち込ませないことにより、 貯槽内の溶融錫または溶融はんだ合金液の経時 的組成変化を抑制し、 安定した接合信頼性の高い錫またははんだ付けを長時間にわたり 連続して大量の電子部品、 プリント回路板について連続生産することが出来る d これにより、 連続錫またははんだ付け加工の際に生ずる口ット間の経時的接合品質の 劣化防止が可能になり、 接合品質のばらつきがきわめて小さい、 安定した高接合信頼性 の製品が得られる。
[0008] 更に詳しく言えば、本発明で用いる有機脂肪酸は炭素数 1 2以下でも使用可能ではあ るが吸水性があり、 高温で使用する関係からあまり好ましくない。 また、 炭素数 2 1以 上の有機脂肪酸では融点が高いこと及び浸透性が悪くまた取扱いし難く、処理後の錫ま •たははんだ合金表面の防鲭効果も不充分になる。 望ましくは、炭素数 1 6のパルミチン 酸、 炭素数 1 βのステアリン酸が最適であり、 そのいずれか 1種を 1〜8 0重量%と残 部エステル合成油からなる液温 1 8 0〜3 5 0。Cの溶液を用いることにより、該溶液が 該溢流溶 または溶融はんだ合金液内部に存在する酸化物ゃフラックス成分などの 不純物を選択的に取り込み、該溢流溶融錫または溶融はんだ合金液を清浄化することが 出来る。
[0009] 該有機脂肪酸濃度にっレ、ては 1重量%以下ではこの効果が低く、補充管理など煩雑な こと、 また 8 0重量%以上では液粘度も著しく高くなり 3 0 0 °C以上の高温領域では発 煙と悪臭の問題を生ずること、 溶融錫またははんだ合金液との撹拌混合性に問題を生じ る。 従って、 好ましくは 5〜 6 0重量%の濃度範囲が良い。
[0010] 液温は使用する錫またははんだ合金の融点で決まり、 少なくとも該融点以上の高温領 域で有機脂肪酸溶液と溶融した該錫またははんだ合金液を激しく撹拌接触混合させる 必要がある。
また上限温度は発煙の問題や省エネの観点から 3 5 0°C程度であり、 望ましくは使用 する錫またははんだ合金の融点以上の温度〜 3 0 0でである。 また、 エステル合成油を 混合する理由は液粘度を下げて均一な撹拌混合処理を行い易くすること及ぴ有機脂肪 酸の高温発煙性抑制にあり、 その濃度は有機脂肪酸濃度で決まる。
[0011] 撹拌器ならびに撹拌方法については、加熱装置のついたステンレス容器に上記有機脂 肪酸とエステル合成油を入れて所定の温度に加温しながらバッチ式ステンレス製イン ペラ撹拌子などを用いて撹拌して均一混合しても良いが、 この場合は充分に混合し反応 されるためには撹拌時間を長くとる必要がある。 従って、 好ましくは、 スタティックミ キサ一が最適で、 これを使うと短時間で混合撹拌が効率よく出来て該溢流溶融錫または 溶融はんだ合金液中の酸化銅やフラックス成分、あるいはその反応生成物などの不純物 の除去が効率的に出来る。
[0012] 撹拌時間は溶融錫または溶融はんだ合金溢流液の投入量およぴ撹拌機の構造および撹 拌条件にもよるが、 スタティックミキサーを使用すれば 1〜 5 0秒間程撹拌混合すれば 充分である。 その後はこの撹拌混合された液を有機脂肪酸溶液の if©に導入すると、 比 重差で自然に該有機脂肪酸貯槽底部 (下層)に清浄化された溶融錫または溶融はんだ合金 液が、 その上層に該有機脂肪酸のカルボニル基と反応してケン化物の形で取り込まれた 該溢流液中に存在する銅酸化物、 錫酸化物、 あるいはその他の添加金属の酸化物、 およ ぴ微量混入している鉄、 鉛、 珪素、 カリウムなどの酸化不純物を含有する有機脂肪酸溶 液が分離する。 この状態で該貯槽底部 (下層) の清浄化された溶融錫または溶融はんだ 合金液は専用ポンプで元の溶融錫または溶融はんだ合金液貯槽に戻し別の専用ポンプ でノズルまたはスリットへ給液して噴流し、 溢流液をスタティックミキサ一等の撹拌器 内部に循環させる。 同様に、 有機脂肪酸溶液もそれ専用のポンプでスタティックミキサ 一等の撹拌器內部に循環給液する。
[0013] 本発明に適用できる錫またははんだ合金の種類は、 通常電子部品の接合に使用される ' ものは全て使用可能であるが、環境問題および接合信頼性の観点から、望ましくは、錫、 または錫を主成分とし銀、 銅、 亜鉛、 ビスマス、 アンチモン、 ニッケル、 ゲルマニウム のいずれか 1種以上の金属を添加した溶融鈴フリーはんだ合金を用いることが好まし い。 その中でも特に銀 1〜3重量%、 銅 0 . 1〜1 %、 ニッケル 0 . 0 1〜0 . 5 %、 ゲルマ^ウム 0 . 0 0 1〜0 . 0 2。/。のはんだ合金が良い。
発明の効果
上記の炭素数が 1 2〜 2 0の有機脂肪酸:!〜 8 0重量%と残部エステル合成からな る液温 1 8 0 (使用する鉛はんだ合金材料の融点以上の温度) ~ 3 0 0での溶液と、 現 在、 広く実用されている通常の溶融錫または溶融はんだ合金液の上記溢流液とをスタテ イツクミキサ一などの撹拌混合器内に注入し撹拌混合処理すると、 該溶融錫または溶融 はんだ合金溢流液中に存在する銅酸化物、 錫酸化物、 銀酸化物、 あるいはその他の添加 金属の酸化物および微量混入している鉄、 鉛、 珪素、 カリウムなどの酸化不純物が有機 脂肪酸のカルボニル基と反応して取り込まれケン化物となり、 該溢流液内部から分離除 去され該溢流液は清净化される。 この撹拌混合液を有機脂肪酸溶液用の貯槽に導入して 放置すると、 1分内外の短時間で比重差により該貯槽底部 (下層) に清浄化された溶融 錫または溶融はんだ合金液と、 その上層に上記不純物を含有する有機脂肪酸溶液とに自 然に分離する [図 2 ]。
従って、 底部よりポンプで清浄化された溶融錫または溶融はんだ合金液をはんだ付装 置の該溶融錫または溶融はんだ合金液貯槽に戻し、 それを別のポンプで錫またははんだ 付用ノズルまたはスリットに給液して喷流させ、 その溢流液を再ぴスタティックミキサ —などの撹拌器內^に注入し循璨使用することにより、 従来の装置では連続錫またはは んだ付け加工した場合に生ずるロット間の経時的接合品質の劣ィヒ防止が可能になり、 接 合品質のばらつきが極めて小さく安定した高接合信頼性の錫またははんだ合金接合の 長期連続加工が可能になる。
また、 電子部品、 とりわけスルーホールを多数含む多層プリント回路板のはんだ付け 加工では該多層プリント回路板に接合するはんだ量が多いので、 連続加工時には貯液槽 内の溶融はんだ液面が管理下限レベルにまで低下した際に線棒状または板状のはんだ を補給する必要があるが、 本発明の場合、 単純に初期段階と同一組成のはんだを必要量 投入すればよく、 従来方法のような連続加工により増加した銅濃度分を調整するために 低銅濃度はんだを用意する必要もなく、 また著しく銅濃度が上昇してはんだ接合性能が 悪化することによる頻繁な廃棄と建浴更新を繰り返す必要もなく、 本発明の装置およぴ 方法は省資源、 省エネルギーの環境的観点からもまた経済的面からも非常に効率的で、 工業的に有益である。
[0015] 上述の条件で処理した本発明の該溶融錫または溶融はんだ合金液貯液中の経時的銅濃 度、 不純物濃度の変化を調べると、 本発明 (実施例 1、 2 ) の効果は、 現在 く使われ ている噴流循環式連続自動錫またははんだ付装置、 即ち、 被はんだ付け対象物に溶融錫 またははんだ合金液を噴流吹付け後、 その溢流液を直接該溶融錫または溶融はんだ液貯 槽に戻して循環使用した場合 (比較例 1、 2 ) に較べて、 比較例 1および 2の銅濃度、 フラックス成分および反応生成物、 金属酸化物などの混入不純物濃度が経時的に増加す るのに対し、 本発明の実施例 1および 2では長期連続使用しても明らかに銅濃度は殆ど 変化なく、 かつそれ以外の上記不純物濃度が減少する効果があることが知見された。
[0016] 更に、 はんだぬれ性の経時劣化も殆ど見られず、 はんだ接合の際のはんだぬれ性も遥 かによく、 また溶融時の粘性も低く、 微小部のはんだ接合に最適であることが確認され た。
即ち、 リード面積が 0 . 0 8 πιιη φ、 隣接リード間隔が 0 . 0 8 rnmの極狭ピッチの プリント回路においてもオーバーボリューム (ッノ、 ッララ)、 ブリッジオーバーして 隣接リードにリークすることもなく、 更にははんだの部分未着もなく、 また高低温ヒ一 トサイクルに伴う微小はんだ接合部の疲労破断による電子回路の導通不良もなく、 本発 明装置および方法で錫またははんだ接合部は長期接続信頼性に非常に優れていること が判った。
図面の簡単な説明
[0017] [図 1〗従来の電子部品用循環噴流式自動連続はんだ付け装置事例の模式的概略図である。
[図 2〗本発明の電子部品用循環噴流式自動連続はんだ付け装置事例の模式的概略図であ る。
符号の説明
[0018] 1 溶融錫またははんだ合金液
2 溶融錫またははんだ合金液の貯槽
3 溶融錫またははんだ合金液移送用ポンプ 4 溶融錫またははんだ合金液を噴流するノズルまたはスリット
5 プリント回路板または電子部品
6 噴流吹付け後の溢流 (オーバーフロー)溶融錫またははんだ合金液 (溢流液)
7 上記溢流液 6を受ける金属製樋
8 有機脂肪酸溶液 '
9 撹拌器
1 0 有機脂肪酸溶液の貯槽
1 1 清浄化された溶融錫またははんだ合金液
1 2 上記清浄化された溶融錫またははんだ合金液 1 1の移送用ポンプ
1 3 有機脂肪酸溶液 8の移送用ポンプ
発明を実施するための最良の形態
[0019] く実施例およぴ比較例 >
先ず、比較例 1としては、 [図 1 ]の従来の循環噴流式自動連続半田付け装置において、 銀 2 . 5重量。 /0、 銅 0 . 5重量%、 残部錫からなる鉛フリーはんだ合金を貯槽 2に入れ 溶融させ、 ポンプ 3で該溶融鉛フリ一はんだ合金液 1をノズル 4に移送し、 厚さ 0 . 6 mm、 幅 2 0 0 mm、 長さ 1 5 0 mm、 リード面積が 0 . 0 8 πιιη φ、 隣接リ一ド間隔 が 0 . 0 8 mmの極狭ピッチの多層 (4層) プリント回路板表面 5の銅ランド部および スルーホール部にノズルから該溶離鉛フリ一はんだ合金液 1を噴流吹付けして、 その溢 流液 (ォ一パーフロ一液) 6を全て樋 7に受けて、 該貯槽 2に直接戻し循環して連続使 用した。
[0020] 一方、本発明の実施例 1としては、 [図 2 ] の改良した本発明の循環噴流式自動連続半 田付け装置において、 上記比較例 1と同じ組成の、 銀 2 . 5重量%、 銅 0 . 5重量%、 残 錫からなる鉛フリ一はんだ合金を貯槽 2に入れた溶融させ、 ポンプ 3で該溶融鉛フ リ一はんだ合金液 1をノズル 4に移送し、 上記比較例 1と同種同一ロットの多層プリン ト回路板表面 5の錮ランド部およびスルーホール部にノズルから該溶融鉛フリ一はん だ合金液 1を噴流吹付けして、 その溢流液 6を全て樋 7で受け、 該溢流液とパルミチン 酸 5重量%と残部エステル合成からなる液温 2 8 0 °Cの溶液 8とをそれぞれスタティ ックミキサー 9の上部から內部に送り、 該スタティックミキサー内で両液を »混合し て、 該スタティックミキサーの下部からこの混合液をパルミチン酸溶液貯槽 1 0に導入 し、 比重差により該パルミチン酸溶液貯槽底部に堆積した溶融鉛フリ一はんだ液 1 1は その専用ポンプ 1 2で元の溶融鉛フリ一はんだ液貯槽 2に戻し循環して連続使用する と共に、 該パルミチン酸溶液貯槽上部のパルミチン酸溶液 8は別のポンプ 1 3でスタテ イツクミキサ一 9上部に給液し循環して連続使用した。
[0021] 更に、比較例 2として、銀 2 . 5重量%、銅 0 : 5重量%、 ニッケル 0 . 0 1重量%、 ゲルマニウム 0 . 0 0 5重量%、 残部錫からなる鉛フリ一はんだ合金を比較例 1と同じ 従来の循環噴流式自動はんだ付け装置 [図 1 ] の貯槽 2に入れ溶融させ、 ポンプ 3で該 溶融鉛フリ一はんだ合金液 1をノズル 4に移送し、 上記比較例 1と同種同一ロットの多 層プリント回路板表面 5の銅ランド部およびスルーホール部にノズルから該溶融鉛フ リ一はんだ合金液 1を噴流吹付けして、 その溢流液 6を全て樋 7に受けて、 該貯槽 2に 直接戻し循環して連続使用した。
[0022] これに対し、実施例 2としては、上記比較例 2と同じ組成の、銀 2 . 5重量%、銅 0 .
5重量%、 ニッケル 0 . 0 1重量%、 ゲルマニウム 0. 0 0 5重量%、 残部錫からなる 鉛フリ一はんだ合金を実施例 1と同じ [図 2 ] の改良した本発明の循環噴流式自動連続 半田付け装置の貯槽 2に入れ溶融させ、 ポンプ 3で該溶融鉛フリ一はんだ合金液 1をノ ズル 4に送り、 上記比較例 1と同種同一ロットの多層プリント回路板表面 5.の銅ランド 部おょぴスルーホール部にノズルから該溶融鉛フリ一はんだ合金液 1を噴流吹付けし て、 その溢流液 6を全て樋 7で受け、 該溢流液 6とパルミチン酸 5重量%と残部エステ ル合成からなる液温 2 8 0 °Cの溶液 8とをスタティックミキサー 9上部から内部に送 り、 該スタティックミキサー内で両液を撹拌混合して、 ,該スタティックミキサーの下部 力 この混合液をパルミチン酸溶液貯槽 1 0に導入し、 比重差により該パルミチン酸溶 液貯槽底部に堆積した溶融鈴フリーはんだ液 1 1はその専用ポンプ 1 2で元の溶融鉛 ' フリ一はんだ液貯槽 2に戻し循環して連続使用すると共に、 該パルミチン酸溶液貯槽上 部のパルミチン酸溶液は別のポンプ 1 3でスタティックミキサー 9の上部に給液し循 環して連続使用した。
[0023] 上記各比較例おょぴ実施例の鉛フリーはんだ中の銅濃度、 不純物濃度の経時的変化に ついては、 連続使用前 (初期状態、 ブランク) と上記プリント回路板のはんだ付け加工 枚数が通過量で 5万枚後と 1 0万枚後に各はんだ液貯槽からサンプリングして、 I C P 発光分析装置 (島津製作所製、 7 5 0 0型) にて定量分析を行った。 また、 はんだぬれ 性については、 同様に連続使用前と上記プリント回路板のはんだ付け加工枚数が通過量 で 5万枚後と 1 0万枚後に各はんだ液貯槽からサンプリングして、 それぞれメニスコグ ラフによるはんだぬれ性試験方法によりそれぞれ繰返し 4 ( n = 4 ) でゼロクロス時間 を測定した。 その際、 测定ピンは 0 . 4 mm φの純銅線を使用した。
[0024] 更に、 物理的機械的評価方法は、 連続使用前と上記プリント回路板のはんだ付け加工 枚数が通過量で 5万枚後と 1 0万枚後に各はんだ液貝 からサンプリングして、 それぞ れステンレス (S U S 3 0 4 ) 製铸造金型 ( J I S 6号) を用い、 評点間距離 L = 5 O mm, 直径 8 ιηπι φ、 チヤッキング部長さ L = 2 0 mm、 直径 Ι Ο ιηιη φ の試験片を作成し、 J I S Z 4 4 2 1 ) の試験方法により島津製作所製引張り試験機 (AG 1 0 0型) を用い、 室温 2 5 °Cにおいて、 それぞれ繰返し 2 ( n = 2 ) で、 荷重 負荷速度 5 mmZm i nで試験測定した。
[0025] その結果は下記 [表 1 ] の通り、 連続使用前の各特性値では実施例 1と比較例 1との 間、 および実施例 2と比較例 2との間のいずれにも有意差はないが、 プリント回路板の 連続通過処理量が 5万枚後及ぴ 1 0万枚後では比較例 1およぴ比較例 2においては銅 濃度が著しく増加し、 はんだぬれ性は劣化し、 物理的機械的特性値も経時的に伸びが小 さくなり硬く脆弱化し、 オーバーボリューム (ッノ、 ッララ)、 ブリッジオーバー (リ ―ク)、 未着が散見されることが判った。
[0026] これに対して、 本発明の実施例 1およぴ実施例 2においては、 プリント回路板の連続 通過処理量が 5万枚後及び 1 0万枚後でも銅濃度上昇は殆どなく、 はんだぬれ性は逆に 好転し、 物理的機械的特性値は伸びが若干大きくなるものの、 ォ一パーボリューム (ッ ノ、 ッララ) もブリッジオーバー (リーク)、 未着も全く見られず、 鉄不純物濃度は逆 に減少し、 物理的機械的特性のうち伸びがやや大きくなることが判った。
[0027〗 [表 1〗
実施例および比較例の評価結果 1 連続加工前 (ブランク) はんだ中の濃度 はんだぬれ はんだ付 最大 引張 伸び Fe
C u A g N i f生 (セ、 ' Pクロス 外観 荷重 強度 率 濃度 重量% 重量% 難% 時間) 秒 kN Mp a % PPm 連 実施例 0.48 2.46 0.2 0.2 ◎ 良好 2.56 57.7 23.5 97
1 0.49 2.45 0.3 0.2 2.80 56.4 23.2 110 使 実施例 0.49 2.46 0.01 0.1 0.3 ◎ 良好 2.73 58.3 24.7 102 用 2 0.49 2.46 0.01 0.2 0.2 2.69 57.2 23.7 89 開 比較例 0.49 2.45 0.2 0.3 ◎ 良好 2.77 52.6 23.9 111 始 1 0.47 2.46 0.3 0.2 2.87 56.5 23.0 93 前 比較例 0.48 2.46 0.01 0.2 0.3 ◎ 良好 2.69 57.3 23.7 98
2 0.48 2.44 0.01 0.2 0.2 2.90 57.9 25.6 104
5 実施例 0.49 2.46 0.2 0.1 ◎ 良好 2.72 58.7 29.4 44 万 1 0.51 2.46 0.2 0.2 2.83 56.0 32.2 32 枚 実施例 0.48 2.46 0.01 0.3 0.2 ◎ 良好 2.90 52.5 28.3 19
2 0.50 2.45 0.01 0.3 0.2 2.78 53.3 33.5 36 続 比較例 0.72 2.45 2.8 4.1 Xッ八トク未 2.78 56.9 21.1 105 生 1 0.76 2.46 2.4 3.3 着部散発 2.77 57.5 20.6 123 比較例 0.78 2.44 0.01 3 2.5 Xッ トタ未 2.96 57.3 22.5 103 後 2 0.79 2.44 0.01 3.4 2.3 着部散発 2.51 54.3 20.9 98
10 実施例 0.53 2.46 0.2 0.3 ◎ 良好 2.74 56.9 31.5 35 万 1 0.53 2.46 0.3 0.2 2.89 53.6 29.9 16 枚 実施例 0.52 ' 2.46 0.01 0.2 0.3 ◎ 良好 2.69 54.2 38.3 18
2 0.49 2.45 0.01 0.3 0.3 2.77 56.3 41.7 27 比較例 0.91 2.46 5.5 4.8 Xッ八リ-ク未 2.79 56.3 19.1 99 生 1 0.89 2.44 4.4 3.9 着部多発 2.87 55.5 17.2 115 萑 比較例 0.98 2.45 0.01 5.1 5.1 Xッ八リ ク未 2.79 55.9 17.5 107 後 2 0.96 2.46 0.01 3.8 5.3 着部多発 2.93 52.2 18.9 119 以上の通り、 本発明の技術は明らかに従来の鉛フリ一はんだ合金にない高い伸びと強 靭性、 特に微小面積接合部の繰返しヒートサイクル疲労による接合破断リスクが小さく 従って微細化する電子機器のはんだ接合の長期高信頼性確保を可能にする鉛フリ一は んだ合金として工業的に価値が高い技術である。

Claims

請求の範囲
[1] プリント回路板、半導体パッケージ、電子素子等の電子部品の銅ランド部表面または 銅おょぴ銅合金リード部表面に錫またははんだ合金を接合する装置において、被はんだ 接合電子部品の銅ランド部表面または銅および銅合金リード部表面にノズルまたはス リットから溶融錫液または溶融はんだ合金液を噴流状に吹きつけて錫またははんだ合 金皮膜を形成させた後、 溢流する該溶融錫または溶融はんだ合金液を撹拌器に移送し、 該撹拌器内部において循環する炭素数 1 2〜 2 0の有機脂肪酸を 1〜 8 0重量%を含 有する温度 1 8 0〜3 5 0 ¾の溶液と接触させながら激しく撹拌混合することにより、 該溢流溶融錫または溶融はんだ合金液中に混入した被錫またははんだ合金接合電子部 品の該銅ランド部表面または銅および銅合金リ一ド部表面に存在する酸化銅とフラッ クス成分おょぴそれらの反 ife生成物、更には元々該溢流溶融錫または溶融はんだ合金液 中に存在する銅酸化物、 錫酸化物、 あるいはその他の添加金属の酸化物、 および微量混 入している鉄、 鉛、 珪素、 カリウムなどの酸化不純物などの汚染物質をも該有機脂肪酸 含有液中に取り込ませて、該溢流溶融錫または溶融はんだ合金液を清浄化し、 しかる後 にその混合液を該有機脂肪酸含有溶液貯槽に導入し、該有機脂肪酸含有溶液貯槽中にお いて比重差で分離された清浄化溶融錫液または溶融はんだ合金液を該有機脂肪 有 溶液貯槽の底部からポンプで該溶融錫または溶融はんだ液貯槽に戻して循環使用する ことを特徴とする電子部品用錫またははんだ付け装置。
[2] 前記請求項 1記載のはんだ付け装置において使用する有機脂肪酸としてはパルミチ ン酸、 ステアリン酸のいずれか 1種を 3〜6 0重量%と残部エステル合成油からなる液 温 1 8 0〜3 0 0 °Cの溶液を用いることを特徴とする電子部品用錫またははんだ付け 装置。
[3] 前記請求項 1記載のはんだ付け装置において使用する溶融錫またははんだ合金液と しては、 錫を主成分としこれに銀、 銅、 亜鉛、 ビスマス、 アンチモン、 ニッケル、 ゲル マニウムの 、ずれか 1種以上の金属を添加した溶融鉛フリ一はんだ合金を用いること を特徴とする電子部品用錫またははんだ付け装置。
[4] 前記請求項 1記載のはんだ付け装置において使用する撹拌器としては、スタティック ミキサーを用いることを特徴とする電子部品用錫またははんだ付け装置。
[5] プリント回路板、 半導体パッケージ、 電子素子等の電子部品の銅ランド部表面または 銅おょぴ銅合金リード部表面に錫またははんだ合金を接合する方法において、 被はんだ 接合電子部品の銅ランド部表面または銅および銅合金リード部表面にノズルまたはス リットから溶融錫液または溶融はんだ合金液を噴流状に吹きつけて錫またははんだ合 金皮膜を形成させた後、 溢流する該溶融錫または溶融はんだ合金液を撹拌器に移送し、 該撹拌器内部において循環する炭素数 1 2〜2 0の有機脂肪酸を 1〜8 0重量%を含 有する温度 1.8 0 ~ 3 5 0°Cの溶液と接触させながら激しく撹拌混合することにより、 該溢流溶融錫または溶融はんだ合金液中に混入した被錫またははんだ合金接合電子部 品の該銅ランド部表面または銅おょぴ銅合金リード部表面に存在する酸化銅とフラッ クス成分およびそれらの反応生成物、 更には元々該溢流溶融錫または溶融はんだ合金液 中に存在する銅酸化物、 錫酸化物、 あるいはその他の添加金属の酸化物、 および微量混 入している鉄、 鉛、 珪素、 カリウムなどの酸ィヒ不純物などの汚染物質をも該有機脂肪酸 含有液中に取り込ませて、 該溢流溶融錫または溶融はんだ合金液を清浄化し、 しかる後 にその混合液を該有機脂肪酸含有溶液貯槽に導入し、 該有機脂肪酸含有溶液貯槽中にお いて比重差で分離された清浄化溶融錫液または溶融はんだ合金液を該有機脂肪酸含有 溶液貯槽の底部からポンプで該溶融錫または溶融はんだ液貯槽に戻して循環使用する ことを特徴とする電子部品用錫またははんだ付け方法。
[6] 前記請求項 5記載のはんだ付け方法において使用する有機脂肪酸としてはパルミチ ン酸、 ステアリン酸のいずれか 1種を 3〜6 0重量%と残部エステル合成油からなる液 温 1 8 0〜3 0 0での溶液を用いた電子部品用錫またははんだ付け方法。
[7] 前記請求項 5記載のはんだ付け方法において使用する溶融錫またははんだ合金液は、 錫を主成分としこれに銀、 銅、 亜鉛、 ビスマス、 アンチモン、 エッケル、 ゲルマニウム のいずれか 1種以上の金属を添加した溶融鉛フリ一はんだ合金を用いた電子部品用錫 またははんだ付け方法。
[83 前記請求項 5記載のはんだ付.け方法において使用する撹拌器はスタティックミキサ
—であることを特徴とする電子部品用錫またははんだ付け方法。
PCT/JP2008/066019 2008-06-23 2008-08-29 電子部品のはんだ付け装置およびはんだ付け方法 WO2009157099A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08810074.8A EP2302083B1 (en) 2008-06-23 2008-08-29 Method of tinning or soldering electronic component with copper land portions
US12/600,399 US8011562B2 (en) 2008-06-23 2009-08-29 Soldering equipment and soldering method for electronic components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-186519 2008-06-23
JP2008186519A JP4375491B1 (ja) 2008-06-23 2008-06-23 電子部品のはんだ付け装置およびはんだ付け方法

Publications (1)

Publication Number Publication Date
WO2009157099A1 true WO2009157099A1 (ja) 2009-12-30

Family

ID=41444174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066019 WO2009157099A1 (ja) 2008-06-23 2008-08-29 電子部品のはんだ付け装置およびはんだ付け方法

Country Status (4)

Country Link
US (1) US8011562B2 (ja)
EP (1) EP2302083B1 (ja)
JP (1) JP4375491B1 (ja)
WO (1) WO2009157099A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013437A1 (de) * 2010-07-27 2012-02-02 Robert Bosch Gmbh Verfahren zur stabilisierung einer konzentration eines bestandteiles in einem lotbad

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110129151A (ko) * 2010-05-25 2011-12-01 삼성전자주식회사 부력 인가 수단을 가진 웨이브 솔더링 장치와 솔더링 방법 및 플립 칩용 솔더 범프 형성 방법
US8393526B2 (en) 2010-10-21 2013-03-12 Raytheon Company System and method for packaging electronic devices
WO2013153674A1 (ja) * 2012-04-14 2013-10-17 株式会社谷黒組 はんだ付け装置及び方法並びに製造された基板及び電子部品
WO2013157064A1 (ja) * 2012-04-16 2013-10-24 株式会社谷黒組 はんだ付け装置及び方法並びに製造された基板及び電子部品
WO2013157075A1 (ja) * 2012-04-17 2013-10-24 株式会社谷黒組 はんだバンプ及びその形成方法並びにはんだバンプを備えた基板及びその製造方法
CN105171180A (zh) * 2015-09-25 2015-12-23 中山市亚泰机械实业有限公司 沾锡机的沾锡机构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040103B1 (ja) * 1969-10-08 1975-12-22
JPH0550286A (ja) 1991-07-08 1993-03-02 Senju Metal Ind Co Ltd 高温はんだ
JPH0837366A (ja) * 1994-07-22 1996-02-06 Ibiden Co Ltd 電子部品搭載用基板の半田接合方法及びその半田接合装置
JPH0994688A (ja) 1995-09-29 1997-04-08 Senju Metal Ind Co Ltd 鉛フリーはんだ合金
JPH1177366A (ja) 1997-07-16 1999-03-23 Fuji Electric Co Ltd はんだ合金
JP2001237536A (ja) 2000-02-24 2001-08-31 Nihon Superior Co Ltd ディップはんだ槽の銅濃度制御方法
JP2001320162A (ja) * 1998-02-27 2001-11-16 Matsushita Electric Ind Co Ltd はんだ回収装置と酸化物の除去方法
JP2006045676A (ja) * 2004-08-03 2006-02-16 Wc Heraeus Gmbh 微細ろう粉末を製造する際に、合金成分を精製しそして均一分布させ並びに軟ろうから不所望の反応生成物およびスラッジを除く方法
JP2007532321A (ja) * 2004-04-16 2007-11-15 ピー.ケイ メタル,インコーポレイティド はんだ付け方法および装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993235A (en) * 1975-09-02 1976-11-23 Hollis Engineering, Inc. Differential pressure wave soldering system
US3990621A (en) * 1976-01-07 1976-11-09 Hollis Engineering, Inc. Static head soldering system with oil
CH660145A5 (de) * 1983-07-15 1987-03-31 Landis & Gyr Ag Verfahren zum schutz der oberflaeche eines loetbads.
JPS6182964A (ja) * 1984-09-28 1986-04-26 Ginya Ishii 噴流はんだ装置のはんだ酸化物の除去装置
DE3441687C2 (de) * 1984-11-15 1986-10-02 Kirsten Kabeltechnik AG, Welschenrohr Wellenlötvorrichtung
JPS6224859A (ja) * 1985-07-24 1987-02-02 Kenji Kondo はんだ付け装置
DE3680606D1 (de) * 1985-08-09 1991-09-05 Dolphin Machinery Loetapparat.
US4747533A (en) * 1986-04-28 1988-05-31 International Business Machines Corporation Bonding method and apparatus
JP2555715B2 (ja) 1988-10-26 1996-11-20 三菱マテリアル株式会社 はんだ合金微粉末の製造方法
JPH0540103A (ja) 1991-08-08 1993-02-19 Asahi Chem Ind Co Ltd 感湿または結露センサを製造する方法
US5388756A (en) * 1993-12-27 1995-02-14 At&T Corp. Method and apparatus for removing contaminants from solder
DE69712719T2 (de) * 1996-06-11 2002-11-21 Tamura Seisakusho Tokio Tokyo Lötvorrichtung
JP2002080950A (ja) * 2000-09-07 2002-03-22 Senju Metal Ind Co Ltd ドロスから酸化物を分離する方法および噴流はんだ槽
US6666370B2 (en) * 2002-01-18 2003-12-23 Speedline Technologies, Inc. Solder-dross mixture separation method and apparatus
US20040000574A1 (en) * 2002-03-08 2004-01-01 Haruo Watanabe Solder applying method and solder applying apparatus
US6942791B1 (en) * 2002-07-16 2005-09-13 Radko G. Petrov Apparatus and method for recycling of dross in a soldering apparatus
MXPA06003903A (es) * 2003-10-10 2006-12-15 Senju Metal Industry Co Tanque de soldadura por onda.
WO2008084673A1 (ja) * 2007-01-09 2008-07-17 The Nippon Joint, Ltd. 半導体装置およびその製造方法
JP4844842B2 (ja) * 2007-10-25 2011-12-28 ホライゾン技術研究所株式会社 プリント回路板及びプリント回路板の表面処理方法
TW200920877A (en) * 2007-11-05 2009-05-16 Magtech Technology Co Ltd Method for soldering magnesium alloy workpieces

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040103B1 (ja) * 1969-10-08 1975-12-22
JPH0550286A (ja) 1991-07-08 1993-03-02 Senju Metal Ind Co Ltd 高温はんだ
JP3027441B2 (ja) 1991-07-08 2000-04-04 千住金属工業株式会社 高温はんだ
JPH0837366A (ja) * 1994-07-22 1996-02-06 Ibiden Co Ltd 電子部品搭載用基板の半田接合方法及びその半田接合装置
JPH0994688A (ja) 1995-09-29 1997-04-08 Senju Metal Ind Co Ltd 鉛フリーはんだ合金
JP3299091B2 (ja) 1995-09-29 2002-07-08 千住金属工業株式会社 鉛フリーはんだ合金
JP3296289B2 (ja) 1997-07-16 2002-06-24 富士電機株式会社 はんだ合金
JPH1177366A (ja) 1997-07-16 1999-03-23 Fuji Electric Co Ltd はんだ合金
JP2001320162A (ja) * 1998-02-27 2001-11-16 Matsushita Electric Ind Co Ltd はんだ回収装置と酸化物の除去方法
JP3221670B2 (ja) 2000-02-24 2001-10-22 株式会社日本スペリア社 ディップはんだ槽の銅濃度制御方法
JP2001237536A (ja) 2000-02-24 2001-08-31 Nihon Superior Co Ltd ディップはんだ槽の銅濃度制御方法
JP2007532321A (ja) * 2004-04-16 2007-11-15 ピー.ケイ メタル,インコーポレイティド はんだ付け方法および装置
JP2006045676A (ja) * 2004-08-03 2006-02-16 Wc Heraeus Gmbh 微細ろう粉末を製造する際に、合金成分を精製しそして均一分布させ並びに軟ろうから不所望の反応生成物およびスラッジを除く方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2302083A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012013437A1 (de) * 2010-07-27 2012-02-02 Robert Bosch Gmbh Verfahren zur stabilisierung einer konzentration eines bestandteiles in einem lotbad

Also Published As

Publication number Publication date
JP2010003998A (ja) 2010-01-07
EP2302083B1 (en) 2015-08-05
EP2302083A1 (en) 2011-03-30
US8011562B2 (en) 2011-09-06
JP4375491B1 (ja) 2009-12-02
US20110079633A1 (en) 2011-04-07
EP2302083A4 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
WO2009157099A1 (ja) 電子部品のはんだ付け装置およびはんだ付け方法
TW592872B (en) Lead-free solder alloy
JP4375485B2 (ja) 鉛フリーはんだ合金の製造方法及び半導体装置の製造方法
CN105772979A (zh) 一种高助焊剂环保型锡丝及其制备方法
US20150115020A1 (en) Solder bump, method for forming a solder bump, substrate provided with solder bump, and method for manufacturing substrate
WO2010089905A1 (ja) 電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金
JP2008518791A (ja) Sn―Ag系無鉛はんだ合金
JP4665071B1 (ja) 錫またははんだプリコート皮膜の形成方法及びその装置
KR20120108034A (ko) 피세정물의 세정방법, 및 상기 세정방법에 이용하는 세정장치
JP6136851B2 (ja) はんだ用フラックスおよびはんだペースト
JP2011114334A (ja) はんだ皮膜の形成方法及びその装置
SK15152001A3 (sk) Spôsob regulácie koncentrácie medi v spájkovacom ponornom kúpeli
KR100768904B1 (ko) 땜납 합금 및 땜납 접합부
WO2011018861A1 (ja) はんだプリコート被膜の形成方法及びその装置
TWI438179B (zh) 助熔劑組成物及焊接方法
US10508255B2 (en) Cleaning composition and cleaning method
He et al. Effect of substrate metallization on the impact strength of Sn-Ag-Cu solder bumps fabricated in a formic acid atmosphere
TWI458856B (zh) 鈀或以鈀為主成分之合金的表面處理劑,以及銅表面的表面皮膜層構造
WO2002038328A1 (fr) Composition de flux soluble dans l'eau et procede de production d'un element brase
CN110842395A (zh) 无卤素球栅阵列倒装芯片助焊膏及该助焊膏制作工艺
JP6231250B1 (ja) 洗浄剤組成物および洗浄方法
KR20190126438A (ko) 솔더 페이스트용 플럭스, 솔더 페이스트, 솔더 페이스트를 사용한 솔더 범프의 형성 방법 및 접합체의 제조 방법
Sorokina et al. Influence of No-Clean Flux on the Corrosivity of Various Surface Finishes After Reflow
Sorokina et al. Influence of No-Clean Flux on The Corrosivity of Copper After Reflow
JP4853065B2 (ja) 電解めっき皮膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008810074

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08810074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12600399

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE