WO2009153878A1 - 熱可塑性組成物 - Google Patents

熱可塑性組成物 Download PDF

Info

Publication number
WO2009153878A1
WO2009153878A1 PCT/JP2008/061265 JP2008061265W WO2009153878A1 WO 2009153878 A1 WO2009153878 A1 WO 2009153878A1 JP 2008061265 W JP2008061265 W JP 2008061265W WO 2009153878 A1 WO2009153878 A1 WO 2009153878A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
styrene
parts
resin composition
aromatic polyester
Prior art date
Application number
PCT/JP2008/061265
Other languages
English (en)
French (fr)
Inventor
真次 家田
博治 板谷
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to EP08765760.7A priority Critical patent/EP2289999B1/en
Priority to PCT/JP2008/061265 priority patent/WO2009153878A1/ja
Priority to US12/999,936 priority patent/US8383720B2/en
Priority to CN2008801298788A priority patent/CN102066489A/zh
Publication of WO2009153878A1 publication Critical patent/WO2009153878A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the present invention relates to a thermoplastic resin composition having an excellent balance of heat resistance, appearance, low warpage, and scratch resistance, which could not be achieved by the prior art.
  • Aromatic polyesters represented by polyethylene terephthalate (PTT) and polybutylene terephthalate (PBT) are excellent in mechanical properties, chemical resistance, and electrical properties, and can be further enhanced in rigidity and heat resistance by reinforcing with fillers. It is used in a wide range of fields such as home appliances and OA.
  • the filler reinforced polyester has a problem in that the appearance of the product is impaired when the filler addition amount is large, and warping is easily generated when the filler addition amount is small, and the scratch resistance is low for use in appearance parts.
  • a composition comprising these aromatic polyesters and a styrene-based resin greatly changes in physical properties depending on their compatibility, viscosity, and volume ratio.
  • the compatibility has a great influence on the change of the physical properties.
  • a styrenic resin that has been used in a composition with an aromatic polyester and that has a relatively high compatibility with the aromatic polyester and has an unsaturated nitrile monomer ratio of 20 to 30% by mass is, There existed problems, such as reducing the crystallinity of polyester and reducing heat resistance.
  • compositions comprising an aromatic polyester and an unsaturated nitrile monomer in a proportion of 10 to 50% by mass, and two types of styrene resins having different proportions (Patent Document) 3) has been reported.
  • Compositions consisting of these combinations are formulated with an adhesion reducing agent due to incomplete crystallization, but by reducing the amount of the composition, the deposits due to the adhesion reducing agent can be reduced and the molding cycle can be shortened. It is said.
  • thermoplastic resin composition that can moderately control the degree of crystallinity even when a large amount of styrene resin is blended, and that has an excellent balance of heat resistance, appearance, low warpage, and scratch resistance.
  • the problem to be solved by the present invention is to provide a thermoplastic resin composition having an excellent balance of heat resistance, appearance, low warpage, and scratch resistance.
  • the present inventors have found that the ratio of unsaturated nitrile monomers to 32-50 masses in aromatic polyester having an isothermal crystallization time from the molten state of 25-100 sec. It is found that a thermoplastic resin composition having an excellent balance of heat resistance, appearance, low warpage, and scratch resistance can be obtained by blending a specific proportion of styrene-based resin and filler. The present invention has been completed.
  • the present invention is as follows. [1] 20 to 60 parts by mass of a styrene resin (A) in which the ratio of the unsaturated nitrile monomer is 32 to 50% by mass, and an aromatic polyester (B) in which the isothermal crystallization time from the molten state is 25 to 100 sec. A thermoplastic resin composition comprising 20 to 60 parts by mass and 20 to 60 parts by mass of a filler (C). [2] The thermoplastic resin composition according to [1], wherein the aromatic polyester (B) is polytrimethylene terephthalate alone or a polyester mixture containing 50% by mass or more of polytrimethylene terephthalate. [3] The thermoplastic resin composition according to the above [1] or [2], wherein the styrene resin (A) is a styrene-acrylonitrile copolymer.
  • thermoplastic resin composition having an excellent balance of heat resistance, appearance, low warpage, and scratch resistance
  • the thermoplastic resin composition of the present invention is excellent in the balance of heat resistance, appearance, scratch resistance, and low warpage, and thus has been difficult to achieve with conventional techniques in a wide range of fields such as automobile parts, home appliances and OA. Make it possible.
  • the thermoplastic resin composition of the present embodiment includes 20 to 60 parts by mass of a styrene resin (A) in which the ratio of the unsaturated nitrile monomer is 32 to 50% by mass, and the isothermal crystallization time from the molten state 20 to 60 parts by mass of aromatic polyester (B) having a viscosity of 25 to 100 sec, and 20 to 60 parts by mass of filler (C).
  • A styrene resin
  • B aromatic polyester having a viscosity of 25 to 100 sec
  • filler C
  • the styrenic resin (A) used in the present embodiment is a copolymer of at least an unsaturated nitrile monomer and an aromatic vinyl monomer, and other monomers that can be copolymerized as necessary.
  • the body can also be copolymerized.
  • these styrenic resins (A) are produced by emulsion polymerization, bulk polymerization or bulk / suspension polymerization, but are not limited thereto.
  • the unsaturated nitrile monomer used for the styrene resin (A) is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, ethacrylonitrile and the like, and among them, acrylonitrile is preferable. These can be used alone or in combination of two or more.
  • the aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, ⁇ -methyl styrene, o-methyl styrene, p-methyl styrene, o-ethyl styrene, p-ethyl styrene, and pt-butyl styrene. Among them, styrene and ⁇ -methylstyrene are preferable. These can be used alone or in combination of two or more.
  • copolymerizable monomers include acrylic acid and methacrylic acid alkyl ester compounds such as butyl acrylate, ethyl acrylate, and methyl methacrylate, N-phenylmaleimide, and maleic anhydride. These can be used alone or in combination of two or more.
  • styrene-acrylonitrile copolymer containing acrylonitrile as an unsaturated nitrile monomer, styrene as an aromatic vinyl monomer, and containing 15% by mass or less of other copolymerizable monomers. Resin).
  • the ratio of the unsaturated nitrile monomer is 32 to 50% by mass, preferably 34 to 45% by mass, and more preferably 37 to 42% by mass. From the viewpoint of improving the scratch resistance of the resin composition, it is 32% by mass or more, and from the viewpoint of suppressing a decrease in thermal stability, it is 50% by mass or less. Moreover, it is preferably 37% by mass or more from the viewpoint of improving heat resistance, and preferably 42% by mass or less from the viewpoint of improving productivity.
  • the ratio of the unsaturated nitrile monomer in the styrene resin (A) means the ratio of the styrene resin (A) in the acetone-soluble component.
  • Acetone-soluble components were added to 1 g of sample with 20 mL of acetone, shaken with a shaker until the soluble components were completely dissolved, centrifuged at 20000 rpm for 40 minutes, and only the soluble components were filtered. It can be obtained by drying at 4 ° C. for 4 hours to remove acetone and further drying under reduced pressure at 100 ° C. for 1 hour.
  • the ratio of the unsaturated nitrile monomer can be determined by measuring the IR of the soluble component and using a calibration curve.
  • the styrenic resin (A) may contain a rubbery polymer as long as it does not impair the scratch resistance, and the rubbery polymer is grafted with an unsaturated nitrile monomer and an aromatic vinyl monomer. Resins obtained by copolymerizing the obtained resin and other copolymerizable monomers are also included. As the unsaturated nitrile monomer, aromatic vinyl monomer, and other copolymerizable monomers used, monomers similar to those shown above can be used.
  • the rubbery polymer used for the styrene resin (A) is not particularly limited, but diene rubber, acrylic rubber, ethylene rubber and the like can be used.
  • Specific examples of these rubber-like polymers include polybutadiene, styrene-butadiene copolymer, block copolymer of styrene-butadiene, acrylonitrile-butadiene copolymer, butyl acrylate-butadiene copolymer, polyisoprene, butadiene- Methyl methacrylate copolymer, butyl acrylate-methyl methacrylate copolymer, butadiene-ethyl acrylate copolymer, ethylene-propylene copolymer, ethylene-propylene-diene copolymer, ethylene-isoprene copolymer And ethylene-methyl acrylate copolymer.
  • acrylic rubber is preferably used.
  • the mass average particle diameter of the rubbery polymer is preferably 0.1 to 0.5 ⁇ m.
  • the mass average particle diameter is preferably 0.1 ⁇ m or more from the viewpoint of improving impact resistance, and preferably 0.5 ⁇ m or less from the viewpoint of preventing deterioration of the appearance of the molded product.
  • the content of the rubber-like polymer is preferably 15% by mass or less, and more preferably 10% by mass or less, based on the whole resin composition, from the viewpoint of preventing deterioration of scratch resistance.
  • ABS resin styrene-acrylonitrile-butadiene copolymer
  • diene rubber is grafted with acrylonitrile as unsaturated nitrile monomer and styrene as aromatic vinyl monomer, and acrylic rubber is unsaturated.
  • a resin (ASA resin) grafted with acrylonitrile as a nitrile monomer and styrene as an aromatic vinyl monomer is also preferably used.
  • the weight average molecular weight of the styrene resin (A) is preferably 30,000 to 500,000, more preferably 50,000 to 300,000. From the viewpoint of mechanical strength, it is 30,000 or more, and from the viewpoint of productivity, it is 500,000 or less.
  • the weight average molecular weight was determined by separating acetone-soluble components using acetone as a solvent, drying the solution, dissolving it in tetrahydrofuran, and gel permeation chromatography (GPC) of CO-8011 (trade name) manufactured by Tosoh Corporation. Using TSKgel G3000HXL, TSKgelG4000HXL, TSKgel5000HXL, TSKgel6000HXL (trade name) columns manufactured by Tosoh Corporation at a temperature of 38 ° C. To tell.
  • Component (B): Aromatic polyester It does not restrict
  • the aromatic polyester (B) may contain other copolymer components.
  • Such other copolymerization components include 1,2-butanediol, 1,3-butanediol, neopentyl glycol, 1,6-hexamethylene glycol, 1,4-cyclohexanediol, 1,4-cyclohexanedi Mention may be made of ester-forming monomers such as methanol, ethylene oxide adducts of bisphenol-A, isophthalic acid, succinic acid, adipic acid, sebacic acid, dodecanedioic acid, fumaric acid, maleic acid and 1,4-cyclohexanedicarboxylic acid.
  • the copolymerization ratio of the compound is not particularly limited as long as it does not impair the object of the present invention, but usually 30 mol% or less of the acid component (terephthalic acid, its ester or other ester-forming derivative), or It is preferably 30 mol% or less of the glycol component (1,4-butanediol, 1,3-propanediol or 1,2-ethanediol).
  • the crystallization speed of the aromatic polyester is such that the isothermal crystallization time from the molten state is 25 to 100 sec, preferably 25 to 70 sec, more preferably 30 to 60 sec. It is 25 sec or more from the viewpoint of improving the appearance, and 100 sec or less from the viewpoint of preventing deterioration of moldability.
  • the isothermal crystallization time of the aromatic polyester can be measured by a differential scanning calorimeter (DSC) by the following method. Using a differential scanning calorimeter, 5 mg of the sample is heated and dissolved from 30 ° C. to 270 ° C. at a heating rate of 100 ° C./min. After maintaining at 270 ° C. for 3 minutes, it is rapidly cooled to 140 ° C. at a set temperature decrease rate of 500 ° C./min, and the isothermal crystallization time is measured.
  • the isothermal crystallization time is defined as the time until a crystallization peak at 140 ° C. appears after holding at 270 ° C. for 3 minutes. Therefore, it can be determined that the shorter the isothermal crystallization time, the faster the crystallization.
  • the isothermal crystallization time may be controlled within the above range by using two or more aromatic polyesters in combination.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • transesterification may advance and a crystallinity may fall.
  • PTT polytrimethylene terephthalate
  • the weight average molecular weight of the aromatic polyester (B) is not particularly limited, but the intrinsic viscosity (dl / g) measured at 35 ° C. using an o-chlorophenol solution is preferably 0.4 to 3.0. A range of 0.5 to 2.5 is preferable. From the viewpoint of mechanical strength, it is 0.4 or more, and from the viewpoint of productivity, it is 3.0 or less.
  • a crystal nucleating agent may be blended for the purpose of increasing the crystallization speed.
  • a crystal nucleating agent a known compound generally used as a crystal nucleating agent for an aromatic polyester resin can be used.
  • a copolymer or the like is preferably used.
  • fatty acid metal salts represented by the following general formula (1) are more preferable.
  • CH 3 (CH 2 ) n COO (M) (1) (Where n ⁇ 0, M Na, Ca, Li)
  • fatty acid metal salts higher fatty acid Na salts, higher fatty acid Ca salts, and higher fatty acid Li salts are more preferable.
  • These crystal nucleating agents may be used alone or in a mixture of two or more.
  • the addition amount of the crystal nucleating agent is not particularly limited as long as the isothermal crystallization time of the aromatic polyester is within the range of the present embodiment, and should be appropriately selected according to the type, combination, performance, etc. Can do.
  • the filler (C) used in the present embodiment is not particularly limited.
  • glass fiber, carbon fiber, metal fiber, aramid fiber, potassium titanate whisker, aluminum borate whisker, wollastonite, talc, Tankar, kaolin, mica, glass flakes, glass beads, titanium oxide, aluminum oxide and the like can be mentioned.
  • fibrous fillers are preferable, and chopped strand type glass fibers are more preferable.
  • talc, kaolin, mica, glass fiber, and the like have properties that act as a crystal nucleating agent depending on the type used.
  • these fillers are particularly preferably those that have been surface-treated.
  • the surface treatment is performed using a coupling agent or a film forming agent, and examples of the coupling agent include an epoxy coupling agent, a silane coupling agent, and a titanium coupling agent.
  • the average fiber length, average fiber diameter, and aspect ratio of the fiber are not particularly limited, but the average fiber length is preferably 50 ⁇ m or more from mechanical properties and fatigue properties, More preferably, it is 100 ⁇ m or more, and further preferably 150 ⁇ m or more.
  • the average fiber diameter is preferably 5 ⁇ m or more, and the aspect ratio is preferably 10 or more.
  • the resin composition of the present embodiment includes 20 to 60 parts by mass of the styrene resin (A) described above, 20 to 60 parts by mass of the aromatic polyester (B), 20 to 60 parts by mass of the filler (C), Is a thermoplastic resin composition.
  • the content of the styrenic resin (A) is 20 to 60 parts by mass, preferably 25 to 45 parts by mass with respect to 100 parts by mass of the resin composition.
  • the content of the aromatic polyester (B) is 20 to 60 parts by mass with respect to 100 parts by mass of the resin composition from the viewpoint of obtaining a resin composition having an excellent balance of heat resistance, low warpage, and scratch resistance.
  • the amount is preferably 25 to 50 parts by mass. It is 20 parts by mass or more from the viewpoint of heat resistance, and 60 parts by mass or less from the viewpoint of dimensional stability.
  • the content of the filler (C) is 20 to 60 parts by mass, preferably 25 to 35 parts by mass. When the content of the filler (C) is 20 parts by mass or more, scratch resistance tends to be improved, and when it is 60 parts by mass or less, deterioration of moldability and appearance tends to be suppressed.
  • the styrene resin (A) and aromatic polyester (B) used in the present embodiment preferably have a difference in melt viscosity at the kneading temperature between them, and the MFR at 240 ° C. and a load of 5 kg is MFR-A. And MFR-B, it is more preferable that the following condition is satisfied. 3 ⁇ MFR-B / MFR-A ⁇ 10 When the ratio of MFR-A and MFR-B is smaller than 3, the heat resistance tends to deteriorate, and when the ratio of MFR-A and MFR-B exceeds 10, the styrene resin (A) and aromatic Since the compatibilization with the polyester (B) does not proceed, the moldability is poor and the physical properties tend to decrease.
  • the styrene resin (A) in the resin composition is contained in the aromatic polyester (B) as a continuous phase. It is preferable to exist as a dispersed phase or a co-continuous phase.
  • thermoplastic resin compositions can be blended with the thermoplastic resin composition of the present embodiment.
  • additives include halogen-containing compounds such as halogenated polycarbonate oligomers (for example, polycarbonate oligomers produced using brominated bisphenol A as a raw material) and halogenated epoxy compounds for the purpose of improving flame retardancy; Phosphorus-nitrogen compounds such as red phosphorus, phosphorus compounds, phosphonic acid amides; flame retardant aids (for example, antimony trioxide) and the like.
  • thermoplastic resin composition of the present embodiment can be obtained by blending, mixing, and kneading the above-described components at an appropriate ratio.
  • equipment used for mixing various components include a Henschel mixer, a ribbon blender, and a drum tumbler.
  • apparatus used for kneading include a single-screw extruder, a twin-screw extruder, a continuous kneader with a twin-screw rotor, a multi-screw extruder, an open roller, and a Banbury mixer. it can.
  • thermoplastic resin composition of the present embodiment can be molded by a known method. Although it is molded by a molding method such as injection molding, extrusion molding, hollow molding, compression molding, transfer molding, calendar molding, etc., among these, injection molding is preferably used. Injection molding includes application techniques such as insert molding, gas assist injection molding, and injection compression molding, and is preferably used.
  • the scratch resistance of a molded product formed by molding the resin composition of the present embodiment refers to a pencil scratch value (JIS K5600) used for the surface hardness test of the coating film as an index, and the scratch value is 2H or more. Is preferred.
  • a scratch value of 2H indicates that the surface of the molded product is hard enough to leave no scratches even if it is rubbed with a pencil having a hardness of 2H.
  • the surface hardness is preferably 2H or more.
  • secondary processing such as painting and hard coating is not required, and advantages such as shortening of the production cycle and reduction of environmental load due to VOC reduction are born.
  • thermoplastic resin composition of the present embodiment is excellent in the balance of heat resistance, appearance, scratch resistance, and low warpage, and thus has been difficult to achieve with conventional techniques in a wide range of fields such as automobile parts, home appliances and OA. Can be painted.
  • ⁇ Aromatic polyester (B)> (B-1) PBT having an isothermal crystallization time of 20 sec: Generac 2002 (manufactured by Polyplastics Co., Ltd.) (B-2) PTT: CP-502901 (manufactured by Shell) having an isothermal crystallization time of 50 sec and a number average molecular weight of 9800 (B-3) PET: NEH-2050 (manufactured by Unitika Ltd.)
  • C Glass fiber (GF) whose surface is treated with an epoxy coupling agent and having an average fiber diameter of 10 ⁇ m: FT792 (manufactured by Owens Corning Japan)
  • C-2 Wollastonite with a mean fiber diameter of 8 ⁇ m surface-treated with an epoxy coupling agent: NYGLOS8 (manufactured by Hayashi Kasei Co., Ltd.)
  • the obtained pellets were ISO dumbbell test pieces using a J-100EPI injection molding machine manufactured by Nippon Steel Works, a 100 mm ⁇ 100 mm ⁇ 2 mm flat plate using a SG100 injection molding machine manufactured by Sumitomo Heavy Industries, a cylinder set temperature of 250 ° C., Fabrication was performed under conditions of a mold temperature of 95 ° C. (mold surface temperature of 98 ° C.), and each physical property was evaluated.
  • the evaluation results are shown in Table 1.
  • the isothermal crystallization time of the mixture of PBT and PET used in Example 1 was 30 seconds
  • the isothermal crystallization time of the mixture of PBT and PET used in Comparative Example 6 was 28 seconds
  • the styrene resin used in Example 3 was unsaturated.
  • the content of the nitrile monomer was 38.3% by mass
  • the content of the unsaturated nitrile monomer of the styrene resin used in Comparative Example 6 was 22.3% by mass.
  • Example 6 Comparative Example 9
  • a styrene resin (A) having a different ratio of the unsaturated nitrile monomer was used.
  • the evaluation results are shown in Table 2.
  • the styrene-based polyester having a ratio of the aromatic polyester having an isothermal crystallization time from the molten state of 25 to 100 sec to the unsaturated nitrile monomer of 32 to 50% by mass
  • the thermoplastic resin compositions of Examples 1 to 6 in which the resin and the filler were blended at a specific ratio had an excellent balance of heat resistance, appearance, low warpage, and scratch resistance.
  • the isothermal crystallization time of the aromatic polyester, the ratio of the unsaturated nitrile monomer of the styrenic resin, or the blending amount of each component was implemented in this embodiment. Thus, it was not possible to obtain a product having an excellent balance of heat resistance, appearance, low warpage, and scratch resistance.
  • thermoplastic resin composition of the present invention is excellent in the balance of heat resistance, appearance, scratch resistance, and low warpage, and thus has industrial applicability in a wide range of fields such as automobile parts, home appliances, and OA. In this case, it is possible to make it unpainted, which was difficult to achieve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 不飽和ニトリル系単量体の割合が32~50質量%であるスチレン系樹脂(A)20~60質量部と、溶融状態からの等温結晶化時間が25~100secである芳香族ポリエステル(B)20~60質量部と、充填剤(C)20~60質量部と、を含む熱可塑性樹脂組成物。 

Description

熱可塑性組成物
 本発明は、従来技術では成し得なかった耐熱性、外観性、低ソリ性、耐傷性のバランスに優れた熱可塑性樹脂組成物に関する。
 ポリエチレンテレフタレート(PTT)やポリブチレンテレフタレート(PBT)に代表される芳香族ポリエステルは、機械特性、耐薬品性、電気的特性に優れ、フィラーで強化することで更に剛性、耐熱性を付与でき、自動車、家電・OA等の幅広い分野で使用されている。しかしフィラー強化系ポリエステルは、フィラー添加量が多くなると製品外観が損なわれ、フィラー添加量が少ないとソリが発生し易く、外観部品で用いるためには耐傷性が低いという問題があった。
 成形品の外観、ソリを改良するため、フィラーで強化したポリブチレンテレフタレート及びスチレン系樹脂からなる組成物にポリエチレンテレフタレートを配合すること(特許文献1参照)や、フィラーで強化したポリトリメチレンテレフタレートと熱可塑性組成物からなる組成物(特許文献2参照)が報告されている。
 これらの芳香族ポリエステルと、スチレン系樹脂からなる組成物は、それらの相溶性、粘度、体積比率によって大きく物性が変化することが知られている。特にその中でも相溶性は、それらの物性の変化に与える影響が大きい。しかしながら、従来、芳香族ポリエステルとの組成物に用いられていた、芳香族ポリエステルとの相溶性が比較的高い不飽和ニトリル系単量体の割合が20~30質量%であるスチレン系樹脂は、ポリエステルの結晶化度を低下させ、耐熱性を低下させる等の問題点があった。
 上記問題点を解決するため、芳香族ポリエステルに、不飽和ニトリル系単量体の割合が10~50質量%からなり、該割合の異なる2種類のスチレン系樹脂が配合された組成物(特許文献3参照)が報告されている。これらの組合せからなる組成物は、結晶化が不完全なことから付着性低減剤を配合するが、配合量を極めて少なくすることで付着性低減剤による堆積物が低減でき成形サイクルの短縮を可能としている。
特許第3098308号公報 特開2003-20389号公報 特表2003-503574号公報
 ところで、現在、成形サイクルの短縮による生産性の向上だけではなく、外観性、低ソリ性及び耐傷性の改善された樹脂組成物が求められている。そして、スチレン系樹脂を多く配合しても結晶化度を適度に制御でき、耐熱性、外観性、低ソリ性及び耐傷性のバランスに優れた熱可塑性樹脂組成物が要望されている。
 上記事情に鑑み、本発明が解決しようとする課題は、耐熱性、外観性、低ソリ性、耐傷性のバランスに優れた熱可塑性樹脂組成物を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討した結果、溶融状態からの等温結晶化時間が25~100secである芳香族ポリエステルに、不飽和ニトリル系単量体の割合が32~50質量%であるスチレン系樹脂と、充填剤と、を特定の割合で配合することで、耐熱性、外観性、低ソリ性、耐傷性のバランスに優れた熱可塑性樹脂組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1]
 不飽和ニトリル系単量体の割合が32~50質量%であるスチレン系樹脂(A)20~60質量部と、溶融状態からの等温結晶化時間が25~100secである芳香族ポリエステル(B)20~60質量部と、充填剤(C)20~60質量部と、を含む熱可塑性樹脂組成物。
[2]
 前記芳香族ポリエステル(B)は、ポリトリメチレンテレフタレート単独又はポリトリメチレンテレフタレートを50質量%以上含むポリエステル混合物である、上記[1]記載の熱可塑性樹脂組成物。
[3]
 前記スチレン系樹脂(A)は、スチレン-アクリロニトリル共重合体である、上記[1]又は[2]記載の熱可塑性樹脂組成物。
 本発明により耐熱性、外観性、低ソリ性、耐傷性のバランスに優れた熱可塑性樹脂組成物を提供することができる。
 本発明の熱可塑性樹脂組成物は、耐熱性、外観性、耐傷性、低ソリ性のバランスに優れるため、自動車部品、家電・OA等の幅広い分野において、従来技術では達成困難であった無塗装化を可能にする。
以下、本発明を実施するための最良の形態(以下、本実施の形態)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施の形態の熱可塑性樹脂組成物は、不飽和ニトリル系単量体の割合が32~50質量%であるスチレン系樹脂(A)20~60質量部と、溶融状態からの等温結晶化時間が25~100secである芳香族ポリエステル(B)20~60質量部と、充填剤(C)20~60質量部と、を含む。
[成分(A):スチレン系樹脂]
 本実施の形態で用いられるスチレン系樹脂(A)は、少なくとも不飽和ニトリル系単量体と芳香族ビニル系単量体の共重合体であり、必要に応じて共重合可能な他の単量体を共重合することもできる。一般に、これらのスチレン系樹脂(A)は乳化重合、塊状重合あるいは塊状・懸濁重合により製造されるが、これらに限定されるものではない。
 スチレン系樹脂(A)に用いる不飽和ニトリル系単量体としては、特に制限はなく、例えば、アクリロニトリル、メタクリロニトリル及びエタクリロニトリル等が挙げられるが、中でも、アクリロニトリルが好ましい。これらは、1種又は2種以上用いることができる。
 芳香族ビニル系単量体としては、特に制限はなく、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、o-エチルスチレン、p-エチルスチレン及びp-t-ブチルスチレン等が挙げられるが、中でも、スチレン及びα-メチルスチレンが好ましい。これらは、1種又は2種以上用いることができる。
 その他の共重合可能な単量体としては、ブチルアクリレート、エチルアクリレート、メチルメタクリレート等のアクリル酸及びメタクリル酸アルキルエステル化合物、N-フェニルマレイミド、無水マレイン酸等が挙げられる。これらは、1種又は2種以上用いることができる。
 これらの中でも、不飽和ニトリル系単量体としてアクリロニトリル、芳香族ビニル系単量体としてスチレンを用い、その他の共重合可能な単量体を15質量%以下含む、スチレン-アクリロニトリル共重合体(AS樹脂)が好ましい。
 スチレン系樹脂(A)は、不飽和ニトリル系単量体の割合が32~50質量%であり、好ましくは34~45質量%、より好ましくは37~42質量%である。樹脂組成物の耐傷性を高める観点から32質量%以上であり、熱安定性の低下を抑制する観点から50質量%以下である。また、耐熱性の向上の観点から好ましくは37質量%以上であり、生産性の向上の観点から好ましくは42質量%以下である。
 ここで、スチレン系樹脂(A)中の不飽和ニトリル系単量体の割合とは、スチレン系樹脂(A)のアセトン可溶成分中の割合を意味する。アセトン可溶成分は、試料1gにアセトン20mLを加え、振とう機にて可溶成分が完全に溶解するまで振とうし、20000rpmで40分間遠心分離して可溶成分のみ濾別した後、80℃で4時間乾燥しアセトンを除き、さらに100℃で1時間減圧乾燥することにより得ることができる。その可溶成分のIRを測定して検量線を用いることで不飽和ニトリル系単量体の割合を求めることができる。
 スチレン系樹脂(A)は、大きく耐傷性を損なわない範囲でゴム状重合体を含んでもよく、ゴム状重合体に不飽和ニトリル系単量体及び芳香族ビニル系単量体をグラフト反応して得られる樹脂、更にその他の共重合可能な単量体を共重合した樹脂も含まれる。使用される不飽和ニトリル系単量体、芳香族ビニル系単量体、共重合可能な他の単量体は、上記に示した単量体と同様な単量体を使用することができる。
 スチレン系樹脂(A)に用いられるゴム状重合体としては、特に制限はないが、ジエン系ゴム、アクリル系ゴム、エチレン系ゴム等が使用できる。これらゴム状重合体の具体例としては、ポリブタジエン、スチレン-ブタジエン共重合体、スチレン-ブタジエンのブロック共重合体、アクリロニトリル-ブタジエン共重合体、アクリル酸ブチル-ブタジエン共重合体、ポリイソプレン、ブタジエン-メタクリル酸メチル共重合体、アクリル酸ブチル-メタクリル酸メチル共重合体、ブタジエン-アクリル酸エチル共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン系共重合体、エチレン-イソプレン共重合体及びエチレン-アクリル酸メチル共重合体等が挙げられる。これらのゴム状重合体の中でも、アクリル系ゴムが好適に用いられる。
 ゴム状重合体の質量平均粒子径は、好ましくは0.1~0.5μmである。質量平均粒子径は耐衝撃性を向上させる観点から0.1μm以上が好ましく、成形品の外観性の悪化を防止する観点から0.5μm以下が好ましい。ゴム状重合体の含有量は、耐傷性の低下を防止する観点から、樹脂組成物全体の15質量%以下が好ましく、10質量%以下がより好ましい。
 また、ジエン系ゴムに、不飽和ニトリル系単量体としてアクリロニトリル、芳香族ビニル系単量体としてスチレンをグラフトしたスチレン-アクリロニトリル-ブタジエン共重合物(ABS樹脂)や、アクリル系ゴムに、不飽和ニトリル系単量体としてアクリロニトリル、芳香族ビニル系単量体としてスチレンをグラフトした樹脂(ASA樹脂)も好適に用いられる。
 スチレン系樹脂(A)の重量平均分子量は、好ましくは30,000~500,000であり、より好ましくは50,000~300,000である。機械的強度の観点から30,000以上であり、生産性の観点から500,000以下である。ここで、重量平均分子量は、アセトンを溶媒として、アセトン可溶分を分離後乾燥し、これをテトラヒドロフランに溶解し、東ソー株式会社製 CO-8011(商標名)のゲルパーミエーションクロマトグラフィー(GPC)を使用し、東ソー株式会社製 TSKgelG3000HXL、TSKgelG4000HXL、TSKgel5000HXL、TSKgel6000HXL(商標名)のカラムを温度38℃で使用し、東ソー株式会社製 TSK標準ポリスチレン(品番05215)を用いてポリスチレン換算により測定した値を言う。
[成分(B):芳香族ポリエステル]
 本実施の形態の芳香族ポリエステル(B)としては、特に制限されず、公知のものを用いることができる。芳香族ポリエステルの製造は、例えば、テレフタル酸、そのエステル又は他のエステル形成性誘導体と、1,4-ブタンジオール、1,3-プロパンジオール又は1,2-エタンジオールとを反応させる公知の方法で行うことができる。
 芳香族ポリエステル(B)は、他の共重合成分を含有してもよい。そのような他の共重合成分としては、1,2-ブタンジオール、1,3-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサメチレングリコール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、ビスフェノール-Aのエチレンオキシド付加物、イソフタル酸、コハク酸、アジピン酸、セバシン酸、ドデカン二酸、フマル酸、マレイン酸、1,4-シクロヘキサンジカルボン酸等のエステル形成性モノマーが挙げられる。上記化合物の共重合割合は、本発明の目的を損なわない範囲であれば特に制限はないが、通常、酸成分(テレフタル酸、そのエステル又は他のエステル形成性誘導体)の30モル%以下、あるいはグリコール成分(1,4-ブタンジオール、1,3-プロパンジオール又は1,2-エタンジオール)の30モル%以下であることが好ましい。
 芳香族ポリエステルの結晶化速度は、溶融状態からの等温結晶化時間が25~100secであり、好ましくは25~70sec、より好ましくは30~60secである。外観を向上させる観点から25sec以上であり、成形性の低下を防止する観点から100sec以下である。
 芳香族ポリエステルの等温結晶化時間は示差走査熱量計(DSC)により以下の方法で測定できる。試料5mgを、示差走査熱量測定器を用いて、30℃から100℃/minの昇温速度にて270℃まで加熱し溶解させる。270℃で3分間保持した後、500℃/minの設定降温速度にて140℃まで急冷し、等温結晶化時間を測定する。ここで等温結晶化時間とは、270℃で3分保持後、140℃における結晶化ピークが現われるまでの時間と定義される。よって、等温結晶化時間が短いほど結晶化が速いと判断することができる。
 また、2種以上の芳香族ポリエステルを併用することで等温結晶化時間を上記範囲に制御してもよい。例えば、結晶化速度の速いポリブチレンテレフタレート(PBT)を用いる場合は、結晶化速度が遅いポリエチレンテレフタレート(PET)等と併用することが好ましい。ここで、2種以上の芳香族ポリエステルを併用する場合は、エステル交換が進行し、結晶化度が低下することがある。そのため結晶化速度が適度に速いポリトリメチレンテレフタレート(PTT)を単独もしくは他の芳香族ポリエステルと併用する場合は、PTTを主成分として用いることがより好ましく、このことにより外観性、耐傷性、低ソリ性に優れた高硬度熱可塑性樹脂組成物組成物が得られる傾向にある。
 芳香族ポリエステル(B)の重量平均分子量は特に制限がないが、o-クロロフェノール溶液を用いて35℃で測定した固有粘度(dl/g)が、好ましくは0.4~3.0、より好ましくは0.5~2.5となるような範囲であることが好ましい。機械的強度の観点から0.4以上であり、生産性の観点から3.0以下である。
 また、芳香族ポリエステル(B)中には、結晶化速度を速くする目的で結晶核剤を配合してもよい。このような結晶核剤としては、芳香族ポリエステル樹脂の結晶核剤として一般的に用いられている公知の化合物を用いることができ、例えば、タルク、マイカ、窒化硼素、カオリン、シリカ、クレー、金属酸化物、無機カルボン酸塩、無機スルホン酸塩、有機カルボン酸塩、有機スルホン酸塩、有機カルボン酸エステル塩、炭酸塩、α-オレフィンとα、β-不飽和カルボン酸塩とからなるイオン性共重合体等が好適に用いられる。中でも、下記一般式(1)で表される脂肪酸金属塩がより好ましい。
 CH3(CH2nCOO(M) (1)
(式中、n≧0、M=Na、Ca、Li)
 脂肪酸金属塩の中では、高級脂肪酸Na塩、高級脂肪酸Ca塩、高級脂肪酸Li塩がさらに好ましい。これらの結晶核剤はそれぞれ単独で用いてもよいし、2種以上の混合物を用いてもよい。
 結晶核剤の添加量は、芳香族ポリエステルの等温結晶化時間が本実施の形態の範囲にあれば特に制限はなく、使用する結晶核剤の種類、組み合わせ、性能等に応じて適宜選択することができる。
[成分(C)]
 本実施の形態で用いられる充填剤(C)としては、特に制限されず、例えば、ガラス繊維、炭素繊維、金属繊維、アラミド繊維、チタン酸カリウムウィスカ、ホウ酸アルミニウムウィスカ、ワラストナイト、タルク、タンカル、カオリン、マイカ、ガラスフレーク、ガラスビーズ、酸化チタン及び酸化アルミニウム等が挙げられ、中でも、繊維状の充填剤が好ましく、チョップドストランドタイプのガラス繊維がより好ましい。
 上記の中でも、例えば、タルク、カオリン、マイカ、ガラス繊維等では、使用する種類等により、結晶核剤として作用する性質を持つものもある。また、これらの充填材は、特に表面処理したものが好適に用いられる。表面処理としては、カップリング剤やフィルム形成剤を用いて行うが、カップリング剤としては、エポキシ系カップリング剤、シラン系カップリング剤、チタン系カップリング剤等を挙げることができる。特に繊維状の充填剤を配合する場合には、繊維の平均繊維長、平均繊維径、アスペクト比については特に限定されないが、平均繊維長は機械特性及び疲労特性から50μm以上であることが好ましく、100μm以上であることがより好ましく、150μm以上であることがさらに好ましい。また、平均繊維径は5μm以上であることが好ましく、アスペクト比は10以上であることが好ましい。
 本実施の形態の樹脂組成物は、上述したスチレン系樹脂(A)20~60質量部と、芳香族ポリエステル(B)20~60質量部と、充填材(C)20~60質量部と、を含む熱可塑性樹脂組成物である。スチレン系樹脂(A)の含有量は、樹脂組成物100質量部に対して20~60質量部であり、好ましくは25~45質量部である。スチレン系樹脂(A)の含有量が20質量部以上であると耐傷性、低ソリ性が向上する傾向にあり、60質量部以下であると耐熱性の低下が抑制される傾向にある。芳香族ポリエステル(B)の含有量は、耐熱性と低ソリ性と耐傷性のバランスに優れた樹脂組成物を得る観点から、樹脂組成物100質量部に対して20~60質量部であり、好ましくは25~50質量部である。耐熱性の観点から20質量部以上であり、寸法安定性の観点から60質量部以下である。充填材(C)の含有量は20~60質量部であり、好ましくは25~35質量部である。充填材(C)の含有量が20質量部以上であると耐傷性が向上する傾向にあり、60質量部以下であると成形性、外観性の低下が抑制される傾向にある。
 本実施の形態で用いられるスチレン系樹脂(A)と芳香族ポリエステル(B)は、両者の混練温度における溶融粘度に差があることが好ましく、240℃、荷重5kgにおけるそれぞれのMFRをMFR-A及びMFR-Bで表した場合に、次の条件を満たすことがより好ましい。
 3≦MFR-B/MFR-A≦10
 MFR-AとMFR-Bの比が3より小さい場合は、耐熱性が悪化する傾向にあり、MFR-AとMFR-Bの比が10を超える場合は、スチレン系樹脂(A)と芳香族ポリエステル(B)との相溶化が進まないために成形性が悪く、物性が低下する傾向にある。本実施の形態の樹脂組成物から得られる成形品がより優れた耐熱性を有する傾向にあるため、樹脂組成物中のスチレン系樹脂(A)は、連続相としての芳香族ポリエステル(B)中に分散相もしくは共連続相として存在することが好ましい。
 さらに本実施の形態の熱可塑性樹脂組成物には、上述した成分の他に、熱可塑性樹脂組成物に一般に用いられる種々の添加剤を配合することができる。この様な添加剤としては、例えば難燃性を改良する目的で、ハロゲン化ポリカーボネートオリゴマー(例えば、臭素化ビスフェノールAを原料として製造されたポリカーボネートオリゴマー)、ハロゲン化エポキシ化合物等の如きハロゲン含有化合物;赤リン、燐化合物、ホスホン酸アミドの如きリン―窒素化合物;難燃助剤(例えば、三酸化アンチモン)等が挙げられる。その他、ホスファイト系、ヒンダードフェノール系、ベンゾトリアゾール系、ベンゾフェノン系、ベンゾエート系及びシアノアクリレート系の紫外線吸収剤及び酸化防止剤;高級脂肪酸や酸エステル系、酸アミド系、高級アルコール等の滑剤及び可塑剤;モンタン酸及びその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステラアマイド及びエチレンワックス等の離型剤;亜リン酸塩、次亜リン酸塩等の着色防止剤;核剤;アミン系、スルホン酸系、ポリエーテル系等の帯電防止剤;顔料、染料等の着色剤、等の添加剤を配合してもよい。
 本実施の形態の熱可塑性樹脂組成物は、上述した各成分を適当な割合で配合・混合し、混練することにより得られる。各種成分を混合するのに使用される機器としては、例えば、ヘンシェルミキサー、リボンブレンダー、ドラムタンブラー等が挙げられる。また、混練するのに使用される装置としては、単軸スクリュー押出機、二軸スクリュー押出機、二軸ローター付の連続混練機、多軸スクリュー押出機、オープンローラ、バンバリーミキサー等を挙げることができる。
 本実施の形態の熱可塑性樹脂組成物は、公知の方法によって成形することができる。射出成形、押出成形、中空成形、圧縮成形、トランスファー成形、カレンダー成形等の成形方法により成形されるが、中でも、射出成形が好適に用いられる。射出成形にはインサート成形、ガスアシスト射出成形、射出圧縮成形等の応用技術があり好適に用いられる。
 本実施の形態の樹脂組成物を成形してなる成形品の耐傷性とは、塗膜の表面硬度試験に用いられる鉛筆引っ掻き値(JIS K5600)を指標とし、その引っ掻き値が2H以上であることが好ましい。引っ掻き値が2Hとは、成形品表面を2Hの硬さを有する鉛筆で擦過しても、擦過痕が残らない硬さであることを示す。自動車、家電・OA等の幅広い分野において外観部材に使われる場合、傷が発生し、意匠性が低下するという問題が生じるため、2H以上の表面硬度を有するのが好ましい。また、2H以上の表面硬度を有する場合には、塗装、ハードコート等の2次的な処理が不要となり、生産サイクルの短縮、VOC削減による環境負荷の軽減等のメリットが生まれる。
 本実施の形態の熱可塑性樹脂組成物は、耐熱性、外観性、耐傷性、低ソリ性のバランスに優れるため、自動車部品、家電・OA等の幅広い分野において従来技術では達成困難であった無塗装化を可能にすることができる。
以下に実施例を示して、本実施の形態をより詳細に説明するが、本実施の形態は以下に記載の実施例によって限定されるものではない。

(1)実施例及び比較例に用いた原材料
 使用した各原材料は以下の通りである。
<スチレン系樹脂(A)>
(A-1)アクリロニトリル40質量%、スチレン60質量%からなり、数平均分子量が57000であるAS樹脂:(旭化成ケミカルズ(株)製)
(A-2)アクリロニトリル20質量%、スチレン80質量%からなり、数平均分子量が71000であるAS樹脂:(旭化成ケミカルズ(株)製)
(A-3)質量平均粒子径0.3μmのアクリル系ゴム50質量%、アクリロニトリル15質量%、スチレン35質量%からなるASA樹脂
(A-4)アクリロニトリル34質量%、スチレン66質量%からなり、数平均分子量が6700であるAS樹脂:(旭化成ケミカルズ(株)製)
(A-5)アクリロニトリル30質量%、スチレン70質量%からなり、数平均分子量が5500であるAS樹脂:(旭化成ケミカルズ(株)製)
<芳香族ポリエステル(B)>
(B-1)等温結晶化時間が20secであるPBT:ジュネラックス2002(ポリプラスチック(株)製)
(B-2)等温結晶化時間が50secであり、数平均分子量が9800であるPTT:CP-502901(Shell(株)製)
(B-3)PET:NEH-2050(ユニチカ(株)製)
<充填剤(C)>
(C-1)エポキシ系カップリング剤で表面処理した平均繊維径が10μmであるガラス繊維(GF):FT792(オーウェンスコーニングジャパン(株)製)
(C-2)エポキシ系カップリング剤で表面処理した平均繊維径が8μmであるワラストナイト:NYGLOS8(林化成(株)製)
(2)成形品の作製及び評価方法
 成形品は、射出成形機を用いて作製した。日本製鋼所製J-100EPI射出成形機、住友重機械製SG100射出成形機を用いシリンダー設定温度250℃、金型温度95℃にて各試験片を作製し、評価を行った。
 実施例、比較例中の各種物性の評価、測定方法は以下の通りである。
[荷重たわみ温度(HDT)]
 ISO-75-1,2に準じ、荷重1.8MPaにおける荷重たわみ温度を測定した。単位:℃。
[鉛筆硬度]
 JIS K5600に準じて行った。
[ソリ性]
 射出成形機で100mm×100mm×2mmの平板を成形し、角の1点を押さえ、押さえた点と対角線上の角の浮いた高さをソリ量とした。単位:mm。
[外観]
 射出成形機で100mm×100mm×2mmの平板を成形し、その表面外観に関して、スガ試験機製デジタル変角光沢形を用いて、JISK7150に準じてGs60℃を測定した。測定値が80以上の場合は◎、60~80の場合は○、60未満の場合は×とした。
〔実施例1~5、比較例1~8〕
 上記各成分につき、表1に示された配合割合で(A)成分と(B)成分をドライブレンドし、株式会社池貝製PCM45二軸押出機(L/D=28.9)を用いて240℃で溶融混練を行った。充填剤(C)はサイドフィーダーから添加した。
 得られたペレットを日本製鋼所製J-100EPI射出成形機を用いてISOダンベル試験片を、住友重機械製SG100射出成形機を用いて100mm×100mm×2mmの平板を、シリンダー設定温度250℃、金型温度95℃(金型表面温度98度)の条件にて作製し、各物性の評価を行った。評価結果を表1に示す。
 実施例1で使用したPBTとPETの混合物の等温結晶化時間は30sec、比較例6で使用したPBTとPETの混合物の等温結晶化時間は28sec、実施例3で使用したスチレン系樹脂の不飽和ニトリル系単量体の含有量は38.3質量%、比較例6で使用したスチレン系樹脂の不飽和ニトリル系単量体の含有量は22.3質量%であった。
[規則26に基づく補充 20.08.2008] 
Figure WO-DOC-TABLE-1
〔実施例6、比較例9〕
 不飽和ニトリル系単量体の割合が異なるスチレン系樹脂(A)を用いたこと以外は実施例2と同様に実施した。評価結果を表2に示す。
[規則26に基づく補充 20.08.2008] 
Figure WO-DOC-TABLE-2
 表1及び2の結果から明らかなように、溶融状態からの等温結晶化時間が25~100secである芳香族ポリエステルと、不飽和ニトリル系単量体の割合が32~50質量%であるスチレン系樹脂と、充填剤と、が特定の割合で配合された実施例1~6の熱可塑性樹脂組成物は、耐熱性、外観性、低ソリ性、耐傷性のバランスに優れたものであった。
 これに対して、比較例1~9の樹脂組成物は、芳香族ポリエステルの等温結晶化時間や、スチレン系樹脂の不飽和ニトリル系単量体の割合、或いは、各成分の配合量が本実施の形態の範囲から外れており、耐熱性、外観性、低ソリ性、耐傷性のバランスに優れたものを得ることができなかった。
 本発明の熱可塑性樹脂組成物は、耐熱性、外観性、耐傷性、低ソリ性のバランスに優れるため、自動車部品、家電・OA等の幅広い分野における産業上利用可能性を有し、従来技術では達成困難であった無塗装化を可能にすることができる。

Claims (3)

  1.  不飽和ニトリル系単量体の割合が32~50質量%であるスチレン系樹脂(A)20~60質量部と、溶融状態からの等温結晶化時間が25~100secである芳香族ポリエステル(B)20~60質量部と、充填剤(C)20~60質量部と、を含む熱可塑性樹脂組成物。
  2.  前記芳香族ポリエステル(B)は、ポリトリメチレンテレフタレート単独又はポリトリメチレンテレフタレートを50質量%以上含むポリエステル混合物である、請求項1記載の熱可塑性樹脂組成物。
  3.  前記スチレン系樹脂(A)は、スチレン-アクリロニトリル共重合体である、請求項1又は2記載の熱可塑性樹脂組成物。
PCT/JP2008/061265 2008-06-19 2008-06-19 熱可塑性組成物 WO2009153878A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08765760.7A EP2289999B1 (en) 2008-06-19 2008-06-19 Thermoplastic composition
PCT/JP2008/061265 WO2009153878A1 (ja) 2008-06-19 2008-06-19 熱可塑性組成物
US12/999,936 US8383720B2 (en) 2008-06-19 2008-06-19 Thermoplastic composition
CN2008801298788A CN102066489A (zh) 2008-06-19 2008-06-19 热塑性组合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/061265 WO2009153878A1 (ja) 2008-06-19 2008-06-19 熱可塑性組成物

Publications (1)

Publication Number Publication Date
WO2009153878A1 true WO2009153878A1 (ja) 2009-12-23

Family

ID=41433808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061265 WO2009153878A1 (ja) 2008-06-19 2008-06-19 熱可塑性組成物

Country Status (4)

Country Link
US (1) US8383720B2 (ja)
EP (1) EP2289999B1 (ja)
CN (1) CN102066489A (ja)
WO (1) WO2009153878A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531080A (ja) * 2014-10-16 2017-10-19 エスケー ケミカルズ カンパニー リミテッド 高分子樹脂組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2568454C (en) * 2006-11-17 2014-01-28 Nova Chemicals Corporation Barrier film for food packaging
CN102731950A (zh) * 2011-04-15 2012-10-17 黑龙江鑫达企业集团有限公司 一种高耐热、高耐候散热格栅专用料
JP6140606B2 (ja) * 2011-08-11 2017-05-31 旭化成株式会社 無塗装筺体とその製造方法
CN104245833A (zh) * 2012-03-30 2014-12-24 旭化成化学株式会社 树脂组合物及其成形体

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173363A (ja) * 1993-12-20 1995-07-11 Daicel Chem Ind Ltd 熱可塑性樹脂組成物
JP3098308B2 (ja) 1992-01-29 2000-10-16 帝人株式会社 熱可塑性樹脂組成物
JP2002138177A (ja) * 2000-11-02 2002-05-14 Asahi Kasei Corp 耐候性に優れるスチレン系樹脂組成物
JP2003020389A (ja) 2001-05-02 2003-01-24 Asahi Kasei Corp 熱可塑性樹脂組成物
JP2003503574A (ja) 1999-06-25 2003-01-28 ビーエーエスエフ アクチェンゲゼルシャフト 自動車用途向け低付着性成形用組成物
JP2003026905A (ja) * 2001-07-11 2003-01-29 Polyplastics Co 樹脂組成物およびその成形品
JP2004277451A (ja) * 2003-03-12 2004-10-07 Asahi Kasei Chemicals Corp 強化ポリトリメチレンテレフタレート樹脂組成物
JP2004285108A (ja) * 2003-03-19 2004-10-14 Asahi Kasei Chemicals Corp ポリトリメチレンテレフタレート樹脂組成物
JP2004323635A (ja) * 2003-04-23 2004-11-18 Asahi Kasei Chemicals Corp スチレン系樹脂組成物および成形体
JP2006257158A (ja) * 2005-03-15 2006-09-28 Asahi Kasei Chemicals Corp 強化ptt樹脂組成物
JP2008156507A (ja) * 2006-12-25 2008-07-10 Asahi Kasei Chemicals Corp 熱可塑性組成物
JP2008156508A (ja) * 2006-12-25 2008-07-10 Asahi Kasei Chemicals Corp 熱可塑性組成物からなる射出成形品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641393A (ja) 1991-10-22 1994-02-15 Monsant Kasei Kk 高ニトリル樹脂ペレット
JPH07228741A (ja) 1994-02-15 1995-08-29 Asahi Chem Ind Co Ltd 樹脂組成物
JPH0912849A (ja) * 1995-06-29 1997-01-14 Matsushita Electric Works Ltd Pbt樹脂成形材料及びその成形品
JP4096410B2 (ja) 1997-07-31 2008-06-04 東レ株式会社 熱可塑性樹脂組成物およびコネクター
JP2001234043A (ja) * 2000-02-21 2001-08-28 Daicel Chem Ind Ltd ポリエステル樹脂組成物
US20060030659A1 (en) * 2004-08-09 2006-02-09 Destio Paul Low warp polybutylene terephthalate molding compositions

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098308B2 (ja) 1992-01-29 2000-10-16 帝人株式会社 熱可塑性樹脂組成物
JPH07173363A (ja) * 1993-12-20 1995-07-11 Daicel Chem Ind Ltd 熱可塑性樹脂組成物
JP2003503574A (ja) 1999-06-25 2003-01-28 ビーエーエスエフ アクチェンゲゼルシャフト 自動車用途向け低付着性成形用組成物
JP2002138177A (ja) * 2000-11-02 2002-05-14 Asahi Kasei Corp 耐候性に優れるスチレン系樹脂組成物
JP2003020389A (ja) 2001-05-02 2003-01-24 Asahi Kasei Corp 熱可塑性樹脂組成物
JP2003026905A (ja) * 2001-07-11 2003-01-29 Polyplastics Co 樹脂組成物およびその成形品
JP2004277451A (ja) * 2003-03-12 2004-10-07 Asahi Kasei Chemicals Corp 強化ポリトリメチレンテレフタレート樹脂組成物
JP2004285108A (ja) * 2003-03-19 2004-10-14 Asahi Kasei Chemicals Corp ポリトリメチレンテレフタレート樹脂組成物
JP2004323635A (ja) * 2003-04-23 2004-11-18 Asahi Kasei Chemicals Corp スチレン系樹脂組成物および成形体
JP2006257158A (ja) * 2005-03-15 2006-09-28 Asahi Kasei Chemicals Corp 強化ptt樹脂組成物
JP2008156507A (ja) * 2006-12-25 2008-07-10 Asahi Kasei Chemicals Corp 熱可塑性組成物
JP2008156508A (ja) * 2006-12-25 2008-07-10 Asahi Kasei Chemicals Corp 熱可塑性組成物からなる射出成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2289999A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531080A (ja) * 2014-10-16 2017-10-19 エスケー ケミカルズ カンパニー リミテッド 高分子樹脂組成物

Also Published As

Publication number Publication date
US8383720B2 (en) 2013-02-26
EP2289999A4 (en) 2012-04-04
EP2289999A1 (en) 2011-03-02
US20110112237A1 (en) 2011-05-12
EP2289999B1 (en) 2013-04-24
CN102066489A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
EP2231777B1 (en) Chemical and impact resistant thermoplastic resin composition having improved extrudability.
KR101020353B1 (ko) 고 유동성 엔지니어링 열가소성 조성물 및 이로부터 제조된제품
JP5538188B2 (ja) 難燃性熱可塑性ポリエステル樹脂組成物
US7919559B2 (en) Chemical-resistant and impact-resistant thermoplastic resin composition with excellent hydrolysis resistance
US20110144239A1 (en) Glass Fiber-Reinforced Polyester Resin Composition and Molded Product Using the Same
EP3290478B1 (en) Thermoplastic resin composition, and electronic device housing comprising same
JP5164197B2 (ja) 熱可塑性組成物からなる射出成形品
WO2009153878A1 (ja) 熱可塑性組成物
JP5164196B2 (ja) 熱可塑性組成物
JP5107163B2 (ja) 熱可塑性樹脂組成物、及びこれを用いた射出成形品
JP5385539B2 (ja) 熱可塑性樹脂組成物
JP2006169356A (ja) 難燃性熱可塑性樹脂組成物およびそれからなる成形品。
JP2006045337A (ja) 熱可塑性樹脂組成物およびその成形品
WO2018043334A1 (ja) エポキシ変性ビニル系共重合体、それを含む熱可塑性樹脂組成物およびその成形品
WO2020111011A1 (ja) 熱可塑性樹脂組成物及び成形体
JP2014224192A (ja) 熱可塑性樹脂組成物およびその製造方法
JPH06287422A (ja) ポリエステル樹脂組成物
JP4968863B2 (ja) カバー、ケース又は筐体類
JP2009068005A (ja) 熱可塑性樹脂組成物およびそれからなる成形品
JPH08143737A (ja) 熱可塑性樹脂組成物
KR101005512B1 (ko) 내충격성이 향상된 열가소성 수지 조성물
JPH09137036A (ja) 熱可塑性樹脂組成物
JP2016183314A (ja) 樹脂改質剤
JPH10245476A (ja) 難燃性ポリエステル樹脂組成物
JP2001019814A (ja) 難燃性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129878.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12999936

Country of ref document: US

Ref document number: 2008765760

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP