WO2009151047A1 - マグネトインピーダンスセンサ素子 - Google Patents

マグネトインピーダンスセンサ素子 Download PDF

Info

Publication number
WO2009151047A1
WO2009151047A1 PCT/JP2009/060517 JP2009060517W WO2009151047A1 WO 2009151047 A1 WO2009151047 A1 WO 2009151047A1 JP 2009060517 W JP2009060517 W JP 2009060517W WO 2009151047 A1 WO2009151047 A1 WO 2009151047A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
sensor element
magnetic amorphous
amorphous wire
terminal
Prior art date
Application number
PCT/JP2009/060517
Other languages
English (en)
French (fr)
Inventor
本蔵義信
山本道治
西畑克彦
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to KR1020117000206A priority Critical patent/KR101230945B1/ko
Priority to CN2009801222317A priority patent/CN102057290B/zh
Priority to EP09762477.9A priority patent/EP2293092B1/en
Priority to US12/997,290 priority patent/US8455962B2/en
Publication of WO2009151047A1 publication Critical patent/WO2009151047A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/18Measuring magnetostrictive properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices

Definitions

  • the present invention relates to a magneto-impedance sensor element using a magnetic amorphous wire whose characteristics change according to an external magnetic field.
  • MI sensor element As a sensor element used for a magnetic orientation sensor or the like, a magneto-impedance sensor element using a magnetic amorphous wire whose characteristics change according to an external magnetic field (hereinafter referred to as “MI sensor element” as appropriate) has been developed (Patent Literature). 1).
  • MI sensor element includes a base made of a non-magnetic material, a magnetic amorphous wire held on the base, a coating insulator formed so that the magnetic amorphous wire penetrates the inside, and a periphery of the coating insulator And a detection coil formed on the substrate. Since the MI sensor element having such a configuration is mounted on, for example, a portable terminal device such as a mobile phone, the MI sensor element is required to be downsized along with a request for downsizing and thinning of the device.
  • the length of the magnetic amorphous wire is required. That is, as the length of the magnetic amorphous wire is longer, the demagnetizing field generated inside becomes smaller and the influence of the demagnetizing field can be suppressed, so that the output of the MI sensor element can be easily increased. Further, the longer the magnetic amorphous wire is, the more the number of turns of the detection coil formed around the insulating insulator can be increased, so that the output of the MI sensor element can be increased.
  • the longitudinal direction of the magnetic amorphous wire is set to the normal direction (Z-axis direction) of the main surface of the IC chip and the IC substrate. If the length of the magnetic amorphous wire is increased, the MI sensor element is increased in the thickness direction of the IC chip. Therefore, there is a problem that it is difficult to reduce the thickness of the device when the IC chip on which the MI sensor element is mounted is built in a portable terminal device or the like.
  • the length of the magnetic amorphous wire and the length of the entire MI sensor element in the longitudinal direction are as equal as possible.
  • the electrode terminals and the like are basically not formed on the cut surface. Forming a pattern on the cut surface is because pattern formation is individually performed on each MI sensor element after cutting, which is not practical from the viewpoint of productivity. If a pattern is individually formed on each MI sensor element, the productivity is significantly reduced as compared with the case where the pattern is formed on the substrate wafer.
  • an electrode terminal electrically connected to the magnetic amorphous wire and the detection coil is formed on the upper surface of the base body, which is a cut surface.
  • the portion where the electrode terminal is formed is a step portion that is lowered by one step from the upper surface of the substrate (see the comparative example described later). Since this step is a part other than the main part of the invention in the patent document, it is only omitted in the drawing.
  • the groove processing step is required, which increases the manufacturing cost and makes it difficult to improve the productivity.
  • the thickness is increased in order to ensure the strength of the substrate, and it is difficult to reduce the size of the MI sensor element.
  • a material having a relatively low strength is used for the substrate in order to facilitate the cutting process. Accordingly, it is necessary to further increase the thickness of the base, and it becomes more difficult to reduce the size of the MI sensor element.
  • the magnetic sensing direction of the MI sensor element is a direction orthogonal to the IC chip (Z In the case of (axial direction), no electrode terminal is provided on the surface. This is because these electrode terminals need to be subjected to processing such as wire bonding with the electrode terminals on the IC chip, so that the surface on which the IC chip and the electrode terminals are formed is basically Must be parallel.
  • the present invention has been made in view of such conventional problems, and an object of the present invention is to provide a magneto-impedance sensor element that has high sensitivity and can be miniaturized.
  • the present invention comprises a substrate made of a non-magnetic material, A magnetic amorphous wire held on the substrate; A coated insulator formed so that the magnetic amorphous wire penetrates the inside; A detection coil formed around the covering insulator; A terminal block made of an insulator having a terminal mounting surface rising from the surface of the base on which the magnetic amorphous wire is disposed; An electrode terminal for a wire and an electrode terminal for a coil formed on the terminal mounting surface; A wire connection wiring for electrically connecting the wire electrode terminal and a pair of wire conduction terminals provided on the magnetic amorphous wire; A coil connection wiring for electrically connecting the coil electrode terminal and a pair of coil energization ends provided in the detection coil; The terminal mounting surface has a normal component having a longitudinal component of the magnetic amorphous wire, and is disposed between both ends of the magnetic amorphous wire in the longitudinal direction of the magnetic amorphous wire. There is a magneto-impedance sensor element.
  • the magneto-impedance sensor element includes the terminal block having the terminal mounting surface.
  • the terminal mounting surface is disposed between both ends of the magnetic amorphous wire in the longitudinal direction of the magnetic amorphous wire.
  • the electrode terminal for the wire and the electrode terminal for the coil can be easily formed on the terminal mounting surface of the terminal block, and the magnetic amorphous wire is arranged over the entire base in the longitudinal direction of the magnetic amorphous wire. can do.
  • the magnetic amorphous wire can be lengthened without increasing the size of the substrate, and the sensitivity can be increased without increasing the size of the MI sensor element.
  • an MI sensor element in manufacturing an MI sensor element, generally, after forming a magnetic amorphous wire, a detection coil, etc. on a base wafer which is a base material of a base of a large number of MI sensor elements, this is used. Cut to obtain individual MI sensor elements. At this time, if the MI sensor element has the terminal block, the wire electrode terminal and the coil electrode terminal can be easily formed in a state before being cut into individual MI sensor elements.
  • the MI sensor element since the MI sensor element has the terminal block, it is not necessary to form the above-described groove (step) on the base wafer. Therefore, there is no problem that the length of the magnetic amorphous wire has to be shortened by the amount of the stepped portion, and the length of the magnetic amorphous wire is shortened with respect to the size of the base. There is nothing. Therefore, it is possible to make the length of the magnetic amorphous wire equal to the entire length of the MI sensor element, and it is possible to achieve both miniaturization and high sensitivity of the MI sensor element.
  • the groove processing step as described above is not necessary, the manufacturing cost can be reduced and the productivity can be improved.
  • it is not necessary to form a groove it is not necessary to increase the thickness of the substrate, and the MI sensor element can be easily downsized.
  • it is not necessary to take into account the ease of cutting it is possible to use a material with high strength for the base, and accordingly, the thickness of the base can be further reduced, further reducing the size of the MI sensor element. It becomes easy.
  • FIG. 1 is a front view of an MI sensor element in Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view of an MI sensor element corresponding to a cross section taken along line AA in FIG. 1 in a state in which a bonding wire is connected in the first embodiment.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 1.
  • 1 is a perspective view of a magnetic orientation sensor using an MI sensor element in Embodiment 1.
  • FIG. 1 is a plan view of a base wafer in Example 1.
  • FIG. 2 is a partially enlarged plan view of a base wafer in Example 1.
  • FIG. FIG. 2 is a conceptual explanatory diagram of an electronic circuit in the first embodiment.
  • FIG. 3 is a diagram showing a measurement result of an output voltage in Example 1.
  • FIG. 10 is a cross-sectional view taken along line CC in FIG. 9.
  • FIG. 12 is a cross-sectional view of an MI sensor element corresponding to a cross section taken along line DD in FIG. 11 in a state where bonding wires are connected in a comparative example.
  • FIG. 12 is a cross-sectional view taken along line EE in FIG. 11. Sectional explanatory drawing of the cutting method of a base wafer in a comparative example.
  • the said terminal mounting surface is formed so that the normal line may become the longitudinal direction of the said magnetic amorphous wire.
  • the magnetic amorphous wire is arranged so as to be orthogonal to the main surface of the IC chip, the wire electrode terminal and the coil electrode terminal are arranged on the main surface of the IC chip. And can be parallel. As a result, electrical connection such as wire bonding between the wire electrode terminal and the coil electrode terminal and the IC chip can be easily performed.
  • the terminal block is preferably formed in a region other than the formation region of the magnetic amorphous wire, the covering insulator, and the detection coil. In this case, since the terminal block does not cover the magnetic amorphous wire, the covering insulator, and the detection coil, stress applied to the magnetic amorphous wire, dew condensation on the magnetic amorphous wire, etc. can be prevented and accurate magnetic field detection can be performed. Can be secured.
  • the magnetic amorphous wire may be stressed, and the parasitic capacitance changes due to condensation of air existing between the magnetic amorphous wire and the terminal block. May occur. Due to this change in stress and parasitic capacitance, the current supplied to the magnetic amorphous wire fluctuates, and variations in the magnetic sensitivity (output / applied magnetic field) of the MI sensor element (for example, about the magnetic sensitivity). 10% variation) may occur. Therefore, such a problem can be avoided by providing the terminal block so as not to cover the magnetic amorphous wire. That is, variations in the magnetic sensitivity of the MI sensor element can be almost eliminated (for example, a variation of less than 1% with respect to the magnetic sensitivity).
  • the wire terminal and the terminal of the electronic circuit formed on the main surface of the IC chip Connection is difficult. Therefore, it is not desirable to provide the wire electrode terminal and the coil electrode terminal on the surface of the substrate on which the magnetic amorphous wire is formed, and for the wire on the surface having an angle with respect to the surface, more preferably the surface orthogonal to the surface.
  • An electrode terminal and a coil electrode terminal are formed. Therefore, by applying the present invention to such an MI sensor element, the function and effect can be sufficiently exhibited.
  • the mounting of the MI sensor element on the IC chip means that the MI sensor element is directly electrically connected to the IC chip by wire bonding or the like, for example, via an IC substrate on which the IC chip is mounted. It also includes indirectly connecting the MI sensor elements.
  • it may be an element for mounting on an IC substrate on which an IC chip formed with an electronic circuit is mounted so that the longitudinal direction of the magnetic amorphous wire is oriented in the normal direction of the main surface of the IC substrate.
  • the MI sensor element When the MI sensor element is indirectly electrically connected via an IC substrate on which an IC chip is mounted, the longitudinal direction of the magnetic amorphous wire is oriented in the normal direction of the main surface of the IC substrate as described above.
  • the magneto-impedance sensor element (MI sensor element) 1 of this example includes a base 2 made of a non-magnetic material, a magnetic amorphous wire 3 held on the base 2, and the magnetic amorphous It has a covering insulator 4 formed so that the wire 3 penetrates the inside, and a detection coil 5 formed around the covering insulator 4.
  • a terminal block 6 made of an insulator having a terminal mounting surface 61 rising from the surface 21 is provided on the surface 21 of the base 2 on the side where the magnetic amorphous wire 3 is disposed.
  • a pair of wire electrode terminals 11 and a pair of coil electrode terminals 12 are formed on the terminal mounting surface 61.
  • one of the pair of wire electrode terminals 11 and one of the pair of coil electrode terminals 12 may share one electrode as a reference potential. In this case, the total number of wire electrode terminals 11 and coil electrode terminals 12 can be three.
  • the wire electrode terminal 11 and the pair of wire energization ends 31 provided on the magnetic amorphous wire 3 are electrically connected by a wire connection wiring 110.
  • the coil electrode terminal 12 and the pair of coil energization ends 51 provided in the detection coil 5 are electrically connected by a coil connection wiring 120.
  • the terminal mounting surface 61 has a normal component in the longitudinal direction of the magnetic amorphous wire 3 and is disposed between both ends 311 and 311 of the magnetic amorphous wire 3 in the longitudinal direction of the magnetic amorphous wire 3.
  • the terminal mounting surface 61 is formed so that the normal line thereof is the longitudinal direction of the magnetic amorphous wire 3.
  • the terminal block 6 is formed in a region other than the formation region of the magnetic amorphous wire 3, the covering insulator 4, and the detection coil 5. That is, the terminal block 6 is formed on the surface of the base 2 so as to cover a part of the wire connection wiring 110 and the coil connection wiring 120, but the magnetic amorphous wire 3, the covering insulator 4, and the detection coil 5 is formed at a position away from these formation regions so as not to cover 5.
  • the longitudinal direction of the magnetic amorphous wire 3 faces the IC chip 7 formed with an electronic circuit in the normal direction of the main surface 71 of the IC chip 7. It is an element for mounting on.
  • a direction that is perpendicular to the main surface 71 of the IC chip 7 when mounted on the IC chip 7 is referred to as a Z-axis direction. That is, the direction that coincides with the longitudinal direction of the magnetic amorphous wire 3 is the Z-axis direction.
  • the substrate 2 for example, insulating alumina ceramics, semiconductor silicon wafers, conductor metals, etc. can be used, and the thickness in the direction perpendicular to the surface 21 is, for example, 0.1 mm to 0.5 mm. Can do. In this example, the thickness is 0.3 mm.
  • the height of the base 2 in the Z-axis direction was 0.6 mm.
  • the magnetic amorphous wire 3 is made of a zero-magnetostrictive amorphous CoFeSiB alloy, and can have a diameter of 20 ⁇ m or less, for example. Here, the diameter was 10 ⁇ m.
  • this magnetic amorphous wire 3 is arrange
  • the length of the magnetic amorphous wire 3 is 0.6 mm.
  • Wire energization ends 31 at both ends of the magnetic amorphous wire 3 are electrically connected to energization pads 310 formed on the surface 21 of the base 2. Further, the portion between the pair of energization ends 31 of the magnetic amorphous wire 3 is covered with the covering insulator 4.
  • the covering insulator 4 can be configured using, for example, an inorganic insulating material such as aluminum oxide or silicon oxide, or an organic insulating material such as an epoxy resin.
  • the detection coil 5 is formed on the outer peripheral surface of the covering insulator 4.
  • the detection coil 5 has an outer periphery of the covering insulator 4 by appropriately connecting a flat pattern 501 formed on the surface 21 of the base 2 and a three-dimensional pattern 502 formed on the outer surface of the covering insulator 4. Are arranged so as to be spirally wound. Both ends of the winding pattern of the detection coil 5 are coil energization ends 51. Here, the number of turns of the detection coil 5 is 15 turns.
  • the magnetic amorphous wire 3, the covering insulator 4, and the detection coil 5 are arranged so as to rise from the surface 21 of the base 2, but as disclosed in FIG.
  • a groove may be formed in the substrate, and a magnetic amorphous wire, a covering insulator, and a detection coil may be disposed in the groove.
  • One end of a coil connection wiring 120 formed on the surface 21 of the base 2 is connected to the pair of coil energization ends 51. Further, one end of a wire connection wiring 110 formed on the surface 21 of the base 2 is connected to the pair of wire energization ends 31 via an energization pad 310. The other end of the wire connection wiring 110 is connected to the wire electrode terminal 11, and the other end of the coil connection wiring 120 is connected to the coil electrode terminal 12.
  • the terminal block 6 provided on the surface 21 of the base 2 is made of an insulating material such as epoxy resin or ceramic, and is formed so as to cover the wire connection wiring 110 and the coil connection wiring 120.
  • the terminal block 6 is a terminal mounting that is a flat surface orthogonal to the Z axis at a position sufficiently retracted inward (for example, a position retracted 150 to 550 ⁇ m) from one end (upper end 22) of the base 2 in the Z axis direction.
  • a surface 61 is provided.
  • the terminal mounting surface 61 is retracted from the upper end 22 by 200 ⁇ m.
  • the pair of wire electrode terminals 11 and the pair of coil electrode terminals 12 are provided on the terminal mounting surface 61.
  • the terminal block 6 includes the formation region of the magnetic amorphous wire 3, the covering insulator 4, and the detection coil 5, and the end surface (upper end) of the base 2 in the direction in which the terminal mounting surface 61 faces from the terminal mounting surface 61. Except for the area up to 22), it is formed on the entire surface 21 of the substrate 2.
  • the thickness of the terminal block 6, that is, the width of the terminal mounting surface 61 is, for example, 80 to 150 ⁇ m.
  • the width of the terminal mounting surface 61 is 100 ⁇ m.
  • the terminal portion 111 on the wire electrode terminal 11 side in the wire connection wiring 110 is formed so as to partially protrude from the terminal mounting surface 61 and is connected to the wire electrode terminal 11.
  • the terminal portion 121 on the coil electrode terminal 12 side in the coil connection wiring 120 is also formed so as to partially protrude from the terminal mounting surface 61 and is connected to the coil electrode terminal 12.
  • the MI sensor element 1 is mounted on the IC chip 7 for the so-called Z axis, and is arranged so that the longitudinal direction of the magnetic amorphous wire 3 is orthogonal to the main surface 71 of the IC chip 7. Yes.
  • the IC chip 7 is mounted on an IC substrate 73 for connecting the mother board and the IC chip 7, and the main surface 731 of the IC substrate 73 and the main surface 71 of the IC chip 7 are parallel to each other.
  • the MI sensor element 1 is mounted on the main surface 731 of the IC substrate 73 beside the IC chip 7.
  • the wire electrode terminal 11 and the coil electrode terminal 12 in the MI sensor element 1 are respectively formed on predetermined terminals in the electronic circuit formed on the main surface 71 of the IC chip 7 or on the main surface 731 of the IC substrate 73. It is electrically connected by a bonding wire 72 to a predetermined terminal in the electronic circuit. Specifically, both of the coil electrode terminals 12 in the MI sensor element 1 are bonded to the terminals of the IC chip 7, but one of the wire electrode terminals 11 is connected to the terminal of the IC chip 7 and the other. Are connected to the terminals of the IC substrate 73 by bonding. This connection method is an example. For example, all of the wire electrode terminals 11 and the coil electrode terminals 12 in the MI sensor element 1 may be connected to the terminals of the IC chip 7, It may be connected to a terminal.
  • the IC chip 7 includes the X-axis MI sensor element 10 and the Y-axis MI sensor element provided with the magnetic amorphous wires 30 parallel to the main surface 71 of the IC chip 7 and perpendicular to each other. 100 is implemented.
  • the X-axis MI sensor element 10 and the Y-axis MI sensor element 100 have substantially the same components as the Z-axis MI sensor element 1 of this example, but do not have the terminal block 6 and are wire electrode terminals.
  • 11 and the coil electrode terminal 12 are different from the Z-axis MI sensor element 1 in that they are formed on the same surface as the surface on which the magnetic amorphous wire 30 is provided in the substrate 2.
  • the three MI sensor elements (1, 10, 100) including the MI sensor element 1 of this example constitute the magnetic direction sensor 70 that detects the three-dimensional direction using the geomagnetism.
  • the geomagnetic direction sensor 70 can be mounted on a mobile terminal device such as a mobile phone.
  • the Z-axis MI sensor element 1 of this example is combined with the X-axis and Y-axis MI sensor elements 10 and 100 to form a triaxial magnetic direction sensor 70.
  • a two-axis magnetic orientation sensor can also be configured by two MI sensor elements including the MI sensor element 1.
  • the MI sensor element 1 of the present example is not limited to such a magnetic direction sensor, and can be used for a current sensor, for example. In this case, the sensor can be configured by using only one MI sensor element 1 of this example.
  • the magnetic amorphous wire 3, the detection coil 5, and the like are formed on the base wafer 20 that is a base material of the base 2 of many MI sensor elements 1. Do. That is, patterning of a large number of MI sensor elements 1 (for example, a size of 1 mm square or less) is performed at a time on a large substrate wafer 20 of about 10 cm square, for example. At this time, the terminal block 6 is also formed on the surface 21 of the base 2. In forming the terminal block 6, for example, a photosensitive epoxy resin can be used.
  • the resin is applied to the entire surface 21 of the substrate 2 and then dried, and then the resin is exposed in a masked state so that only the portion where the terminal block 6 is to be formed is exposed.
  • the terminal block 6 having a predetermined size and shape is formed at a predetermined position by developing with a developer.
  • the wire electrode terminal 11 and the coil electrode terminal 12 are formed on the terminal mounting surface 61 of the terminal block 6 by using sputtering and plating.
  • the forming method other than the terminal block 6, the wire electrode terminal 11 and the coil electrode terminal 12 is omitted, but after forming all the elements of the MI sensor element 1, as shown in FIG.
  • Cutting is performed using a dicing saw to obtain individual MI sensor elements 1.
  • the cutting surface of the dicing saw 201 (for example, 200 ⁇ m) is taken into consideration so that the cut surface has a desired contour of the MI sensor element 1.
  • the magneto-impedance sensor element 1 includes a terminal block 6 having a terminal mounting surface 61, and the terminal mounting surface 61 is disposed between both ends 311 and 311 of the magnetic amorphous wire 3 in the longitudinal direction of the magnetic amorphous wire 3. Yes.
  • the wire electrode terminal 11 and the coil electrode terminal 12 can be easily formed on the terminal mounting surface 61 of the terminal block 6, and the magnetic amorphous material is formed over the entire base 2 in the longitudinal direction of the magnetic amorphous wire 3.
  • a wire 3 can be provided.
  • the magnetic amorphous wire 3 can be lengthened without increasing the size of the substrate 2, and the sensitivity can be increased without increasing the size of the MI sensor element 1.
  • the magnetic amorphous wire 3 and the detection coil 5 are formed on the base wafer 20, and then the individual MI sensor elements are cut. Get one. At this time, since the MI sensor element 1 has the terminal block 6, the wire electrode terminals 11 and the coil electrode terminals 12 can be easily formed in a state before being cut into the individual MI sensor elements 1. Can do.
  • the MI sensor element 1 since the MI sensor element 1 has the terminal block 6, it is not necessary to form the groove shown in the comparative example (see reference numeral 99 in FIG. 14A) in the base wafer 20. Therefore, it is possible to make the length of the magnetic amorphous wire 3 equal to the entire length of the MI sensor element 1, and it is possible to achieve both miniaturization and high sensitivity of the MI sensor element 1.
  • the manufacturing cost can be reduced and the productivity can be improved.
  • it is not necessary to form a groove it is not necessary to increase the thickness of the base 2 in particular, and the MI sensor element 1 can be easily downsized.
  • a material having high strength can be used for the base 2, and the thickness of the base 2 can be further reduced, and the MI sensor element 1 can be made compact. It becomes easier.
  • the terminal block 6 is formed in a region other than the region where the magnetic amorphous wire 3, the covering insulator 4, and the detection coil 5 are formed. Thereby, since the terminal block 6 does not cover the magnetic amorphous wire 3, the covering insulator 4, and the detection coil 5, it is possible to prevent the magnetic amorphous wire 3 from being stressed and to ensure accurate magnetic field detection. .
  • the electronic circuit 8 performs signal processing on a pulse oscillation circuit 81 that oscillates a pulse signal to be input to the magnetic amorphous wire 3 of the MI sensor element 1 and a detection voltage generated in the detection coil 5 of the MI sensor element 1.
  • a signal processing circuit 82 is generated in the detection coil 5, an analog switch 821 that switches between the detection coil 5 and the output terminal 83, a sample timing adjustment circuit 822 that turns the analog switch 821 on and off in synchronization with the pulse signal, and the detection coil 5.
  • an amplifier 823 for amplifying the induced voltage.
  • the pulse oscillation circuit 81 generates a pulse signal having a strength of 170 mA mainly including 200 MHz and a signal interval of 1 ⁇ sec, and inputs this pulse signal to the magnetic amorphous wire 3.
  • the cut-off time for falling from 90% to 10% of the steady value was 4 nanoseconds.
  • the output characteristics of the MI sensor element 1 are evaluated while being rotated 360 ° about the horizontal axis.
  • the state in which the longitudinal direction (Z-axis direction) of the magnetic amorphous wire 3 of the MI sensor element 1 is oriented in the vertical direction is defined as a rotation angle of 0 °, and the magnitude of the output signal of the MI sensor element 1 at this time is 0 mV.
  • the MI sensor element 1 was rotated 360 ° around the horizontal axis. The change of the output signal at this time is shown in FIG.
  • the output signal draws a beautiful sine curve, and it can be seen that the component of geomagnetism in the Z-axis direction is detected accurately.
  • the MI sensor element 1 in Example 1 can ensure sufficient detection accuracy even if it is downsized.
  • Example 2 In this example, as shown in FIGS. 9 and 10, the size of the terminal block 6 is made smaller than that in the first embodiment. That is, the height of the terminal block 6 in the Z-axis direction is shortened. Specifically, the height of the terminal block 6 in the MI sensor element 1 of this example was 0.13 mm, whereas the height of the terminal block 6 in the MI sensor element 1 of Example 1 was 0.4 mm. Others are the same as in the first embodiment.
  • the terminal block 6 if the terminal mounting surface 61 on which the wire electrode terminal 11 and the coil electrode terminal 12 are mounted can be sufficiently secured, the effects of the present invention can be sufficiently obtained. Therefore, it is not always necessary to form a large area on the surface 21 of the base 2 as in the first embodiment. If the adhesion with the base 2 is not impaired, the terminal block 6 has a sufficient area of the terminal mounting surface 61. It is conceivable to take various forms while maintaining the above.
  • it may be a terminal block formed by being individually divided so as to correspond to each of the electrode terminal for wire 11 and the electrode terminal for coil 12, or may be a terminal block formed in a step shape Good.
  • the sensor element 9 In the MI sensor element 9 of this example, the magnetic amorphous wire 93, the covering insulator 4, the detection coil 5, the wire connection wiring 110, and the coil connection wiring 120 are provided on the surface 921 of the base 92 as in the first and second embodiments. Formed.
  • the base 92 has a step 96 at one end in the longitudinal direction (Z-axis direction) of the magnetic amorphous wire 93, and the wire electrode terminal 11 and the coil electrode terminal 12 are provided on a surface orthogonal to the Z-axis direction. It becomes.
  • the step portion 96 is formed over the entire Z-axis direction and the thickness direction (the left-right direction in FIG. 11) of the base body 92.
  • covering insulator 4, and the detection coil 5 is the same as that of Example 1, Comprising: The magnitude
  • Such a step 96 is inevitably required from the viewpoint of manufacture in the so-called Z-axis MI sensor element 9 in which the wire electrode terminal 11 and the coil electrode terminal 12 need to be formed on the surface orthogonal to the magnetic amorphous wire 3. Is formed. That is, in manufacturing the MI sensor element 9, as described above, after patterning a large number of MI sensor elements 9 on the base wafer 920, which is a base material of the base 92 of the large number of MI sensor elements 9, at once. As shown in FIG. 14B, the base wafer 920 is cut by a dicing saw 98 and cut into individual MI sensor elements 9.
  • a groove 99 is formed on the surface of the base wafer 920 before being cut along a cutting line to be cut later. That is, in the state of the base wafer 920, as shown in FIG. 14A, for example, a groove 99 having a depth of 200 ⁇ m and a width of 200 ⁇ m is formed. Thereafter, the wire electrode terminal 11 and the coil electrode terminal 12 are patterned on the inner surface 991 of the groove 99 and the surface 921 of the base 92 that is continuous therewith. Then, the cutting by the dicing saw 98 is performed slightly outside the inner surface 991 of the groove 99 (for example, 70 ⁇ m).
  • the reason why the base wafer 920 is cut after the groove processing as described above is to maintain the integrity of the base wafer 920 until the formation of the wire electrode terminals 11 and the coil electrode terminals 12 is completed. That is, since the Z-axis MI sensor element 9 as described above needs to form the wire electrode terminal 11 and the coil electrode terminal 12 on the surface orthogonal to the magnetic amorphous wire 93 as described above, A surface orthogonal to the surface 921 of the 92 needs to be formed on the base 92. Therefore, if the groove processing is not performed, the wire electrode terminal 11 and the coil electrode terminal 12 cannot be patterned in the state of the base wafer 920. When the groove processing is not performed, the electrode terminals must be individually formed for each of the separated base bodies 2, and the productivity is remarkably lowered. Therefore, by performing the groove processing, the electrode terminals can be formed while maintaining the integrity of the base wafer 920.
  • the step 96 remaining as a part of the groove 99 exists over the entire end of the base 92 in the Z-axis direction, as shown in FIG. It must be shorter than the length.
  • the magnetic amorphous wire 93 is made shorter than the base 92 by 70 ⁇ m or more.
  • the occupied height of the MI sensor element 9 including the bonding wire 72 in the Z-axis direction is taken into consideration.
  • the length L (FIG. 11) of the magnetic amorphous wire 93 is greatly less than the length H (FIG. 12).
  • the substrate 92 is grooved, it is necessary to select a material that can be easily processed as the substrate 92. However, since such a material has a low mechanical strength, it is necessary to further increase the thickness of the substrate 92. Arise. As a result, the thickness of the MI sensor element 9 is also increased. Thus, it is difficult to reduce the size of the MI sensor element 9 of this example while increasing the length of the magnetic amorphous wire 3.
  • the MI sensor element 1 (Examples 1 and 3) of the present invention has the length of the magnetic amorphous wire 3 in the Z-axis direction of the base 2 as shown in FIGS. Since the length can be increased to the same length, the MI sensor element 1 can be reduced in size while increasing the length of the magnetic amorphous wire 3. Further, since the MI sensor element 1 of the present invention does not require the groove processing as described above, it is not necessary to increase the thickness of the base 2 and further miniaturization is possible.
  • the position of the terminal mounting surface 61 in the terminal block 6 can be freely set, the distance between the terminal mounting surface 61 and the upper end of the base 2 in the Z-axis direction can be sufficiently increased.
  • the bonding wire 72 is connected to the wire electrode terminal 11 and the coil electrode terminal 12, the upper end of the bonding wire 72 can be prevented from protruding from the upper end of the substrate 2. Therefore, it is possible to prevent the magnetic amorphous wire 3 from being shortened with respect to the occupied height of the MI sensor element 1 including the bonding wire 72.
  • the ratio (H / L) between the height H occupied in the Z-axis direction of the MI sensor element including the bonding wire and the length L of the magnetic amorphous wire is used as the miniaturization index ⁇ of the MI sensor element.
  • the MI sensor element 1 of Example 1 was compared with the MI sensor element 9 of the comparative example. The smaller the miniaturization index ⁇ (the closer it is to 1), the smaller the miniaturization is achieved.
  • the miniaturization index ⁇ of the MI sensor element 9 of the comparative example is calculated.
  • the height from the lower end 923 to the step portion 96 of the base 92 of the MI sensor element 9 of the comparative example is 0.6 mm, and the height from the step portion 96 to the upper end 922 is 0.07 mm.
  • the MI sensor element 1 has the bonding wire 72 positioned below the upper end 22 of the base 2, so that the occupied height in the Z-axis direction is included even if the bonding wire is included.
  • H (FIG. 1) corresponds to the height of the base 2 in the Z-axis direction and is 0.6 mm.
  • the magnetic amorphous wire 3 is formed over the full length of the base
  • the thickness of the MI sensor element 9 of the comparative example since it is not necessary to consider groove processing, ceramics with high strength are used, and the thickness of the base 2 is 0.3 mm. Even if the thickness (0.1 mm) of the terminal block 6 is added, the thickness of the MI sensor element 1 is 0.4 mm. That is, the thickness of the MI sensor element can also be reduced in the first embodiment compared to the comparative example.
  • the difference between Example 1 and the comparative example as described above can be said to be the same between Example 2 and the comparative example.
  • the miniaturization index ⁇ of the MI sensor element which is the ratio (H / L) between the height H occupied in the Z-axis direction of the element and the length L of the magnetic amorphous wire, becomes large. That is, in this case, when the length L of the magnetic amorphous wire is 0.60 mm, the occupied height H in the Z-axis direction of the MI sensor element including the bonding wire is as long as 0.75 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

 マグネトインピーダンスセンサ素子1は、基体2と、磁性アモルファスワイヤ3と、被覆絶縁体4と、検出コイル5と、端子搭載面61を有する端子台6と、端子搭載面61に形成したワイヤ用電極端子11及びコイル用電極端子12と、ワイヤ用電極端子11と磁性アモルファスワイヤ3に設けた一対のワイヤ通電端31とを電気的に接続するワイヤ用接続配線110と、コイル用電極端子12と検出コイル5に設けた一対のコイル通電端51とを電気的に接続するコイル用接続配線120とを有する。端子搭載面61は、その法線が磁性アモルファスワイヤ3の長手方向成分を有し、磁性アモルファスワイヤ3の長手方向における、磁性アモルファスワイヤ3の両端の間に配置されている。

Description

マグネトインピーダンスセンサ素子
 本発明は、外部磁界に応じて特性が変化する磁性アモルファスワイヤを用いたマグネトインピーダンスセンサ素子に関する。
 磁気方位センサ等に用いられるセンサ素子として、外部磁界に応じて特性が変化する磁性アモルファスワイヤを用いたマグネトインピーダンスセンサ素子(以下、適宜「MIセンサ素子」という。)が開発されている(特許文献1参照)。
 かかるMIセンサ素子は、非磁性体からなる基体と、該基体上に保持された磁性アモルファスワイヤと、該磁性アモルファスワイヤが内側を貫通するように形成した被覆絶縁体と、該被覆絶縁体の周囲に形成した検出コイルとを有する。
 このような構成のMIセンサ素子は、例えば携帯電話機等の携帯端末機器などに搭載するため、かかる機器の小型化、薄型化の要請に伴い、MIセンサ素子の小型化が要請されている。
国際公開第2005/008268号パンフレット
 しかしながら、MIセンサ素子の感度を確保するためには、磁性アモルファスワイヤの長さが必要となる。
 すなわち、磁性アモルファスワイヤの長さが長いほど、内部に生じる反磁界が小さくなり、反磁界の影響を抑制することができるため、MIセンサ素子の出力を大きくしやすい。また、磁性アモルファスワイヤを長くするほど、その周囲に被覆絶縁体を介して形成する検出コイルの巻き数を増加させることができるため、MIセンサ素子の出力を大きくすることができる。
 したがって、磁性アモルファスワイヤの長さをできるだけ長くしつつ、MIセンサ素子の全体の小型化ができる技術が望まれている。
 特に、ICチップもしくはこれを搭載するIC基板にMIセンサ素子を実装するにあたり、磁性アモルファスワイヤの長手方向がICチップ及びIC基板の主面の法線方向(Z軸方向)となるようにする場合には、磁性アモルファスワイヤの長さを大きくしようとすると、MIセンサ素子がICチップの厚み方向に大きくなってしまう。そのため、MIセンサ素子を実装したICチップを携帯端末機器等に内蔵するにあたり、機器の薄型化が困難となってしまうという問題がある。
 それゆえ、磁性アモルファスワイヤの長さと、その長手方向におけるMIセンサ素子全体の長さがなるべく同等であることが理想である。
 しかし、従来のZ軸用のMIセンサ素子においては、製造上の理由から、磁性アモルファスワイヤの長さとMIセンサ素子の全体の長とを同等とすることは困難である。
 すなわち、MIセンサ素子を製造するに当たっては、多数のMIセンサ素子の基体の母材である基体ウエハに、磁性アモルファスワイヤや検出コイル等の形成を行った後、これを切断して個々のMIセンサ素子を得る(実施例1、図5、図6参照)。ここで、この切断面には、基本的に電極端子等をパターン形成することはない。切断面にパターン形成するということは、切断後に各MIセンサ素子に個別にパターン形成することとなり、生産性の観点から現実的ではないからである。仮に、各MIセンサ素子に個別にパターン形成するとなると、基体ウエハの状態でパターン形成するときに比べて生産性が著しく低下してしまうということとなる。
 上記特許文献1の図8に記載のZ軸用のMIセンサ素子を見ると、切断面である基体の上面に、磁性アモルファスワイヤ及び検出コイルと電気的に接続された電極端子が形成されているように見えるが、実際には、電極端子が形成されている部分は、基体の上面から一段下がった段部となっている(後述の比較例参照)。この段部は当該特許文献における発明の主要部以外の部分であるため、当該図面においては省略してあるだけである。
 すなわち、切断する前の基体ウエハの状態において電極端子を一度に形成すべく、基体ウエハには、磁性アモルファスワイヤに直交する基体の辺に対応する位置に溝を形成する。そして、この溝の一部に電極端子を、スパッタやメッキ等を用いて形成する。その後、この溝の一部に形成した電極端子を削らないように、ダイシングソー等によって基体ウエハを切断し、個々のMIセンサ素子を得る。これにより、溝の一部が残って上記段部が形成されることとなる。
 そうすると、MIセンサ素子を基体よりも長手方向に突出させることはできないため、その一方の端部は、段部よりも基体の内側に配置されることとなる。それゆえ、少なくとも段部の高さ分、基体の長さよりも磁性アモルファスワイヤの長さを短くせざるを得ず、MIセンサ素子の感度が低下してしまう。
 また、上記のような溝を基体に設けると、その溝加工工程が必要となるため、製造コストが高くなると共に、生産性の向上が困難となる。
 また、溝を形成するためには基体の強度を確保するために厚みを大きくすることとなり、MIセンサ素子の小型化が困難となる。また、溝加工を行う場合には、その切削加工を容易にすべく、比較的強度の低い材料を基体に用いることとなる。すると、その分、基体の厚みをさらに厚くする必要があり、MIセンサ素子の小型化がさらに難しくなる。
 なお、電極端子を基体における磁性アモルファスワイヤを設けた面と同じ面に形成する場合には、上記のような問題は生じないが、MIセンサ素子の感磁方向をICチップに直交する方向(Z軸方向)とする場合には、当該表面に電極端子を設けることはしない。なぜならば、それらの電極端子には、ICチップ上の電極端子との間で、ワイヤーボンディングを施すなどの処理をする必要があるため、基本的にICチップと電極端子を形成する面とは互いに平行である必要がある。これに対して、基体における磁性アモルファスワイヤを設けた表面と同じ面に電極端子を形成した通常のMIセンサ素子を、単にICチップに直交するように立てると、電極端子を設けた表面はICチップと直交することとなる。そのため、MIセンサ素子の電極端子とICチップの電極端子との間のワイヤーボンディングができない。また、両者をはんだ付けにて接続することも困難である。
 本発明は、かかる従来の問題点に鑑みてなされたもので、感度が高く、小型化を図ることができるマグネトインピーダンスセンサ素子を提供しようとするものである。
 本発明は、非磁性体からなる基体と、
 該基体上に保持された磁性アモルファスワイヤと、
 該磁性アモルファスワイヤが内側を貫通するように形成した被覆絶縁体と、
 該被覆絶縁体の周囲に形成した検出コイルと、
 上記基体における上記磁性アモルファスワイヤを配置した側の表面から立ち上がる端子搭載面を有する絶縁体からなる端子台と、
 上記端子搭載面に形成したワイヤ用電極端子及びコイル用電極端子と、
 上記ワイヤ用電極端子と上記磁性アモルファスワイヤに設けた一対のワイヤ通電端とを電気的に接続するワイヤ用接続配線と、
 上記コイル用電極端子と上記検出コイルに設けた一対のコイル通電端とを電気的に接続するコイル用接続配線とを有し、
 上記端子搭載面は、その法線が上記磁性アモルファスワイヤの長手方向成分を有し、かつ、上記磁性アモルファスワイヤの長手方向における、該磁性アモルファスワイヤの両端の間に配置されていることを特徴とするマグネトインピーダンスセンサ素子にある。
 次に、本発明の作用効果につき説明する。
 上記マグネトインピーダンスセンサ素子(MIセンサ素子)は、上記端子搭載面を有する上記端子台を備えている。そして、端子搭載面は、上記磁性アモルファスワイヤの長手方向における、該磁性アモルファスワイヤの両端の間に配置されている。これにより、端子台の端子搭載面に、ワイヤ用電極端子及びコイル用電極端子を容易に形成することができると共に、上記磁性アモルファスワイヤの長手方向における上記基体の全体にわたって、磁性アモルファスワイヤを配設することができる。その結果、基体の大きさを大きくすることなく、磁性アモルファスワイヤを長くすることができ、MIセンサ素子の大型化を招くことなく、感度を高くすることができる。
 すなわち、上述したごとく、MIセンサ素子を製造するにあたっては、一般には、多数のMIセンサ素子の基体の母材である基体ウエハに、磁性アモルファスワイヤや検出コイル等の形成を行った後、これを切断して個々のMIセンサ素子を得る。このとき、MIセンサ素子が上記端子台を有していれば、個々のMIセンサ素子に切断する前の状態において、ワイヤ用電極端子及びコイル用電極端子を容易に形成することができる。
 また、MIセンサ素子が端子台を有していることにより、上述した溝(段部)を基体ウエハに形成する必要もない。そのため、段部を形成した分、磁性アモルファスワイヤの長さを短くせざるを得ないという問題は生じず、基体の大きさに対して磁性アモルファスワイヤの長さが短くなってしまうという不具合を招くことがない。それゆえ、磁性アモルファスワイヤの長さをMIセンサ素子全体の長さと同等とすることも可能となり、MIセンサ素子の小型化と高感度化との両立が可能となる。
 また、上記のような溝加工工程が不要となるため、製造コストを低減できると共に、生産性の向上を図ることができる。
 また、溝を形成する必要がないため基体の厚みを特に大きくする必要がなく、MIセンサ素子の小型化が容易となる。また、切削加工の容易化も特に考慮する必要がなくなるため、強度の高い材料を基体に用いることもでき、その分、基体の厚みをさらに小さくすることもでき、MIセンサ素子の小型化がさらに容易となる。
 以上のごとく、本発明によれば、感度が高く、小型化を図ることができるマグネトインピーダンスセンサ素子を提供することができる。
実施例1における、MIセンサ素子の正面図。 実施例1における、ボンディングワイヤを接続した状態の、図1のA-A線矢視断面相当のMIセンサ素子の断面図。 図1のB-B線矢視断面図。 実施例1における、MIセンサ素子を用いた磁気方位センサの斜視図。 実施例1における、基体ウエハの平面図。 実施例1における、基体ウエハの部分拡大平面図。 実施例1における、電子回路の概念説明図。 実施例1における、出力電圧の測定結果を示す線図。 実施例2における、MIセンサ素子の正面図。 図9のC-C線矢視断面図。 比較例における、MIセンサ素子の正面図。 比較例における、ボンディングワイヤを接続した状態の、図11のD-D線矢視断面相当のMIセンサ素子の断面図。 図11のE-E線矢視断面図。 比較例における、基体ウエハの切断方法の断面説明図。
 本発明において、上記端子搭載面は、その法線が上記磁性アモルファスワイヤの長手方向となるように形成されていることが好ましい。
 この場合には、MIセンサ素子をICチップ等に実装するにあたり、磁性アモルファスワイヤがICチップの主面に直交するように配置する際、ワイヤ用電極端子及びコイル用電極端子をICチップの主面と平行にすることができる。その結果、ワイヤ用電極端子及びコイル用電極端子と、ICチップとの間のワイヤボンディング等、電気的接続を容易に行うことができる。
 また、上記端子台は、上記磁性アモルファスワイヤ、被覆絶縁体、及び検出コイルの形成領域以外の領域に形成されていることが好ましい。
 この場合には、上記端子台が上記磁性アモルファスワイヤ、被覆絶縁体、及び検出コイルを覆うことがないため、磁性アモルファスワイヤへかかる応力や、磁性アモルファスワイヤへの結露等を防ぎ、正確な磁界検出を確保することができる。
 仮に磁性アモルファスワイヤを覆うように端子台が配設されると、磁性アモルファスワイヤに応力がかかるおそれがあるし、磁性アモルファスワイヤと端子台との間に存在する空気の結露等による寄生容量の変化が生じるおそれがある。そして、この応力や寄生容量の変化に起因して、磁性アモルファスワイヤに供給される電流が変動してしまい、MIセンサ素子の磁気感度(出力/印加磁場)のバラツキ(例えば磁気感度に対して約10%のバラツキ)が生じるおそれがある。そのため、磁性アモルファスワイヤを覆わないように端子台を設けることにより、かかる不具合を回避することができる。すなわち、MIセンサ素子の磁気感度のバラツキをほとんどなくす(例えば磁気感度に対して1%未満のバラツキとする)ことができる。
 また、上述した応力の問題や寄生容量の問題を解決するために、端子台を構成する絶縁材料の線膨張係数、接着力、誘電率等を適切な値にすることも考えられるが、その場合には材料選択の自由が著しく制限されてしまうという問題がある。かかる問題も、請求項3の発明によれば解決することができる。
 また、電子回路を形成してなるICチップに、該ICチップの主面の法線方向に上記磁性アモルファスワイヤの長手方向が向くように実装するための素子であることが好ましい。
 この場合には、仮に上記ワイヤ用電極端子及びコイル用電極端子の法線が上記磁性アモルファスワイヤの長手方向成分を有していないと、ICチップの主面に形成された電子回路の端子との接続が困難である。それゆえ、基体における磁性アモルファスワイヤを形成した表面に上記ワイヤ用電極端子及びコイル用電極端子を設けることは望ましくなく、上記表面に対して角度をもった面、より好ましくは直交する面にワイヤ用電極端子及びコイル用電極端子を形成する。
 そこで、このようなMIセンサ素子において、本発明を適用することにより、その作用効果を充分に発揮させることができる。
 なお、ここで、MIセンサ素子のICチップへの実装とは、MIセンサ素子をワイヤーボンディング等によって上記ICチップに直接電気的接続することの他、例えば、ICチップを搭載したIC基板を介してMIセンサ素子を間接的に電気的接続することをも含む。
 また、電子回路を形成してなるICチップを搭載したIC基板に、該IC基板の主面の法線方向に上記磁性アモルファスワイヤの長手方向が向くように実装するための素子であってもよい。
 ICチップを搭載したIC基板を介してMIセンサ素子を間接的に電気的接続するような場合には、上記のごとく該IC基板の主面の法線方向に上記磁性アモルファスワイヤの長手方向が向くようにMIセンサ素子を実装することにより、IC基板の主面に形成された電子回路の端子と上記ワイヤ用電極端子及びコイル用電極端子との接続が容易となる。そしてそのような構成において、本発明の作用効果が充分に発揮できる。
(実施例1)
 本発明の実施例にかかるマグネトインピーダンスセンサ素子につき、図1~図6を用いて説明する。
 本例のマグネトインピーダンスセンサ素子(MIセンサ素子)1は、図1~図3に示すごとく、非磁性体からなる基体2と、該基体2上に保持された磁性アモルファスワイヤ3と、該磁性アモルファスワイヤ3が内側を貫通するように形成した被覆絶縁体4と、該被覆絶縁体4の周囲に形成した検出コイル5とを有する。
 基体2における磁性アモルファスワイヤ3を配置した側の表面21には、該表面21から立ち上がる端子搭載面61を有する絶縁体からなる端子台6が設けてある。
 端子搭載面61には、一対のワイヤ用電極端子11及び一対のコイル用電極端子12が形成されている。ただし、一対のワイヤ用電極端子11のうちの一方と一対のコイル用電極端子12の一方とが一つの電極を基準電位として共有するようにすることもできる。この場合、ワイヤ用電極端子11及びコイル用電極端子12の合計数を3個とすることができる。
 ワイヤ用電極端子11と磁性アモルファスワイヤ3に設けた一対のワイヤ通電端31とは、ワイヤ用接続配線110によって電気的に接続されている。
 コイル用電極端子12と検出コイル5に設けた一対のコイル通電端51とは、コイル用接続配線120によって電気的に接続されている。
 端子搭載面61は、その法線が磁性アモルファスワイヤ3の長手方向成分を有し、かつ、磁性アモルファスワイヤ3の長手方向における、磁性アモルファスワイヤ3の両端311、311の間に配置されている。
 本例においては、端子搭載面61は、その法線が磁性アモルファスワイヤ3の長手方向となるように形成されている。
 また、図1、図3に示すごとく、端子台6は、磁性アモルファスワイヤ3、被覆絶縁体4、及び検出コイル5の形成領域以外の領域に形成されている。すなわち、端子台6は、ワイヤ用接続配線110及びコイル用接続配線120の一部を覆うように、基体2の表面に形成されているが、磁性アモルファスワイヤ3、被覆絶縁体4、及び検出コイル5を覆わないように、これらの形成領域とは外れた位置において形成されている。
 本例のMIセンサ素子1は、図4に示すごとく、電子回路を形成してなるICチップ7に、該ICチップ7の主面71の法線方向に磁性アモルファスワイヤ3の長手方向が向くように実装するための素子である。
 MIセンサ素子1において、ICチップ7に実装したときICチップ7の主面71に直交する方向となる方向をZ軸方向という。すなわち磁性アモルファスワイヤ3の長手方向と一致する方向がZ軸方向である。
 基体2としては、例えば、絶縁性のアルミナ系セラミックス、半導体のシリコンウェハ、導体の金属などが使用でき、表面21に直交する方向の厚さは、例えば、0.1mm~0.5mmとすることができる。本例においては、上記厚さは0.3mmとした。また、基体2のZ軸方向の高さは0.6mmとした。
 磁性アモルファスワイヤ3は、零磁歪アモルファスのCoFeSiB系合金からなり、例えば、直径20μm以下とすることができる。ここでは、直径を10μmとした。そして、この磁性アモルファスワイヤ3は、図1に示すごとく、基体2の表面21に、基体2のZ軸方向の全体にわたって配設されている。本例では、この磁性アモルファスワイヤ3の長さは0.6mmとした。
 この磁性アモルファスワイヤ3の両端におけるワイヤ通電端31は、基体2の表面21に形成された通電パッド310に電気的に接続されている。
 また、磁性アモルファスワイヤ3の一対の通電端31の間の部分は、被覆絶縁体4によって被覆されている。被覆絶縁体4は、例えば、酸化アルミニウム、酸化ケイ素などの無機質の絶縁材料やエポキシ系樹脂などの有機質の絶縁材料を用いて構成することができる。
 そして、被覆絶縁体4の外周面に、検出コイル5が形成されている。検出コイル5は、基体2の表面21に成膜された平面パターン501と、被覆絶縁体4の外表面に成膜された立体パターン502とが適宜接続されることによって、被覆絶縁体4の外周を螺旋状に巻回するように配設されている。そして、検出コイル5の巻回パターンの両端がコイル通電端51である。ここで、検出コイル5の巻数は15ターンである。
 本例においては、基体2の表面21から盛り上がるように、磁性アモルファスワイヤ3、被覆絶縁体4、検出コイル5を配設しているが、特許文献1の図2に開示されているように、基体に溝を形成し、その溝の中に磁性アモルファスワイヤ、被覆絶縁体、検出コイルを配置してもよい。ただし、このような溝を形成すると、基体を厚くする必要があるため、小型化の観点からは、本例の構造を採用することが望ましい。
 一対のコイル通電端51には、基体2の表面21に形成されたコイル用接続配線120の一端が接続されている。また、一対のワイヤ通電端31には、通電パッド310を介して、基体2の表面21に形成されたワイヤ用接続配線110の一端が接続されている。
 ワイヤ用接続配線110の他端は、ワイヤ用電極端子11に接続され、コイル用接続配線120の他端は、コイル用電極端子12に接続されている。
 また、基体2の表面21に設けられた端子台6は、エポキシ系樹脂やセラミック等の絶縁体からなり、ワイヤ用接続配線110及びコイル用接続配線120を覆うように形成されている。そして、端子台6は、基体2のZ軸方向における一端(上端22)から、充分に内側に後退した位置(例えば150~550μm後退した位置)に、Z軸に直交する平坦面である端子搭載面61を設けてなる。ここでは、端子搭載面61を上端22から200μm後退させている。
 この端子搭載面61に、上記一対のワイヤ用電極端子11及び一対のコイル用電極端子12を設けている。
 本例においては、端子台6は、磁性アモルファスワイヤ3、被覆絶縁体4、及び検出コイル5の形成領域、及び端子搭載面61から該端子搭載面61が向いた方向における基体2の端面(上端22)までの領域を除いて、基体2の表面21の全面に形成されている。
 また、端子台6の厚み、すなわち端子搭載面61の幅は、例えば80~150μmである。ここでは、端子搭載面61の幅を100μmとした。
 ワイヤ用接続配線110におけるワイヤ用電極端子11側の端子部111は、端子搭載面61から一部がはみ出すように形成され、ワイヤ用電極端子11と接続されている。同様に、コイル用接続配線120におけるコイル用電極端子12側の端子部121も、端子搭載面61から一部がはみ出すように形成され、コイル用電極端子12と接続されている。
 また、図4に示すごとく、MIセンサ素子1は、いわゆるZ軸用としてICチップ7に実装され、磁性アモルファスワイヤ3の長手方向がICチップ7の主面71に直交するように配設されている。ICチップ7は、マザーボードとICチップ7とを接続するためのIC基板73に搭載されており、IC基板73の主面731とICチップ7の主面71とは互いに平行となっている。MIセンサ素子1は、ICチップ7の脇において、IC基板73の主面731に搭載されている。
 そして、MIセンサ素子1におけるワイヤ用電極端子11及びコイル用電極端子12は、それぞれ、ICチップ7の主面71に形成された電子回路における所定の端子、又はIC基板73の主面731に形成された電子回路における所定の端子に、ボンディングワイヤ72にて電気的に接続される。具体的には、MIセンサ素子1におけるコイル用電極端子12は、2本ともICチップ7の端子にボンディング接続されているが、ワイヤ用電極端子11は、一方がICチップ7の端子に、他方がIC基板73の端子にそれぞれボンディング接続されている。
 なお、この接続の仕方は、一例であって、例えばMIセンサ素子1におけるワイヤ用電極端子11及びコイル用電極端子12のすべてをICチップ7の端子に接続してもよいし、IC基板73の端子に接続してもよい。
 また、ICチップ7には、該ICチップ7の主面71に平行であると共に互いに直交する方向に磁性アモルファスワイヤ30を備えた、X軸用のMIセンサ素子10及びY軸用のMIセンサ素子100が、実装される。X軸用のMIセンサ素子10及びY軸用のMIセンサ素子100は、本例のZ軸用のMIセンサ素子1と略同様の構成要素を有するが、端子台6がなく、ワイヤ用電極端子11及びコイル用電極端子12が、基体2における磁性アモルファスワイヤ30を設けた面と同じ表面に形成されている点において、Z軸用のMIセンサ素子1と異なる。
 このように、本例のMIセンサ素子1を含めた3個のMIセンサ素子(1、10、100)によって、地磁気を利用して3次元的な方位を検出する磁気方位センサ70を構成している。かかる地磁気方位センサ70は、携帯電話機等の携帯端末機器などに搭載することができる。
 なお、ここでは、本例のZ軸用のMIセンサ素子1を、X軸用及びY軸用のMIセンサ素子10、100と組み合わせて、3軸の磁気方位センサ70としたが、本例のMIセンサ素子1を含む2つのMIセンサ素子によって2軸の磁気方位センサを構成することもできる。
 また、本例のMIセンサ素子1は、このような磁気方位センサに限らず、例えば、電流センサ等に用いることもできる。この場合には、本例のMIセンサ素子1を一つだけ用いてセンサを構成することもできる。
 本例のMIセンサ素子1を製造するに当たっては、図5に示すごとく、多数のMIセンサ素子1の基体2の母材である基体ウエハ20に、磁性アモルファスワイヤ3や検出コイル5等の形成を行う。すなわち、例えば10cm四方程度の大きい基体ウエハ20上において、多数のMIセンサ素子1(例えば1mm四方以下の大きさ)のパターニングを一度に行う。
 このとき、基体2の表面21には、端子台6の形成も行う。端子台6を形成するに当たっては、例えば感光性のエポキシ樹脂を用いることができる。すなわち、基体2の表面21の全体に樹脂を塗布した後、乾燥させ、次いで、端子台6を形成したい部分のみに光が当たるようにマスキングした状態で樹脂を露光する。次いで、現像液にて現像することにより、所定の位置に所定の大きさ、形状の端子台6を形成する。
 また、端子台6の端子搭載面61に、スパッタリング及びメッキを用いて、ワイヤ用電極端子11及びコイル用電極端子12を成膜する。
 端子台6、ワイヤ用電極端子11及びコイル用電極端子12以外の形成方法については、省略したが、MIセンサ素子1のすべての要素を形成した後、図6に示すごとく、基体ウエハ20を、ダイシングソーを用いて切断し、個々のMIセンサ素子1を得る。このとき、ダイシングソーの切り代201(例えば200μm)を考慮して、切断面がMIセンサ素子1の所望の輪郭となるようにする。
 次に、本例の作用効果につき説明する。
 上記マグネトインピーダンスセンサ素子1は、端子搭載面61を有する端子台6を備え、端子搭載面61は、磁性アモルファスワイヤ3の長手方向における、磁性アモルファスワイヤ3の両端311、311の間に配置されている。これにより、端子台6の端子搭載面61に、ワイヤ用電極端子11及びコイル用電極端子12を容易に形成することができると共に、磁性アモルファスワイヤ3の長手方向における基体2の全体にわたって、磁性アモルファスワイヤ3を配設することができる。その結果、基体2の大きさを大きくすることなく、磁性アモルファスワイヤ3を長くすることができ、MIセンサ素子1の大型化を招くことなく、感度を高くすることができる。
 すなわち、上述したごとく、MIセンサ素子1を製造するにあたっては、一般には、基体ウエハ20に、磁性アモルファスワイヤ3や検出コイル5等の形成を行った後、これを切断して個々のMIセンサ素子1を得る。このとき、MIセンサ素子1が端子台6を有していることにより、個々のMIセンサ素子1に切断する前の状態において、ワイヤ用電極端子11及びコイル用電極端子12を容易に形成することができる。
 また、MIセンサ素子1が端子台6を有していることにより、比較例に示す溝(図14(A)の符号99参照)を基体ウエハ20に形成する必要もない。そのため、磁性アモルファスワイヤ3の長さをMIセンサ素子1全体の長さと同等とすることも可能となり、MIセンサ素子1の小型化と高感度化との両立が可能となる。
 また、溝加工工程が不要となるため、製造コストを低減できると共に、生産性の向上を図ることができる。
 また、溝を形成する必要がないため基体2の厚みを特に大きくする必要がなく、MIセンサ素子1の小型化が容易となる。また、切削加工の容易化も特に考慮する必要がなくなるため、強度の高い材料を基体2に用いることもでき、その分、基体2の厚みをさらに小さくすることもでき、MIセンサ素子1の小型化がさらに容易となる。
 また、端子台6は、磁性アモルファスワイヤ3、被覆絶縁体4、及び検出コイル5の形成領域以外の領域に形成されている。これにより、端子台6が磁性アモルファスワイヤ3、被覆絶縁体4、及び検出コイル5を覆うことがないため、磁性アモルファスワイヤ3へ応力がかかることを防ぎ、正確な磁界検出を確保することができる。
 以上のごとく、本例によれば、感度が高く、小型化を図ることができるマグネトインピーダンスセンサ素子を提供することができる。
 以下においては、図7、図8を用いて、実施例1のMIセンサ素子1について行った特性評価につき説明する。
 すなわち、MIセンサ素子1を図7に示す電子回路8に組み込み、以下のような磁気センシング評価を行った。
 上記電子回路8は、MIセンサ素子1の磁性アモルファスワイヤ3に入力するためのパルス信号を発振するパルス発振回路81と、MIセンサ素子1の検出コイル5において生じた検出電圧を信号処理するための信号処理回路82とを有する。信号処理回路82は、検出コイル5と出力端子83との間のスイッチングを行うアナログスイッチ821と、パルス信号に連動してアナログスイッチ821のオンオフを行うサンプルタイミング調整回路822と、検出コイル5において生じた誘起電圧を増幅する増幅器823とを有する。
 パルス発振回路81は、主として200MHzを含む170mAの強さであって、信号間隔が1μsecのパルス信号を生成し、このパルス信号を磁性アモルファスワイヤ3に入力する。このパルス電流は、定常値の90%から10%に立ち下がる遮断時間を4ナノ秒とした。これにより、パルス信号の立ち下り時に、MIセンサ素子1の検出コイル5に、磁性アモルファスワイヤ3の長手方向(Z軸方向)の磁界に応じた誘起電圧が生じる。この誘起電圧を、アナログスイッチ821を介して増幅器823によって増幅し、出力端子83から出力する。
 このような電子回路8を用いて、MIセンサ素子1を、水平軸を中心にして360°回転させながら、その出力特性を評価する。
 まず、MIセンサ素子1の磁性アモルファスワイヤ3の長手方向(Z軸方向)が鉛直方向を向いた状態を、回転角度0°とし、このときのMIセンサ素子1の出力信号の大きさを0mVとする。そして、このMIセンサ素子1を、水平軸を中心に360°回転させた。このときの出力信号の変化を図8に示す。
 同図から分かるように、出力信号は、きれいなサインカーブを描き、精度よく地磁気のZ軸方向の成分を検出していることが分かる。これにより、実施例1におけるMIセンサ素子1は、小型化しても、充分な検出精度を確保することができることが分かる。
(実施例2)
 本例は、図9、図10に示すごとく、実施例1に比べて端子台6の大きさを小さくした例である。
 すなわち、端子台6のZ軸方向の高さを短くしている。具体的には、実施例1のMIセンサ素子1における端子台6の高さ0.4mmに対して、本例のMIセンサ素子1における端子台6の高さは0.13mmとした。
 その他は、実施例1と同様である。
 端子台6としては、ワイヤ用電極端子11及びコイル用電極端子12を搭載する端子搭載面61を充分に確保できれば、本発明の効果を充分に得ることができる。そのため、実施例1のように、基体2の表面21において大きな領域に形成する必要は必ずしもなく、基体2との密着性が損なわれなければ、端子台6は、端子搭載面61の面積を充分に維持しつつ、種々の形態をとることが考えられる。
 すなわち、上記以外にも、たとえば、ワイヤ用電極端子11及びコイル用電極端子12のそれぞれに対応するように個別に分割して形成した端子台としてもよいし、階段状に形成した端子台としてもよい。
(比較例)
 本例は、図11~図13に示すごとく、実施例1、2において示した端子台6を設けることなく、基体92に直接、ワイヤ用電極端子11及びコイル用電極端子12を設けたマグネトインピーダンスセンサ素子9の例である。
 本例のMIセンサ素子9は、実施例1、2と同様に、基体92の表面921に磁性アモルファスワイヤ93、被覆絶縁体4、検出コイル5、ワイヤ用接続配線110、コイル用接続配線120を形成してなる。そして、基体92における磁性アモルファスワイヤ93の長手方向(Z軸方向)の一端に段部96を有し、そのZ軸方向に直交する面に、ワイヤ用電極端子11及びコイル用電極端子12を設けてなる。
 上記段部96は、基体92におけるZ軸方向及び厚み方向に直交する方向(図11の左右方向)の全体にわたって形成されている。
 なお、磁性アモルファスワイヤ93、被覆絶縁体4、及び検出コイル5からなる構成体の構成は、実施例1と同様であって、その大きさや検出コイル5の巻数等も同様である。
 かかる段部96は、磁性アモルファスワイヤ3と直交する面にワイヤ用電極端子11及びコイル用電極端子12を形成する必要のある、いわゆるZ軸用のMIセンサ素子9において、製造上の観点から必然的に形成されるものである。
 すなわち、かかるMIセンサ素子9を製造するに当たっては、上述したごとく、多数のMIセンサ素子9の基体92の母材である基体ウエハ920に、多数のMIセンサ素子9のパターニングを一度に行った後、図14(B)に示すごとく、基体ウエハ920をダイシングソー98によって切断して、個々のMIセンサ素子9に切り分ける。
 ここで、切断される前の基体ウエハ920の表面には、後に切断する切断線に沿って溝99が形成されている。すなわち、基体ウエハ920の状態で、図14(A)に示すごとく、例えば深さ200μm、幅200μmの溝99を形成しておく。その後、溝99の内側面991及びこれに連続する基体92の表面921に、ワイヤ用電極端子11及びコイル用電極端子12のパターニングを行う。そして、ダイシングソー98による切断を、溝99の内側面991よりも若干(例えば70μm)外側において行う。これにより、切断前の状態で、溝99の内側面991にワイヤ用電極端子11及びコイル用電極端子12のパターニングを行うことができる。
 そして、図14(C)に示すごとく、切断後には、この溝99の一部分が上記段部96として残ることとなる。
 上記のごとく溝加工を行った後に基体ウエハ920の切断を行うのは、ワイヤ用電極端子11及びコイル用電極端子12の形成が終わるまで、基体ウエハ920の一体性を保つためである。
 すなわち、上記のようなZ軸用のMIセンサ素子9は、上記のごとく、磁性アモルファスワイヤ93と直交する面にワイヤ用電極端子11及びコイル用電極端子12を形成する必要があるため、上記基体92の表面921と直交する面を、基体92に形成する必要がある。それゆえ、溝加工を行わないと、基体ウエハ920の状態のままでワイヤ用電極端子11及びコイル用電極端子12のパターニングを行うことができない。溝加工を行わない場合、切り離された基体2の一つ一つに対して個別に電極端子の形成を行わねばならず、生産性が著しく低下する。それゆえ、溝加工を行うことにより、基体ウエハ920の一体性を保ったまま、電極端子の形成が行えるようにしている。
 ところが、溝99の一部分として残る上記段部96が基体92のZ軸方向の一端の全体にわたって存在することにより、図11に示すごとく、磁性アモルファスワイヤ93の長さを、基体92のZ軸方向長さよりも短くせざるを得ない。例えば、基体92の上端922と段部96との段差が70μmであれば、磁性アモルファスワイヤ93を基体92よりも70μm以上短くすることとなる。さらに、図12に示すごとく、ワイヤ用電極端子11及びコイル用電極端子12に接続されるボンディングワイヤ72の高さを考慮すると、ボンディングワイヤ72を含めたMIセンサ素子9のZ軸方向の占有高さH(図12)に対して、磁性アモルファスワイヤ93の長さL(図11)が大きく下回ることとなる。
 また、上記のように、ワイヤ用電極端子11及びコイル用電極端子12を配置するために段部96を基体92に形成するには、溝加工を行う必要がある。そうすると、製造コストが高くなると共に、基体92の強度を確保すべく厚みを厚くする必要がある。また、基体92に溝加工することを考えると、加工容易な材料を基体92として選定する必要があるが、かかる材料は、機械的強度がどうしても低いため、さらに基体92の厚みを大きくする必要が生じる。
 その結果、MIセンサ素子9の厚みも大きくなることとなる。
 このように、本例のMIセンサ素子9は、磁性アモルファスワイヤ3の長さを長くしつつ、小型化を図ることが困難である。
 これに対して、上述のごとく、本発明のMIセンサ素子1(実施例1、3)は、図1、図9に示すごとく、磁性アモルファスワイヤ3の長さを、基体2のZ軸方向の長さと同等まで長くすることが可能となるため、磁性アモルファスワイヤ3の長さを長くしつつ、MIセンサ素子1の小型化を図ることができる。
 また、本発明のMIセンサ素子1は、上記のような溝加工の必要もないため、基体2の厚みを大きくする必要もなく、さらなる小型化を可能とする。
 また、端子台6における端子搭載面61の位置も自由に設定することができるため、端子搭載面61と、基体2のZ軸方向の上端との間の距離を充分に大きくすることもできる。これにより、図2に示すごとく、ワイヤ用電極端子11及びコイル用電極端子12にボンディングワイヤ72を接続しても、ボンディングワイヤ72の上端を基体2の上端から突出しないようにすることもできる。それゆえ、ボンディングワイヤ72を含めたMIセンサ素子1の占有高さに対しても、磁性アモルファスワイヤ3の長さが短くなることを防ぐことができる。
 ここで、ボンディングワイヤを含めたMIセンサ素子のZ軸方向の占有高さHと、磁性アモルファスワイヤの長さLとの比(H/L)を、MIセンサ素子の小型化指標φとして、実施例1のMIセンサ素子1と、比較例のMIセンサ素子9とを比較した。小型化指標φが小さいほど(1に近づくほど)同等の性能での小型化が達成されていることとなる。
 まず、比較例のMIセンサ素子9の小型化指標φを算出する。
 比較例のMIセンサ素子9の基体92のZ軸方向の下端923から段部96までの高さは0.6mmで、段部96から上端922までの高さが0.07mmである。また、段部96からのボンディングワイヤ72のZ軸方向高さは0.15mmである。それゆえ、比較例のMIセンサ素子の占有高さH(図12)は、H=0.6mm+0.15mm=0.75mmである。
 したがって、比較例のMIセンサ素子の小型化指標φは、φ=0.75mm/0.6mm=1.25となる。
 一方、実施例1のMIセンサ素子1は、図2に示すごとく、ボンディングワイヤ72が基体2の上端22よりも下方に位置するため、ボンディングワイヤを含めても、そのZ軸方向の占有高さH(図1)は、基体2のZ軸方向高さに一致し、0.6mmである。そして、磁性アモルファスワイヤ3は、基体2のZ軸方向の全長にわたって形成されているため、その長さLも0.6mmである。
 したがって、実施例1のMIセンサ素子の小型化指標φは、φ=0.6mm/0.6mm=1となる。
 すなわち、実施例1のMIセンサ素子は、比較例のMIセンサ素子に対して、Z軸方向に20%の小型化を実現している。つまり、同じ磁性アモルファスワイヤの長さ、すなわち同じ磁気感度を確保しつつ、Z軸方向の小型化を20%実現することができる。
 なお、ボンディングワイヤ以外の接続方法(例えば半田接続)を採用する場合などには、ボンディングワイヤの高さを考慮する必要がないが、この場合でも、実施例1のMIセンサ素子1は、比較例のMIセンサ素子9よりも小型となる。
 すなわち、この場合、比較例のMIセンサ素子9の小型化指標φは、φ=0.67mm/0.6mm≒1.12となり、実施例1のMIセンサ素子1の小型化指標φは、φ=0.6mm/0.6mm=1となる。それゆえ、この場合でも、約10%の小型化を実現することができる。
 また、比較例のMIセンサ素子9は、上記のごとく溝加工が必要なため、切削加工の容易な強度の低いセラミックスを基体92の材料に使用することとなる。それゆえ、その厚み(磁性アモルファスワイヤ93を配置した基体92の表面921に直交する方向の厚み)も0.5mmと厚くしている。
 これに対し、実施例1のMIセンサ素子1では、溝加工を考慮する必要がないため、強度の高いセラミックスを使用しており、基体2の厚みを0.3mmとしている。そして、端子台6の厚み(0.1mm)を加えても、MIセンサ素子1の厚みは0.4mmとなる。すなわち、MIセンサ素子の厚みについても、比較例に比べて、実施例1の方が薄くすることができる。
 以上のような実施例1と比較例との差異は、実施例2と比較例との間においても同様のことが言える。
 なお、仮に比較例において溝加工を行わずにワイヤ用電極端子11及びコイル用電極端子12を形成することができたとしても、ワイヤボンディングを行う場合には、結局、ボンディングワイヤを含めたMIセンサ素子のZ軸方向の占有高さHと、磁性アモルファスワイヤの長さLとの比(H/L)であるMIセンサ素子の小型化指標φは大きくなってしまう。すなわち、この場合、磁性アモルファスワイヤの長さLを0.60mmとしたとき、ボンディングワイヤを含めたMIセンサ素子のZ軸方向の占有高さHは、0.75mmと長くなる。それゆえ、小型化指標φは、φ=0.75mm/0.60mm≒1.25となり、実施例1のφ=1に比べて大きい。すなわち、この場合に比べても、本発明のMIセンサ素子は、同性能での小型化を実現できることとなる。

Claims (5)

  1.  非磁性体からなる基体と、
     該基体上に保持された磁性アモルファスワイヤと、
     該磁性アモルファスワイヤが内側を貫通するように形成した被覆絶縁体と、
     該被覆絶縁体の周囲に形成した検出コイルと、
     上記基体における上記磁性アモルファスワイヤを配置した側の表面から立ち上がる端子搭載面を有する絶縁体からなる端子台と、
     上記端子搭載面に形成したワイヤ用電極端子及びコイル用電極端子と、
     上記ワイヤ用電極端子と上記磁性アモルファスワイヤに設けた一対のワイヤ通電端とを電気的に接続するワイヤ用接続配線と、
     上記コイル用電極端子と上記検出コイルに設けた一対のコイル通電端とを電気的に接続するコイル用接続配線とを有し、
     上記端子搭載面は、その法線が上記磁性アモルファスワイヤの長手方向成分を有し、かつ、上記磁性アモルファスワイヤの長手方向における、該磁性アモルファスワイヤの両端の間に配置されていることを特徴とするマグネトインピーダンスセンサ素子。
  2.  請求項1において、上記端子搭載面は、その法線が上記磁性アモルファスワイヤの長手方向となるように形成されていることを特徴とするマグネトインピーダンスセンサ素子。
  3.  請求項1又は2において、上記端子台は、上記磁性アモルファスワイヤ、被覆絶縁体、及び検出コイルの形成領域以外の領域に形成されていることを特徴とするマグネトインピーダンスセンサ素子。
  4.  請求項1~3のいずれか一項において、電子回路を形成してなるICチップに、該ICチップの主面の法線方向に上記磁性アモルファスワイヤの長手方向が向くように実装するための素子であることを特徴とするマグネトインピーダンスセンサ素子。
  5.  請求項1~3のいずれか一項において、電子回路を形成してなるICチップを搭載したIC基板に、該IC基板の主面の法線方向に上記磁性アモルファスワイヤの長手方向が向くように実装するための素子であることを特徴とするマグネトインピーダンスセンサ素子。
PCT/JP2009/060517 2008-06-10 2009-06-09 マグネトインピーダンスセンサ素子 WO2009151047A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117000206A KR101230945B1 (ko) 2008-06-10 2009-06-09 마그네토 임피던스 센서 소자
CN2009801222317A CN102057290B (zh) 2008-06-10 2009-06-09 磁阻抗传感器元件
EP09762477.9A EP2293092B1 (en) 2008-06-10 2009-06-09 Magnetoimpedance sensor element
US12/997,290 US8455962B2 (en) 2008-06-10 2009-06-09 Magneto-impedance sensor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008151537A JP4725600B2 (ja) 2008-06-10 2008-06-10 マグネトインピーダンスセンサ素子
JP2008-151537 2008-06-10

Publications (1)

Publication Number Publication Date
WO2009151047A1 true WO2009151047A1 (ja) 2009-12-17

Family

ID=41416754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060517 WO2009151047A1 (ja) 2008-06-10 2009-06-09 マグネトインピーダンスセンサ素子

Country Status (6)

Country Link
US (1) US8455962B2 (ja)
EP (1) EP2293092B1 (ja)
JP (1) JP4725600B2 (ja)
KR (1) KR101230945B1 (ja)
CN (1) CN102057290B (ja)
WO (1) WO2009151047A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479728A (zh) * 2010-11-23 2012-05-30 罗伯特·博世有限公司 用于制造半导体芯片的方法、用于垂直装配到电路载体上的装配方法和半导体芯片
US20220308128A1 (en) * 2021-03-26 2022-09-29 Showa Denko K.K. Magnetic sensor
WO2024048743A1 (ja) * 2022-09-02 2024-03-07 愛知製鋼株式会社 磁気センサ装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101233742B1 (ko) 2009-02-27 2013-02-18 아이치 세이코우 가부시키가이샤 마그네토 임피던스 센서 소자 및 그 제조 방법
JP5110142B2 (ja) 2010-10-01 2012-12-26 愛知製鋼株式会社 マグネトインピーダンスセンサ素子及びその製造方法
JP6373642B2 (ja) * 2013-08-05 2018-08-15 ローム株式会社 半導体装置
JP6571411B2 (ja) * 2014-07-04 2019-09-04 ローム株式会社 半導体装置および半導体装置の製造方法
JP6210084B2 (ja) 2015-04-21 2017-10-11 愛知製鋼株式会社 高精度測定可能な磁気インピーダンスセンサ用感磁ワイヤの製造方法
TWI578547B (zh) * 2015-09-10 2017-04-11 旺玖科技股份有限公司 電磁阻抗感測元件及其製作方法
TWI545332B (zh) * 2015-09-10 2016-08-11 旺玖科技股份有限公司 電磁阻抗感測元件及其製作方法
JP2017219457A (ja) * 2016-06-09 2017-12-14 愛知製鋼株式会社 マグネトインピーダンスセンサ
JP6240994B1 (ja) * 2016-12-15 2017-12-06 朝日インテック株式会社 3次元磁界検出素子および3次元磁界検出装置
JP6864413B2 (ja) * 2017-06-05 2021-04-28 朝日インテック株式会社 Gsrセンサ素子
JP7262885B2 (ja) * 2017-06-16 2023-04-24 朝日インテック株式会社 超高感度マイクロ磁気センサ
TWI798287B (zh) * 2017-12-08 2023-04-11 日商日本電產理德股份有限公司 Mi元件的製造方法及mi元件
CN112400116A (zh) * 2018-06-27 2021-02-23 日本电产理德股份有限公司 磁阻抗传感器及磁阻抗传感器的制造方法
KR102604341B1 (ko) * 2018-10-05 2023-11-20 요코가와 덴키 가부시키가이샤 자기 검출 장치, 전송 선로 및 자기 검출 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727641A (ja) * 1993-07-12 1995-01-31 Omron Corp 半導体センサチップ及びその製造方法並びに半導体圧力センサ
JPH0961455A (ja) * 1995-08-30 1997-03-07 Hitachi Ltd 加速度センサ
WO2005008268A1 (ja) 2003-07-18 2005-01-27 Aichi Steel Corporation 3次元磁気方位センサおよびマグネト・インピーダンス・センサ素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111085A (ja) * 1988-10-20 1990-04-24 Aichi Tokei Denki Co Ltd 強磁性磁気抵抗素子
JP4007464B2 (ja) * 1997-10-06 2007-11-14 Tdk株式会社 磁気探知装置
US6229307B1 (en) * 1998-08-12 2001-05-08 Minebea Co., Ltd. Magnetic sensor
JP2002365350A (ja) * 2001-06-06 2002-12-18 Fuji Electric Co Ltd 磁気検出装置
JP2004003886A (ja) 2002-05-31 2004-01-08 Matsushita Electric Works Ltd センサパッケージ
KR100536837B1 (ko) 2003-02-10 2005-12-16 삼성전자주식회사 반도체기판에 집적된 자계검출소자 및 그 제조방법
FR2851661B1 (fr) * 2003-02-24 2005-05-20 Commissariat Energie Atomique Capteur miniature de champ magnetique
US7041526B2 (en) * 2003-02-25 2006-05-09 Samsung Electronics Co., Ltd. Magnetic field detecting element and method for manufacturing the same
US7304475B2 (en) * 2003-03-25 2007-12-04 Honeywell Federal Manufacturing & Technologies Mechanism for and method of biasing magnetic sensor
JP4247821B2 (ja) * 2003-04-11 2009-04-02 キヤノン電子株式会社 電流センサ
US7026812B2 (en) * 2003-08-25 2006-04-11 Aichi Steel Corporation Magnetic sensor
JP2006228895A (ja) * 2005-02-16 2006-08-31 Alps Electric Co Ltd 立体回路モジュール及びその製造方法
JP4904052B2 (ja) * 2005-12-27 2012-03-28 アルプス電気株式会社 磁気方位検出装置
US7535221B2 (en) * 2006-03-17 2009-05-19 Citizen Holdings Co., Ltd. Magnetic sensor element and electronic directional measuring device
WO2008016198A1 (en) * 2006-08-03 2008-02-07 Microgate, Inc. 3 axis thin film fluxgate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727641A (ja) * 1993-07-12 1995-01-31 Omron Corp 半導体センサチップ及びその製造方法並びに半導体圧力センサ
JPH0961455A (ja) * 1995-08-30 1997-03-07 Hitachi Ltd 加速度センサ
WO2005008268A1 (ja) 2003-07-18 2005-01-27 Aichi Steel Corporation 3次元磁気方位センサおよびマグネト・インピーダンス・センサ素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2293092A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479728A (zh) * 2010-11-23 2012-05-30 罗伯特·博世有限公司 用于制造半导体芯片的方法、用于垂直装配到电路载体上的装配方法和半导体芯片
US20220308128A1 (en) * 2021-03-26 2022-09-29 Showa Denko K.K. Magnetic sensor
US11821963B2 (en) * 2021-03-26 2023-11-21 Resonac Corporation Magnetic sensor
WO2024048743A1 (ja) * 2022-09-02 2024-03-07 愛知製鋼株式会社 磁気センサ装置

Also Published As

Publication number Publication date
EP2293092B1 (en) 2014-10-15
US20110089512A1 (en) 2011-04-21
US8455962B2 (en) 2013-06-04
KR101230945B1 (ko) 2013-02-07
EP2293092A1 (en) 2011-03-09
JP2009300093A (ja) 2009-12-24
JP4725600B2 (ja) 2011-07-13
CN102057290A (zh) 2011-05-11
KR20110028339A (ko) 2011-03-17
CN102057290B (zh) 2013-09-25
EP2293092A4 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP4725600B2 (ja) マグネトインピーダンスセンサ素子
JP3781056B2 (ja) 3次元磁気方位センサおよびマグネト・インピーダンス・センサ素子
KR101235524B1 (ko) 자기 검출 장치
JP5747294B1 (ja) 電磁コイル付マグネト・インピーダンス・センサ素子および電磁コイル付マグネト・インピーダンス・センサ
JP4835805B2 (ja) マグネトインピーダンスセンサ素子及びその製造方法
JP2012505420A (ja) 磁界方向および/または磁界強度の測定装置
CN107850647B (zh) 磁检测装置
AU2017375137A2 (en) Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
US7194815B2 (en) Device for detecting magnetic azimuth
JP2009236803A (ja) マグネトインピーダンスセンサ素子
JP2004271481A (ja) 3軸磁気センサー
JP6609947B2 (ja) 磁気検出装置
KR100562874B1 (ko) 전자나침반용 수직축 박막 플럭스게이트 소자의 조립 방법
JP2002156430A (ja) 磁界プローブ
JP2005283271A (ja) Icチップ、miセンサ、およびmiセンサを備えた電子装置
JP6932561B2 (ja) 3軸磁気検出装置および人工衛星
JP2006047267A (ja) 3次元磁気方位センサおよびマグネト・インピーダンス・センサ素子
JP2016003866A (ja) Z軸用gmi素子および超薄型3次元gmiセンサ
CN112352163B (zh) 电子模块
JP2004061380A (ja) 磁気センサおよび磁気センサの製造方法
KR101090990B1 (ko) 지자기 센서 및 그의 제조방법
KR101023082B1 (ko) 플럭스게이트 소자를 갖는 전자 나침반 및 이를 제조하는 방법
WO2004086073A1 (ja) 磁気インピーダンス素子及び電流・磁界センサ
JP2004037354A (ja) 電流検出装置
JPH05126578A (ja) 方位センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122231.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12997290

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762477

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117000206

Country of ref document: KR

Kind code of ref document: A