WO2010089905A1 - 電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金 - Google Patents

電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金 Download PDF

Info

Publication number
WO2010089905A1
WO2010089905A1 PCT/JP2009/057808 JP2009057808W WO2010089905A1 WO 2010089905 A1 WO2010089905 A1 WO 2010089905A1 JP 2009057808 W JP2009057808 W JP 2009057808W WO 2010089905 A1 WO2010089905 A1 WO 2010089905A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder alloy
tin
solution
solder
storage tank
Prior art date
Application number
PCT/JP2009/057808
Other languages
English (en)
French (fr)
Inventor
石川 久雄
正德 横山
Original Assignee
日本ジョイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ジョイント株式会社 filed Critical 日本ジョイント株式会社
Priority to US12/600,410 priority Critical patent/US8138576B2/en
Priority to EP09744018.4A priority patent/EP2260968B1/en
Priority to JP2009545416A priority patent/JP4485604B1/ja
Publication of WO2010089905A1 publication Critical patent/WO2010089905A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/08Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • C22B9/106General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents the refining being obtained by intimately mixing the molten metal with a molten salt or slag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to tin or solder alloy used for electronic components, an apparatus for manufacturing the same and a method of manufacturing the same, and the technical field using the same relates to the fields of electronic components, semiconductor devices, electronic devices, and in particular
  • the present invention relates to a technology for forming fine and fine narrow pitch high density circuits, and a technology for suppressing impact and Keningall voids generated over time after exposure to a high temperature by semiconductor devices and electronic devices mounted with the same.
  • solder alloys such as tin-zinc-nickel based solder alloys and solder alloys further containing silver, copper, bismuth and the like (Patent Document 3) are also used.
  • 63 tin-lead solder Sn 63 mass%, Pb 37% eutectic is still used in electronic components for automobiles and aircraft, semiconductor devices and electronic devices from the viewpoint of historical achievement and quality stability and reliability. Bonding by solder is also partially performed.
  • Patent Document 4 That is, the current solder bonding technology using molten solder, or the technology of applying and melting solder paste and then melting and soldering (for example, in the case of an electronic device, protects all other surfaces except for the electrode pads and leads of the mounting substrate) After coating with a film, a metal mask in which only the pads and leads of the mounting substrate are open is stacked on the mounting substrate, and a solder paste of a predetermined thickness is print-applied to the electrode pads and leads with a roller or squeegee.
  • a bridge failure to a “lead” or “adjacent lead” may cause a leak failure, and this can be avoided to stably coat or solder to a minute narrow pitch electrode pad and lead.
  • the limitation of narrow electronic circuit formation is generally said that the width of the electrode pads and leads is about 80 ⁇ m and the pitch is about 200 ⁇ m.
  • the surface other than the electrode pad portion where the bump is to be formed is formed.
  • gold bumps or solder bumps are formed to a thickness of several tens of ⁇ m on the open electrode pad metal surface (generally, Au flash plating is applied on underlying Ni plating)
  • Electroforming plating is performed.
  • tin or a solder alloy is electroformed and plated to a thickness of about several tens to about 100 ⁇ m to form a minute electronic circuit.
  • gold is very expensive, electroforming takes a long time, management is complicated, cost is high and efficiency is not good.
  • the use of flux or solder paste is generally essential in coating or bonding, so that the solvent or resin contained in the flux or solder paste is soldered. Since it is vaporized and scattered instantaneously at the time of bonding, there is also a drawback that it is likely to remain as a minute air bubble in the solder bonding interface or in the bonding solder and cause macrovoids.
  • the solder coating or solder joint electrode pad and lead generally formed by immersion in the current solder ball or molten solder is as small as about 80 ⁇ m at most, and the adjacent pitch is about 200 ⁇ m.
  • the limit is at the present limit, and the formation of fine solder joint electronic circuits with a width smaller than that and adjacent bitches is generally not yet fully commercialized except for the electroformed plating bumps, and semiconductor devices and electronic devices It is a bottleneck for further miniaturization.
  • the present invention addresses the problems of the above problems of the conventional solder alloy, the problem of "over volume”, the problem of "bridge over leak failure” to the adjacent electrode pad or lead, and the electrode which is almost impossible by the technique using the conventional molten solder.
  • Semiconductor device and electronic device which are further miniaturized and reduced in size and weight by further development of a solder alloy and its manufacturing method and manufacturing apparatus for solving the problem of dramatically improving the impact resistance of The purpose is to ensure high reliability of electronic devices and to promote further reduction in size and size.
  • tin solution or solder melted from first reservoir 2 for heating and melting tin or solder alloy ingots.
  • second storage tank 6 which supplies alloy solution 3 to independent reactor 1 via pump 4 and pipe 7 while heating a solution containing 1 to 80% by mass of an organic acid having a carbonyl group (-COOH) Liquid temperature: 180 to 300 ° C.
  • the organic acid solution 7 is supplied to the reaction tank 1 through the pump 8 and the pipe 9 and the two solutions are vigorously stirred and mixed and reacted.
  • the respective liquids separated into the molten tin or the solder alloy liquid 14 and the organic acid solution 17 due to the specific gravity difference are returned to the third storage tank 13 and the pump 15 and the pipe 16 (for molten tin or molten solder liquid), the pump 18 and the pipe 1
  • the oxygen concentration in tin or solder alloy can be reduced by removing and purifying metal oxides and impurities present in molten tin or molten solder alloy while recirculating to the reactor 1 again (for organic acid solution). It is as close to nothing as possible and at least 5 ppm or less.
  • the present invention utilizes the saponification action of an organic acid having at least a carbonyl group (-COOH) which is dissolved in an oil solvent having a liquid temperature of 180 to 300 ° C. and is stable in molecular structure. It removes metal oxides and impurities in the molten solder solution. Therefore, in principle, any organic compound having a saponification function is considered to be acceptable.
  • an organic acid having at least a carbonyl group (-COOH) which is dissolved in an oil solvent having a liquid temperature of 180 to 300 ° C. and is stable in molecular structure. It removes metal oxides and impurities in the molten solder solution. Therefore, in principle, any organic compound having a saponification function is considered to be acceptable.
  • methane acid (formic acid), ethanoic acid (acetic acid), propionic acid, butyric acid, isobutyric acid, ⁇ -methyl- ⁇ Oxybutyric acid, valeric acid, isovaleric acid, active valeric acid, pivalic acid (trimethylacetic acid), caproic acid, 2-ethylbutyric acid, caproic acid, caprylic acid, 2-ethylhexanoic acid, nonanoic acid, capric acid, undecanoic acid, myristin Acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidic acid, arachidonic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melisic acid, cyclohexanecarboxylic acid, boric acid, malonic acid, Succinic acid, glutaric acid, ethylmalonic acid, but
  • organic fatty acids having 12 or less carbon atoms can be used, they are water-absorptive, and are not so preferable because they are used at high temperatures.
  • organic fatty acids having 21 or more carbon atoms can also be used, generally they have a high melting point and poor permeability, they are scarce as resources, they are difficult to handle, and the rustproof effect of tin or solder alloy after treatment is also possible. It becomes somewhat inadequate.
  • Particularly desirable are palmitic acid having 16 carbon atoms and stearic acid having 18 carbon atoms, which are easily produced and used in large amounts industrially and are easily available, and one or more of them is 1 to 80% by mass.
  • the molten tin or molten solder alloy is immersed in a solution having a liquid temperature of 180 to 300 ° C. consisting of a stable oil-based solvent in a high temperature range of 180 ° C. to 350 ° C.
  • a solution having a liquid temperature of 180 to 300 ° C. consisting of a stable oil-based solvent in a high temperature range of 180 ° C. to 350 ° C.
  • the minute oxides and impure metals present inside the molten solder alloy are removed, and in particular when the oxygen concentration is 5 ppm or less, physical and mechanical chemical properties, in particular Softness, elongation (ductility) is about 1.5 times or more, toughness is rich, and viscosity at melting is about 30% or more remarkably low (the appearance is clear compared to conventional tin and solder alloy
  • solder wettability in the state without using flux is also extremely excellent, and furthermore, a solder alloy with a solidification temperature lower 20 to 30 ° C and having the most suitable physical
  • the oxygen concentration is at least 5 ppm or less as an essential condition, and in our experiments at present, the intermediate oxygen concentration of the conventional solder of the same metal composition as the solder of the present invention is for example 10 to 50 ppm. It is impossible to make a trial manufacture of a half-baked solder, so the exact oxygen concentration critical value of the solder showing the physical properties of the present invention can not be clearly determined, but if it is at least 5 ppm or less, the table below As is apparent from the examples in Table 1 and Table 2, excellent physical properties can be demonstrated.
  • the concentration of an organic compound having at least a carbonyl group (—COOH) which is soluble in an oil solvent having a liquid temperature of 180 to 300 ° C. and is stable in molecular structure is effective even at 1 mass% or less, but the concentration is thin Therefore, in the case of continuous use for mass processing, replenishment management is complicated and not practical. On the other hand, even if it is 80% by mass or more, and even 100% by mass in the extreme case, the effect is sufficient, but there are problems of the smoke property, the ignition property and the odor, and it is not so preferable. Preferably, about 10 to 70% by mass is suitable for practical use.
  • the liquid temperature is determined by the melting point of the molten tin or molten solder alloy used, and is dissolved in an oil-based solvent having a liquid temperature of 180 to 300 ° C. at least in a high temperature region above the melting point, and a molecular structurally stable carbonyl group (—COOH It is necessary to bring the solution of the organic compound having a) and the molten tin or molten solder alloy into strong stirring contact.
  • the upper limit temperature is preferably about 300 ° C. or less from the viewpoint of practical use from the viewpoints of smoke emission, ignitability and odor, and energy saving, and further it is about 270 ° C. from around the melting point of the tin or solder alloy. It is desirable that the temperature of the organic compound solution at a portion in contact with the molten tin or the solder liquid is at least equal to or higher than the temperature of the molten tin or the solder liquid at least in the third storage tank of FIG.
  • the solvent stable in the high temperature range may be any of mineral oil, vegetable oil and synthetic oil as long as it dissolves the organic compound, but it is particularly ester in terms of stability, safety, economy and handleability. Synthetic oil is best.
  • the purpose and reason for using a high temperature stable solvent is to lower the safety and liquid viscosity somewhat to facilitate a more uniform stirring and mixing process, and the high temperature smokeability, ignitability and odor of the organic compounds.
  • the concentration is determined by the concentration of the organic compound.
  • the above method of promoting the saponification reaction by vigorously stirring and mixing the organic compound-containing solution and the molten tin or molten solder alloy liquid is a static mixer with a heating device and a stirring mixer with a rotating stainless steel impeller stirrer, etc.
  • the mixture is vigorously stirred and mixed while being heated to a predetermined temperature to react with the organic compound to remove metal oxides and trace impurities present in the molten tin or molten solder alloy solution, and in particular, tin or Refine the oxygen concentration in the solder alloy to 5 ppm or less. If a stirring mixer such as a static mixer is used for the above reactor, the oxygen concentration can be reduced to 5 ppm or less in a relatively short period of time very efficiently.
  • the reaction apparatus 1 with the heating device of FIG. 1 is exclusively used for supplying liquid in which the molten tin or the molten solder liquid 3 is connected to the pump 4 from the first storage tank 2.
  • the above organic compound solution 7 is supplied from the second storage tank 6 through the pipe for exclusive use of the liquid supply 9 connected to the pump 8, and the predetermined temperature is established in the reaction apparatus 1.
  • the molten tin or the molten solder solution 3 and the organic compound solution 7 are reacted while being vigorously stirred and mixed using a stainless steel impeller stirrer or vibrator or the static mixer 10 or the like while being controlled.
  • the reaction time varies depending on the container structure, the amount of liquid supplied to the two types of liquids, the structure of the stirrer and the stirring method, and in the case of a batch reaction, it may take several minutes to about 60 minutes.
  • the reacted mixed liquid 11 is transferred to the third liquid storage tank 13 through the dedicated pipe 12, and after transfer, the two types of liquid are separated by using the difference in specific gravity, and the lower layer is melted if necessary. While circulating the tin or molten solder solution 14 back to the reactor 1 through the pump 15 and the dedicated pipe 16 and the organic compound solution 17 in the upper layer through the pump 18 and the dedicated pipe 19 into the tin or the solder alloy.
  • the tin or solder alloy which removes metal oxides and impurities present in the tin or solder alloy, and whose oxygen concentration is refined to 5 ppm or less, opens the valve 21 from the drain 20 at the bottom of the third reservoir. Used as electronic component tin or solder alloy by taking out and pouring into a mold.
  • tin or solder alloy applicable to the present invention are generally considered to be all theoretically usable for joining electronic parts, but from the viewpoint of environmental problems and joining reliability, preferably tin.
  • a molten lead-free solder alloy containing tin as a main component and at least one metal of silver, copper, zinc, bismuth, antimony, nickel and germanium are preferable.
  • lead-free solder alloys of 1 to 3% by mass of silver, 0.1 to 1% by mass of copper, 0.001 to 0.05% by mass of nickel, and 0.001 to 0.02% by mass of germanium are preferable.
  • oxides and impurities such as tin oxide which are common to the examples are also present.
  • a trace amount of metal oxide of 80 to several hundreds ppm in oxygen concentration exists in purified pure tin itself which is generally an industrial raw material, and commercially available pure tin and various solder alloys are generally used. Since it is used as a raw material, it is known that similar trace amounts of metal oxides are present in molecular or very fine particulate state.
  • a saturated fatty acid solution having 12 to 20 carbon atoms as a carbonyl group-containing organic acid solution and a lead-free solder alloy as a representative example of tin or a solder alloy will be described in detail below.
  • Silver oxides or oxides of other additive metals and trace amounts of oxidized impurities such as iron, lead, silicon and potassium react with carbonyl groups of saturated fatty acids to be taken in and become saponified, said molten lead free From the inside of the solder alloy solution to the saturated fatty acid solution side, it is separated and removed for cleaning.
  • the temperature at which solidification is completely completed is about 20 to 30 ° C. lower as compared with a normal lead-free solder of the same metal composition, as demonstrated by differential thermal analysis described later.
  • the main component is fine granular crystals (2a, 2c in FIG.
  • solder alloy of the present invention has an oxygen concentration of 5 ppm or less, which is about 30 to 40% lower in viscosity at the time of melting compared to normal lead-free solder of the same metal composition. It was also found that there is a merit that so-called "solder breakage" is good and it is difficult to become over volume.
  • the physical, mechanical and chemical properties of the lead-free solder alloy of the present invention manufactured under the conditions described above are examined and found to be widely used at present as shown in the following examples (1 to 3).
  • the elongation and elongation at break (ductility) are significantly improved by about 1.5 times or more, and also the solder wettability when soldered without using flux It was confirmed that the lead-free solder alloy is far superior to the comparative example and, as mentioned above, has a relatively low viscosity at the time of melting, and is an optimum lead-free solder alloy for solder coating / joining of minute parts.
  • the tin or solder alloy of the present invention when using the tin or solder alloy of the present invention, for example, when mounting a semiconductor chip on an interposer, or bonding and mounting an electronic component such as a semiconductor device or an electronic element on a mounting substrate, If the solution containing the saturated fatty acid is placed in the upper layer after making the lower layer after melting tin or solder alloy and tin or solder is joined, the viscosity is lower physically than conventional commercial tin or solder alloy products and wettability Is much better, and it is excellent in ductility and toughness of the joint after solidification, which is a physical and mechanical property, and a quality-stable connection in which the occurrence of Kirkendall void with time is extremely small even after long-term high temperature exposure A highly reliable semiconductor device and electronic device can be obtained.
  • the tin or solder alloy of the present invention when used in the assembly process of a surface mounting apparatus or the like in this way, the wettability is hardly deteriorated with time, and it is particularly suitable for tin or solder connection of microcircuits. confirmed. That is, there is no over volume in printed circuits with a lead width of 20 to 50 ⁇ m and an adjacent pitch of 30 to 60 ⁇ m, and therefore there is no bridging over and leakage to adjacent electrode pads or leads. There is no partial failure of the solder, and it is difficult to cause conduction failure of the electronic circuit due to fatigue fracture of the minute solder joint accompanied by high temperature / low temperature heat cycle, and it is a revolutionary one with excellent long-term connection reliability. understood.
  • the same effect can be obtained by using the tin or solder alloy of the present invention having an oxygen concentration of 5 ppm or less as a powder for tin or solder coating and solder bonding. Furthermore, even if the tin or solder alloy of the present invention is processed and used as a solder paste, or the ball is processed into a ball to be used for forming a bump for BGA or CSP, the above-mentioned physical properties are maintained. So you get the same effect. In particular, the very low melting viscosity of the tin or solder alloy of the present invention is simply due to the tin or solder coating and bonding without over volume and bridgeover to the minute portions of the minute circuit printed circuit, electronic device or electronic component.
  • the tin or solder alloy produced by using the production method and apparatus of the present invention dramatically improves the junction reliability of the micro junctions of the above-mentioned micro electronic components which is impossible with conventional tin or solder alloys.
  • the method and apparatus for producing tin or solder alloy according to the present invention is an optimum and efficient one essential to the production of high-performance, high-quality tin or solder alloy as described above. It is a manufacturing method and a manufacturing apparatus.
  • FIG. 1 It is a schematic diagram of the example of a manufacturing device of tin or solder alloy of the present invention.
  • 2a is the example 1, 2b
  • the comparative example 1, 2c is the example 2
  • 2d is the comparative example 2.
  • Comparative Example 1 a lead-free solder alloy comprising 2.5 mass% of commercially available silver, 0.5 mass% of copper, and the balance tin, which has been widely used conventionally, is subjected to various performance tests as it is under the conditions described later. did.
  • Comparative Example 2 a lead-free solder consisting of 2.5% by mass of commercially available silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium and the balance tin, which has been widely used conventionally The alloy was subjected to various performance tests under the same conditions as Comparative Example 1 as it was.
  • Comparative Example 3 a lead-free solder alloy composed of a tin-zinc-silver-based solder alloy consisting of 8.0% by mass of commercially available zinc, 1.0% by mass of silver, and 0.05% by mass of nickel, which has been widely used conventionally Under the same conditions as Comparative Example 1, various performance tests were used as they were.
  • Example 1 a lead-free solder alloy ingot consisting of 2.5% by mass of silver, 0.5% by mass of copper and the balance tin with the same commercially available composition as Comparative Example 1 described above is used as the first storage tank of FIG. 2 to melt and melt the molten solder solution 3 into the reactor 1 with the heating device via the liquid supply dedicated piping 5 connected to the pump 4 and, at the same time, the palmitic acid 10 from the second storage tank 6
  • the solution 7 of a solution temperature of 260 ° C.
  • Example 2 lead-free consisting of 2.5% by mass of silver, 0.5% by mass of copper, 0.01% by mass of nickel, 0.005% by mass of germanium, and the balance tin with the same composition as Comparative Example 2 described above
  • the ingot of the solder alloy is put into the first storage tank 2 of FIG. 1 and melted, and the molten solder liquid 3 is supplied to the reaction apparatus 1 with the heating device through the liquid supply dedicated pipe 5 connected to the pump 4 At the same time, a solution 7 having a liquid temperature of 270 ° C.
  • the reaction mixture 1 is vigorously mixed, stirred, and reacted for 40 minutes while controlling the temperature of the two types of liquid at 270 ° C. in the reaction apparatus 1, and then the mixed liquid 11 is transferred to the third liquid storage tank 13 through the dedicated pipe 12.
  • the solder alloy of the present invention was manufactured by transferring the lower layer of the molten solder solution 14 from the lowermost outlet of the third storage tank to the mold and cooling it under the same conditions as in Comparative Example 1 It was subjected to various performance tests as it was.
  • Example 3 an ingot of tin-zinc-silver-based solder alloy consisting of 8.0% by mass of zinc, 1.0% by mass of silver, and 0.05% by mass of nickel, which is the same as that of Comparative Example 3, is commercially available.
  • the molten solder 3 is put in the first storage tank 2 and melted, and the molten solder liquid 3 is supplied into the reaction apparatus 1 with the heating device via the liquid supply dedicated piping 5 connected to the pump 4, and simultaneously from the second storage tank 6
  • a solution 7 comprising a liquid temperature of 270 ° C. consisting of 40% by mass of stearic acid and the remainder of ester synthesis is injected from the reactor 1 via the supply piping 9 connected to the pump 8.
  • the mixture is reacted by vigorously mixing and stirring for 40 minutes while controlling the temperature of the liquid at 270 ° C., and then the mixed liquid 11 is transferred to the third liquid storage tank 13 by the dedicated pipe 12 to utilize the specific gravity difference after transfer.
  • the purification was directly subjected to various performance tests under the same conditions as Comparative Example 1
  • the solder alloy of the present invention cooling produced is transferred to the mold.
  • the copper concentration and the impurity concentration in the lead-free solder of each of the above Comparative Examples and Examples are the inside (10 ⁇ m depth from the surface) of the lead-free solders of Comparative Examples 1 to 3 and Examples 1 to 3 by a TOF-SIMS analyzer. Oxygen concentration was measured. The viscosity was measured by separately putting each solder in an alumina crucible, melting in an argon atmosphere, gradually lowering the temperature from 300 ° C., and using an alumina vibrating piece viscometer until solidification.
  • BGA of the same production lot ie, A solution previously heated to 240 ° C. comprising 50% by mass of palmitic acid and the balance synthetic ester oil as the upper layer having a size of 15 mm ⁇ 15 mm ⁇ 1.2 mm, an electrode pad number of 192, and a lead pitch of 0.8 mm;
  • the electrode pads of each of the BGAs were coated with a respective solder alloy.
  • a copper electrode pad corresponding to the electrode pad of the BGA is similarly heated beforehand to a solution heated to 240 ° C. consisting of 50% by mass of palmitic acid and the rest synthetic ester oil as the upper layer.
  • a bath made of the molten lead-free solder alloy solution of each of the examples or the comparative examples prepared in the lower layer thereof is immersed in the order of the upper layer solution ⁇ lower layer solution ⁇ upper layer solution in each of them.
  • the pads were coated with the respective solder alloys.
  • a solder-coated BGA electrode pad of the same kind was mounted at a predetermined position of the solder-coated electrode pad of the printed circuit board for each example and comparative example to prepare a sample for evaluation test.
  • the reason for using the above two-layer liquid structure treatment is that the organic compound solution having a carbonyl group (-COOH) removes the metal surface oxide film of the electrode pad and the lead by the saponification reaction to clean and activate the metal surface.
  • the solder liquid has the effect of blocking direct contact with the atmosphere, and further pulls the work from the lower layer liquid and passes the upper layer liquid
  • the surface of the solder film is coated with an antioxidative chemical adsorption protective film.
  • the printed circuit board for burn-in test has an external dimension of 77 mm ⁇ 132 mm, a thickness of 1 mm, and a circuit for BGA continuity test having 0.3 mm ⁇ copper lead with the same pitch and the same number of leads at the center of the substrate.
  • 1 unit each up and down at intervals of 5 mm, 2 rows each horizontally at intervals of 5 mm similarly as one central row, that is, 5 rows X 3 columns in a matrix, a total of 15 BGA mountable circuits
  • the printed circuit board is formed, and the surface excluding the copper electrode pad portion is covered with a solder resist film.
  • the cross section of the solder joint is polished after the heating aging accelerated test after leaving the sample for evaluation test in a normal state and in a constant temperature heating furnace at 150 ° C for 240 hours.
  • the number and size of microvoids near the solder joints were observed, analyzed and compared by scanning electron microscopy (SEM) and X-ray microanalyzer (EPMA).
  • SEM scanning electron microscopy
  • EPMA X-ray microanalyzer
  • the samples of the above Examples 1, 2 and 3 and Comparative Examples 1, 2 and 3 subjected to the heat aging accelerated test simultaneously under the same conditions were used as a JEDEC using a commercially available fully automatic drop tester for electronic device parts such as BGA. (No. of Joint Electron Device Engineering Council) standard.
  • Each test sample was repeatedly dropped at a height of about 1000 G from about 1000 G according to 22-B111, and the continuity test was performed each time to determine the number of drop tests until the occurrence of the conduction failure.
  • Example 1 and Comparative Example 1 The results are shown in Table 1 below, and in each characteristic value, between Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3 There is also a significant difference, and the comparative example is significantly inferior in solder wettability as compared with the example, the physical and mechanical property values are also small in elongation ((ductility), hard and brittle, and the viscosity at melting is high. , Over volume (Tsunoki, Tsurara), bridge over (leak), it was found that not yet arrived. On the other hand, in Examples 1, 2 and 3 of the present invention, it is suggested that the elongation is 1.5 times or more as large as that of the corresponding comparative example, respectively, and it is difficult to break.
  • the solder wettability is overwhelmingly easily wettable, the viscosity (viscosity) in the molten state is also significantly lower than that of the comparative example, and the dry feeling also has a low viscosity which is not found in the conventional solder alloy.
  • the granular crystals are present and the crystal grains are small (2a and 2c in FIG. 2).
  • the size and length of the crystal grain were long (FIG. 2, 2b, 2d).
  • the tensile strengths of the examples are substantially the same as those of the comparative example with respect to the magnitude of elongation, and therefore the toughness is also strong and fatigue failure due to expansion and contraction in a long-term heat cycle test hardly occurs.
  • the viscosity of the embodiment of the present invention gradually increases as the temperature is lowered, the relative viscosity value is 0.0034 ⁇ 0.0038 Pa ⁇ S, which is about 30 to 40% as compared with the comparative example. It is found that the viscosity is low and overwhelmingly low, which is considered to improve the "solder wettability" and to make a large contribution to the "over volume” and “bridge over” inhibition (Table 1).
  • the technology of the present invention clearly has excellent physical properties such as high elongation (ductility) and toughness, low viscosity, relatively low temperature solidification, high solder wettability, etc., which conventional tin or solder alloys do not have.
  • there is no bridge over leak in micro circuit width and extremely narrow pitch circuit junctions and there is also a suppression effect of Kirkendall voids after heating aging, highly reliable electronic parts and semiconductor devices with excellent impact resistance.
  • a method of producing tin or a solder alloy which enables the production of an electronic device, an apparatus therefor, and a solder alloy obtained thereby are sufficiently applied and utilized in the fields of electronic components, semiconductor devices, and electronic devices industrially. It is possible, and by using the solder alloy of the present invention, it can be expected to be utilized for further small and light semiconductor devices and electronic devices realizing fine and fine pitch narrowing. .

Abstract

 本発明は、微小電子部品の微細接合部の接合信頼性を飛躍的に向上させる技術および装置を提供するものであり、電子部品に使用する錫またははんだ合金の製造において、錫またははんだ合金の鋳塊を加熱溶融して反応装置に給液すると共に、カルボニル基(-COOH)を有する有機化合物を含有する溶液を前記反応装置に給液し、両液を激しく撹拌混合して反応させた後に、比重差を利用して溶融錫またははんだ合金液と有機酸溶液とに分離させた後、それぞれの液体を再び前記反応装置に循環させながら溶融錫または溶融はんだ合金中に存在する金属酸化物と不純物とを除去して、酸素濃度を5ppm以下にするものである。

Description

電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金
 本発明は、電子部品に使用する錫またははんだ合金及びそれを製造する装置と製造方法に関するものであり、これを使用する技術分野は、電子部品、半導体装置、電子装置の分野に関係し、特に微小微細狭ピッチ高密度回路の形成技術とそれを搭載した半導体装置及び電子装置が高温暴露後に経時的に発生するカーケンダルボイドを抑止し耐衝撃性を改善する技術に関するものである。
 近年、電子機器はますます高信頼性化と小型軽量化が要求され、トランジスタ、ダイオード、IC、抵抗器、コンデンサーなどの電子素子、コネクターなどの電子部品をはじめ、それを搭載する実装基板(インターポーザーやプリント回路基板)の電極パッドやリードはますます微小化と狭ピッチ化が進んでいる。これに伴い、特に上記電子部品の電極パッドやリードが錫またははんだで被覆されたIC、BGA(Ball Grid Array)やCSP(Chip Size Package)を実装基板に微細・狭ピッチではんだ接合して電子回路を形成させた半導体装置や電子装置のはんだ接合部には、極めて厳しい品質信頼性が要求されている。
 このため、錫またははんだ接合に使用する錫またははんだ合金側にも接合強度と高度の長期安定品質信頼性が要求されている。とりわけ、電子素子、電子部品の電極パッドまたはリードの接合面積およびピッチの微小化に伴う錫またははんだ微小接合部の信頼性、特に狭ピッチ回路におけるはんだのオーバーボリュームとブリッジオーバーリークの問題、、電子機器の繰返し通電開閉による半田接合部のヒートサイクルで生ずる耐熱疲労性の問題、更には長時間高温暴露状態(加熱エージング)におけるはんだ接合界面付近に多発するカーケンダルボイドによる耐衝撃破断性の問題がクローズアップされ、その改善対策が強く要求されている。
 一方では、当然、このはんだ接合においても微細・狭ピッチ化の傾向は更なる微小化へと向かっており、溶融はんだ液に浸漬してはんだ付けする従来技術では至難とされる、例えば、電極パッド幅またはリード幅が80μm以下で隣接ピッチが150μm以下の微小微細回路の量産技術が強く望まれている。
 また一方では、近年、環境汚染ならびに人体に対する有害性の問題で鉛の使用禁止または規制化が進み、特に電子部品分野においては鉛を含有しない所謂「鉛フリーはんだ合金」が1990年代後半からはんだ接合に普及しはじめ、RoHS規制発効前後から従来の錫鉛系半田に代わり、急速に実用化が普及している。
 その中で、特に、錫・銀・銅系鉛フリーはんだ合金、及びそれにアンチモンを添加したはんだ合金(特許文献1)、錫・銀・銅系はんだ合金にニッケルまたはゲルマニウムなどを添加したはんだ合金(特許文献2)などが広く実用化されている。このほかにも、錫・亜鉛・ニッケル系はんだ合金及び更に銀、銅、ビスマスなどを添加したはんだ合金(特許文献3)などの各種鉛フリーはんだ合金も使用されている。
 その一方では、歴史的な実績と品質安定性ならびに信頼性の観点から、自動車や航空機向けの電子部品ならびに半導体装置及び電子装置には現在でも63錫鉛系はんだ(Sn63質量%、Pb37%共晶はんだ)による接合も部分的に行われている。
 しかしながら、これら現用の錫またははんだ合金内部には、一般的に数百ppmの金属酸化物が存在するために、溶融時の粘性が比較的高く、はんだぬれ性が比較的低いため、特に電子部品の電極パッド及びリードの幅が80μ以下でピッチが150μm以下の微小微細な回路にはんだ被覆をしたり、実装基板にBGAやCSPのような半導体装置や各種微小電子部品をはんだ接合する場合、譬え、適切なフラックスを使用しても接合部に必要以上の容量ではんだが盛り上がる所謂「オーバーボリューム」(極端な場合はツノ、ツララ状を呈するが、そうでなくとも表面張力が比較的大きいために盛り上がって付着する)するため、特に隣接ピッチが狭い場合には隣接電極パッドやリードへブリッジオーバーをして「リーク不良」を生じやすい難点がある。また、適切なフラックスを併用しない限り、ぬれ性が良くないために部分的に「はんだ未着」などの外観不良現象を生ずる難点もある。
 更に、従来はんだでは、一般的にはんだの物理的機械的特性の1つである伸び(延性)が比較的に小さいために、電子回路として半導体装置や電子装置にに組み込まれた後、通電on−offを繰返すと、発熱と放冷のヒートサイクルによりはんだ接合部が経時的に疲労破断して導通不良など生じ易く、微小化した電子機器の接続信頼性を損なうことが広く知られている。(特許文献4)
 即ち、現行の溶融はんだを用いたはんだ接合技術、またはソルダーペーストを塗布後融解してはんだ接合する技術(例えば電子装置の場合、実装基板の電極パッド及びリードを除いてそれ以外の表面全てを保護膜で被覆した後、前記実装基板のパッド及びリード部のみ開口したメタルマスクを実装基板に重ねてローラーまたはスキージーで該電極パッド及びリード部に所定の厚さのソルダーペーストを印刷塗布し、その後、メダルマスクを外して自動表面実装機・マウンターで実装基板上の所定の電極パッド及びリード位置に所定の電子部品を自動搭載し、ソルダーペーストが融解してはんだ付け可能な温度に加熱したリフロー炉を通過させることにより、各種部品を実装基板にはんだ接合して電子装置を製造している)では、上記「オーバーボリューム」(ツノ、ツララ)や隣接リードへブリッジオーバーをしてリーク不良を発生することも少なくなく、これを回避して微小狭ピッチ電極パッド及びリードに安定してはんだ被覆またははんだ接合できる最小最狭微細電子回路形成の限界は、一般的に電極パッド及びリードの幅が約80μmでピッチが約200μmといわれている。
 従って、これ以下の微小微細狭ピッチ電子回路形成には、例えば、CSP用チップなどの微小な電極パッドに微小なバンプを形成させる場合は、バンプを形成させる電極パッド部を除いてそれ以外の表面全てに保護膜を塗布し被覆保護した後、開口している該電極パッド金属表面(一般に下地Niめっきの上にAuフラッシュめっきが施されている)に数10μmの厚さまで金バンプまたははんだバンプを電鋳めっきしている。また、実装基板やBGAの場合も主として同様に数10から100μm程度の厚さまで錫またははんだ合金を電鋳めっきして微小微細電子回路を形成している。しかし、この場合は金が非常に高価なこと、電鋳めっきには長時間かかり、管理も複雑で原価が高く効率が悪い難点がある。
 また更に、上記現行のはんだ被覆及びはんだ接合技術では、被覆または接合の際に一般的にフラックスまたはソルダーペーストの使用は必須であり、そのためフラックスまたはソルダーペーストに含まれている溶剤や樹脂分がはんだ接合時に瞬間的に気化・飛散するので、はんだ接合界面また接合はんだ内部に一部微小気泡として残存してマクロボイドを生じやすい難点もある。但し、色々な技術改善と工夫により、マイクロボイドは殆ど皆無に出来る方法もあるが、それでも現行のはんだ接合技術ではその部分が長時間累積通電により高温暴露(一般には発熱により100℃以上の高温に暴露され、所謂「加熱エージング」)されると、接合界面付近にカーケンダルボイドが生じ、それが経時的に増加し、この部分に衝撃力が加わると、接合部破断を生ずることが電子機器の信頼性の観点から、近年、大きな問題になっている。(参考文献1~4)
 このうち、電子装置が高温と低温とを繰り返す熱サイクル時の半導体素子とプリント基板間に生ずる温度差による熱応力ではんだ接合部が疲労破壊すること、及びこの部分的疲労破壊に起因した耐衝撃性劣化を改善するために、錫銀銅系はんだ合金を溶解混錬する際に、アルゴンガスなどの非酸化性雰囲気中ではんだ合金中の固溶酸素濃度を10ppm以下にしたはんだ合金を使用するとはんだ自体の延性と強度が10%程度向上し、はんだ接合部の耐熱疲労特性と耐衝撃性(簡易落下試験条件下)改善できることを提案した特許文献5もある。しかしながら、近年、微小微細小型化された半導体装置及び電子装置では遥かに厳しい加速度重力による衝撃試験が課せられることが多く、上記特許文献5に記載のはんだ合金では性能的に不充分であり、例えば、高温暴露(例えば150℃恒温槽中に240時間放置した加速加熱エージング試験)すると、この技術だけでは接合界面付近にカーケンダルボイドが多発し、加速度重力による耐衝撃性は充分満足できない。
特開平5−50286(特許3027441) 特開平11−77366(特許3296289) 特開平9−94688(特許3299091) 特開2001−237536(特許3221670) 特開2002−239780(特許4152596) R.Aspandiar,"Void in Solder Joints"SMTA Northwest Chapt.Meeting(September 21,2005) C.Hillman"Long−term reliability of Pb−free electronics"Electronic Products p.69(September 2005) 伴充行、島内優"電子部品の信頼性評価および不具合解析技術"JFE技報第13巻p.97−102、2006年8月 石川信二他:"高温はんだとCu板の接合部におけるカーケンダルボイドの生成"、エレクトロニクス実装学会誌、第9巻4号p.269−277、2006年
 以上の通り、現行はんだの物性上および接合技術上の制約から、現行のはんだを溶融して使用すると、はんだ接合部に必要以上の容量ではんだが盛り上がる所謂「オーバーボリューム」に因り隣接リードへブリッジオーバーリーク不良を生じやすい難点があるから、一般的に現行のはんだボールまたは溶融はんだ浸漬により形成されるはんだ被覆またははんだ接合電極パッド及びリード幅は高々80μm程度、隣接ピッチとしては200μm程度の微小狭小化が現状では限界であり、それ以下の幅と隣接ビッチの微小微細はんだ接合電子回路形成は、一般に前記電鋳めっきバンプ以外は未だに完全には実用化されておらず、半導体装置および電子機器の更なる微小化のネックになっている。
 本発明は、従来はんだ合金の上記難点である「オーバーボリューム」の問題や隣接電極パッドまたはリードへの「ブリッジオーバーリーク不良」の課題、また従来溶融はんだを使用した技術では殆ど不可能である電極パッド幅及びリード幅が80μm以下で隣接ピッチが150μm以下の狭ピッチ微小微細電子回路を可能にする課題、更には長期高温暴露時の経時的カーケンダルボイドの発生を抑止し、厳しい試験条件下での耐衝撃性を飛躍的に向上させる課題を解決するはんだ合金とその製造方法及び製造装置を開発することにより、更なる微小微細狭ピッチ化小型軽量化した半導体装置及び電子装置、それを搭載した電子機器の高信頼性の確保と一層の軽薄短小化促進を目的としている。
 本発明の錫またははんだの製造方法、及び製造装置及び錫またははんだ合金は、一例として図1で説明すると、錫またははんだ合金の鋳塊を加熱溶融する第1貯槽2から溶融した錫液またははんだ合金液3をポンプ4と配管7を介して独立した反応装置1に給液する一方、カルボニル基(−COOH)を有する有機酸1~80質量%を含有する溶液を加熱する第2貯槽6から液温180~300℃該有機酸溶液7をポンプ8と配管9を介して前記反応槽1に給液し、両液を激しく撹拌混合して反応させた後に、配管12を通してこれらの混合液を第3貯槽13に戻し、比重差により溶融錫またははんだ合金液14と有機酸溶液17とに分離したそれぞれの液体をポンプ15と配管16(溶融錫または溶融はんだ液用)及びポンプ18と配管19(有機酸溶液用)を介して再び前記反応装置1に循環させながら溶融錫また溶融はんだ合金中に存在する金属酸化物と不純物とを除去精製することにより、錫またははんだ合金中の酸素濃度を限りなく皆無に近く、少なくとも5ppm以下にするものである。
 更に詳しく言えば、本発明は、液温180~300℃の油系溶媒に溶解しかつ分子構造的に安定な、少なくともカルボニル基(−COOH)を有する有機酸のケン化作用を利用して、溶融はんだ液中の金属酸化物や不純物を除去するものである。従って、原理的にはケン化作用機能を有する有機化合物であれば何でも良いと考えられ、例えば、メタン酸(蟻酸)、エタン酸(酢酸)、プロピオン酸、酪酸、イソ酪酸、α−メチル−βオキシ酪酸、吉草酸、イソ吉草酸、活性吉草酸、ピバル酸(トリメチル酢酸)、カプロン酸、2−エチル酪酸、カプロン酸、カプリル酸、2−エチルヘキ酸、ノナン酸、カプリン酸、ウンデカン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキジン酸、アラキドン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、シクロヘキサンカルボン酸、蓚酸、マロイン酸、コハク酸、グルタル酸、エチルマロン酸、アジピン酸、ピメリン酸、セバシン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸およびその異性体、安息香酸、p−クロル安息香酸、トルイル酸、フェニル酢酸、フェニルコハク酸、フタール酸、イソフタル酸、フェニルコハク酸、サリチル酸、イカホンロン酸、1,2,4ベンゼントリカルボン酸、α−ナフトエ酸、β−ナフトエ酸、カルセイン、シクロプロパンジカルボン酸、ニトロフタール酸、グリシン、アスパラギン酸、グルタミン酸、アラニン、フェニルアラニン、トレオニン、メチオニン、リジン、ヒスチジンなどの有機酸や有機脂肪酸、エチレンジアミン四酢酸、ニトリロ三酢酸、1,2−シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、ジエチレントリアミン五酢酸、1−(2−ヒドロキシ−4−スルホ−1−ナフチルアゾ)−2−ヒドロキシ−3−ナフトエ酸などのキレート化合物などが挙げられるが、溶融はんだと激しく撹拌混合してケン化反応を促進されるために、180~300℃で使用できる溶媒に溶解し分解などせず安定している有機化合物で、かつケン化作用の大きい性質を有することが好ましい。沸点が低い有機化合物の場合は高圧にして使用することも可能と考えられるが、実用的にはあまり好ましいとはいえない。 経済性や取扱い上、更にはケン化作用性の点から工業的により実用に適するものは、例えば、炭素数14~20の飽和脂肪酸、即ち、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸などであり、その中でも、パルミチン酸とステアリン酸の効果は抜群で本発明の目的に合致し、特に有用である。
 有機脂肪酸は炭素数12以下でも使用可能ではあるが吸水性があり、高温で使用する関係からあまり好ましくはない。また、炭素数21以上の有機脂肪酸でも使用は可能であるが、一般的に融点が高いこと及び浸透性が悪く、資源的にも少なく取扱いも難く処理後の錫またははんだ合金の防錆効果もやや不充分になる。
 特に望ましいのは、工業的にも大量に生産され使用されて入手もしやすい炭素数16のパルミチン酸、炭素数18のステアリン酸が最適であり、そのいずれか1種以上を1~80質量%と残部が180℃~350℃の高温領域で安定な油系溶媒からなる液温180~300℃の溶液中に、前記溶融錫または溶融はんだ合金を浸漬し激しく撹拌処理することにより、前記溶融錫または溶融はんだ合金内部に存在する微小な酸化物や不純金属が除去され、特に酸素濃度5ppm以下になると、従来の同一金属組成のはんだに較べて、従来にない物理的機械的化学的物性、特に、柔軟で伸び(延性)が約1,5倍以上になり、靭性に富み、また、溶融時の粘性が約30%以上著しく低くなり(見た目の感覚でも従来の錫、はんだ合金と比較して明らかに「さらさら」感がある)、フラックスを使用しない状態でのはんだぬれ性も格段に優れ、更に凝固温度が20~30℃低い、微小微細狭ピッチ電子回路形成に最適な物性を有するはんだ合金が得られる。
 ここで、酸素濃度は少なくとも5ppm以下が必須条件であり、現時点での発明者らの実験では、遺憾ながら、本発明のはんだと同一金属組成の従来のはんだの中間的酸素濃度、例えば10ppm~50ppmの中途半端なはんだを試作することが出来なかったので、本発明の前記物性を示すはんだの正確な酸素濃度臨界値を明確に断定することはできないが、少なくとも5ppm以下であれば、後述の表1及び表2の実施例で明らかな通り、優れた物性が立証できている。
 上記本発明の錫またははんだ合金を用いて、例えば電極パッド及びリード幅20μmでピッチが60μmの微小微細・極狭ピッチの電子回路の錫またははんだ被覆及びはんだ接合においては、はんだ被覆部及びはんだ接合部はオーバーボリュームにならず、従ってブリッジオーバーによる隣接リードとのリーク不良も発生しない(図33a、3c)ため、接合信頼性の高い高密度電子回路ならびにそれを組み立てた高接合信頼性高密度小型軽量の半導体装置及び電子装置の製造が可能になる。
 これに対して、本発明と同一金属組成の従来はんだを同一条件(電極パッド及びリード幅20μmでピッチが60μmの微小微細・極狭ピッチの電子回路)ではんだ被覆及びはんだ接合した場合は、典型的なボリュームオーバーとブリッジオーバーリーク不良を生ずる(図3 3b)。
 更に、はんだ被覆時及びはんだ接合時に、上層に飽和脂肪酸液、下層に本発明の酸素濃度5ppm以下の溶融はんだ液を配し、被はんだ被覆または接合電子部品及び実装基板を漸次上層液→下層液→上層液の順に浸漬処理した半導体装置及び電子装置は、120℃以上の高温に長期間暴露(加熱エージング)されてもはんだ接合界面にカーケンダルボイドを生ずる度合いが著しく小さく、従って、耐衝撃性、耐熱疲労特性が従来はんだ合金と比較して格段にすぐれていることが知見された。
 前記液温180~300℃の油系溶媒に溶解しかつ分子構造的に安定な、少なくともカルボニル基(−COOH)を有する有機化合物の濃度については1質量%以下でも効果はあるが、濃度が薄いため連続して大量処理に使用する場合は補充管理などが煩雑でありあまり実用的ではない。一方、80質量%以上でも、極端な場合100質量%であっても、充分効果はあるが、発煙性と着火性と臭気の問題があり、あまり好ましいとはいえない。望ましくは10~70質量%程度が実用に適しているといえる。液温は使用する前記溶融錫または溶融はんだ合金の融点で決まり、少なくともその融点以上の高温領域で液温180~300℃の油系溶媒に溶解しかつ分子構造的に安定なカルボニル基(−COOH)を有する有機化合物の溶液と前記溶融錫または溶融はんだ合金を激しく撹拌接触させる必要がある。
 また上限温度は発煙性、着火性と臭気の問題、ならびに省エネの観点から実用上は300℃程度以下が好ましく、更に言えば、前記錫またははんだ合金の融点以上の温度前後から270℃程度で、少なくとも図1の第3貯槽においては溶融錫またははんだ液と接触している部分の有機化合物溶液の温度は該溶融錫またははんだ液の温度と同等以上であることが望ましい。
 また、前記高温領域で安定な溶媒としては前記有機化合物を溶かすものであれば、鉱物油、植物油、合成油のいずれでもよいが、特に安定性、安全性、経済性、取扱い性の点でエステル合成油が最適である。高温で安定な溶媒を使用する目的と理由は安全性と液粘度を多少なりとも下げて、より均一な撹拌混合処理を容易に行うこと及び前記有機化合物の高温発煙性、着火性、ならびに臭気の抑制にあり、その濃度は前記有機化合物濃度で決まる。
 上記有機化合物含有溶液と溶融錫または溶融はんだ合金液を激しく撹拌混合してケン化反応を促進させる方法は、加熱装置と回転式ステンレス製インペラ撹拌子などの付いた撹拌混合機たスタティックミキサーなどを用いて所定の温度に加温しながら激しく撹拌混合して上記有機化合物と反応させて、溶融錫または溶融はんだ合金液中に存在する金属酸化物や微量の不純物などを除去して、特に錫またははんだ合金中の酸素濃度を5ppm以下に精製する。上記反応装置にスタティックミキサーのような撹拌混合機を用いると非常に効率よく比較的短時間で酸素濃度を5ppm以下に出来る。
 反応装置の撹拌器ならびに撹拌方法については、上述の通り、図1の加熱装置のついた反応装置1に第1貯槽2から上記溶融錫または溶融はんだ液3をポンプ4に接続された給液専用配管5を介して給液注入し、同様に第2貯槽6から上記有機化合物溶液7をポンプ8に接続された給液専用配管9を介して給液注入し、反応装置1内で所定の温度に制御しながら溶融錫または溶融はんだ液3と有機化合物溶液7をステンレス製インペラ撹拌子または振動子あるいはスタティックミキサー10などを用いて激しく撹拌混合しながら反応させる。
 反応時間は容器構造、上記2種類の液体の給液量、撹拌器構造および撹拌方法により異なり、バッチ式反応の場合は数分から60分程度掛かる場合もある。これに対して、反応させた混合液体11を専用配管12で第3貯液槽13に移送して、移送後比重差を利用して2種類の液体を分離させ、必要に応じて下層の溶融錫または溶融はんだ液14をポンプ15と専用配管16を介して、また上層の有機化合物溶液17をポンプ18と専用配管19を介して反応装置1に戻し循環させながら、該錫またははんだ合金中に存在する金属酸化物及び不純物を除去し、酸素濃度が5ppm以下になるまで連続循環精製させると良い。尚、この場合、第2貯槽を設けず、第3貯槽で第2貯槽機能を兼用させることも可能である。
 該錫またははんだ合金中に存在する金属酸化物及び不純物を除去し、酸素濃度が5ppm以下に精製された錫、またははんだ合金は、第3貯層の最下部のドレーン20からバルブ21を開けて取り出し、鋳型に注入するなどして電子部品用錫またははんだ合金として使用する。
 本発明に適用できる錫またははんだ合金の種類は、通常電子部品の接合に使用されるものは理論的に全て使用可能と考えられるが、環境問題および接合信頼性の観点から、望ましくは、錫、または錫を主成分とし銀、銅、亜鉛、ビスマス、アンチモン、ニッケル、ゲルマニウムのいずれか1種以上の金属を添加した溶融鉛フリーはんだ合金を用いることが好ましい。その中でも特に銀 1~3質量%、銅 0.1~1質量%、ニッケル 0.001~0.05質量%、ゲルマニウム0.001~0.02質量%の鉛フリーはんだ合金が好ましい。
 本発明の実施検証例としては、実際に錫・銀・銅系とそれにニッケル、ゲルマニウムを添加した市販の合金、及び錫・亜鉛系合金にニッケル、銀を添加した市販の合金を中心に、上記本発明の前記有機化合物を所定の濃度で含有するエステル合成油溶液中に注入浸漬し激しく撹拌混合処理をして、その効果を検証したが、これ以外の鉛フリーはんだ合金、純錫、錫鉛系はんだ合金に本発明の製造方法および製造装置を適用すれば原理的に言って同様の効果が得られるものと推定される。何故なら、これらにも実施例と共通する酸化錫をはじめとする酸化物と不純物が存在しているからである。尚、一般的に工業的原料である精製純錫自体の中に酸素濃度で80~数100ppmの極微量の金属酸化物が存在しており、市販の純錫、および各種はんだ合金は一般にそれを原料として使用しているので、同様の極微量の金属酸化物が分子状もしくは極微小粒状状態で存在していることが判っている。
 以下に代表例として、カルボニル基を有する有機酸溶液としては炭素数が12~20の飽和脂肪酸溶液と、錫またははんだ合金の代表的事例としては鉛フリーはんだ合金を中心に詳しく述べる。
 本発明は炭素数が12~20飽和脂肪酸1~80質量%と残部エステル合成からなる液温180(使用する溶融鉛フリーはんだ合金材料が凝固しない温度以上の温度)~300℃の溶液と、現在、広く実用されている通常の鉛フリーはんだ合金を溶融した液とを図1の反応装置1内に注入し激しく撹拌混合処理すると、該溶融はんだ合金液中に存在する銅酸化物、錫酸化物、銀酸化物、あるいはその他の添加金属の酸化物および微量混入している鉄、鉛、珪素、カリウムなどの酸化不純物が飽和脂肪酸のカルボニル基と反応して取り込まれケン化物となり、該溶融鉛フリーはんだ合金液内部から該飽和脂肪酸液側に取り込まれて分離除去され清浄化される。この撹拌混合液を第3貯槽13に導入して放置すると、短時間で比重差により該貯槽底部(下層)に清浄化された溶融鉛フリーはんだ合金液と、その上層に上記金属酸化物及び不純物を含有する飽和脂肪酸溶液とに自然に分離する。尚、第3貯槽13と第2貯槽6は兼用も可能であり、その場合は第2貯槽を割愛しても良い。
 通常、電子部品用のはんだ合金に使用する精製された原料錫の中には数十ナノミクロン程度の極微小錫酸化物粒子が点在しているが、それも同時に分離除去されることが判った。更に、酸素濃度が5ppm以下になると、溶融鉛フリーはんだの温度低下過程において、凝固の核になる酸化物が限りなく皆無に近く極微量になるから結晶化凝固点も低く、仮に酸素濃度が数ppm残っていてもそれが凝固の核になって極微量結晶化凝固することがあっても、その温度ではそれ以上の凝固は殆ど進行せず、過冷却状態になり無酸素はんだの本来の凝固点近くまで次の凝固は始まらないことが判明した。完全に凝固が完了する温度は、同一金属組成の通常鉛フリーはんだと較べると、約20~30℃低いことが後述の示差熱分析法で実証された。 これを凝固時の結晶組織で見ると、本発明の酸素濃度5ppm以下の鉛フリーはんだの事例では、主体は微小粒状結晶(図2の2a、2c)であるのに対し、同一金属組成の従来鉛フリーはんだには比較的大きな柱状結晶(図2の2b、2d)が多数存在しており、明らかに有意差がある。
 また、本発明の酸素濃度5ppm以下のはんだ合金は溶融時のはんだの粘度も同一金属組成の通常鉛フリーはんだと較べて、約30~40%も低いため、溶融はんだ液からワークを引き上げる際の所謂「はんだ切れ」が良く、オーバーボリュームになり難いメリットがあることも判った。
 上述の条件で製造した本発明の鉛フリーはんだ合金を適用した場合の物理的機械的及び化学的特性を調べると、以下の実施例(1~3)に示した通り、現在広く使われている鉛フリーはんだ合金(比較例1~3)に較べて、伸び及び破断伸び(延性)が約1.5倍以上著しく向上していること、フラックスを使わずにはんだ接合した場合のはんだぬれ性も比較にならないほど遥かに優れていること、また上記の通り溶融時の粘度も比較的低く、微小部のはんだ被覆/接合に最適な鉛フリーはんだ合金であることが確認された。即ち、リード幅が20μmm、隣接ピッチが60μmの極狭ピッチにおいてもオーバーボリューム、およびブリッジオーバーがなく(1例として図3の3a、3c)、従って隣接電極パッド及びリードにリークすることもなく、また高低温ヒートサイクルに伴う微小はんだ接合部の耐疲労破断特性にも優れ、更に長期恒温暴露時のカーケンダルボイド発生を抑止する効果もあり、従って、半導体装置に課せられる過酷な加速度耐衝撃性試験でも、同一金属組成の従来はんだによる接合品(比較例)に比して格段に優れた性能を有し、本発明はんだ合金による接合は長期接続信頼性に優れていることが判った。
 これにより、極端な事例で言えば、回路幅10μm、隣接回路ピッチ20μm(溶融はんだを使用して製造できるミクロ的な微小回路としては限界に近い)の超極微細回路でもブリッジオーバーリークのないはんだ被覆および接合が可能である。
 更に、本発明の錫またははんだ合金を用いて、例えば、半導体チップをインターポーザーに搭載する際、あるいは半導体装置や電子素子などの電子部品を実装基板に接合し実装搭載する際に、本発明の錫またははんだ合金を溶融後下層にして上層に前記飽和脂肪酸を含有する溶液を配置して錫またははんだ接合すれば、従来の市販の錫またははんだ合金品に較べて物性的に粘性は低くぬれ性が遥かによく、かつ物理的機械的特性である凝固後の接合部の延性および靭性に優れ、長期高温暴露後もカーケンダルボイドの経時的発生が著しく少ない(殆ど見られない)品質安定した接続信頼性の高い半導体装置及び電子装置が得られる。また、このようにして本発明の錫またははんだ合金を表面実装装置等の組立工程に用いれば、ぬれ性の経時劣化は殆ど見られず、特に微小回路の錫またははんだ接合に最適であることが確認された。
 即ち、リード幅が20~50μm、隣接ピッチが30~60μmの超極狭ピッチのプリント回路においてもオーバーボリュームもなく、従って、ブリッジオーバーして隣接電極パッドまたはリードにリークすることもなく、勿論、はんだの部分未着もなく、また高低温ヒートサイクルに伴う微小はんだ接合部の疲労破断による電子回路の導通不良を生じにくい、長期接続信頼性に非常に優れた画期的なものであることが判った。
 また、本発明の酸素濃度5ppm以下の錫またははんだ合金をパウダーとして、錫またははんだ被覆および半田接合に使用しても同じ効果が得られる。更に、本発明の該錫またははんだ合金を加工してソルダーペーストとして使用しても、あるいは、ばんだボールに加工してBGAやCSP用のバンプ形成に使用しても上述の物性が保持されるので、同じ効果が得られる。
 特に、本発明の錫またははんだ合金の溶融時の粘度が非常に低いことは、単に微小微細な回路プリント回路や電子素子、電子部品の微細部位にオーバーボリュームならびにブリッジオーバーなく錫またははんだ被覆および接合を可能にするのみでなく、例えば、BGAやCSPのバンプに使用する直径80μmφ以下の真円精度の高い高精度微小はんだボールの製造にも適している。
 更に、直径10μmφ以下の極微小な錫粉またははんだ合金粉の製造についても、本発明の錫またははんだ合金の溶融時低粘度特性を利用すれば、従来になく微小で真円精度の高いパウダーが容易に製造できる。
 以上の通り、本発明の製造方法および製造装置を用いて製造した錫またははんだ合金は、従来の錫またははんだ合金では不可能であった上記微小電子部品の微細接合部の接合信頼性を飛躍的に向上させる電子部品や電子装置および半導体装置の組立、更にはウエハーへの直接微細バンプ形成、微細はんだボールの製造、高信頼性はんだクリーム(ソルダーペースト)の製造、高精度極微小錫またははんだパウダーの製造などを容易に可能にする画期的なものであり、本発明の錫またははんだ合金の製造方法および製造装置もまた上記高性能高品質錫またははんだ合金の製造に不可欠な最適かつ効率的製造方法ならびに製造装置である。
本発明の錫またははんだ合金の製造装置事例の模式的概略図である。 本発明の実施例および比較例のはんだ合金の内部断面結晶組織事例で、2aは実施例1、2bは比較例1、2cは実施例2、2dは比較例2である。 本発明の実施例2および従来の比較例2の鉛フリーはんだ合金をそれぞれ微小幅20μmで隣接回路との間隔が60μmの狭ピッチプリント回路板に適用してはんだ被覆した工業的応用事例のはんだ被覆状態を示した外観SEM写真であり、3aは上部から拡大撮影した実施例2の外観写真、3bは同様に上部から拡大撮影した比較例2の外観写真、3cは上記3aを斜め上部から拡大撮影した外観SEM写真である。 本発明の実施例2と従来のはんだを使用した比較例2のはんだ合金を使用した実装基板の常態におけるはんだ接合部断面のSEM写真と恒温装置中に150℃240時間加熱エージング後のはんだ接合部断面のSEM写真であり、4aは実施例2の常態、4bは比較例2の常態、4cは実施例2の加熱エージング後、4dは比較例2の加熱エージング後、をそれぞれ示した断面写真である。
 1 反応装置、 2 第1貯槽、 3 第1貯槽の溶融錫またははんだ合金液、4 第1貯槽の溶融錫またははんだ合金液移送用ポンプ、 5 第1貯槽の溶融錫またははんだ合金液移送用配管、 6 第2貯槽、 7 第2貯槽の有機化合物溶液、 8 第2貯槽の有機化合物溶液移送用ポンプ、 9 第2貯槽の有機化合物溶液移送用配管、 10 反応装置の撹拌子または撹拌器、 11 溶融錫またははんだ合金液と有機化合物溶液の混合液体、 12 溶融錫またははんだ合金液と有機化合物溶液の混合液体移送用配管、 13 第3貯槽、 14 第3貯槽の溶融錫またははんだ合金液、 15 第3貯槽の溶融錫またははんだ合金液の移送用ポンプ、 16 第3貯槽の溶融錫またははんだ合金液の移送用配管、 17 第3貯槽の有機化合物溶液、 18 第3貯槽の有機化合物溶液移送用ポンプ、 19 第3貯槽の有機化合物溶液移送用配管、 20 ドレーン、 21 バルブ、 22 電極パッドまたはリードの銅部、 23 錫またははんだ合金層、 24 接合界面付近の金属間化合物(IMC)のCuSn層、 25 接合界面付近の金属間化合物(IMC)のCuSn層、 26 カーケンダルボイド
<実施例および比較例>
 先ず、比較例1としては、従来より広く実用されている市販の銀2.5質量%、銅0.5質量%、残部錫からなる鉛フリーはんだ合金を後述の条件でそのまま各種性能試験に供した。
 比較例2としては、従来より広く実用されている市販の銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、残部錫からなる鉛フリーはんだ合金を比較例1と同一条件でそのまま各種性能試験に供した。
 比較例3としては、従来より広く実用されている市販の亜鉛8.0質量%、銀1.0質量%、ニッケル0.05質量%からなる錫亜鉛銀系はんだ合金からなる鉛フリーはんだ合金を比較例1と同一条件でそのまま各種性能試験に供した。
 一方、実施例1としては、上記比較例1と同じ市販の組成の、銀2.5質量%、銅0.5質量%、残部錫からなる鉛フリーはんだ合金鋳塊を図1の第1貯槽2に入れて融解してその溶融はんだ液3をポンプ4に接続された給液専用配管5を介して加熱装置のついた反応装置1に給液注入し、同時に第2貯槽6からパルミチン酸10質量%と残部エステル合成からなる液温260℃の溶液7をポンプ8に接続された給液専用配管9を介して反応装置1給液注入し、反応装置1内において上記2種の液体を液温260℃に温度制御しながら30秒以上激しく混合撹拌して反応させた後、その混合液体11を専用配管12で第3貯液槽13に移送して、移送後比重差を利用して2種類の液体を分離させ、下層の該溶融はんだ液14をポンプ15と専用配管16を介して、また上層の該パルミチン酸溶液17をポンプ18と専用配管19を介して反応装置1に戻しながらこれを60分間連続循環精製させた後、第3貯槽最下部の取出口から上記精製された該はんだ合金を鋳型に移送して冷却製造した本発明のはんだ合金を比較例1と同一条件でそのまま各種性能試験に供した。
 また、実施例2として、上記比較例2と同じ組成の、銀2.5質量%、銅0.5質量%、ニッケル0.01質量%、ゲルマニウム0.005質量%、残部錫からなる鉛フリーはんだ合金の鋳塊を図1の第1貯槽2に入れて融解してその溶融はんだ液3をポンプ4に接続された給液専用配管5を介して加熱装置のついた反応装置1に給液注入し、同時に第2貯槽6からステアリン酸40質量%と残部エステル合成からなる液温270℃の溶液7をポンプ8に接続された給液専用配管9を介して反応装置1給液注入し、反応装置1内において上記2種の液体を液温270℃に温度制御しながら40分間激しく混合撹拌して反応させた後、その混合液体11を専用配管12で第3貯液槽13に移送して、移送後比重差を利用して2種類の液体を分離させた後、下層の該溶融はんだ液14を第3貯槽最下部の取出口から上記精製された該はんだ合金を鋳型に移送して冷却製造した本発明のはんだ合金を比較例1と同一条件でそのまま各種性能試験に供した。
 また、実施例3としては、比較例3と同じ市販の亜鉛8.0質量%、銀1.0質量%、ニッケル0.05質量%からなる錫亜鉛銀系はんだ合金の鋳塊を図1の第1貯槽2に入れて融解してその溶融はんだ液3をポンプ4に接続された給液専用配管5を介して加熱装置のついた反応装置1に給液注入し、同時に第2貯槽6からステアリン酸40質量%と残部エステル合成からなる液温270℃の溶液7をポンプ8に接続された給液専用配管9を介して反応装置1給液注入し、反応装置1内において上記2種の液体を液温270℃に温度制御しながら40分間激しく混合撹拌して反応させた後、その混合液体11を専用配管12で第3貯液槽13に移送して、移送後比重差を利用して2種類の液体を分離させた後、下層の該溶融はんだ液14を第3貯槽最下部の取出口から上記精製された該はんだ合金を鋳型に移送して冷却製造した本発明のはんだ合金を比較例1と同一条件でそのまま各種性能試験に供した。
 上記各比較例および実施例の鉛フリーはんだ中の銅濃度、不純物濃度については、TOF−SIMS分析装置により比較例1~3、実施例1~3の鉛フリーはんだの内部(表面から深さ10μmまで)の酸素濃度を測定した。
 粘度についてはアルミナ坩堝の中にそれぞれのはんだを個別に入れ、アルゴン雰囲気中で溶解して、300℃から徐々に温度を下げて凝固点までアルミナ振動片式粘度計を用いて測定した。
 また、はんだぬれ性については、上記比較例および実施例の各はんだ合金をそれぞれ別々に溶融させ液温260℃に自動温度制御したはんだ浴槽中に、0.4mmφの純銅線を測定ピンとして使用し、メニスコグラフによるはんだぬれ性試験方法によりそれぞれ繰返し4(n=4)でゼロクロス時間を測定した。
 更に、オーバーボリューム性(ツノ、ツララの発生有無)、ブリッジオーバー(リーク)性については、上記比較例および実施例の各はんだ合金をそれぞれ別々に溶融させ液温260℃に自動温度制御したはんだ浴槽中に、厚さ0.6mm、幅200mm、長さ150mm、リード幅が0.02mm、隣接リード間隔が0.06mmの極狭ピッチの多層(4層)プリント回路板を1秒間浸漬して、リード部のはんだ付着状態を観察した。
 物理的機械的評価方法としては、上記比較例および実施例の各はんだ合金をそれぞれステンレス(SUS 304)製鋳造金型(JIS6号)を用い、評点間距離 L=50mm、直径 8mmφ、チャッキング部長さ L=20mm、直径 10mmφの試験片を作成し、JIS Z 4421)の試験方法により島津製作所製引張り試験機(AG100型)を用い、室温25℃において、それぞれ繰返し2(n=2)で、荷重負荷速度 5mm/minで試験測定した。
 また、実施例1~3、及び比較例1~3の加熱エージング後の半導体装置の半田接合部のボイド観察試料および耐衝撃性試験試料の作成には、いずれも同一製造ロットのBGA、即ち、外形寸法15mm×15mm×1.2mm、電極パッド数192、リードピッチが0.8mmのものを、予め上層がパルミチン酸50質量%と残部合成エステル油からなる240℃に加温された溶液と、その下層に各実施例または各比較例の鉛フリーはんだ合金をそれぞれ別々に溶融したはんだ液を配した浴槽を用意し、その中にそれぞれBGAを上層液→下層液→上層液の順に浸漬して、該各BGAの電極パッドにそれぞれのはんだ合金を被覆した。一方、バーンイン試験用プリント回路基板の方は、前記BGAの電極パッドに対応する銅電極パッドを同様に予め上層がパルミチン酸50質量%と残部合成エステル油からなる240℃に加温された溶液と、その下層に用意された前記各実施例または各比較例の溶融鉛フリーはんだ合金液からなる浴槽を、その中にそれぞれBGAを上層液→下層液→上層液の順に浸漬して、該各電極パッドにそれぞれのはんだ合金を被覆したものを用意した。 その上で、各実施例および比較例毎にはんだ被覆該プリント回路基板の電極パッドの所定の位置に同種のはんだ被覆されたBGAの電極パッドを搭載して、評価試験用試料を作成した。
 尚、上記2層液構造処理を利用した理由は、カルボニル基(−COOH)を有する有機化合物溶液が電極パッド及びリードの金属表面酸化膜をケン化反応により除去し該金属表面を清浄活性化すると共に、同時に清浄活性化された表面を保護すること、更に上下2層液構造にすることにより、はんだ液が大気との直接接触を遮断する効果、更には下層液からワークを引き上げ上層液を通過する際にはんだ皮膜の表面に酸化防止の化学吸着保護膜をコーティングすることにある。この他に付随的に下層でワークの電極パッド及びリード表面に付着した余分なはんだを洗い流す効果もある。尚、これらの作用、効果及びに表面処理技術としては既に特許文献6および7により公知である。
特開2003−334498(特許第4153723号) 特開2002−233994(特許第4203281号)
 バーンイン試験用プリント回路基板について更に詳しく述べると、外形寸法は77mm×132mmで厚さ1mm、基板中央に上記BGAと同ピッチで同リード数の0.3mmφ銅リードを有するBGA導通試験用回路を1単位として、5mm間隔で上下に各1単位、これを中央の1行として同様に5mm間隔で左右に各2行、即ち、マトリックス状に5行X3列、合計15個のBGA搭載可能な回路が形成され、該銅電極パッド部を除く表面が半田レジスト膜で覆われたプリント回路基板になっている。実施例1,2、3及び比較例1,2、3の試料は各n=5(繰り返し数)で、各BGA1単位毎にランダムに搭載して、評価用試料として評価試験に供した。
 はんだ接合部界面付近のボイド有無の評価方法としては、評価試験用試料を常態と、恒温加熱炉に150℃、240時間放置して加熱エージング加速試験後について、それぞれ半田接合部断面を研磨して、走査電子顕微鏡(SEM)及びX線マイクロアナライザー(EPMA)により、該半田接合部付近のマイクロボイドの数と大きさを観察ならびに分析し比較した。また、同一条件下で同時に加熱エージング加速試験をした上記実施例1,2、3および比較例1,2、3の試料を、市販のBGA等電子デバイス部品用全自動落下試験装置を用い、JEDEC(Joint Electron Device Engineering Council)規格のNo.22−B111に準じて高さ1000mmから約1300Gで繰り返し落下させて、その都度各試験試料の導通試験を行い、導通不良が発生するまでの落下試験回数を調べた。(表1)
 その結果は下記[表1]の通り、各特性値では実施例1と比較例1との間、実施例2と比較例2との間、及び実施例3と比較例3との間のいずれにも有意差があり、比較例は実施例に較べて明らかにはんだぬれ性が著しく悪く、物理的機械的特性値も伸び((延性)が小さく硬く脆弱で、溶融時の粘性が高く、従って、オーバーボリューム(ツノ、ツララ)、ブリッジオーバー(リーク)、未着が散見されることが判った。
 これに対して、本発明の実施例1、2、3においては、特に伸びがそれぞれ対応する比較例に対して1.5倍以上大きく、破断しにくいことを示唆している。また、はんだ濡れ性でも圧倒的に濡れ易く、溶融状態における粘性(粘度)も比較例に較べて圧倒的に低く、さらさら感も従来のはんだ合金にない低粘性を保有している。これは、凝固後のはんだ内部結晶組織で見ると、本発明の処理方法を行ったはんだ合金の場合は粒状結晶の呈し結晶粒が小さい(図2の2a、2c)のに対して、同じ組成の市販のはんだ合金の場合は柱状結晶状をしており、結晶粒の大きさおよび長さが長いことが知見された(図2の2b、2d)。
 また、伸びの大きさに対して実施例の引張強度は比較例と大差なく、従って、靭性も強靭で長期ヒートサイクル試験での膨張収縮による疲労破壊も生じ難いことが確認された。
 更に、はんだ内部の酸素濃度については比較例1~3が70~270ppmも存在するのに対し、実施例1~3はいずれも使用したTOF−SIMS分析装置の検出限界である5ppm以下で圧倒的に酸素濃度が低いことが検証された(表1)。
 同様に、粘度については300℃から凝固点付近まで徐々に温度を下げて5℃おきに測定した結果、比較例が0.0051→0.0061Pa・Sのように降温に従い粘度は徐々に上昇して行ったのに対して、本発明の実施例も降温に従い粘度は徐々に上昇して行くが相対的粘度の値は0.0034→0.0038Pa・Sで比較例に比し約30~40%低く、圧倒的に低粘性を有することが知見され、これが「はんだぬれ性」を良くし、「オーバーボリューム」と「ブリッジオーバー」抑止に大いなる寄与をしていると考えられる(表1)。
 また更に、示差熱分析装置で分析した結果は、錫銀銅系はんだである比較例1,2、実施例1,2は昇温時の融点はいずれも217℃近辺でほぼ同じであるにも拘らず、降温時の凝固特性は比較例1、2が217~214℃で凝固が完了するのに対し、本発明の実施例1、2では一部が218~215℃で凝固し始めるものの、204℃付近に下がってもまだ約半量ぐらいしか凝固せず、最終的に凝固完了するのは189℃付近であり、明らかに物性上有意差があることが判った。実施例3と比較例3の場合も同様の傾向が確認された(表1)。
 一方、加熱エージング後のカーケンダルボイドの発生状況は表2の通り、常態では比較例及び実施例とも全くカーケンダルボイドもマイクロボイドもないが(図4の4a、4b)、加熱エージング後は実施例1,2,3には殆どカーケンダルボイドの発生が見られない(図4の4c)に対して、これに対応する比較例1,2,3ではそれぞれ多発している(図4の4d)ことが確認された。(図4及び表2)
 また、耐衝撃性試験結果は表2の通り、比較例がいずれも6~14回で導通不良を発生するのに対して、実施例1,2,3とも60回でも全く不良を発生しないことが確認された。尚、衝撃試験は60回で一応打ち切ったので、それ以上どこまで正常性を保持できるかは未確認である。その理由は60回も持てば実用上、信頼性として充分なことに因る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上の通り、本発明の技術は明らかに従来の錫またははんだ合金にない高い伸び (延性)と強靭性、低粘性、比較的低温度凝固性、高はんだぬれ性などに優れた物性を有しており、特に微小回路幅、極狭ピッチ回路接合部にブリッジオーバーリークもなく、更に加熱エージング後のカーケンダルボイドの抑止効果があり耐衝撃性に優れた信頼性の高い電子部品ならびに半導体装置及び電子装置の製造を可能にする錫またははんだ合金の製造方法とその製造装置、それにより得られるはんだ合金はいずれも産業上、電子部品、半導体装置、電子装置の分野で十二分に適用・利用可能なものであり、本発明のはんだ合金を使用することにより、微小微細狭ピッチ化を実現した更なる小型軽量の半導体装置及び電子装置に大いに活用が期待できる。

Claims (10)

  1.  電子部品の錫またははんだ被覆または接合に使用する錫またははんだ合金の製造方法において、錫またははんだ合金の鋳塊を加熱溶融する第1貯槽から溶融した錫液またははんだ合金液をポンプと配管介して独立した反応装置に給液する一方、カルボニル基(−COOH)を有する有機酸1~80質量%を含有する溶液を加熱する第2貯槽から液温180~300℃該有機酸溶液をポンプと配管介して前記反応槽に給液し、両液を激しく撹拌混合して反応させた後に、配管を通してこれらの混合液を第3貯槽に戻し、比重差により溶融錫またははんだ合金液と有機酸溶液とに分離したそれぞれの液体を再び前記反応装置に循環させながら溶融錫また溶融はんだ合金中に存在する金属酸化物と不純物とを除去して、酸素濃度を5ppm以下にすることを特徴とする電子部品用錫またははんだ合金の製造方法。
  2.  前記請求項1の電子部品用錫またははんだ合金の製造方法において使用する有機酸溶液は、少なくともパルミチン酸、ステアリン酸のいずれか1種以上を3~70質量%と残部エステル合成油からなる液温180~300℃の溶液を用いることを特徴とする酸素濃度を5ppm以下にした電子部品用錫またははんだ合金の製造方法。
  3.  電子部品のはんだ接合に使用する錫またははんだ合金を製造する装置において、錫またははんだ合金の鋳塊を加熱溶融する第1貯槽から溶融した錫液またははんだ合金液をポンプと配管介して独立した反応装置に給液する一方、カルボニル基(−COOH)を有する有機酸1~80質量%を含有する溶液を加熱する第2貯槽から液温180~300℃該有機酸溶液をポンプと配管介して前記反応槽に給液し、両液を激しく撹拌混合して反応させた後に、配管を通してこれらの混合液を第3貯槽に戻し、比重差により溶融錫またははんだ合金液と有機酸溶液とに分離したそれぞれの液体を再び前記反応装置に循環させながら溶融錫また溶融はんだ合金中に存在する金属酸化物と不純物とを除去する構造を有することを特徴とする酸素濃度を5ppm以下の電子部品用錫またははんだ合金の製造装置。
  4.  前記請求項3における電子部品用錫またははんだ合金の製造装置において、第2貯層を省略して第3貯槽で第2貯層の機能を兼用させたことを特徴とする電子部品用錫またははんだ合金の製造装置。
  5.  電子部品のはんだ接合に使用する錫またははんだ合金をおいて、錫またははんだ合金の鋳塊を加熱溶融する第1貯槽から溶融した錫液またははんだ合金液をポンプと配管介して独立した反応装置に給液する一方、カルボニル基(−COOH)を有する有機酸1~80質量%を含有する溶液を加熱する第2貯槽から液温180~300℃該有機酸溶液をポンプと配管介して前記反応槽に給液し、両液を激しく撹拌混合して反応させた後に、配管を通してこれらの混合液を第3貯槽に戻し、比重差により溶融錫またははんだ合金液と有機酸溶液とに分離したそれぞれの液体を再び前記反応装置に循環させながら溶融錫また溶融はんだ合金中に存在する金属酸化物と不純物とを除去して、酸素濃度を5ppm以下にしたことを特徴とする電子部品用錫またははんだ合金。
  6.  前記請求項5の電子部品用錫またははんだ合金において、有機化合物としては、パルミチン酸、ステアリン酸のいずれか1種以上を3~70質量%と残部エステル合成油からなる液温180~300℃の溶液を用いることにより、酸素濃度を5ppm以下にしたことを特徴とする電子部品用錫またははんだ合金。
  7.  半導体装置において、錫またははんだ合金の鋳塊を加熱溶融する第1貯槽から溶融した錫液またははんだ合金液をポンプと配管介して独立した反応装置に給液する一方、カルボニル基(−COOH)を有する有機酸1~80質量%を含有する溶液を加熱する第2貯槽から液温180~300℃該有機酸溶液をポンプと配管介して前記反応槽に給液し、両液を激しく撹拌混合して反応させた後に、配管を通してこれらの混合液を第3貯槽に戻し、比重差により溶融錫またははんだ合金液と有機酸溶液とに分離したそれぞれの液体を再び前記反応装置に循環させながら溶融錫また溶融はんだ合金中に存在する金属酸化物と不純物とを除去して、除去して、酸素濃度を5ppm以下にした電子部品用錫またははんだ合金を使用して半導体チップをインターポーザーにはんだ接合したことを特徴とする半導体装置。
  8.  前記請求項7の半導体装置において、使用する有機酸溶液はパルミチン酸、ステアリン酸のいずれか1種以上を3~70質量%と残部エステル合成油からなる液温180~300℃の溶液を用いて酸素濃度を5ppm以下にした電子部品用錫またははんだ合金を使用して半導体チップをインターポーザーにはんだ接合したことを特徴とする半導体装置。
  9.  半導体装置や電子部品を搭載した電子装置において、錫またははんだ合金の鋳塊を加熱溶融する第1貯槽から溶融した錫液またははんだ合金液をポンプと配管介して独立した反応装置に給液する一方、カルボニル基(−COOH)を有する有機酸1~80質量%を含有する溶液を加熱する第2貯槽から液温180~300℃該有機酸溶液をポンプと配管介して前記反応槽に給液し、両液を激しく撹拌混合して反応させた後に、配管を通してこれらの混合液を第3貯槽に戻し、比重差により溶融錫またははんだ合金液と有機酸溶液とに分離したそれぞれの液体を再び前記反応装置に循環させながら溶融錫また溶融はんだ合金中に存在する金属酸化物と不純物とを除去して、除去して、酸素濃度を5ppm以下にしたことを特徴とする電子部品用錫またははんだ合金を使用して電子部品や半導体装置を実装基板に搭載したことを特徴とする電子装置。
  10.  前記請求項7の電子装置において、使用する有機酸溶液としてはパルミチン酸、ステアリン酸のいずれか1種以上を3~70質量%と残部エステル合成油からなる液温180~300℃の溶液を用いて酸素濃度を5ppm以下にした電子部品用錫またははんだ合金を使用して電子部品や半導体装置を実装基板に搭載したことを特徴とする電子装置。
PCT/JP2009/057808 2009-02-09 2009-04-13 電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金 WO2010089905A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/600,410 US8138576B2 (en) 2009-02-09 2009-04-13 Production method and production apparatus of tin or solder alloy for electronic components, and solder alloy
EP09744018.4A EP2260968B1 (en) 2009-02-09 2009-04-13 Process for producing tin or solder alloy for electronic part
JP2009545416A JP4485604B1 (ja) 2009-02-09 2009-04-13 電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009049867 2009-02-09
JP2009-49867 2009-02-09

Publications (1)

Publication Number Publication Date
WO2010089905A1 true WO2010089905A1 (ja) 2010-08-12

Family

ID=42541824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057808 WO2010089905A1 (ja) 2009-02-09 2009-04-13 電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金

Country Status (3)

Country Link
US (1) US8138576B2 (ja)
EP (1) EP2260968B1 (ja)
WO (1) WO2010089905A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017154740A1 (ja) * 2016-03-09 2018-03-15 Jx金属株式会社 高純度錫及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702171B1 (ko) * 2012-04-14 2017-02-02 가부시키가이샤 다니구로구미 납땜 장치 및 방법 그리고 제조된 기판 및 전자 부품
WO2013157064A1 (ja) * 2012-04-16 2013-10-24 株式会社谷黒組 はんだ付け装置及び方法並びに製造された基板及び電子部品
US20150115020A1 (en) * 2012-04-17 2015-04-30 Tanigurogumi Corporation Solder bump, method for forming a solder bump, substrate provided with solder bump, and method for manufacturing substrate
US20130341196A1 (en) * 2012-06-20 2013-12-26 Honeywell International Inc. Refining process for producing low alpha tin
US10160066B2 (en) * 2016-11-01 2018-12-25 GM Global Technology Operations LLC Methods and systems for reinforced adhesive bonding using solder elements and flux
US10388627B1 (en) * 2018-07-23 2019-08-20 Mikro Mesa Technology Co., Ltd. Micro-bonding structure and method of forming the same
US10347602B1 (en) * 2018-07-23 2019-07-09 Mikro Mesa Technology Co., Ltd. Micro-bonding structure
CN113748221A (zh) * 2019-04-09 2021-12-03 石川技研株式会社 焊料产品的制造方法、焊料、焊接部件、焊料产品、印刷布线板、印刷电路板、线材、焊接产品、柔性印刷基板、电子部件、锡成型品的制造方法、锡中间产品的制造方法、锡成型品、锡中间产品和导电部件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040103B1 (ja) * 1969-10-08 1975-12-22
JP2005131703A (ja) * 2003-10-31 2005-05-26 Nippon Joint Kk 球形状ハンダ及びその製造方法
JP2006045676A (ja) * 2004-08-03 2006-02-16 Wc Heraeus Gmbh 微細ろう粉末を製造する際に、合金成分を精製しそして均一分布させ並びに軟ろうから不所望の反応生成物およびスラッジを除く方法
JP2006206951A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd はんだ材料の不純物除去方法
JP2008272779A (ja) * 2007-04-26 2008-11-13 Nippon Steel Materials Co Ltd 表面処理はんだボール及びはんだボールの表面処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650335B2 (ja) 1973-08-16 1981-11-28
JP3027441B2 (ja) 1991-07-08 2000-04-04 千住金属工業株式会社 高温はんだ
JP3299091B2 (ja) 1995-09-29 2002-07-08 千住金属工業株式会社 鉛フリーはんだ合金
JP3296289B2 (ja) 1997-07-16 2002-06-24 富士電機株式会社 はんだ合金
JP3311282B2 (ja) * 1997-10-13 2002-08-05 株式会社東芝 金属部材の接合方法及び接合体
CN1144649C (zh) * 1999-06-11 2004-04-07 日本板硝子株式会社 无铅软钎料
JP3221670B2 (ja) 2000-02-24 2001-10-22 株式会社日本スペリア社 ディップはんだ槽の銅濃度制御方法
JP2002233994A (ja) 2001-02-02 2002-08-20 Canon Chemicals Inc フィルム加工装置およびフィルム加工方法
JP4152596B2 (ja) 2001-02-09 2008-09-17 新日鉄マテリアルズ株式会社 ハンダ合金、ハンダボール及びハンダバンプを有する電子部材
JP4153723B2 (ja) 2002-05-17 2008-09-24 日本ジョイント株式会社 洗浄保護方法、洗浄保護用溶液および装置ユニット
FR2862653B1 (fr) * 2003-11-25 2006-02-24 France Etat Ponts Chaussees Procede et installation de preparation de mousses de bitume

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040103B1 (ja) * 1969-10-08 1975-12-22
JP2005131703A (ja) * 2003-10-31 2005-05-26 Nippon Joint Kk 球形状ハンダ及びその製造方法
JP2006045676A (ja) * 2004-08-03 2006-02-16 Wc Heraeus Gmbh 微細ろう粉末を製造する際に、合金成分を精製しそして均一分布させ並びに軟ろうから不所望の反応生成物およびスラッジを除く方法
JP2006206951A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd はんだ材料の不純物除去方法
JP2008272779A (ja) * 2007-04-26 2008-11-13 Nippon Steel Materials Co Ltd 表面処理はんだボール及びはんだボールの表面処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2260968A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017154740A1 (ja) * 2016-03-09 2018-03-15 Jx金属株式会社 高純度錫及びその製造方法
CN107849716A (zh) * 2016-03-09 2018-03-27 Jx金属株式会社 高纯度锡及其制造方法
US11118276B2 (en) 2016-03-09 2021-09-14 Jx Nippon Mining & Metals Corporation High purity tin and method for producing same

Also Published As

Publication number Publication date
EP2260968A1 (en) 2010-12-15
EP2260968B1 (en) 2015-03-18
US20110089567A1 (en) 2011-04-21
EP2260968A4 (en) 2012-02-29
US8138576B2 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
WO2010089905A1 (ja) 電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金
TWI583800B (zh) Solder alloy, solder paste and electronic circuit substrate
JP6280875B2 (ja) はんだバンプの形成方法およびはんだバンプ
KR20070118588A (ko) 솔더 합금
JP5129898B1 (ja) 電極溶食防止層を有する部品及びその製造方法
JP2007075856A (ja) Cuコアボール
EP2840596B1 (en) Forming method of solder bumps and manufacturing method for substrate having solder bumps
JP4665071B1 (ja) 錫またははんだプリコート皮膜の形成方法及びその装置
WO2009104338A1 (ja) 鍚、はんだ合金および半導体装置
EP2671661B1 (en) Soldering device and method, and manufactured substrate and electronic component
JP2004349487A (ja) 導電性ボールおよび電子部品の電極の形成方法、電子部品ならびに電子機器
WO2011018861A1 (ja) はんだプリコート被膜の形成方法及びその装置
JP2011211137A (ja) 半導体装置及びその製造方法、電子装置及びその製造方法
JP2018047500A (ja) Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板
JP2013110403A (ja) リフローフィルム、はんだバンプ形成方法、はんだ接合の形成方法及び半導体装置
JP2011114334A (ja) はんだ皮膜の形成方法及びその装置
JP4485604B1 (ja) 電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金
WO2012060022A1 (ja) 鍚またははんだ皮膜の形成方法及びその装置
JP2018047499A (ja) Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板
JP2011040696A (ja) はんだバンプの形成方法及びその装置
JP6076698B2 (ja) 電極溶食防止層を有する部品
JP2005334955A (ja) はんだ合金およびはんだボール
Ejiri et al. Solder ball joint reliability with electroless Ni/Pd/Au plating-influence of electroless Pd deposition reaction process and electroless Pd film thickness
JP2018047497A (ja) Bi基はんだ合金及びその製造方法、並びに、そのはんだ合金を用いた電子部品及び電子部品実装基板
JP2017170480A (ja) 高温用Pbフリーはんだペースト及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009545416

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009744018

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09744018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12600410

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE