WO2009151128A1 - リチウム複合金属酸化物の製造方法 - Google Patents

リチウム複合金属酸化物の製造方法 Download PDF

Info

Publication number
WO2009151128A1
WO2009151128A1 PCT/JP2009/060809 JP2009060809W WO2009151128A1 WO 2009151128 A1 WO2009151128 A1 WO 2009151128A1 JP 2009060809 W JP2009060809 W JP 2009060809W WO 2009151128 A1 WO2009151128 A1 WO 2009151128A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium composite
lithium
oxide
raw material
powder
Prior art date
Application number
PCT/JP2009/060809
Other languages
English (en)
French (fr)
Inventor
ピテルセドリック
磯部敏典
今成裕一郎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to EP09762558A priority Critical patent/EP2301892A1/en
Priority to CN2009801217234A priority patent/CN102056845A/zh
Priority to US12/996,897 priority patent/US20110086257A1/en
Publication of WO2009151128A1 publication Critical patent/WO2009151128A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for making lithium composite oxides.
  • the present invention relates to a method for producing a layered lithium composite ⁇ M oxide used as a non-aqueous secondary refining material.
  • Lithium composite metal oxide is used as a positive electrode active material in nonaqueous electrolyte secondary batteries such as lithium secondary batteries.
  • Lithium secondary ponds have already been put to practical use as mobile phones and notebook PCs, and are also applicable to medium and large applications such as automotive and storage applications.
  • JP-A-10-3 2 4 5 2 1 describes a lithium manganese composite oxide power S having a spinel structure. Disclosure of the invention
  • An object of the present invention is to provide a method for producing a lithium composite oxide containing a non-aqueous secondary battery capable of providing a high output at a high current rate.
  • the inventors of the present invention focused on a layered structure having a crystal structure different from the spinel structure, and as a result of various studies, found that the following inventions met the above object, and reached the present invention.
  • the present invention includes the following.
  • the lithium composite oxide raw material containing the transition element and lithium element so that the molar ratio of the lithium element in the transition element is greater than or equal to 2 and less than or equal to 2 is inert.
  • Production of layered structure lithium composite metal oxides including the step of firing in the presence of melted f 0 ⁇ 2>
  • Lithium composite ⁇ a oxide raw material is lithiated and mixed with elemental raw materials! The method described in lifts 1>.
  • Transitional elements 6 and further comprising one or more elements selected from the group consisting of Ni, Mn and Co.
  • Chloride inert hot metal is KC 1 tiff self 1> to ⁇ 4>
  • the amount of inactive metal is 0 ⁇ 1 part by weight or more and 1 0 0 part by weight or less with respect to 100 parts by weight of the lithium composite ⁇ S oxide raw material.
  • the temperature at which baking is held is in the range of 6500 ° C. to 85 ° C.
  • ⁇ 9> A general substance for a non-aqueous electrolyte secondary battery having the layered structure lithium composite metal oxide according to ⁇ 8>.
  • ⁇ 1 3> The nonaqueous secondary battery according to the above ⁇ 1>, wherein the separator is a separator made of a porous film that is made of a porous film containing a polytene U1 and a thermoplastic resin.
  • the process for producing a lithium composite oxide according to the present invention includes a lithium composite element containing a transition element and a lithium element so that the molar ratio of the lithium element to the transition element is in the range of 1 to 2. Including a step of forming an oxide raw material under an inert ⁇ made of chloride. When the monolith ratio of the lithium element to the transition element is less than 1, the lithium composite metal oxide is likely to have a rock structure or a spinel structure, and the resulting non-hydrous secondary high-rate current rate.
  • the output characteristics (hereinafter sometimes referred to as rate characteristics) are not sufficient.
  • the above molar ratio is more than 2:
  • the lithium composite recording oxide contains a large amount of IJ lithium, which causes impurities such as lithium carbonate to be obtained, and the resulting non-aqueous secondary battery The rate characteristics are not sufficient, and it is difficult to obtain a high release rate.
  • the molar ratio of the lithium element to the transition element is
  • the power S favored which is more than 1.0 5 and 1.5.
  • the lithium composite oxide raw material is not particularly limited as long as it becomes a layered structure lithium composite oxide, but is preferably a mixture of a lithium compound and an elemental raw material.
  • Transition element materials include transition element M oxides, hydroxides (including oxyhydroxides; the same shall apply hereinafter), chlorides, charcoal ⁇ , ⁇ m ⁇ ., Shiyu, acetate, etc. Can be mentioned.
  • lithiated lithium lithium hydroxide and Z or lithium hydroxide monohydrate S are preferably used, and lithium carbonate is also a preferred lithium compound.
  • hydroxide power is preferably used as an elemental raw material.
  • the transitional element raw material preferably includes a plurality of transitional elements, and it is preferable to use the transitional elemental raw material as a transitional elemental raw material.
  • the compound can be obtained by coprecipitation and is preferably a hydroxide.
  • Transitional elemental raw material has the ability to contain Fe.
  • the preferred amount of Fe is such that the amount of Fe (mole) relative to the total amount (mole) of trans elements is in the range of 0.01 to 0.5, more preferably 0.05 to 0. The range is 3 or less.
  • the transitional element material contains Fe and is further selected from the group consisting of Ni, Mn, and Co 1 It is preferable to contain more than one element, more preferably Fe, and further Ni and / or ⁇ ⁇ .
  • Inactive M ⁇ is difficult to be used as a lithium composite oxide raw material in the truth, and is made of chloride.
  • the base compound there may be mentioned chloride that ⁇ ions having a large ion from the lithium ion, the ingredients, NaC l, KC 1, RbC l, C s C l, CaC l 2, S r C 1 2 , BaC 1 2 , Mg C 1 2 and the like can be mentioned.
  • the inventors of the present invention have made various studies using such a chloride. As a result, it has been found that the inactive in order to obtain a layered lithium composite ⁇ S oxide having a high crystallinity and a low primary interparticle difficulty.
  • KC 1 is particularly preferred, and that a layer structure lithium composite oxide having a non-aqueous secondary mm having high rate characteristics can be obtained by using KC 1.
  • the amount of inactive tt ⁇ Sl ⁇ is usually 0.1 to 100 parts by weight with respect to 100 parts by weight of the lithium composite oxide raw material.
  • Preferred amount of inactive tt ⁇ M is 0-5 parts by weight or more and 90 parts by weight or less, more preferably 1 part by weight or more and 80 parts by weight or less, particularly preferably 20 parts by weight or more and 80 parts by weight or less.
  • the range is as follows. ⁇ )
  • the victory in Makoto is an important factor in the sense that the BET ratio table of the layered lithium composite oxide obtained is considered.
  • the holding time is usually 0.1 to 20 hours, preferably 0 ⁇ 5 to 8 hours.
  • the rise to ⁇ is usually 50 to 400 ° ⁇ hours, and the drop from ⁇ ⁇ to room temperature is usually 10 ° C to 40 o ° cZ hours.
  • air, nitrogen, argon, or a mixed gas thereof can be used, but a large atmosphere is preferable.
  • the obtained layered structure lithium composite deoxidized oxide may be pulverized using Bonoremi Jet Minole or the like.
  • the BET specific surface area of the layered structure lithium composite metal oxide can be reduced by crushing. Also, you can return the crushing and sincerity more than once.
  • the layered lithium composite ⁇ S oxide can be »or as required.
  • the inert dissolved g ⁇ j may remain in the lithium composite metal oxide or may be removed from the lithium composite oxide. The removal may be performed by soot, evaporation or the like.
  • the layered structure lithium composite oxide of the present invention is useful for, for example, a non-aqueous secondary battery that can be obtained by the above-described process and can exhibit high output and high current output. It becomes. (size)
  • the layered lithium composite oxide is usually composed of primary particles with a particle size of 0.05 ⁇ m or more and 1 nm or less and secondary particles with a particle size of 2 ⁇ m or more and 100 ⁇ m or less formed by combining the primary particles. It is a mixture of particles ⁇ ).
  • the particle size of primary and secondary particles can be measured by observing with SEM.
  • the size of the secondary particles is preferably 2 mm or more and 5 OjUm or less, and more preferably 2 jum or more and 10 / m or less.
  • the crystal structure of the layered lithium composite oxide is a crystal that has a layered structure and is attributed to the space group R-3 m or C 2 Zm from the parent of the amount of the nonaqueous secondary battery obtained. It is preferable to have a structure.
  • the space group R-3m is included in the hexagonal crystal structure, and the crystal structure of ⁇ hexagonal crystal is ⁇ 3, ⁇ 3 1 ⁇ P3 2 , R3, P-3, R-3, P312, P321, P3, l 2, ⁇ 3 ⁇ 1, P3 2 l 2, P3 2 21, R32, P3ml, P3 lm, P3 c 1, P31 c, R3m, R3 c, P_3 lm, P—31 c, P—3 ml, P_ 3 c 1 , R-3m, R- 3 c , P6, P6 "P6 5, P 6 2, P6 4, P6 3, P6, P6 / m, P622,?
  • the crystal structure of the lithium composite metal oxide can be identified from a powder X-ray diffraction pattern obtained by powder X-ray diffraction measurement using CuKa as a radiation source.
  • the transition element is one or more transition elements selected from the group consisting of Ni, Mn, Co and Fe, and the effect of the present invention is impaired.
  • the trap you can change part of the S element with another element.
  • B Al, Ga, In, Si, Ge, Sn, Mg, Sc, Y, Zr, Hf, Nb, Ta, Cr,: Mo, W, Tc
  • Elements such as Ru, Rh, Ir, Pd, Cu, Ag, and Zn can be listed.
  • the chemical compound includes B, Al, Ga, In, Si, Ge, Sn, Mg, and a transitional element containing one or more elements selected from the elements ⁇ ), preferably B, A A compound containing one or more elements selected from 1, Mg, Ga, In and Sn, and more preferably, a compound of A 1 ⁇ J can be mentioned.
  • Examples thereof include oxides, hydroxides, oxyhydroxides, charcoal ⁇ , glass ⁇ , and organic oxides, preferably oxides, hydroxides, and oxyhydroxides. These chemicals may be used in combination. Of these chemicals, alumina is particularly preferable. Also, you can heat it after attaching.
  • Non-aqueous secondary secondary conversion materials include lithium composite oxides, which are usually the main component (for example, non-aqueous secondary secondary conversion materials, lithium composite metal Oxide There 6 is 0 wt 0/0 above) include lithium composite ⁇ M Sani ⁇ , is suitable for non-aqueous positions early electrolyte secondary.
  • a nonaqueous electrolyte secondary electrode TO positive electrode can be produced as follows.
  • the non-aqueous translucent secondary positive electrode is formed by loading a positive electrode mixture containing a positive substance, a conjugation age, and a binder on a positive electrode.
  • Carbon condolence fees can be used as consolation talents, and carbon awards include black powder, carbon black, acetylene black, and ⁇ -shaped carbon neo material.
  • Car pump racks and acetylene blacks are fine and have a large surface area, so they can increase the conductivity inside the positive electrode, and improve the rate and rate characteristics. If too much An is too much, the binding between the positive electrode mixture and the positive electrode due to the binder is reduced, and this causes an increase in the inner 3 ⁇ 43 ⁇ 43 ⁇ 4.
  • the percentage of consolation in the positive electrode mixture Is not less than 5 parts by weight and not more than 20 parts by weight with respect to 100 parts by weight of the normal substance. It is also possible to lower the value.
  • thermoplastic resin can be used as the binder, and the material may be polyvinylidene fluoride (hereinafter sometimes referred to as PV d F) or polytetrafluoroethylene (hereinafter referred to as PTFE). ), Tetrafluorinated Tylene 'Hexafluoropropylene' Vinylidene Fluoride Copolymer, Hexafluoropropylene 'Vinylidene Fluoride Copolymer, Tetrafluorinated Tylene Perfluorovinylether Copolymer Examples thereof include fluorine resins such as coalescence, and polyolefin resins such as polyethylene and polypropylene. You can also use a mixture of two or more of these.
  • A Ni, stainless steel, etc. can be used, but A 1 is preferable in that it is easily processed into a thin film.
  • Examples of the method of supporting the positive electrode mixture on the positive key electric body include a method of pressure molding or a method of pasting it with an organic paste and applying it to the positive electric conductor and then pressing it to fix it. It is done.
  • Paste Make a slurry consisting of a positive substance, a consolation, a kinder, and a shelf.
  • Organics include N, N-dimethylaminopropylamine, amine solvents such as jetylene triamine, ether solvents such as tetrahydrofuran, ketone solvents such as methyl ethyl ketone, ester esters of methino ⁇ , dimethylacetamine And amides such as N-methyl-2-pyrrolidone.
  • the non-aqueous secondary battery can be manufactured using the above non-aqueous secondary secondary positive electrode, and the following male, for example, a separator, a negative electrode, and the positive electrode After the group obtained by winding is stored in a pond can, it can be impregnated with an electrolytic solution composed of organic wisteria containing precocious quality for $ 3 ⁇ 4t.
  • Examples of the shape of the group include a cross-section, a circle, an ellipse, a rectangle, a rectangle with rounded corners, and the like when the group is cut in the direction of the vertical axis and the winding axis. be able to.
  • examples of the shape of the battery include a paper shape, a carp, a cylindrical shape, and a square shape.
  • the negative electrode is lower than the positive electrode !, and it is only necessary to be able to dope / de-dope lithiumion at the potential, and it contains negative material ti ⁇ electrode mixture force S carried on the negative key current 3 ⁇ 43 ⁇ 4, or You can list the moths made of negative fee worms.
  • negative tree materials include carbon materials, chalcogenides ⁇ (oxides, sulfides, etc.), nitrides, metals or alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done. A mixture of these sensitive talents may also be used.
  • the material ⁇ includes sio 2 , si O, etc. Si oxides of the formula S i O x (where x is a positive difficulty), T i ⁇ 2 , T i O TioO x (where x is a positive »:) oxide of titanium, v 2 o 5 , vo 2 etc. VO x (where X is a positive real number) Vanadium oxide, Fe 3 O 4 , Fe 2 O 3 , 60 etc.
  • tools ⁇ include L i 3 N, L i ⁇ A X N (where A is Ni and Z or Co, and 0 ⁇ x ⁇ 3.)
  • List lithium-containing nitrides such as It can be.
  • These carbon TO materials, oxides, sulfides and nitrides are used in combination. Either crystalline or amorphous may be used. Also, these carbon sit materials, oxides, sulfides, and nitrides are mainly carried on negative key conductors and used as separations.
  • self-S examples include lithium silicon male and tin metal.
  • lself alloys include lithium alloys such as Li_Al, Li-Ni, Li-Si, silicon alloys such as Si-Zn, Sn-Mn, Sn-Co, Sn-Ni, Sn- Cu ⁇ Sn- L a like ho tin alloy forces ,, Cu 2 Sb, can also be mentioned alloy such as L a 3 n i 2 S n 7. These alloys are mainly used as a mold for separation (for example, used in the form of a foil).
  • carbon agglomerates containing graphite such as natural graphite and artificial graphite are preferably used from the viewpoint of high potential flatness, low average 3 ⁇ 4m potential, and good cyclability.
  • the shape of the carbon TO material may be a flake shape such as lead, a shape like mesocarbon microbeads, a shape like graphite carbon ⁇ t, or a fine powder body. It ’s a little bit wrong.
  • the negative electrode composite ij may contain a kinder inner if necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, strong noroxymethylcellulose, polyethylene, and polypropylene.
  • Examples of negative conductors include Cu, Ni, and stainless steel.
  • Cu can be used because it is difficult to make lithium and alloys, and it can be processed into a thin film.
  • the negative key electrode is loaded with the negative electrode mixture; 1 ⁇ 2fe is the same as that of the positive electrode: t, and pastes the male, solvent, etc. by caloric pressure molding into a paste, and is applied onto the negative electrode and dried. Examples include pressing and crimping. (Separator)
  • the separator for example, a material having a form such as a porous film or a non-porous material made of a polyolefin resin such as polyethylene or polypropylene, a fluororesin, or a nitrogen-containing aromatic polymer can be used.
  • FtJt's own material may be used for two or more kinds of separators, or tiff's own material may be laminated.
  • JP An example of such a separator is 2 0 0 0-3 0 6 8 6, Japanese Unexamined Patent Publication No. 10-3 2 4 7 5 8, and the like.
  • the thickness of the separator should be as thin as possible as long as the target bow is maintained, because the energy density of the battery increases and the inside becomes smaller. Usually, it is about 5 to 200 mm, preferably 5 to 40. It is about ⁇ m.
  • the twisted Ui may be formed from powder or may contain fat.
  • fats include polyamide, polyimide, polyamide, polycarbonate, polyacetal, polysulfone, polyphenylene sulfide, polyetherenoketone, aromatic polyester, polyethenoresanolone, and polyetherimide.
  • polyamide, polyimide, polyamideimide, polyethersulfone and polyetherimide are preferable, and polyamide, polyimide and polyamideimide are more preferable.
  • nitrogen-containing aromatic compounds such as aromatic polyamides (para-oriented aromatic polyamides, meta-oriented polyamides), aromatic polyimides, aromatic polyamideimides, and particularly preferred are aromatic polyamides and production surfaces.
  • para-oriented aromatic polyamide hereinafter referred to as “paralamid j” and “swelling power s”).
  • poly 4-methylpentene _ 1 The cyclic olefin-based polymer can also be mentioned, By using these fats, the ffii property can be improved, that is,. W ⁇ Depending on the type of fat, normally, ⁇ is over 160 ° C. As a result, by using the above nitrogen-containing fragrance ⁇ m coalescence, the maximum 40
  • the maximum temperature can be increased to 250 ° Cm, and when using cyclic olefin-based polymers, the maximum temperature can be increased to about 300 ° C.
  • Paralamides are obtained by condensation polymerization of a para-oriented aromatic diamine and a para-oriented fluorinated dicarboxylic acid halide.
  • the amide amide is a 1-ring ring in the para position or a conformation corresponding thereto (for example, 4, 4 '—Substantially from repeating units connected in opposite directions (such as biphenylene, 1,5-naphthalene, 2,6-naphthalene, etc.).
  • dihydrate include pyromellitic dianhydride, 3, 3 ', 4, 4'-diphenylsulfone tetracarboxylic dianhydride, 3, 3', 4, 4'-benzophenone Tetracarboxylic dianhydride, 2, 2'-bis (3,4-dicarbox phenenole) hexaphanoleopropane, 3, 3 ', 4, 4, monobiphenole teroleno dianhydride It is done.
  • diamine examples include oxydianiline, parafhenylenediamine, benzophenone diamine, 3, 3'-methylene dianiline, 3, 3'-diaminobensophenone, 3, 3'-diaminodiphenenolesnorephone, 1, 5, and 1 naphthalenesamine.
  • a solvent-soluble polyimide can be preferably used.
  • a polyimide for example, a polycondensed polyimide of 3,3 ′, 4,4′-diphenylenolesnorefone tetracarboxylic dianhydride and an aromatic diamine can be mentioned.
  • Aromatic polyamide-imides include those obtained by condensation polymerization of aromatic 13 ⁇ 4 dicarboxylic acid and aromatic diisocyanate, aromatic dihydrate and aromatic dissociation. Those obtained from these condensation polymerizations by using an acrylate.
  • aromatic dicarboxylic acids are isofutano and terephthalano! ⁇ And so on.
  • aromatic dihydrates include trimellitic anhydride.
  • aromatic diisocyanates include 4, 4'-diphenylenomethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, orthotolylan diisocyanate, m-xylene diisocyanate and the like.
  • the thickness of the heat-resistant material is 1 U m or more and 10 m or less, more preferably 1 ⁇ m or more and 5 m or less, particularly 1 ⁇ m or more and 4 ⁇ m or less.
  • L is preferred.
  • it has a Ll ⁇ B hole, and the size (diameter) of the hole is usually 3 ⁇ m or less, preferably 1 / im or less.
  • the heat-resistant eyebrows can also contain a filler described later.
  • the porous film contains a thermoplastic resin and has a shut-down ability.
  • the porous film has Tsuruta holes, and the size of the holes is usually 3 m or less, preferably 1 mm or less.
  • the porosity of the porous film is usually 30 to 80 i%, preferably 40 to 70%.
  • the porous film plays a role in closing the Tsuruta pores by softening the thermoplastic resin that composes it.
  • thermoplastic resin examples include those that soften at 80 to: 80 ° C., and those that do not dissolve in the electrolyte solution in the nonaqueous secondary battery may be selected. Specific examples include polyolefins such as polyethylene and polypropylene, and thermoplastic polyurethanes. A mixture of two or more of these may also be used. Polyethylene is preferred in terms of softening and shutting down at a lower temperature. Examples of polyethylene include polyethylene such as high-density polyethylene, high-density polyethylene, and linear polyethylene, and ultrahigh molecular weight polyethylene. In order to further increase the piercing bow of the porous film, it is preferable that the thermoplastic resin contains at least ultrahigh molecular weight polyethylene. In terms of the production of the porous film, the thermoplastic resin preferably contains a polyolefin made of polyolefin having a low molecular weight (fi amount average molecular weight of 10,000 or less).
  • the thickness of the porous film is usually 3 to 30 / m, and more preferably 3 to 20 m. Also, multi-layered porous film made by laminating U1 and porous film The thickness of the separator made of copper is usually 40 jt m or less, preferably 20 mm or less. Further, when the thickness of the metabolizing layer is A (j [m) and the thickness of the shutdown layer is B ( ⁇ m), the value of AZB is preferably 0.1 or more and 1 or less.
  • the self-combustion layer 1 may contain one or more fillers.
  • the filler may be selected from the following materials as the material: the end, the end, or a mixture of these.
  • the particles constituting the filler have a flat particle size of 0.0 1 mm or more and 1 mm or less.
  • styrene vinylenoketone, acrylonitrile, methyl methacrylate, methacrylate, glycidyl methacrylate, daricidyl acrylate, a copolymer of at least 2 ⁇ , polytetrafluoro Fluorine resins such as low ethylene, tetrafluoroethylene monohexafluoropropylene copolymer, 4-fluoroethylene monoethylene copolymer, polyvinylidene fluoride; melamine resin; urea resin; polyolefin; polymetatalylate, etc.
  • a powder made of The wording may be used with warworms, or a mixture of two or more. Among these powders, polytetrafluoroethylene powder is preferable from the viewpoint of stability.
  • powders examples include powders made of oxides, nitrides, recording carbides, hydroxides, anthrax, sulfur dioxide, and the like. Specific examples include alumina, silica, titanium dioxide, or carbonic acid. A powder made of calcium or the like can be mentioned.
  • the ⁇ ⁇ powder may be used in worms or a mixture of two or more.
  • alumina powder is preferable from the viewpoint of stability. Here, it is more preferable that all of the particles constituting the filler are alumina particles, and even more preferable that all of the particles constituting the filler are alumina particles, and part or all of the particles are substantially spherical alumina particles. This is the actual state.
  • the content of the filler in Metabolism 3 ⁇ 41 is, for example, that all particles constituting the filler are alumina particles.
  • the weight of the filler is usually 2 0 wt% or more and 9 5 weight 0/0 or less, preferable properly is 3 0 wt% or more and 9 0 wt% or less.
  • the shape of the filler substantially, plate Zhou, needles, Uisuka like, flame is ani Gerare, can be used, but particles of Rere deviation from J H "Ikoto to form a uniform hole, The ability to be an almost spherical shape is the preferred level.
  • the separator is preferably 50 to 300 times less / 100 cc in terms of Gurley method, more preferably 50 to 200 seconds and 100 cc.
  • the porosity of the separator is usually 30-80%, preferably 40-70%.
  • Lithium salt usually containing fluorine among them Li PF 6 , LiAs F 6 , Li S b F 6 , Li Fi BF 4 , L
  • a material containing at least one selected from the group consisting of i CF 3 SO 3 , L iN (S 0 2 CF 3) 2 and L i C (S 0 2 CF 3) 3 is used.
  • the organic solvents include, for example, propylene carbonate, ethylene strength carbonate, dimethyl carbonate, jetyl carbonate, ethyl methyl carbonate, 4-trifanololeolomethinole 1,3-dioxolane 2-one, 1 , 2-Di (methoxycanolebonyloxy) ethane and other carbonates; 1, 2_dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2, 2, 3, 3-tetrafluoropropyldiflurane Ethers such as chloromethyl ethereol, tetrahydrofuran, 2-methyltetrahydrofuran; esterols such as gimethyl, methyl acetate, ⁇ -butadione lactone; nitriles such as acetonitrile, butyronitrile; N, N-dimethylformamide, N, N-dimethylaceto
  • mixed soot containing carbonates is preferable.
  • Cyclic carbonate and acyclic carbonate, or cyclic carbon Further preferred is a mixed soot of ether and ethers.
  • a mixed soot of ether and ethers As a mixture of cyclic carbonate and non-cyclic carbonate, it has a wide dynamic range force, excellent load characteristics, and is difficult even when using graphite materials such as Tenji & A3 graphite as the active material of the electrode.
  • a mixed solution containing ethylene strength-bonate, dimethyl carbonate and ethylmethyl carbonate is preferred.
  • a fluorine substituent containing fluorine such as L i PF 6, preferably Rukoto force S Les.
  • Mixtures containing ethers with fluorinated substituents of dimethylmethyl etherate and 2,2,3,3-tetraphenolopropyl propylmethyl etherenole are excellent in ⁇ mmrn 14 More preferred.
  • lithium composite oxide positive m statement, ⁇ i was performed as follows.
  • NMP N-methyl-2-pyrrolidone
  • the paste was applied to the paste to form a paste, and the paste was applied to a 40 m thick A 1 foil serving as a current collector, followed by vacuum baking at 150 ° C for 8 hours to obtain a positive electrode. .
  • ethylene carbonate hereinafter may be referred to as EC
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • 30:35:35 (ratio) Li PF 6 dissolved in a mixed solution to 1 mol Z liter hereinafter sometimes referred to as Li PFZEC + DMC + EMC
  • polypropylene porous as a separator
  • m 1 g was dried in a nitrogen atmosphere at 150 ° C. for 15 minutes, and then measured using a Micrometrics mouthpiece 1 soap I 1 2300.
  • Lithium carbonate (L i 2 C0 3: TO Chemical Co., Ltd. 39. 16 g and Nickel Hydroxide (N i (OH) 2 : Kansai Kaku Hata ⁇ K Kai 38. 23 8 and Manganese Oxide (1 ⁇ 1 0 2 : High thread formation ⁇ 3 ⁇ 4 meeting 44 44. 43 g and trinoyl tetraoxide (. 0 3 0 4: Justo Chemical Co., Ltd .: Machine) 7. 80 g and boric acid (H 3 BO 3 : Yoneyama Chemical Co., Ltd.) 1. Weighed 85 g, respectively, and mixed with a ball mill mixer under the conditions shown below to obtain a raw material mixture.
  • Powdered media 15mm0 alumina ball (5.8 kg)
  • Lumps were obtained by filling alumina powder into alumina sheath and donating for 4 hours at 1040 ° C in a large atmosphere. This lump was pulverized using a jet mino apparatus (Hosokawa Micro Ane ring A FG-100) to obtain a powder.
  • a jet mino apparatus Hosokawa Micro Ane ring A FG-100
  • the molar ratio of Li: Ni: Mn: Co was 1.04: 0.41: 0.49: 0.10.
  • the BET ratio table B3 ⁇ 4 of the powder was 2.6 m 2 / g, and as a result of powder X-ray diffraction measurement, it was found that the crystal structure was a layered structure belonging to the R_3 m space group. .
  • the 3 ⁇ 43 ⁇ 43 ⁇ 4 amount (mAh / g) at 1 C, 3C, 5C, and 10C is 140, 12 respectively.
  • 0, 97, 82, and 58, and the contents «I fermentation (%) were 100, 86, 69, 59, and 41, respectively.
  • the coprecipitate slurry was filtered and distilled water, and the coprecipitate was obtained by TC (10 °).
  • 2. 0 g and lithium hydroxide monohydrate 1. 16 g and KC 1 1.16 g (37 parts by weight with respect to 100 parts by weight of lithium composite ⁇ S oxide raw material) were dry-mixed using the agate season to obtain a mixture. Put it in a vessel and use an electric furnace in a large atmosphere at 800 ° C for 6 hours to cool it down to room temperature, obtain a product, powder this, decant it with distilled water , Filtered, and passed through 8 temples at 100 ° 0 to obtain powder.
  • the molar ratio of Li: Ni: Mn: Fe was 1.29: 0.4.1: 0.49: 0.10.
  • the BET specific surface area of the powder was 7.6 m 2 Zg, and the average particle size of the primary particles in the SEM observation of the powder was 0.2 ⁇ m.
  • the crystal structure of the powder was found to be a layered structure belonging to the R-3m space group.
  • the 3 ⁇ 43 ⁇ 4 amount (mAh / g) at 0.2C, 1C, 3C, 5C, and IOC was 135, 12 respectively. It is 0, 109, 97, 82.
  • the difficulty (%) is 100, 89, 81, 7 2, 61, respectively.
  • the amount and the difficulty at 10C are ⁇ ⁇ 3 ⁇ 43 ⁇ 4 ⁇ amount, respectively.
  • «I was higher than the ownership rate.
  • the coprecipitate slurry was filtered and distilled with water and finely spun at 100 ° C to obtain a coprecipitate.
  • self coprecipitate 2.
  • 16 g and KC 1 1.16 g 37 parts by weight for 100 parts by weight of lithium composite ⁇ M oxide raw material
  • agate I used it to dry 5 ⁇ and kneaded to get a mix.
  • the mixture is stirred in an alumina mixer using ⁇ and electricity for 6 hours at 800 ° C in a large atmosphere and cooled to room temperature to obtain a product and pulverized.
  • Agate was used with 2.0 g of the coprecipitate obtained in Example 2, 1.05 g of lithium carbonate, and 1.06 g of KC 1 (21 parts by weight with respect to 100 parts by weight of the lithium composite S oxide raw material). Then we kneaded and got a mixed J. Next, the mixture is donated to an alumina container using « ⁇ in a large atmosphere at 850 ° C for 6 hours, cooled to room temperature, Obtained, which was Kona ⁇ performs »by decantation with distilled water, filtered and 100 for 8 hours to obtain a powder B 4.
  • Example 1 Co-precipitate in Example 1 2.0 g and lithium hydroxide monohydrate 1.16 g agate?
  • a powder A 2 was obtained in the same manner as in Example 1 except that the mixture was dry-combined using, and the mixture was mixed at 900 ° C. Itometsu analysis of the results of the powder A 2, L i: N i : Mn: Fe molar ratio of 1.30: 0.41: 0.49: was 0.10. Further, the BET specific surface area of the powder A 2 was 0.3 m 2 Zg, and the average particle diameter of the primary particles in the SEM observation of the powder A 2 was 0.7 / m. As a result of powder X-ray diffraction measurement, the crystal structure of powder A 2 was found to be a crystal structure belonging to the R-3m space group.
  • NMP was added to give 2.0% by weight of paralamid ⁇
  • A To 100 g of the obtained pararamid ⁇ , 2 g of alumina powder (a) (Nippon Aerosil column, Alumina C, diameter of flat coconut, 0.02 ⁇ m) and Anolemina powder (b) 2 g (Sumitomo Chemical) 1 ⁇ Sumicorundum, AA03, flat particle diameter 0.3 ⁇ ), add 4 g in total as a filler, mix and mix 3 times with Nanomizer, and finely 1000 mesh under 3 ⁇ 43 ⁇ 41, ffi The slurry was defoamed to produce a slurry-like coating liquid (B). The weight of alumina powder (filler), which is about 3 to 3 times the total weight of paralamid and alumina powder, is 67% by weight.
  • porous film As the porous film, a polyethylene porous membrane ( ⁇ 12 ⁇ m, ⁇ 140 seconds 100 cc, average pore size 0.1 ⁇ m, porosity 50%) was used.
  • the polyethylene porous membrane was fixed on a PET film with a thickness of 100 mm, and the slurry coating liquid (B) was applied onto the porous membrane by a tester industry ⁇ ; company-made bar coater. .
  • the coated porous membrane on the PET film is kept in one piece and immersed in water, which causes the parallamide porous membrane m) to deposit.
  • the laminated porous film 1 was obtained by laminating layers and forces.
  • the thickness of the porous film 1 was 16 m, and the thickness of the laramid porous membrane m) was 4 ⁇ m.
  • the ⁇ of laminated porous film 1 was 18 O p / l 00 cc, and the porosity was 50%.
  • the cross section of the heat-resistant layer in the laminated porous film 1 was observed by ⁇ «electron microscopy ⁇ (SEM), and 0.03 ⁇ m to 0.0 6 ⁇ : I found that I m3 ⁇ 43 ⁇ 4 has a relatively large Iwata hole.
  • the 3 ⁇ 41 porous film statement 3 ⁇ 45 was performed by the following method. ⁇ Porous Fi / REM>
  • the thickness of the laminated porous film and the thickness of the shirt down layer were measured according to the J IS standard (K 7130-1 992).
  • the thickness of the metaphor J1 was determined by using the value obtained from the thickness of the laminated porous film, and the value of the shutdown layer was indicated by the bow.
  • ⁇ S of porous crane film was measured with a digital timer with a single-layer type densometer manufactured by Seiko Yasuda, based on JI S P8117.
  • Porosity (marrow 0/0) 100 X ⁇ 1- (W 1 / 3 ⁇ 4l m 1 + W 2 / m .2 + ⁇ ⁇ + Wn / 3 ⁇ 4 specific gravity n) / (10 x 10 XD ) ⁇ above
  • Example If the laminated porous film obtained by 1 is used as a separator for each of these, a lithium secondary battery capable of further improving the resistance can be obtained.
  • the present invention it is possible to obtain a lithium-containing oxide having a layered structure and a high particle size and crystallinity.
  • the present invention it is possible to provide a non-hydrodynamic secondary job capable of exhibiting a higher output at a higher current rate, and the secondary reservoir is particularly capable of providing a higher current. This is extremely useful for non-aqueous secondary batteries for power tools such as automobile tools that require high output at high rates.

Abstract

 本発明の層状構造リチウム複合金属酸化物の製造方法は、遷移金属元素およびリチウム元素を、遷移金属元素に対するリチウム元素のモル比が1以上2以下の範囲となるように、含有したリチウム複合金属酸化物原料を、塩化物からなる不活性溶融剤の存在下で焼成する工程を含む。 本発明の方法で製造された層状構造リチウム複合金属酸化物は、微粒でしかも結晶性が高いので、この層状構造リチウム複合金属酸化物を正極活物質に用いた非水電解質二次電池は、高い電流レートにおいてより高出力を示すことができる。

Description

明細書 リチウム複合 酸化物の製造方法 擴分野
本発明は、 リチウム複合^!酸化物の製駄法に関する。 特に、 非水劁?質二次 翻 正 物質に用レ、られる層状構造リチウム複合^ M酸化物の製 法に関する。 背景技術
リチウム複合金属酸化物は、 リチウムニ次電池などの非水電解質二次電池に正極活物質 として用いられている。 リチウム二次鬵池は、 既に携帯籠やノートパソコン等の飄と して実用化されており、 更に自動車用途 貯蔵用途などの中 ·大型用途においても、 適用カ^^られている。
従来のリチウム複合^ S酸化物として、 特開平 1 0— 3 2 4 5 2 1には、 スピネル型構 造からなるリチウムマンガン複合^ 酸化物力 S記載されている。 発明の開示
しかしながら、 上記のようなスピネル型構造からなるリチウム複合^ S酸化物を正 物質として用いた非水動军質二次電池は、 高い電流レートにおける高出力を要求される用 途、 すなわち自動車用途^ 工具等のパワーツール用途において十分なものではない。 本発明の目的は、 高 、電流レートにおレ、てより高出力を示すことが可能な非水載質二次 電池を与えることのできるリチウム複合^ Μ酸化物の製 3^法を«することにある。 本発明者らは、 スピネル型構造とは異なる結晶構造である層状構造に着目し、 種々検討 した結果、 下記の発明が上記目的に合致することを見出し、 本発明に至った。
すなわち本発明は、 下記を赚する。
< 1 >遷^ s元素およびリチウム元素を、 遷^ s元素に るリチウム元素のモル比 力 以上 2以下の範囲となるように、 含有したリチウム複合 酸化物原料を、 塩化物か らなる不活性溶副 の存在下で焼成する工程を含む層状構造リチウム複合金属酸ィ匕物の製 f 0 く 2 >リチウム複合^ a酸化物原料が、 リチウム化^およひ遷 ^元素原料の混^! である liftsく 1〉記載の製 法。
< 3〉遷^ S元素原料が、 F eを含有する嫌己く 2 >繊の製 去。
< 4 >遷^¾元素原料が?6を含有し、 さらに、 N i、 Mnおよび C oからなる群より 選ばれる 1種以上の元素を含有する嫌己く 3 >記載の製
< 5 >塩化物からなる不活性溶薩が KC 1である tiff己く 1〉〜< 4 >のレヽずれかに言識 の製造规
< 6 >不活鹏薩の量が、 リチウム複合^ S酸化物原料 1 0 0重量部に対して 0 · 1重 量部以上 1 0 0重量部以下である Ιίίΐ己く 1 >〜く 5 >のレヽずれかに言凍の製駄¾ < 7 >焼成における保持温度が、 6 5 0°C〜 8 5 0°Cの範囲である前記く 1 >〜< 6 >の レ、ずれかに雄の製
< 8 >tfjfS< 1 >〜< 7 >のいずれかに記載の製駄法によって得られた層状構造リチウ ム複合 酸化物。
く 9 >前記く 8 >記載の層状構造リチウム複合金属酸化物を有する非水電解質二次電池用 正概物質。
< 1 0 >ΗίίίΕ< 9 >言 ΰ¾の非水 « ^質二次電 正 ®ί物質を有する非水載军質二次電池 用正
< 1 1 >ΙίίΙΕ< 1 0 >記載の非水戀军質二次電¾^正極を有する非水 ¾ ^質二次電
< 1 2 >さらにセパレータを有する lift己く 1 1 >言 の非水 ® ^質二次鹭池。
< 1 3 >セパレータが、 薩多子 U1と熱可塑性樹脂を含有する多孔質フィルムと力 さ れてなる 多孔質フィルムからなるセパレータである前記く 1 2 >記載の非水 军質二 次電 発明を実施するための形態
層状離リチウ厶複^!酸化物の難方法
本発明のリチウム複合^ 酸化物の製 法は、 遷 ^元素およびリチウム元素を、 遷^ S元素に るリチウム元素のモル比が 1以上 2以下の範囲となるように、 含有し たリチウム複合^ 酸化物原料を、 塩化物からなる不活性^ ^の &下で «する工程 を含む。 遷^ S元素に対するリチウム元素のモノレ比が 1未満の場合には、 リチウム複合金属酸 化物は、 岩 構造もしくはスピネル型構造を有し易く、 得られる非水 ¾ 質二次 の 高レヽ電流レートにおける出力特性 (以下、 レート特性ということがある。 ) が十分ではな レ、。 また、 上記モル比が 2を超える: t には、 リチウム複合録酸化物は、 廳 IJリチウム を多く有し、 これが炭酸リチウムなどの不純物を «たらしめ、 得られる非水 ¾ ^質二次 電池のレート特性が十分ではなく、 高い放 m§量も得難い。 本発明において、 得られる電 池のレート特 をより高める意味では、 遷^ s元素に対するリチウム元素のモル比は、
1 . 0 5以上1 . 5であること力 S好ましレ、。 (リチウム複合^ S酸化物原料)
リチウム複合 酸化物原料は、 により層状構造リチウム複合 酸化物となるも のであれば特に限定されなレ、が、 好ましくは、 リチウム化合物およひ^^元素原料の 混合物である。 遷^ S元素原料としては、 遷^ M元素の酸化物、 水酸化物 (ォキシ水 酸化物も含む。 以下同じ。 ) 、 塩化物、 炭^^、 ^m^. , シユウ 、 酢酸塩な どを挙げることができる。 リチウム化^)としては、 水酸化リチウムおよび Zまたは水酸 化リチウム一水和物力 S好ましく用いられ、 また、 炭酸リチウムも好ましいリチウム化合物 である。 遷^ 元素原料としては、 水酸化物力 s好ましく用いられる。 また、 遷 ^元 素原料は、 複数の遷^ S元素を含有すること力 s好ましく、 この 、 複数の遷^ S元 素を含有する化^)を、 遷驗属元素原料として用いることが好ましい。 該化合物は、 共 沈により得ることができ、 水酸化物であること力 S好ましい。
(遷^ 元素原料)
遷^ S元素原料は、 F eを含有すること力 S好ましレヽ。 好ましレヽ F eの量としては、 遷 元素の合計量 (モル) に対する F eの量 (モル) が 0. 0 1以上0. 5以下の範囲 であり、 より好ましくは 0 . 0 5以上 0 . 3以下の範囲である。 また、 得られる非水翻军 質二次電池のレート特性をさらにより高める意味で、 遷^ 元素原料は、 F eを含有し、 さらに、 N i、 Mnおよび C oからなる群より選ばれる 1種以上の元素を含有することが 好ましく、 より好ましくは F eを含有し、 さらに N iおよび/また《Μηを含有すること である。 本発明においては、 従来からの正 物質に用いられている C o原料を用いるこ となくしても、 高いレート 14を有する非水 ®質二次 池を与える層状構造リチウム複 合^ M酸化物を得ることができる。
(不活 I4^WJ)
不活性 M ^は、 誠の際に、 リチウム複合 酸化物原料と し難いものであり、 塩化物から される。 該塩化物としては、 リチウムイオンより大きなイオン を有す る^ イオンの塩化物を挙げることができ、 具 には、 NaC l、 KC 1、 RbC l、 C s C l、 CaC l2、 S r C l2、 BaC l2、 Mg C 12などを挙げることができる。 本 発明者らは、 このような塩化物を用いて、 種々検討したところ、 結晶性が高く、 しかも一 次粒子間難の少なレ 粒の層状リチウム複合^ S酸化物を得るための不活赚薩とし て、 KC 1が特に好ましく、 し力も、 これを用いることにより、 高いレート特性を有する 非水 ¾ 質二次 mmを与える層状構造リチウム複合^ «酸化物を得ることができることを 見出した。
不活' tt^Sl^の雜量は、 通常、 リチウム複合 酸化物原料 100重量部に対して、 0. 1重量部以上 100重量部以下である。 好ましレヽ不活 tt^Mの 量としては、 0 · 5重量部以上 90重量部以下の範囲、 より好ましくは 1重量部以上 80重量部以下の範囲、 特に好ましくは 20重量部以上 80重量部以下の範囲である。 隱)
誠における勝 は、 得られる層状構造リチウム複合條酸化物の BET比表 を隱する意味で重要な因子である。 通常、 膽 が高くなればなるほど、 BET比表 面積は小さくなる傾向にある。 を低くすればするほど、 Β Ε Τ比表菌は大きく なる傾向にある。 としては、 650°C以上 850°C以下の範囲を挙げることがで きる。 保持 で保持する時間は、 通常 0. 1〜 20時間であり、 好ましくは 0 · 5〜 8 時間である。 麟 までの昇 は、 通常50 〜400°〇 時間でぁり、 麟^^ から室温までの降 は、 通常 10°C〜40 o°cZ時間である。 また、 '誠の雰囲気と しては、 大気、 、 窒素、 アルゴンまたはそれらの混合ガスを用いることができるが、 大^ 囲気が好ましい。 (その他のェ @)
誠後において、 得られる層状構造リチウム複合滅酸化物を、 ボーノレミ ジェット ミノレなどを用いて粉砕してもよい。 、砕によって、 層状構造リチウム複合金属酸化物の B ET比表面積を霞することが可能な がある。 また、 粉砕と誠を 2回以 り返し てもよレ、。 また、 層状構造リチウム複合^ S酸化物は必要に応じて »あるいは する こともできる。
また、 «後において、 不活性溶 g^jは、 リチウム複合金属酸化物に残留していてもよ く、 リチウム複合 酸化物から除去されてもよい。 除去は、 赚、 蒸発等により行えば よい。 層状 リチウム複^属酸化物
本発明の層状構造リチウム複合 酸化物は、 例えば、 上記の製^去により得られ、 高レ、電流レートにおレ、て高出力を示すことが可能な非水 ® ^質二次電池に有用となる。 (大きさ)
層状構造リチウム複合 酸化物は、 通常、 0. 05 μ m以上 1 n m以下の粒径の一次 粒子と、 一次粒子が纏して形成された 2 μ m以上 100 μ m以下の粒径の二次粒子との 混^)からなる。 一次粒子、 二次粒子の粒径は、 SEMで観察することにより、 測定する ことができる。 本発明の効果をより高めるため、 二次粒子の大きさは 2〃 m以上 5 OjUm 以下であることが好ましく、 2 jum以上 10 /m以下であることがより好ましい。
(結晶構造)
層状構造リチウム複合條酸化物の結晶構造は、 層状構造を有し、 得られる非水戀军質 二次電池の ^量の親 から、 空間群 R— 3 mまたは C 2 Zmに帰属される結晶構造で あること力好ましい。 空間群 R— 3mは、 六方晶型の結晶構造に含まれ、 ΙίίΙΕ六方晶型の 結晶構造は、 Ρ3、 Ρ3 P32、 R3、 P— 3、 R— 3、 P312, P321, P3,l 2、 Ρ3^ 1、 P32l 2、 P3221、 R32、 P3ml、 P3 lm、 P3 c 1、 P31 c、 R3m、 R3 c、 P_3 lm、 P—31 c、 P— 3ml、 P_ 3 c 1、 R—3m、 R— 3 c、 P6、 P6„ P65、 P 62、 P64、 P63、 P— 6、 P6/m、 P622、 ?QX22, P6522、 P6222、 P 6422、 P6322、 P6mm、 P6 c c、 P63cm、 P63mc、 P_6m2、 P— 6 c 2、 P— 62m、 P-62 c、 P6/mmm, P6/mc c、 P63 111 c m、 Ρδ^πιπι c力ら選ばれ るレ、ずれか一つの空間群に帰属される。 また、 空間群 C2Zmは、 単斜晶型の結晶構造に 含まれ、 編己単斜晶型の結晶構造は、 P2、 P2i、 C2、 Pm、 Pc、 Cm、 Cc、 P2/m、 P C2/m、 P2/c、 ?2,/c, C2/c力、ら選ばれるいずれ力一つの空間群に' J帚属 される。 なお、 リチウム複合金属酸化物の結晶構造は CuKaを線源とする粉末 X線回 折測定により得られる粉末 X線回折図形から同定することができる。
(減)
層状構造リチウム複合 酸化物における遷^ S元素が、 N i、 Mn、 Coおよび F eからなる群より選ばれる 1種以上の遷^ S元素である^^には、 本発明の効果を損な わなレ、範囲で、 言麵^ S元素の一部を、 他元素で儻換してもよレ、。 ここで、 他元素とし ては、 B、 Al、 Ga、 I n、 S i、 Ge、 Sn、 Mg、 S c、 Y、 Z r、 Hf 、 Nb、 Ta、 Cr、 : Mo、 W、 Tc、 Ru、 Rh、 I r、 Pd、 Cu、 Ag、 Zn等の元素を挙 げることができる。
また、 本発明の効果を損なわない範囲で、 層状構造リチウム複合 酸化物を構成する 粒子の表面に、 言雄化物とは異なる化^!を付着させてもよい。 該化^としては、 B、 Al、 Ga、 I n、 S i、 Ge、 Sn、 Mgおよひ遷 ^元素から選ばれる 1種以上の 元素を含有するィ匕^)、 好ましくは B、 A 1、 Mg、 G a、 I nおよび S nから選ばれる 1種以上の元素を含有する化合物、 より好ましくは A 1の化^ Jを挙げることができ、 ィ匕 として具 には、 tut己元素の酸化物、 水酸化物、 ォキシ水酸ィ匕物、 炭^^、 硝 ϋ^、 有機赚を挙げることができ、 好ましくは、 酸化物、 水酸化物、 ォキシ水酸化物である。 また、 これらの化^ を混合して用いてもよい。 これら化^)の中でも、 特に好ましいィ匕 はアルミナである。 また、 付着後に加熱を行ってもよレ、。 非水聽質二次 用正 ¾¾3質及び非水賴質二次 ¾用正棰
非水饑军質二次鼋翻正誕物質は、 編己のリチウム複合 酸化物を含み、 通常、 主 成分として (例えば、 非水翻军質二次霞翻正観物質に対し、 リチウム複合金属酸化物 が 6 0重量0 /0以上である) リチウム複合^ M酸ィ匕物を含み、 非水職早質二次 に好適で ある。
非水 ¾ ^質二次電池用正極活物質を用いて、 例えば、 次のようにして、 非水電解質二次 電 TO正極を製造することができる。
非水翻军質二次鼇翻正極は、 例えば、 正醒物質、 導慰才およびバインダーを含む正 極合剤を正纏電体に担持させて^ tする。
(導糊
導慰才としては炭素餅才料を用いることができ、 炭素 ^才料として黒銘 末、 カーボン ブラック、 アセチレンブラック、 β状炭素ネオ料などを挙げることができる。 カーポンプ ラックやアセチレンブラックは、 微粒で表面積が大きレ、ため、 少 *Ε極合剤中に添口する ことにより正極内部の導電性を高め、 率及びレート特 14を向上させることができ るが、 多く Anすぎるとバインタ "一による正極合剤と正 電体との結着性を低下させ、 カゝえって内 ¾¾¾を増加させる原因となる。 通常、 正極合剤中の導慰才の割合は、 正 物質 1 0 0重量部に対して 5重量部以上 2 0重量部以下である。 導慰才として黒鉛ィ [^素 m . カーボンナノチューブなどの„ 素材料を用いる場合には、 この割合を下げる ことも可能である。
(バインダ一)
バインダーとしては、 熱可塑性樹脂を用いることができ、 具^には、 ポリフッ化ビニ リデン (以下、 P V d Fということがある。 ) 、 ポリテトラフノレォロエチレン (以下、 P T F Eということがある。 ) 、 四フッ化工チレン'六フッ化プロピレン'フッ化ビニリデ ン系共重合体、 六フッ化プロピレン 'フッ化ビニリデン系共重合体、 四フッ化工チレン · パーフルォロビニルェーテル系共重合体などのフッ素樹脂、 ポリエチレン、 ポリプロピレ ンなどのポリオレフイン樹脂等が挙げられる。 また、 これらの二種以上を混合して用いて もよレヽ。 また、 ノ インダ一としてフッ素樹脂およびポリオレフイン樹脂を用レヽ、 正極合剤 に る該フッ素樹脂の割合が 1〜: I 0重量0ん 該ポリオレフイン樹脂の割合が 0. :!〜 2重量%となるように含有させることによって、 正 電体との結着性に優れた正極合剤 を得ることができる。 (正纖電体)
正 電体としては、 Aし N i、 ステンレスなどを用いることができるが、 薄膜に加 工し "く、 であるという点で A 1が好ましレ、。
(担持)
正鍵電体に正極合剤を担持させる方法としては、 加圧成型する方法、 または有機灘 などを用いてペースト化し、 正 電体上に塗布、 後プレスするなどして固着する方 法が挙げられる。 ペースト化する:^、 正 物質、 導慰才、 ノくインダー、 棚灘から なるスラリーを^する。 有機 としては、 N, N—ジメチルァミノプロピルァミン、 ジェチレントリアミン等のァミン系 、 テトラヒドロフラン等のエーテル系溶媒、 メチ ルェチルケトン等のケトン系溶媒、 メチノ^のエステル系激某、 ジメチルァセトアミ ド、 N—メチル一 2—ピロリドン等のァミド系灘等が挙げられる。
正極合剤を正權電体へ塗布する方法としては、 例えば、 スリットダイ塗工法、 スクリ ーン塗工法、 カーテン塗工法、 ナイフ塗工法、 グラビア塗工法、 静電スプレー法等が挙げ られる。 以上に挙げた方法により、 非水動军質二次電删正極を製造することができる。 非水離質二次 m¾
非水饑军質二次電池は、 上記の非水饑军質二次電翻正極を用レ、た次の雄で製造する ことができ、 例えば、 セパレータ、 負極、 および上記の正極を、 麵および卷回すること により得られる 群を、 池缶内に収納した後、 職早質を含有する有機藤からなる電 解液を含浸させて $¾tすることができる。
群の形状としては、 例えば、 該 ®¾群を卷回の軸と垂 α ^向に切断したときの断面 、 円、 楕円、 長方形、 角がとれたような長方形等となるような形状を挙げることができ る。 また、 電池の形状としては、 例えば、 ペーパー型、 コイ^、 円筒型、 角型などの形 状を挙げることができる。
(負極) 負極は、 正極よりも低!/、電位でリチウムィオンのドープ ·脱ドープが可能であればよく、 負酣料を含 ti^極合剤力 S負鍵電体に担持されてなる ¾¾、 または負 才料與虫からな る籠を挙げることができる。 負樹才料としては、 炭素酣料、 カルコゲン化^ (酸化 物、 硫化物など) 、 窒化物、 金属または合金で、 正極よりも低い電位でリチウムイオンの ドープ'脱ドープが可能な材料が挙げられる。 また、 これらの負敏才料を混合して用いて もよい。
負椒才料につき、 以下に例示する。 膽碳素徵才料として、 具^]には、 天然黒鉛、 人 造黒 、等の黒口、、 コークス類、 カーボンブラック、 蒙^早炭素類、 炭素 »、 有機高分子 化^ 体などを挙げることができる。 ffJt己酸化物として、 具^には、 sio2、 s i Oなど式 S i Ox (ここで、 xは正の難) で表されるケィ素の酸化物、 T i ο2、 T i Oなど式 T iOx (ここで、 xは正の »:) で表されるチタンの酸化物、 v2o5、 vo2な ど式 VOx (ここで、 Xは正の実数) で表されるバナジウムの酸化物、 Fe3O4、 Fe203、 60など式 60][ (ここで、 Xは正の で表される鉄の酸化物、 Sn02、 SnO など式 SnOx (ここで、 Xは正の H¾)で表されるスズの酸化物、 W03、 W02など一般 ¾WOx (ここで、 Xは正の H¾)で表されるタングステンの酸化物、 L i 4T i L i V02 (たとえば L iL1Va9O2) などのリチウムとチタンおよび Zまたはバナジウムとを 含有する複合^ S酸化物などを挙げることができる。 tiit 匕物として、 具体的には、 τ i2S3、 τ i s2、 τ i sなど式 τ i sx (ここで、 χは正の H¾)で表されるチタンの硫化 物、 v3s4、 VS VSなど式 vsx (ここで、 Xは正の nm)で表されるバナジウムの硫 ィ匕物、 Fe3S4、 Fe S2、 ?6 3など式 6 3)[ (ここで、 xは正の ) で表される鉄の 硫化物、 Mo2S3、 MoS2など^ MoSx (ここで、 Xは正の難) で表されるモリブデ ンの硫化物、 SnS SnSなど式 SnSx (ここで、 xは正の ¾ で表されるスズの 硫化物、 WS2など ¾WSX (ここで、 Xは正の で表されるタングステンの硫化物、 Sb2S3など式 SbSx (ここで、 Xは正の ) で表されるアンチモンの硫ィ匕物、 Se5 S3、 Se S2、 3 6 3など式3 6 3)[ (ここで、 xは正の難) で表されるセレンの硫化物 などを挙げることができる。 編己窒化物として、 具^には、 L i3N、 L i ^AXN (こ こで、 Aは N iおよび Zまたは Coであり、 0<x<3である。 ) などのリチウム含有窒 化物を挙げることができる。 これらの炭素 TO"料、 酸化物、 硫化物、 窒化物は、 併用して 用いてもよく、 結晶質または非晶質のいずれでもよい。 また、 これらの炭素 Sit料、 酸化 物、 硫化物、 窒化物は、 主に、 負鍵電体に担持して、 離として用いられる。
また、 己^ Sとして、 具体的には、 リチウム シリコン雄、 スズ金属が挙げら れる。 また、 l己合金としては、 L i_Al、 L i— Ni、 L i—S iなどのリチウム合 金、 S i— Znなどのシリコン合金、 Sn—Mn、 Sn— Co、 Sn— Ni、 Sn— Cuゝ Sn— L aなどのスズ合金のほ力、、 Cu2Sb、 L a3N i 2S n7などの合金を挙げること もできる。 これらの 、 合金は、 主に、 戰で離として用いられる (例えば箔状で用 レヽられる) 。
負極材料の中で、 電位平坦'性が高い、 平均 ¾m電位が低い、 サイクノレ性が良いなどの観 点からは、 天然黒鉛、 人造黒鉛等の黒鉛を 分とする炭素歡才料が好ましく用いられる。 炭素 TO "料の形状としては、 例えは 鉛のような薄片状、 メソカーボンマイクロビー ズのような 状、 黒鉛ィヒ炭素^ tのような »状、 また ίま微粉末の 体などのレヽずれで ちょレヽ。
負極合斉 ijは、 必要に応じて、 ノくインダーを含有してもよレヽ。 バインダーとしては、 熱可 塑性樹脂を挙げることができ、 具体的には、 PVdF、 熱可塑性ポリイミド、 力ノレボキシ メチルセルロース、 ポリエチレン、 ポリプロピレンなどを挙げることができる。
(負纏電体)
負 電体としては、 Cu、 Ni、 ステンレスなどを挙げることができ、 リチウムと合 金を作り難い点、 薄膜に加工し付いという点で、 Cuを用レ、ればよレ、。 該負鍵電体に 負極合剤を担持させる; ½feとしては、 正極の: t と同様であり、 カロ圧成型による雄、 溶 媒などを用レヽてペースト化し負 電体上に塗布、 乾燥後プレスし圧着する方法等が挙げ られる。 (セパレータ)
セパレータとしては、 例えば、 ポリエチレン、 ポリプロピレンなどのポリオレフイン榭 脂、 フッ素樹脂、 含窒素芳香族重合体などの材質からなる、 多孔質膜、 不^ »など の形態を有する材料を用いることができ、 また、 ftJt己の材質を 2種以上用レヽてセパレータ としてもよいし、 tiff己の材料が積層されていてもよい。 セパレータとしては、 例えば特開 2 0 0 0 - 3 0 6 8 6号公報、 特開平 1 0— 3 2 4 7 5 8号公報等に纖のセパレータを 挙げることができる。 セパレータの厚みは電池の エネルギー密度が上がり、 内部 が小さくなるという点で、 «的弓娘が保たれる限り薄くした方がよく、 通常 5〜2 0 0 〃m程度、 好ましくは 5〜4 0〃m程度である。
非水戀質二次電池においては、 通常、 正極—負極間の^ &^が原因で ®池内に異常電 流が流れた際に、 電流を遮断して、 過 m流が »ることを (satする (シャットダウンす る) ことが重要であり、 セパレータには、 通常の使用温度を越えた場合に、 できるだけ低 温でシャットダウンする (多孔質フィルムの微 孔を閉塞する) こと、 そしてシャットダ ゥンした後、 ある程度の高温まで電池内の温度が上昇しても、 その温度により^^するこ となく、 シャットダウンした状態を維 m~ること、 換言すれば、 而撒性が高いことが求め られ、 セパレータとして、 瞧多 ¾JIと熱可塑性樹脂を含有する多孔質フィルムと力 s積層 されてなる積層多孔質フィルムからなるセパレータを用いることにより、 をよ り高めることが可能となる。 ここで、 而撚多 ¾1は、 多孔質フィルムの画に積層されて いてもよレヽ。
以下、 t己の而燃多子 L®と熱可塑性樹脂を含有する多孔質フィルムと力 s積層されてなる
¾ϋ多孔質フィルムからなるセパレータにつレ、て説明する。
|ίΐ ¾ϋ多孔質フィルムにおいて、 而撚多? Uiは、 ^«末から形成されていてもよい し、 脂を含有していてもよレヽ。 脂としては、 ポリアミド、 ポリイミド、 ポリ アミ ドイミ ド、 ポリカーボネート、 ポリアセタール、 ポリサルホン、 ポリフエ二レンサル ファイド、 ポリエーテノレケトン、 芳香族ポリエステル、 ポリエーテノレサノレホン、 ポリエー テルイミドを挙げることができ、 耐熱 14をより高める鉱 で、 ポリアミド、 ポリイミド、 ポリアミドイミド、 ポリエーテルサルホン、 ポリエーテルィミドが好ましく、 より好まし くは、 ポリアミド、 ポリイミド、 ポリアミドイミドである。 さらにより好ましくは、 芳香 族ポリアミド (パラ配向芳香族ポリアミド、 メタ配向芳翻ポリアミド) 、 芳香族ポリイ ミド、 芳香族ポリアミドイミド等の含窒素芳香 ¾Μ合体であり、 とりわけ好ましくは芳香 族ポリアミド、 製造面で、 特に好ましレ、のは、 パラ配向芳香族ポリアミド (以下、 「パラ ァラミド j とレ、うこと力 sある。 ) である。 また、 l«脂として、 ポリ一 4—メチルペン テン _ 1、 環状ォレフィン系重合体を挙げることもできる。 これらの 脂を用いるこ とにより、 ffii 性を高めるすなわち、 を高めることができる。 W ^ 而纖脂の種類に依存するが、 通常、 ,膽½は 160°C以上である。 旨として、 上記含窒素芳香^ m合体を用いることにより、 を最大 40
0°C¾¾にまで高めることができる。 また、 ポリ一 4—メチルペンテン一 1を用いる ¾^ には最大 250°Cm , 環状ォレフィン系重合体を用いる には最大 300°C程度にま で、 をそれぞれ高めることができる。
パラァラミドは、 パラ配向芳香族ジァミンとパラ配向芳翻ジカルボン酸ハライドの縮 合重合により得られるものであり、 アミド ¾合が芳 1¾環のパラ位またはそれに準じた配 向位 (例えば、 4, 4' —ビフエ二レン、 1, 5—ナフタレン、 2, 6—ナフタレン等の ような反対方向に同軸または ¥ίΐに延びる配向位) で結合される繰り返し単位から実質的 になるものである。 具体的には、 ポリ (パラフエ二レンテレフタノレアミド) 、 ポリ (パラ ベンズアミド) 、 ポリ (4, 4, 一べンズァニリドテレフタルアミド) 、 ポリ (パラフエ 二レン一 4, 4' —ビフエ;レンジカルボン酸アミ ド) 、 ポリ (パラフエ二レン一 2, 6 —ナフタレンジカルボン酸アミド) 、 ポリ (2—クロ口一パラフエ二レンテレフタルアミ ド) 、 パラフエ二レンテレフタルアミ ド 2, 6—ジクロロパラフエ二レンテレフタルァ ミド共重合体等のパラ配向型またはパラ配向型に準じた構造を有するパラァラミドが例示 される。
芳香族ポリイミドとしては、 芳香族のニ^!水物とジァミンの縮重合で製造される^ = 香族ポリイミドが好ましい。 該ニ 水物の具体例としては、 ピロメリット酸ニ無水物、 3, 3' , 4, 4' —ジフエニルスルホンテトラカルボン酸二無水物、 3, 3' , 4, 4' —ベンゾフエノンテトラカルボン酸二無水物、 2, 2' —ビス (3, 4ージカルボキ シフエ二ノレ) へキサフノレオ口プロパン、 3, 3' , 4, 4, 一ビフエニノレテトラ力ノレボン 酸二無水物などがあげられる。 該ジァミンの具体例としては、 ォキシジァニリン、 パラフ ェニレンジァミン、 ベンゾフエノンジァミン、 3, 3' —メチレンヂァニリン、 3, 3' —ジァミノべンソフエノン、 3, 3' —ジアミノジフエニノレスノレフォン、 1, 5, 一ナフ タレンジァミンなどがあげられる。 また、 溶媒に可溶なポリイミドが好適に使用できる。 このようなポリイミドとしては、 例えば、 3, 3' , 4, 4' ージフエニノレスノレホンテト ラカルボン酸二無水物と、 芳香族ジァミンとの重縮^のポリイミドが挙げられる。
芳香族ポリアミドイミドとしては、 芳 1¾ジカルボン酸およひ 香族ジイソシァネート を用いてこれらの縮合重合から得られるもの、 芳香族ニ 水物およひ 香族ジィソシァ ネートを用レヽてこれらの縮合重合から得られるものが挙げられる。 芳香族ジカルボン酸の 具体例としてはィソフタノ 、 テレフタノ!^などが挙げられる。 また芳香族二 ^^水物の 具体例としては無水トリメリット酸などが挙げられる。 芳香族ジィソシァネートの具体例 としては、 4 , 4 ' —ジフエ二ノレメタンジイソシァネート、 2, 4—トリレンジイソシァ ネート、 2, 6—トリレンジイソシァネート、 オルソトリランジイソシァネート、 m—キ シレンジイソシァネートなどが挙げられる。
また、 イオン をより高める意味で、 耐熱多 ¾ϋの厚みは、 1 U m以上 1 0 m以 下、 さらには 1 μ m以上 5 m以下、 特に 1 μ m以上 4 μ m以下とレ、う薄レヽ而撤多? L で あることが好ましい。 また、 而撤多:? Ll^^ B孔を有し、 その孔のサイズ (直径) は通常 3 μ m以下、 好ましくは 1 /i m以下である。 さらに、 耐熱眉は、 後述のフィラーを含有す ることもできる。
積層多孔質フィルムにおいて、 多孔質フィルムは、 熱可塑性樹脂を含有し、 シャットダ ウ^能を有する。 多孔質フィルムは、 鶴田孔を有し、 その孔のサイズは通常 3 m以下、 好ましくは 1〃 m以下である。 多孔質フィルムの空孔率は、 通常 3 0〜 8 0 i %, 好ま しくは 4 0〜 7 0繊%である。 非水戀¥質二次鼇池にぉレ、て、 通常の使用 を越えた ^には、 多孔質フィルムは、 それを構成する熱可塑性樹脂の軟化により、 鶴田孔を閉塞 する役割を果たす。
熱可塑性樹脂は、 8 0〜: I 8 0°Cで軟化するものを挙げることができ、 非水 ¾¾军質二次 電池における電解液に溶解しないものを選択すればよレヽ。 具体的には、 ポリエチレン、 ポ リプロピレンなどのポリオレフイン、 熱可塑性ポリウレタンを挙げることができ、 これら の 2種以 ίの混^)を用いてもよい。 より低温で軟化してシャットダウンさせる意味で、 ポリエチレンが好ましい。 ポリエチレンとして、 具^には、 «度ポリエチレン、 高密 度ポリエチレン、 線状ポリエチレン等のポリエチレンを挙げることができ、 超高分子量ポ リェチレンを挙げることもできる。 多孔質フィルムの突刺し弓 をより高める意味では、 熱可塑性樹脂は、 少なくとも超高分子量ポリエチレンを含有すること力 S好ましい。 また、 多孔質フィルムの製造面において、 熱可塑性樹脂は、 低分子量 (fi量平均分子量 1万以 下) のポリオレフィンからなるヮックスを含有することが好ましレ、:^もある。
また、 多孔質フィルムの は、 通常、 3〜3 0 / mであり、 さらに好ましくは 3〜 2 0 mである。 また、 而燃多:? U1と多孔質フィルムとが積層されてなる積層多孔質フィル ムからなるセパレータの厚みとしては、 通常 4 0 jt m以下、 好ましくは、 2 0〃m以下で ある。 また、 而撤層の厚みを A (j[ m) 、 シャットダウン層の厚みを B (〃m) としたと きには、 AZBの値が、 0. 1以上 1以下であること力 S好ましい。
また、 l己而燃多 ¾1が而麵脂を含有する には、 1種以上のフィラーを含有して いてもよレヽ。 フイラ一は、 その材質として、 有 »末、 末またはこれらの混^の レヽずれから選ばれるものであってもよい。 フィラーを構成する粒子は、 その平坩粒子径が、 0. 0 1〃m以上 1〃m以下であること力 S好ましレ、。
有 »、末としては、 例えば、 スチレン、 ビニノレケトン、 アクリロニトリル、 メタクリノレ 酸メチル、 メタクリノ^ェチル、 グリシジルメタクリレート、 ダリシジルァクリレート、 アタリノ メチ Λ の戰あるいは 2觀以上の共重合体、 ポリテトラフルォロエチレン、 4フッ化エチレン一 6フッ化プロピレン共重合体、 4フツイ匕エチレン一エチレン共重合体、 ポリビニリデンフルォライド等のフッ素系樹脂;メラミン樹脂;尿素樹脂;ポリオレフィ ン;ポリメタタリレート等の有灘からなる粉末が挙げられる。 言 末は、 戦虫で用 いてもよいし、 2種以上を混合して用いることもできる。 これらの有 »末の中でも、 ィ匕 安定性の点で、 ポリテトラフルォロエチレン粉末が好ましい。
«末としては、 例えば、 酸化物、 窒化物、 録炭化物、 水酸化物、 炭 瞧、 硫赚等の からなる粉末が挙げられ、 具体的に例示すると、 アルミナ、 シリ 力、 二酸化チタン、 または炭酸カルシウム等からなる粉末が挙げられる。 該« ^末は、 戰虫で用いてもよいし、 2種以上を混合して用いることもできる。 これらの^ »末の中 でも、 ィ匕 安定性の点で、 アルミナ粉末が好ましい。 ここで、 フィラーを構成する粒子 のすべてがアルミナ粒子であることがより好ましく、 さらにより好ましいのは、 フィラー を構成する粒子のすべてがアルミナ粒子であり、 その一部または全部が略球状のアルミナ 粒子である実»態である。
而撤多 ¾1におけるフィラーの含有量としては、 フィラーの材質の比重にもよるが、 例 えば、 フィラーを構成する粒子のすべてがアルミナ粒子である には、 瞧多 の総 重量を 1 0 0としたとき、 フィラーの重量は、 通常 2 0重量%以上 9 5重量0 /0以下、 好ま しくは 3 0重量%以上 9 0重量%以下である。 これらの範囲は、 フィラーの材質の比重に より、 適 定できる。 フィラーの形状については、 略 状、 板状、 状、 針状、 ゥイスカー状、 難 が挙 げられ、 レヽずれの粒子も用いることができるが、 均一な孔を形成し JH "いことから、 略球 状立子であること力 s好ましレヽ。
セパレータは、 イオン ¾g性との観 から、 ガーレー法による^ gにおいて、 が 50〜300禾少 /100 c cであること力 子ましく、 50〜200秒ゾ 100 c cであ ることがさらに好ましい。 また、 セパレータの空孔率は、 通常 30〜80體%、 好まし くは 40〜 70髓%である。 瞧液)
議军液において、 早質としては、 L i C 104、 L i P F6、 L i A s F6、 L i S b F6、 L I BF4、 L i CF3S03、 L i N (SO^F^ 2、 L i C (SO2CF3) 3、 L i2B10C 1 w、 旨 «力ルボン酸リチウム塩、 L i Al C 14などのリチウム塩が挙げられ、 これ らの 2種以上の混^を使用してもよレヽ。 リチウム塩として、 通常、 これらの中でもフッ 素を含む L i PF6、 L iAs F6、 L i S b F6、 L i B F4、 L i CF3SO3、 L iN (S 02CF3) 2および L i C (S02CF3) 3からなる群から選ばれた少なくとも 1種を含むも のを用いる。
また電 ?液において、 有機溶媒としては、 例えばプロピレンカーボネート、 エチレン力 ーボネート、 ジメチルカーボネート、 ジェチルカーボネート、 ェチルメチルカーボネート、 4—トリフノレオロメチノレ一 1, 3—ジォキソラン一 2—オン、 1, 2—ジ (メトキシカノレ ボニルォキシ) エタンなどのカーボネート類; 1 , 2 _ジメトキシエタン、 1, 3—ジメ トキシプロパン、 ペンタフルォロプロピルメチルエーテル、 2, 2, 3, 3—テトラフノレ ォロプロピルジフルォロメチルエーテノレ、 テトラヒドロフラン、 2—メチルテトラヒドロ フランなどのエーテル類;ギ メチル、 酢酸メチル、 Ύ—ブチ口ラクトンなどのエステノレ 類;ァセトニトリル、 ブチロニトリルなどの二トリル類; N, N—ジメチルホルムアミド、 N, N-ジメチルァセトアミドなどのァミド類; 3—メチノレ一 2—ォキサゾリドンなどの カーバメ一ト類;スルホラン、 ジメチルスルホキシド、 1 , 3—プロパンサルトンなどの 含硫黄化^、 または上記の有機 «にさらにフッ素置 を導入したものを用レヽること ができるが、 通常はこれらのうちの二種以上を混合して用いる。 中でもカーボネート類を 含む混合灘が好ましく、 環状カーボネートと非環状カーボネート、 または環状カーボネ ートとエーテル類の混合灘がさらに好ましい。 環状カーボネートと非環状カーボネート の混合謹としては、 動 範囲力 s広く、 負荷特 に優れ、 力 極の活物質として天 麵&、 A3黒鉛等の黒鉛材料を用いた でも難 军性であるという点で、 エチレン力 ーボネート、 ジメチルカーボネートおよぴェチルメチルカーボネートを含む混合激某が好 ましい。 また、 特に優れた安全性向上効果力 S得られる点で、 L i PF6等のフッ素を含む リチウム塩およびフッ素置換基を有する有機 «を含む戀军液を用レ、ること力 S好ましレ、。 ペンタフノレオ口プロピルメチルエーテノレ、 2, 2, 3, 3—テトラフノレオ口プロピルジフ ルォロメチルエーテノ のフッ素置換基を有するエーテル類とジメチルカーボネートとを 含む混合灘は、 ^mmrn特 14にも優れており、 さらに好ましレヽ。
上記の動早液の代わりに固 « ^質を用レ、てもよレ、。 固!^军質としては、 例えばポリ ェチレンォキサイド系の高分子ィ匕^ I、 ポリオルガノシロキサン鎖もしくはポリォキシァ ルキレン鎖の少なくとも一種以上を含む高分子化^などの有機系高分子職早質を用いる ことができる。 また、 高分子化^)に非水動早質灘を麟させた、 いわゆるゲルタイプ のものを用いることもできる。 また L i2S— S i S2、 L i2S— Ge S2、 L i2S— P2S5、 L i2S— B2S3、 L i2S— S i S2— L i3P04、 L i 2S— S i S2— L i 2S O4などの硫化 物を含む «系固^ ® ^質を用いてもよい。 これら固体 質を用いて、 性をより高 めることができることがある。 また、 本発明の非水 军質二次電池において、 固 ^^質 を用いる: には、 固 ^質がセパレータの翻を果た ^もあり、 その # ^には、 セパレータを必要としないこともある。 実施例
次に、 本発明を実施例によりさらに詳細に説明する。 尚、 リチウム複合 酸化物 (正 m の言鞭、 ^ i 次のようにして行った。
1. k ^
正|¾§物質と導 ¾t才 (アセチレンブラックと黒鉛を 1 : 9で混合したもの) の混^!に、 バインダーとして PVd Fの N—メチル一2—ピロリ ドン (以下、 NMPということがあ る。 ) 赚を、 活物質:導 St才:バインダー =86 : 10 : 4 (S量比) の糸滅となるよ うに加えて賺することによりペーストとし、 集電体となる厚さ 40 mの A 1箔に該ぺ ーストを塗布して 150°Cで 8時間真空纖を行い、 正極を得た。 得られた正極に、 動液としてエチレンカーボネート (以下、 ECということがあ る。 ) とジメチルカーボネート (以下、 DMCということがある。 ) とェチルメチルカ一 ボネート (以下、 EMCということがある。 ) の 30 : 35 : 35 (體比) 混合液に L i PF6を 1モル Zリットルとなるように溶解したもの (以下、 L i PFZEC + DMC +EMCと表すことがある。 ) 、 セパレータとしてポリプロピレン多孔質膜を、 また、 負 極として リチウムを組み合 てコィ ^電池 (R 2032) を ί慢した。
上記のコイン型電池を用いて、 25°C 下、 以下に示す条件で放電レート試験を実施 した。 ¾mレート纖は、 職時の 電流を変えて ¾m¾量を測定し、 以下に従い、 放 率を計算した。
<觸レート難 >
4. 3V、 充電時間 8時間、 充電電流。. 2mA/ cm2 時は ¾¾¾小 ¾ffを 3. OVで一定とし、 各サイクルにおける を下記のよ うに変えて を行った。 10Cにおける驢 (高レヽ電流レート) による ^量が高け れは^いほど、 高出力を示すことを意味する。
1、 2サイクノレ目の (0. 2C) 電流 0. 2mA/ cm2
3サイクノレ目の (1C) 電流 1. OmA/ cm2
4サイクノレ目の (3C) 電流 3. OmA/ cm2
5サイクノレ目の (5C) 電流 5. OmA/ cm2
6サイクノレ目の (10C) : 電流 1 OmA/cm2
<n mm >
t m (%) =所定回数のサイクルにおける 初回 量 χ ι o o
2. リチウム複合金属酸化物の BET比表面積の測定
m 1 gを窒素雰囲気中 150 °C、 15分間乾燥した後、 マイクロメトリックス製フ口 一ソープ I 1 2300を用レ、て測定した。
3. リチウム複合^ S酸化物の糸滅分析
粉末を に溶解させた後、 誘導結合プラズマ発光分析法 (SPS 3000、 以下 I C P— AESと呼ぶことがある) を用いて測定した。 4. リチウム複合^ S酸化物の粉末 X線回折測定
リチウム複合^ S酸化物の粉末 X線回折測定は^会社リガク製 R I NT 2500 TT R型を用いて行った。 測定は、 リチウム複合^ S酸化物を専用の S¾に充填し、 CuKQi 線源を用レ、て、 回折角 20 = 10° 〜 90 ° の範囲にて行レヽ、 粉末 X線回折図形を得た。 比較例 1
1. リチウム複合 酸化物の製造
炭酸リチウム (L i2C03 : TOケミカル賦会ネ 39. 16 gと水酸化ニッケル (N i (OH) 2:関西角蟣化^ K会誦 38. 238と酸化マンガン (1^1 02 :高 糸镀化 ^¾会權) 44. 43 gと四三酸化コノくルト (。0304 :正同化学ェ»¾:会 機) 7. 80 gとホウ酸 (H3BO3:米山化^ K会ネ環) 1. 85 gを、 それぞ;^平 量し、 下記に示す条件でボールミル混合機を用レ、て混合することにより原料混^^末を得 た。
粉碎メディア : 15mm0アルミナボール (5. 8 k g)
/ボーノレミノレの回^: : 80 r pm
ボーノレミルの^ ¾ : 5 L
輔源料混^末をアルミナさやに充填し、 大¼ 囲気中 1040°Cで 4時間^^して 献することで塊状物を得た。 この塊状物を、 ジェットミノ 置 (ホソカワミクロ 会ネ環 A FG-100) を用レ、て粉砕し、 粉末 を得た。
粉末 A,の I C P滅分析の結果、 L i : N i : Mn : Coのモル比は、 1. 04 : 0. 41 : 0. 49 : 0. 10であった。 また、 粉末 の BET比表 B¾は、 2. 6m2/g であり、 粉末 X線回折測定の結果、 の結晶構造は、 R_ 3mの空間群に帰属される層 状構造であることがわかつた。
2. 非水鏑質二次霞池の驢レート纖
粉末 を用いてコイ^電池をィ懐し、 ¾mレート灘を行ったところ、 0. 2c、
1 C、 3C、 5C、 10Cにおける ¾¾¾量 (mAh/g) は、 それぞれ、 140、 12 0、 97、 82、 58であり、 容 «I酵 (%) は、 それぞれ 100、 86、 69、 59、 41であった。 実施例 1
1. リチウム複合金属酸化物の製造
ポリプロピレン製ビーカー内で、 蒸留水 200mlに、 水酸化カリウム 83. 88 gを 添卩、 攪拌により溶解し、 水酸化カリウムを完全に溶解させ、 水酸化カリウム水赚 (ァ ルカリ水溜夜) を調製した。 また、 ガラス製ビーカー内で、 蒸留水 200mlに、 塩化二 ッケル (I I) 六水和物 13· 90g、 塩化マンガン (I I) 四水和物 13. 95 gおよ び塩化鉄 (I I I) 六水和物 4. 058を添ロ、 攪拌により溶角早し、 ニッケル一マンガン —鉄混合水激夜を得た。 firt¾K酸化カリウム水激夜を攪拌しながら、 これに l己ニッケル
—マンガン一鉄混合水赚を滴下することにより、 物が^^し、 :物スラリ一を得 た。
次いで、 共沈物スラリーについて、 ろ過 ·蒸留水,を行い、 10 o°(TCさせて共 沈物を得た。 廳己共沈物 2. 0 gと水酸化リチウム一水和物 1. 16 gと KC 1 1. 16 g (リチウム複合^ S酸化物原料 100重量部に対して 37重量部) とをメノゥ季 を用 いて乾式混合して混合物を得た。 次いで、 該混合物をアルミナ製« ^器に入れ、 電気炉 を用いて大^ 囲気中 800°Cで 6時間 して «を行い、 室温まで冷却し、 «品を 得て、 これを粉碎し、 蒸留水でデカンテーシヨンによる赚を行い、 ろ過し、 100°0で 8 Β寺間 して、 粉末 を得た。
粉末 Β,の糸滅分析の結果、 L i : N i : Mn : F eのモル比は、 1. 29 : 0. 4 1 : 0. 49 : 0. 10であった。 また、 粉末 の BET比表面積は、 7. 6m2Zgで あり、 粉末 の SEM観察における一次粒子の粒子径は、 その平均値が 0. 2〃mであ つた。 また、 粉末 X線回折測定の結果、 粉末 の結晶構造は、 R— 3mの空間群に'帰属 される層状構造であることがわかった。
2. 非水離質二次 mmの鱸レート纖
粉末 を用いてコイ^電池を腿し、 レート纖を行ったところ、 0. 2C、 1C、 3C、 5C、 I OCにおける ¾¾ 量 (mAh/g) は、 それぞれ、 135、 12 0、 109、 97、 82でぁり、 容難解 (%) は、 それぞ、れ 100、 89、 81、 7 2、 61であり、 10Cにおける 量および容難解は、 それぞれ、 Α^¾¾^ 量および容 «I持率よりも高かった。 実施例 2
1. リチウム複合 ^酸化物の製造
ポリプロピレン製ビーカー内で、 蒸留水 20 Omlに、 水酸化力リウム 83. 88 gを 添卩、 攪拌により溶解し、 水酸化カリウムを完全に溶解させ、 水酸化カリウム水灘 (ァ ルカリ水裔夜) を調製した。 また、 ガラス製ビーカー内で、 蒸留水 200mlに、 塩化二 ッケル (I I) 六水和物 16. 04 g、 塩化マンガン (I I) 四水和物 13. 36 gおよ び塩化鉄 (I I) 四水和物 2. 982 gを添卩、 攪拌により溶角军し、 ニッケル一マンガン —鉄混合水赚を得た。 |ίίΐ¾Κ酸化カリウム水激夜を攪拌しながら、 これに嫌己ニッケル —マンガン一鉄混合水激夜を滴下することにより、 物が^^し、 物スラリーを得 た。
次レ、で、 共沈物スラリーについて、 ろ過 '蒸留水赚を行い、 100°Cで繊させて共 沈物を得た。 Ιίίί己共沈物 2. 0 gと水酸化リチウム一水和物 1. 16 gと KC 1 1. 16 g (リチウム複合^ M酸化物原料 100重量部に対して 37重量部) とをメノウ を用 いて乾 5 ^昆合して混^を得た。 次いで、 該混^をアルミナ纖¾ ^器に τ、 電^ を用いて大^ 囲気中 800°Cで 6時間麟して «を行い、 室温まで冷却し、 «品を 得て、 これを粉砕し、 蒸留水でデカンテ一ンョンによる»を行レヽ、 ろ過し、 100。Cで 8時間 して、 粉末 B2を得た。
粉末 B2の糸滅分析の結果、 L i : N i : Mn : F eのモル比は、 1. 10 : 0. 4 5 : 0. 45 : 0. 10であった。 また、 粉末 B2の BET比表薩は、 7. 8m2/gで あり、 粉末 B2の S EM観察における一次粒子の粒子径は、 その平均値が 0. 1 μ mであ つた。 また、 粉末 X線回折測定の結果、 粉末 B2の結晶構造は、 R— 3mの空間群に帰属 される層状構造であることがわかった。
2. 非水 ® ^質二次電池の ¾Μレート 粉末 B2を用いてコィ 電池を懐し、 レート難を行ったところ、 0. 2C、 1C、 3C、 5C、 10Cにおける ^量 (mAh/g) は、 それぞれ、 140、 12 2、 1 15、 104、 85であり、 容雖酵 (%) は、 それぞれ 100、 87、 82、 74、 61であり、 10Cにおける ¾tt ^量および容難酵は、 それぞれ、 八1の¾¾ 容量および容¾|^よりも高かった。 実施例 3
1. リチウム複合^ S酸化物の製造
KC 1を 2. 32 g (リチウム複合^ M酸化物原料 100重量部に対して 73重量部) 、 混^の; を 700 °Cで麟して滅した は実施例 2と同様にして、 粉末 B3 を得た。
粉末 B3の糸滅分析の結果、 L i : N i : Mn: F eのモル比は、 1. 33 : 0. 4 5 : 0. 45 : 0. 10であった。 また、 粉末 B3の BET比表面積は、 8. 9m2Zgで あり、 粉末 B3の S EM観察における一次粒子の粒子径は、 その平均値が 0. 1 U mであ つた。 また、 粉末 X線回折測定の結果、 粉末 B3の結晶構造は、 R— 3mの空間群に帰属 される層状型の結晶構造であることがわかった。
2. 非水離質二次電池の ¾mレート纖
粉末 B3を用いてコイン型電池を謹し、 腿レート纖を行ったところ、 0. 2C、 1 C、 3C、 5C、 10Cにおける ¾m ^量 (mAh/g) は、 それぞれ、 123、 10 9、 99、 88、 76であり、 容¾|解 (%) は、 それぞれ 100、 89、 80、 72、 62であり、 10Cにおける放 S§量および容¾|持率は、 それぞれ、 の放 量お よび容 «持率よりも高かった。 実施例 4
実施例 2において得られた共沈物 2. 0 gと炭酸リチウム 1. 05 gと KC 1 0. 63 g (リチウム複合 S酸化物原料 100重量部に対して 21重量部) とをメノウ を用 いて乾 昆合して混^ Jを得た。 次いで、 該混^)をアルミナ ^器に « Ρ を用いて大¼ 囲気中 850°Cで 6時間麟して献を行い、 室温まで冷却し、 «品を 得て、 これを粉碎し、 蒸留水でデカンテーシヨンによる »を行い、 ろ過し、 100 で 8時間 して、 粉末 B4を得た。
粉末 B4の糸诚分析の結果、 L i : N i : Mn: F eのモル比は、 1. 21 : 0. 4 5 : 0. 45 : 0. 10であった。 また、 粉末 B4の BET比表 は、 9. 3m2Zgで あり、 粉末 B4の SEM観察における一次粒子の粒子径は、 その平均値が 0. 2jumであ つた。 また、 粉末 X線回折測定の結果、 粉末 B4の結晶構造は、 R_ 3mの空間群に帰属 される層状構造であることがわかった。
2. 非水蘭質二次電池の鱸レート纖
粉末 B4を用いてコィ 電池を條し、 レート纖を行ったところ、 0. 2C、 1C、 3C、 5C、 I OCにおける ¾ [^量 (mAh/g) は、 それぞれ、 1 14、 10
0. 92、 81、 71であり、 容廳酵 (%) は、 それぞれ 100、 88、 81、 71、 62であり、 10 Cにおける 量および容難 »は、 それぞれ、 A,の ¾¾^量お よび容 «t持率よりも高かった。 比較例 2
1. リチウム複合^ 酸化物の製造
実施例 1における共沈物 2. 0 gと水酸化リチウム一水和物 1. 16 gとをメノウ? を用いて乾 昆合して混合物を得て、 混^を 900°Cで^して «した以外は実施例 1と同様にして、 粉末 A2を得た。 粉末 A2の糸滅分析の結果、 L i : N i : Mn : Feの モル比は、 1. 30 : 0. 41 : 0. 49 : 0. 10であった。 また、 粉末 A2の BET 比表面積は、 0. 3m2Zgであり、 粉末 A2の SEM観察における一次粒子の粒子径は、 その平均値が 0. 7/ mであった。 また、 粉末 X線回折測定の結果、 粉末 A2の結晶構造 は、 R— 3mの空間群に帰属される結晶構造であることがわかった。
2. 非水蘭質二次電池の驢レー卜纖
粉末 A2を用いてコイン型電池を ί懷し、 腿レート纖を行ったところ、 0. 2C、 1 C、 3C、 5C、 10じにぉける¾¾^量 (mAh/g) は、 それぞれ、 76、 51、 45、 22、 14であり、 容纖酵 (%) は、 それぞれ 100、 67、 59、 29、 1 8であり、 放 ¾^量および容 «tif^は十分ではなかつた。 (積層多孔質フィルムの製造)
(1) 塗工液の製造
NMP4200 gに塩化カルシウム 272. 7 gを溶解した後、 ノ ラフエ二レンジアミ ン 132. 9 gを添卩して完全に溶解させた。 得られた溶液に、 テレフタノ^ジク口ライ ド 243. 3 gを徐々に-添口して重合し、 ノ ラァラミドを得て、 さらに NMP «して、 濃度 2. 0重量%のパラァラミド灘 (A) を得た。 得られたパラァラミド赚 100 g に、 アルミナ粉末 (a) 2 g (日本ァエロジル欄、 アルミナ C、 平聯立子径 0. 02〃 m) とァノレミナ粉末 (b) 2 g (住友化^^会ネ :1 ^スミコランダム、 AA03、 平聯立 子径 0. 3μνη) とをフイラ一として計 4 g添卩して混合し、 ナノマイザ一で 3回処理し、 さらに 1000メッシュの細で ¾¾1、 ffi下で脱泡して、 スラリー状塗工液 (B) を製 造した。 パラァラミドおよびアルミナ粉末の合計重量に ¾~Τるアルミナ粉末 (フイラ一) の重量は、 67重量%となる。
(2) ¾ 多孔質フィルムの製造およひ1
多孔質フィルムとしては、 ポリエチレン製多孔質膜 (麟 12〃m、 ^^140秒 100 c c、 平均孔径 0. 1〃m、 空孔率 50%) を用いた。 厚み 100〃mの PETフ ィルムの上に上記ポリエチレン製多孔質膜を固定し、 テスター産業^;会社製バーコータ 一により、 該多孔質膜の上にスラリー状塗工液 (B) を塗工した。 PETフィルム上の塗 ェされた該多孔質膜を一体にしたまま、 ^«である水中に浸漬させ、 パラァラミド多孔 質膜 m)を析出させた後、 靈を!^させて、 耐熱眉とシャットダウン層と力 s積層 された積層多孔質フィルム 1を得た。 ¾ 多孔質フィルム 1の厚みは 16 mであり、 ラァラミド多孔質膜 m)の厚みは 4 μ mであった。 積層多孔質フィルム 1の^^ は 18 O p/l 00 c c、 空孔率は 50%であった。 積層多孔質フィルム 1における耐熱 層の断面を ^«電子顕^^ (SEM) により観察をしたところ、 0. 03〃m〜0. 0 6 μ の比較的小さな辦田孔と 0. 1 m〜: I m¾¾の比較的大きな辦田孔とを有 することがわかつた。 尚、 ¾1多孔質フィルムの言¾5は以下の方法で行つた。 <■多孔質フィ /レムの 〉
(A) 厚^ IJ定
積層多孔質フィルムの厚み、 シャツトダウン層の厚みは、 J I S規格 (K 7130—1 992) に従い、 測定した。 また、 而撒 J1の厚みとしては、 積層多孔質フィルムの厚みか らシャットダウン層の を差し弓 Iレ、た値を用レ、た。
(B) ガーレー法による透気度の測定
鶴多孔質フィルムの^ Sは、 J I S P81 17に基づいて、 賦会社安田精讓 作所製のデジタルタィマー^'一レー式デンソメータで測定した。
(C) 空孔率
得られた積層多孔質フィルムのサンプルを^ 2の長さ 10 cmの正方形に切り取り、 重 量 W (g) と厚み D (cm) を測定した。 サンプノレ中のそれぞれの層の重量 (Wi
(g) ) を求め、 Wiとそれぞれの層の材質の真比重 (真比重 i (g/cm3) ) とから、 それぞれの層の体積を求めて、 次式より空孔率 ( %) を求めた。
空孔率 (髓0 /0) = 100 X { 1— (W 1 /¾l m 1 + W 2 /m .2 + · · +Wn/¾ 比重 n) / (10 x 10 XD) } 上記実施例のそれぞれにおレ、て、 セパレータとして、 \ 1により得られた積層多孔 質フィルムを用レヽれば、 をより高めることのできるリチウムニ次電池を得るこ とができる。 産業上の利用可能
本発明によれば、 微粒でしかも結晶性の高レ、層状構造リチウム複合^ S酸化物を得るこ とができる。 本発明を用レ、れば、 高レ、電流レートにおいてより高出力を示すことのできる 非水動军質二次職を与えることができ、 該ニ次霞池は、 殊に、 高レヽ電流レートにおける 高出力を要求される用途、 すなわち自動車用^ 工具等のパワーツール用の非水 翠質 二次電池に極めて有用となる。

Claims

請求の範囲
1 . 遷^ s元素およびリチウム元素を、 遷^ 元素に るリチウム元素のモル比 力 以上 2以下の範囲となるように、 含有したリチウム複合^ S酸化物原料を、 塩化 物からなる不活 Ι4¾Μの存在下で;^する工程を含む層状構造リチウム複合金属酸 化物の製 ¾
2 . リチウム複合^ 酸化物原料が、 リチウム化^)およひ遷^ 元素原料の混^ である請求項 1言 s¾の製^去。
3. 遷^ S元素原料が、 F eを含有する請求項 2記載の製 去。
4. 遷^ 元素原料が F eを含有し、 さらに、 N i、 Mnおよび C oからなる群より 選ばれる 1種以上の元素を含有する請求項 3記載の製造 去。
5 . 塩化物からなる不活 |¾薩が K C 1である請求項 1〜4のレヽずれかに記載の製造 紘
6 . 不活^ TOの量が、 リチウム複合^ S酸化物原料 1 0 0重量部に対して 0 . 1重 量部以上 1 0 0重量部以下である請求項:!〜 5のレ、ずれかに記載の製t¾¾o
7 . 誠における麟 が、 6 5 0 °C〜 8 5 0 °Cの範囲である請求項:!〜 6のレ、ずれ かに記載の製 ぁ
8 . 請求項 1〜 7のレ、ずれかに言 の製 法によって得られた層状構造リチウム複合 酸化物。
9. 請求項 8記載の層状構造リチウム複合金属酸化物を有する非水電解質二次電池用正 観物質。
1 0. 請求項 9記載の非水戀军質二次 ¾¾^正¾¾物質を有する非水動军質二次 mmffl 正 ¾
1 1 . 請求項 1 0記載の非水 早質二次 emffl正極を有する非水 ¾¾军質二次電
1 2. さらにセパレータを有する請求項 1 1言凍の非水 ® ^質二次
1 3 . セパレータが、 薩多 ¾ と熱可塑性樹脂を含有する多孔質フィルムと力 層さ れてなる 多孔質フィルムからなるセパレータである請求項 1 2記載の非水電解質 二次電
PCT/JP2009/060809 2008-06-11 2009-06-08 リチウム複合金属酸化物の製造方法 WO2009151128A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09762558A EP2301892A1 (en) 2008-06-11 2009-06-08 Method for producing lithium complex metal oxide
CN2009801217234A CN102056845A (zh) 2008-06-11 2009-06-08 锂复合金属氧化物的制造方法
US12/996,897 US20110086257A1 (en) 2008-06-11 2009-06-08 Method for producing lithium complex metal oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008152624 2008-06-11
JP2008-152624 2008-06-11

Publications (1)

Publication Number Publication Date
WO2009151128A1 true WO2009151128A1 (ja) 2009-12-17

Family

ID=41416830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060809 WO2009151128A1 (ja) 2008-06-11 2009-06-08 リチウム複合金属酸化物の製造方法

Country Status (6)

Country Link
US (1) US20110086257A1 (ja)
EP (1) EP2301892A1 (ja)
JP (1) JP2010021134A (ja)
KR (1) KR20110016992A (ja)
CN (1) CN102056845A (ja)
WO (1) WO2009151128A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490436A (zh) * 2020-12-02 2021-03-12 湖北文理学院 锂离子电池正极材料镍掺杂尖晶石锰酸锂的制备方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8175711B2 (en) * 2002-04-08 2012-05-08 Ardian, Inc. Methods for treating a condition or disease associated with cardio-renal function
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US20140018880A1 (en) 2002-04-08 2014-01-16 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
WO2010080886A1 (en) 2009-01-09 2010-07-15 Recor Medical, Inc. Methods and apparatus for treatment of mitral valve in insufficiency
JP2012012273A (ja) * 2010-07-05 2012-01-19 Sumitomo Chemical Co Ltd アルカリ金属複合金属酸化物の原料混合物
WO2012033023A1 (ja) * 2010-09-06 2012-03-15 住友化学株式会社 リチウム複合金属酸化物及びその製造方法
JP6046041B2 (ja) 2010-10-25 2016-12-14 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ 神経変調療法の評価及びフィードバックのためのデバイス、システム、及び方法
WO2012165207A1 (ja) * 2011-05-31 2012-12-06 三洋電機株式会社 非水電解質電池
US9510777B2 (en) 2012-03-08 2016-12-06 Medtronic Ardian Luxembourg S.A.R.L. Monitoring of neuromodulation using biomarkers
US9750568B2 (en) 2012-03-08 2017-09-05 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
CN103700827B (zh) * 2012-09-27 2016-04-27 清华大学 锂离子电池正极复合材料及锂离子电池
CN103700833B (zh) * 2012-09-27 2016-04-27 清华大学 锂离子电池正极复合材料
CN103700850B (zh) * 2012-09-27 2016-01-20 清华大学 锂离子电池正极复合材料
CN103700843B (zh) * 2012-09-27 2016-03-09 清华大学 锂离子电池正极复合材料
US20140110296A1 (en) 2012-10-19 2014-04-24 Medtronic Ardian Luxembourg S.A.R.L. Packaging for Catheter Treatment Devices and Associated Devices, Systems, and Methods
CN110416601B (zh) * 2019-08-07 2022-08-02 哈尔滨师范大学 一种钠电池电解质表面金属氧化层的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664928A (ja) * 1991-12-26 1994-03-08 Sony Corp リチウム・遷移金属複合酸化物粒子及びその製造方法、並びに非水電解液二次電池
JPH10324758A (ja) 1997-03-26 1998-12-08 Sumitomo Chem Co Ltd パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JPH10324521A (ja) 1997-05-23 1998-12-08 Ube Ind Ltd リチウムマンガン複合酸化物およびその製造法ならびにその用途
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2004006229A (ja) * 2001-12-07 2004-01-08 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質
JP2004014296A (ja) * 2002-06-06 2004-01-15 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質
JP2007258139A (ja) * 2005-04-28 2007-10-04 Sumitomo Chemical Co Ltd 非水二次電池用活物質およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW460505B (en) * 1998-04-27 2001-10-21 Sumitomo Chemical Co Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same
JP2001052704A (ja) * 1999-08-10 2001-02-23 Hitachi Ltd リチウム二次電池
US7026068B2 (en) * 2001-12-19 2006-04-11 Nichia Corporation Positive electrode active material for lithium ion secondary battery
US20060083694A1 (en) * 2004-08-07 2006-04-20 Cabot Corporation Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
US9240593B2 (en) * 2005-04-28 2016-01-19 Sumitomo Chemical Company, Limited Active material for nonaqueous secondary battery and method for producing same
JP4691711B2 (ja) * 2006-03-20 2011-06-01 独立行政法人産業技術総合研究所 リチウムマンガン系複合酸化物およびその製造方法
JP2007324073A (ja) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd リチウム二次電池並びにそのセパレータ及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664928A (ja) * 1991-12-26 1994-03-08 Sony Corp リチウム・遷移金属複合酸化物粒子及びその製造方法、並びに非水電解液二次電池
JPH10324758A (ja) 1997-03-26 1998-12-08 Sumitomo Chem Co Ltd パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JPH10324521A (ja) 1997-05-23 1998-12-08 Ube Ind Ltd リチウムマンガン複合酸化物およびその製造法ならびにその用途
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2004006229A (ja) * 2001-12-07 2004-01-08 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質
JP2004014296A (ja) * 2002-06-06 2004-01-15 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質
JP2007258139A (ja) * 2005-04-28 2007-10-04 Sumitomo Chemical Co Ltd 非水二次電池用活物質およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490436A (zh) * 2020-12-02 2021-03-12 湖北文理学院 锂离子电池正极材料镍掺杂尖晶石锰酸锂的制备方法
CN112490436B (zh) * 2020-12-02 2023-02-03 湖北文理学院 锂离子电池正极材料镍掺杂尖晶石锰酸锂的制备方法

Also Published As

Publication number Publication date
KR20110016992A (ko) 2011-02-18
US20110086257A1 (en) 2011-04-14
EP2301892A1 (en) 2011-03-30
JP2010021134A (ja) 2010-01-28
CN102056845A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2009151128A1 (ja) リチウム複合金属酸化物の製造方法
JP5640311B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP5644392B2 (ja) 遷移金属複合水酸化物およびリチウム複合金属酸化物
JP5292885B2 (ja) 正極活物質粉末
JP5287520B2 (ja) 電極活物質、電極および非水電解質二次電池
WO2016195036A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP6669920B1 (ja) 二次電池用正極活物質及びその製造方法
JP5842478B2 (ja) リチウム複合金属酸化物およびその製造方法
JP5682151B2 (ja) 遷移金属複合水酸化物およびリチウム複合金属酸化物
JP2011070994A (ja) 正極合剤、正極および非水電解質二次電池
KR20120038983A (ko) 분말 재료 및 정극 합제
JP2011129410A (ja) 電極活物質、電極および非水電解質二次電池
JP2010020987A (ja) 非水電解質二次電池
JP2010251289A (ja) リチウム複合金属酸化物および正極活物質
JP5487821B2 (ja) リチウム複合金属酸化物および正極活物質
JP5810497B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP2013033698A (ja) 正極活物質の製造方法および正極活物質
JP5742192B2 (ja) リチウム複合金属酸化物の製造方法
JP5742193B2 (ja) リチウム複合金属酸化物および非水電解質二次電池
JP2011153067A (ja) 複合金属水酸化物およびリチウム複合金属酸化物の製造方法ならびに非水電解質二次電池
JP5515435B2 (ja) リチウムニッケル複合金属酸化物用原料粉末
JP2010118161A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121723.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762558

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12996897

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762558

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 28/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117000392

Country of ref document: KR

Kind code of ref document: A