WO2009149624A1 - 一种基于空间矢量的同步调制方法及系统 - Google Patents

一种基于空间矢量的同步调制方法及系统 Download PDF

Info

Publication number
WO2009149624A1
WO2009149624A1 PCT/CN2009/070448 CN2009070448W WO2009149624A1 WO 2009149624 A1 WO2009149624 A1 WO 2009149624A1 CN 2009070448 W CN2009070448 W CN 2009070448W WO 2009149624 A1 WO2009149624 A1 WO 2009149624A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
voltage vector
reference voltage
output
frequency
Prior art date
Application number
PCT/CN2009/070448
Other languages
English (en)
French (fr)
Inventor
丁荣军
李江红
陈高华
许为
陈华国
Original Assignee
株洲南车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲南车时代电气股份有限公司 filed Critical 株洲南车时代电气股份有限公司
Priority to JP2011512814A priority Critical patent/JP5593310B2/ja
Priority to EP09761249.3A priority patent/EP2290805B1/en
Priority to US12/997,792 priority patent/US8450957B2/en
Publication of WO2009149624A1 publication Critical patent/WO2009149624A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control

Definitions

  • the present invention relates to the field of vector modulation, and in particular to a space vector based synchronous modulation method. Background technique
  • the AC drive system is a new type of transmission system that regulates the speed and torque of the AC motor by means of a variable voltage variable frequency (VVVF, Variable Voltage Variable Frequency).
  • VVVF variable voltage variable frequency
  • the AC drive system is generally composed of a main circuit, a control system and a control object - an AC motor.
  • the main circuit includes a DC bus, a DC support capacitor, and a converter composed of power semiconductor devices.
  • the control system is built on a hardware platform such as a digital signal processor (DSP) or a central processing unit (CPU), using various AC motors such as slip control, field oriented control or direct torque control.
  • DSP digital signal processor
  • CPU central processing unit
  • Control theory real-time control system which can control the on/off of power semiconductor devices in the main circuit according to the required speed or torque command by collecting and processing the signals such as motor speed, motor current and DC bus voltage in the transmission system. To adjust the amplitude and frequency of the AC voltage acting on the motor to control the motor speed and torque.
  • Pulse Width Modulation is an extremely important component of the AC drive control system.
  • the function of this part is to control the pulse of the main circuit power semiconductor device on and off according to the input reference voltage and the current DC bus voltage.
  • the signal width is such that the fundamental voltage of the main loop output is equal to the input reference voltage.
  • PWM is divided into asynchronous modulation and synchronous modulation.
  • asynchronous modulation the converter switching frequency remains unchanged.
  • the converter switching frequency is strictly proportional to the fundamental frequency of the converter output, and the switching frequency varies with the fundamental frequency.
  • a significant advantage of synchronous modulation over asynchronous modulation is that it not only maintains the symmetry of the three-phase AC voltage output from the converter, but also achieves half-wave symmetry (HWS) and quarter-wave symmetry of the phase voltage. (QWS, Quarter Wave Symmetry), thereby reducing the order harmonics. Synchronous modulation is commonly used in high speed areas of high power transmission systems.
  • Triangular carrier comparison method the three-phase modulated wave of the converter is compared with the same triangular carrier to output a three-phase PWM signal, and the ratio of the frequency of the triangular carrier to the frequency of the modulated wave is constant, and the switching frequency of the converter is guaranteed to be the same.
  • the frequency of the fundamental frequency of the output is strictly proportional. In order to overcome the low frequency, the switching frequency is too low, the harmonics increase, the switching frequency is too high at high frequencies, and the device is difficult to bear.
  • the segmented synchronous modulation is used to divide the output frequency range of the converter into several frequency segments.
  • the carrier ratio is kept constant in the frequency segments, and the carrier ratios in different frequency segments are different.
  • FIG. 1 a schematic diagram of a prior art segment synchronous modulation.
  • the slope of the solid line in Figure 1 is the carrier ratio, which increases in stages as the frequency of the modulated wave increases.
  • the upper dashed line is the upper limit of the switching frequency of the converter. 0 ⁇ _; or / 2 ⁇ / 3 is a frequency segment. See Table 1, the carrier ratio for each frequency segment.
  • the triangular carrier comparison method is divided into the following steps:
  • Step 101 The frequency of the modulated wave is f.
  • Step 102 From the frequency in step 1, look up Table 1 to obtain the carrier ratio N corresponding to the frequency.
  • Step 105 The modulation ratio m is obtained according to the prior art modulation ratio-frequency curve shown in FIG.
  • Step 106 Check the sine table to obtain the sine value of the first u, v, w.
  • Step 107: Calculate 1 ; V, W phase switch by Equation 7; (l + m sin 2 ⁇ d ) ( i )
  • 7 is the control period, 7; is the on-time, ; ' is the off-time, / is the modulation wave frequency.
  • Step 108 Open the interrupt, read the frequency change flag, if it changes, skip to step 102, if it has not changed, continue to judge.
  • the first timer interrupting step is: determining whether the number of times is ⁇ , and if so, modulating the frequency of the wave, and determining whether the frequency is changed, and if the frequency is changed, setting the frequency change flag. If the number of samples does not reach ⁇ , check the sine table to get the sine of the next U, V, W. Calculate the turn-on and turn-off times of the U, V, and W phase switches according to equation (1), and send the turn-off time to timers 1, 2, and 3.
  • the second, third, and fourth timer interrupt steps are: Determine the timer that generates the interrupt, Timer 1 is U phase, Timer 2 is V phase, and Timer 3 is W phase.
  • the parity of the number of times is determined, the odd output switch signal 1 , and the even output switch signal 0.
  • the update timing value is the on time.
  • Polygon trajectory tracking method When the motor speed is not very low, the stator resistance voltage drop is negligible.
  • the flux vector rotates in space for one week, the voltage vector also continuously moves 2 ⁇ in the tangential direction of the flux circle, and the trajectory coincides with the flux circle. In this way, the trajectory problem of the rotating magnetic flux of the AC motor is transformed into the motion trajectory problem of the voltage space vector.
  • the flux trace is desirably circular, but the voltage space vector of the two-level voltage converter is limited, and the flux trace cannot be made circular. Therefore, the circle closest to the circle is used instead of the circle. shape.
  • the following is a description of the change of the polygon trajectory tracking by taking the regular 12-edge as an example. Referring to Figure 3, the regular 12-sided shape in the prior art polygon trajectory tracking method. Replace the circle with a regular 12-sided shape, and the 6 sides can directly use a non-zero voltage vector. The quantity is generated, and the other 6 sides need to be generated by vector synthesis to obtain a 30-sided shape. Referring to Figure 4, the 30-sided magnetic flux trace in the prior art polygon trajectory tracking method.
  • the carrier ratio decreases, and the 30-sided shape is converted into an 18-sided shape. See Fig. 5, the 18-sided magnetic flux trace in the prior art polygonal trajectory tracking method. Eventually it becomes a 6-sided shape and enters a square wave.
  • the specific steps 201-205 are the same as the triangular carrier comparison method steps 101-105, and are not described herein again. Only the subsequent different steps are introduced.
  • Step 206 According to the formula
  • Step 207 Perform zero vector segmentation to determine the duration of each small step vector and send the buffer.
  • Step 209 If the value of the buffer is taken away, execute the next step, otherwise wait.
  • Step 210 If the number of calculations has been less than N/6, skip to step 207, otherwise skip to step 201.
  • the first timer interrupting step is: taking buffer data, outputting the voltage vector of the first segment, and sending the time corresponding to the first segment voltage vector to the second timer.
  • the interrupt step of the second timer is: outputting the voltage vector of the next segment, and sending the time corresponding to the voltage vector to the second timer.
  • the above-mentioned triangular carrier comparison method and multi-deformation trajectory tracking method are all calculated on the basis of time.
  • the carrier ratio ⁇ is determined according to the frequency f, that is, the number of samples; and then according to the frequency f and the number N, the sample is determined.
  • the angle is calculated from the angle of the elapsed time T, the time of the PWM output is calculated according to the formula (3), the corresponding time is sent to the timer, and the corresponding voltage vector is outputted in the corresponding time to output the corresponding angle. purpose. Both methods must calculate the angle into time to calculate, and then use the timer to achieve the purpose of outputting PWM.
  • the whole calculation process is cumbersome, and the timing value is determined according to the frequency of the modulated wave, but the input frequency may change during this time. This will cause the actual output angle of the PWM to be inconsistent with the predetermined angle, so that the performance of the synchronous modulation becomes worse, and even the purpose of synchronous modulation is not achieved.
  • the invention provides a space vector based synchronous modulation method, comprising:
  • the modulation ratio m is obtained according to the modulation ratio-frequency curve
  • the frequency f of the sample-like reference voltage vector is collected in real time or at a preset time interval.
  • the angle, the angle of the modulation, and the modulation ratio modulated by the reference voltage vector calculate the output angles of the three basic voltage vectors synthesizing the reference voltage vector, specifically:
  • the amount of change of the reference voltage vector angle is compared with an output angle of the three basic voltage vectors, and the basic voltage vector is output according to the comparison result, including
  • each preset step 7 determining whether the amount of change in the reference voltage vector angle is greater than the angle through which the reference voltage vector passes, if yes, extracting data of the buffer, and setting The amount of change in the reference voltage vector angle 0 is set to zero.
  • the method further includes the following steps: determining whether the data of the buffer is extracted, and if yes, adding ; Determine if ⁇ is greater than N/6, and if so, point to the next sector.
  • the present invention also provides a space vector based synchronous modulation system, comprising a given device, a microprocessor; the given device, for a given reference voltage vector frequency f;
  • the microprocessor is configured to implement a synchronous modulation algorithm, including the following units,
  • a sampling unit for sampling the frequency of the given reference voltage vector f; by the frequency f check frequency and the carrier ratio relationship table, the carrier ratio N is obtained;
  • a second calculating unit configured to calculate an output angle of three basic voltage vectors synthesizing the reference voltage vector by an angle modulated by a reference voltage vector, an angle passed, and a modulation ratio m;
  • a comparing unit configured to compare an amount of change of the reference voltage vector angle ⁇ with an output angle of the three basic voltage vectors
  • an output unit configured to output a basic voltage vector according to the comparison result, and the basic voltage vector synthesizes an output voltage that is consistent with the reference voltage vector.
  • the system further includes an inverter and an alternating current motor, the inverter is for applying a direct current voltage
  • the V dc conversion is transmitted to the AC motor by three-phase AC voltages Uu, UV, and uw, and the rotation frequency of the AC motor is controlled to coincide with the frequency f of the given reference voltage vector.
  • the microprocessor further includes a setting unit and a determining unit, the setting unit is configured to set a comparison order of the change amount of the reference voltage vector angle 0 and the output angle of the three basic voltage vectors And comparing the values; the determining unit is configured to: determine, in each step 7 of each step, whether the amount of change of the reference voltage vector angle is greater than an angle ⁇ of the reference voltage vector, and if so, take a slow The data of the rushing zone is juxtaposed with the reference voltage vector angle ⁇ by a variation of zero.
  • the microprocessor further includes a third calculating unit for using the formula
  • the system further includes a NOT gate for generating a signal opposite to three basic voltage vectors output by the output unit, and a driving circuit for amplifying the three basic voltage vectors.
  • the present invention has the following advantages:
  • the present invention calculates an output angle of three basic voltage vectors synthesizing the reference voltage vector from an angle ⁇ , an angle of passing, and a modulation ratio m of the reference voltage vector modulation, and the amount of change of the reference voltage vector angle ⁇ and the third
  • the output angles of the basic voltage vectors are compared, and the corresponding basic voltage vector is output according to the comparison result.
  • the invention directly calculates the output angle of the three basic voltage vectors on the basis of the angle, and achieves the purpose of outputting the corresponding basic voltage vector by comparing the change of the angle, so that the voltage output by the inverter is consistent with the reference voltage vector.
  • the invention is directly based on the angle, not only avoids By calculating the angle into time, the calculation step is reduced, and the synchronous modulation angle can be accurately maintained when the reference voltage f is dynamically changed.
  • Figure 3 is a regular scallop in the prior art polygon trajectory tracking method
  • Figure 5 is an 18-sided magnetic flux trace in the prior art polygon trajectory tracking method
  • FIG. 6 is a voltage vector distribution diagram of a prior art two-level SVPWM
  • FIG. 7 is a flow chart of a first embodiment of a spatial vector-based synchronous modulation method according to the present invention
  • FIG. 8 is a relationship between an output angle of a basic voltage vector of the present invention and a basic voltage vector
  • FIG. 9 is a variation of the reference voltage vector angle of the present invention. The angle of the basic voltage vector output is compared with the first schematic diagram
  • Figure 10 is a second schematic diagram showing the comparison between the amount of change in the reference voltage vector angle and the angle of the basic voltage vector output of the present invention.
  • FIG. 11 is a flow chart of a second embodiment of a spatial vector based synchronous modulation method according to the present invention
  • FIG. 12 is a structural diagram of a first embodiment of a space vector based synchronous modulation system according to the present invention
  • FIG. 13 is a spatial vector based synchronous modulation system according to the present invention
  • Second Embodiment FIG. 14 is a block diagram showing the structure of FIG.
  • the SVPWM method is a PWM method based on the control idea of motor flux trajectory tracking.
  • the integral of the motor stator voltage space vector is the motor stator flux space vector. Therefore, by controlling the magnitude and direction of the voltage vector acting on the motor and the time of action, the flux linkage of the motor can be controlled. Track.
  • the converter outputs a limited number of basic voltage vectors, which acts on the ideal voltage vector and the action time of the motor, and is assigned to certain according to the principle that the magnetic flux trajectory is constant. The basic voltage vector is done.
  • this figure is a voltage vector distribution diagram of a prior art two-level SVPWM.
  • the ⁇ shown in the figure is the basic voltage vector, ⁇ is the effective voltage vector, f. Then, it is a zero vector administrat. According to the volt-second balance principle, the following equation (4) can be obtained.
  • ⁇ ⁇ 2 mTsm(e) ( 5 )
  • FIG. 7 is a flowchart of a first embodiment of a spatial vector-based synchronous modulation method according to the present invention.
  • the frequency f of the reference voltage vector is calculated by checking the relationship between the frequency and the carrier ratio by the frequency f, and obtaining the carrier ratio N.
  • the reference voltage vector, the number of samples per sector is N/6.
  • the angle through which the reference voltage vector passes is the angle at which the synchronous modulation needs to be output.
  • S704 calculating an angle, a passing angle, and a modulation ratio m modulated by a reference voltage vector The output angle of the three basic voltage vectors of the reference voltage vector. The sum of the output angles of the three basic voltage vectors is the angle at which the synchronous modulation needs to be output.
  • the invention achieves the purpose of outputting a basic voltage vector by comparing the change amount of the reference voltage vector angle ⁇ with the output angle of the three basic voltage vectors, and does not need to convert the angle into time, but directly at an angle
  • the benchmark is calculated, reducing the computational steps and facilitating the implementation of synchronous modulation.
  • the following describes how to calculate the output angles of the three basic voltage vectors of the reference voltage vector by the angle of the reference voltage vector modulation, the angle of passing, and the modulation ratio m.
  • the angular velocity of the reference voltage vector is constantly changing, the average velocity of the angle through which the reference voltage vector passes may be set as the time elapsed from equation (7), and formula (7) is substituted into equation (5).
  • the formula (8) is available.
  • ⁇ , ⁇ 2 and ⁇ are the three basic voltage vectors, f 2 andurbanthe angle of the output.
  • the simplified formula (8) can be obtained by the formula (9), and the formula (9) is divided by the two sides. Get the formula (10)
  • Equation (10) is the same as Equation (6), but d 2 in Equation (10) is the duty cycle for the angle, not the duty cycle for time. If you want to get the actual output angle The degree can be multiplied by d 2 and respectively by the formula ( 11 ), where ⁇ , ⁇ ⁇ 2 , ⁇ ⁇ 0 are the angles of the three basic voltage vectors, V 2 , and inconvenience output, respectively.
  • Fig. 8 is a graph showing the relationship between the output angle of the basic voltage vector and the basic voltage vector of the present invention.
  • the reference voltage vector is an angle through which the reference voltage vector passes
  • , esp are three basic voltage vectors for synthesizing the reference voltage vector
  • ⁇ , ⁇ , and ⁇ are three basic voltage vectors, respectively.
  • f 2 was the angle of the output.
  • the sum of the output angles ⁇ , ⁇ 2 , ⁇ of the three basic voltage vectors is the angle ⁇ that the synchronous modulation needs to output.
  • the figure is a first schematic diagram comparing the angle of change of the reference voltage vector angle with the angle of the basic voltage vector output of the present invention. It can be seen from Fig. 9 that as ⁇ increases, it is more comparable. When ⁇ is smaller than ⁇ , the basic voltage vector is output. When ⁇ is larger than ⁇ and smaller than ⁇ + ⁇ , the basic voltage vector is output when ⁇ is larger than ⁇ + ⁇ . And when it is less than ⁇ + ⁇ + ⁇ , the basic voltage vectorrent is output.
  • the invention can adjust the comparison order of the angles and the comparison value according to actual needs, and achieve the control of the output order and mode of the basic voltage vector.
  • the figure is a second schematic diagram comparing the angle of change of the reference voltage vector angle with the angle of the basic voltage vector output.
  • the first comparison in the figure is ⁇ , and the basic voltage vector f 2 is output first.
  • FIG. 11 there is shown a flow chart of a second embodiment of a spatial vector based synchronous modulation method according to the present invention.
  • the method includes the following steps:
  • the frequency f of the reference voltage vector is calculated by the frequency f to check the relationship between the frequency and the carrier ratio, and the carrier ratio N is obtained.
  • the frequency f of the sample reference voltage vector is collected in real time or at a preset time interval.
  • N i3 ⁇ 4 (N i3 ⁇ 4 - l) xA obtains the angle of the reference voltage vector modulation ⁇ , N i3 ⁇ 4 represents the first few samples, that is, the reference voltage vector for the first time, the number of times per sector is N/ 6.
  • the angle through which the reference voltage vector passes is the angle at which the synchronous modulation needs to be output.
  • S1103 The modulation ratio m is obtained according to the modulation ratio-frequency curve.
  • the modulation ratio-frequency curve is shown in Figure 2.
  • the angle, the passed angle, and the modulation ratio m modulated by the reference voltage vector calculate an output angle of three basic voltage vectors that synthesize the reference voltage vector.
  • the sum of the output angles of the three basic voltage vectors is the angle at which the synchronous modulation needs to be output.
  • S1105 Set a comparison order and a comparison value of the change amount of the reference voltage vector angle and the output angle of the three basic voltage vectors.
  • the invention can adjust the comparison order of the angles and the comparison value according to actual needs, and achieve the control of the output order and mode of the basic voltage vector.
  • two different comparison orders and comparison values correspond to the order and difference of the basic voltage vectors of the output.
  • the comparison values can also be changed, and the values of the basic voltage vectors of the outputs are also different.
  • S1107 Determine whether the amount of change in the reference voltage vector angle ⁇ is greater than the angle ⁇ through which the reference voltage vector passes. If yes, execute S1108, otherwise execute S1109.
  • S1109 Calculate ⁇ . After each zero is set, the value is recalculated and obtained by equation (12).
  • S1110 The amount of change of the reference voltage vector angle ⁇ and the three basic voltage vectors The output angle is compared, and the basic voltage vector is output according to the comparison result. For example, referring to Fig. 9, the first schematic is compared with the angle of change of the reference voltage vector angle with the angle of the basic voltage vector output. It can be seen from the figure that as ⁇ increases, it is more comparable. When ⁇ is smaller than ⁇ , the basic voltage vector is output. When ⁇ is larger than ⁇ and smaller than ⁇ + ⁇ , the basic voltage vector is output when ⁇ is larger than ⁇ + ⁇ and When less than ⁇ + ⁇ + ⁇ , the basic voltage vector ⁇ ⁇ is output.
  • S1111 Determine whether the timer reaches the timing value. If yes, execute S1107, otherwise execute S1112. S1112: Whether the buffer data is taken. If yes, execute S1113, otherwise execute Sllll. S1113: Nj. Indicates the next time the sample is sampled, that is, the frequency of the next reference voltage vector.
  • S1114 N th >NI6. It is judged whether ⁇ is greater than N/6, and if so, S1101 is executed, otherwise S1104 is executed. If N i3 ⁇ 4 > N/6 , it means that the sector has finished running, points to the next sector, and executes S1101.
  • the method according to the embodiment of the present invention directly controls the output of the basic voltage vector by comparing the angles, and does not need to convert the angle into time, thereby reducing the calculation step. Since the frequency f of the reference voltage vector is collected in real time or collected according to a preset time interval, when calculating, the integration algorithm is used, and the calculation time controlled by the timer is shorter, and the calculation result is more accurate, so that The change in frequency f is also taken into account, and the angle of the synchronous modulation can be more accurate.
  • the equation (10) multiplied by the angle in the method is the output angle of the synchronous modulation, and multiplied by the time is the timing value of the asynchronous modulation.
  • the SVPWM asynchronous modulation and the synchronous modulation formula are unified, which is more conducive to the implementation of the algorithm.
  • the synchronous modulation method of the present invention is applicable to any level series, and the calculation process is not complicated by the increase in the number of levels.
  • the present invention also provides a space vector based synchronous modulation system, which will be described in detail below in conjunction with specific embodiments.
  • FIG. 12 a block diagram of a first embodiment of a spatial vector based synchronous modulation system of the present invention.
  • the system includes a given device 110 and a microprocessor 220.
  • the given device 110 given the frequency f of the reference voltage vector, the frequency given signal is given by the potentiometer, converted into a digital signal by an analog-to-digital converter, and transmitted to the sampling unit of the microcontroller 220 1201.
  • the microprocessor 220 is the core of the entire system and is used to implement a synchronous modulation algorithm, and specifically includes: The sample unit 1201, the first calculation unit 1202, the acquisition unit 1203, the second calculation unit 1204, the comparison unit 1205, and the output unit 1206.
  • the sampling unit 1201 obtains the frequency f of the reference voltage vector given by the given device 110, and compares the frequency to the carrier ratio by the frequency f to obtain a carrier ratio N.
  • the angle through which the reference voltage vector passes is the angle at which the synchronous modulation needs to be output.
  • the obtaining unit 1203 obtains the modulation ratio m from the modulation ratio-frequency curve. See the modulation ratio - frequency curve shown in Figure 2.
  • the second calculating unit 1204 calculates an output angle of three basic voltage vectors synthesizing the reference voltage vector by an angle modulated by the reference voltage vector, an angle passed, and a modulation ratio m.
  • the comparing unit 1205 compares the amount of change of the reference voltage vector angle 0 with the output angle of the three basic voltage vectors.
  • the output unit 1206 is configured to output a basic voltage vector according to the comparison result, and synthesize an output voltage consistent with the reference voltage vector from the basic voltage vector.
  • the present invention compares the change amount of the reference voltage vector angle ⁇ with the output angle of the three basic voltage vectors by the comparing unit 1205, and the output unit 1206 outputs the basic voltage vector according to the comparison result, and does not need to convert the angle into time. Rather, it is calculated directly from the angle, which reduces the calculation steps and facilitates the implementation of synchronous modulation.
  • FIG. 13 a structural diagram of a second embodiment of a space vector based synchronous modulation system according to the present invention is shown.
  • the application of the present invention will be described by taking an inverter system as an example. Of course, it can also be applied to other converter systems, such as rectification systems.
  • the second embodiment of the system of the present invention differs from the first embodiment of the system in that a setting unit 1306, a third calculating unit 1307, and a determining unit 1308 are added.
  • the setting unit 1306 sets a comparison order of the change amount of the reference voltage vector angle ⁇ and an output angle of the three basic voltage vectors and a comparison value;
  • the system according to the embodiment of the present invention directly controls the output basic voltage vector by comparing the angles, and does not need to convert the angle into time, thereby reducing the calculation step. Since the reference voltage frequency f is collected in real time or collected according to a preset time interval, the integral algorithm is used in the calculation, and then the calculated step size is set; 7; the smaller the time, the shorter the time, the more accurate the calculation result is. This allows the variation of the frequency f to be taken into account, making the angle of the synchronous modulation more accurate.
  • the system according to the embodiment of the present invention may further include a NOT gate 1311, a driving circuit 1312, and an inverter.
  • the NOT gate 1311 inverts the switching signal output by the microprocessor.
  • the signal from the microprocessor is supplied directly to the power electronics of the inverter 1313, and the other power electronics of the same bridge arm that is supplied to the inverter 1313 via the NOT gate 1311.
  • the driving circuit 1312 enhances the driving capability of the switching signal output by the microprocessor.
  • the inverter 1313 converts the DC voltage into a three-phase AC voltage and supplies it to the AC motor 1314.
  • the AC motor 1314 is a control object, and the three-phase AC voltage output from the inverter 1313 is supplied to the AC motor 1314 so that the rotation frequency of the AC motor 1314 coincides with the given frequency f.
  • FIG. 14 there is shown a schematic diagram of a circuit of a second embodiment of a spatial vector based synchronous modulation system of the present invention.
  • the system includes a given device 1401, a control device 440, an inverter 1405, and an AC motor 1406, wherein the control device 440 includes a microprocessor 1402, a non-gate 1403, and a drive circuit.
  • the frequency reference signal is given by a potentiometer or signal generator, converted to a digital signal by an analog to digital converter, and passed to the microcontroller 1402.
  • the microprocessor 1402 which is the core of the entire system, implements a synchronous modulation algorithm.
  • the frequency f of the received reference voltage vector is output to a corresponding basic voltage vector by a synchronous modulation algorithm.
  • the NOT gate 1403 inverts the switching signal output from the microcontroller 1402.
  • the driving circuit 1404 amplifies the switching signal output from the microprocessor 1402.
  • the inverter 1405 converts the DC voltage into three-phase AC voltages uu, u v , u w , and includes a filter capacitor and six power electronic devices.
  • the filter capacitor is used to ensure the stability of the DC voltage.
  • the power electronic devices D1 and D4, D2 and D5, D3 and D6 respectively form a bridge arm for controlling the voltage of one phase.
  • the switching signal output by the microprocessor 1402 is 1 when the power is electronic. The device is turned on and the signal is 0 to turn it off.
  • the switch signal outputted by the microprocessor 1402 is inverted by the non-gate 1403 and sent to D4, D5, and D6, respectively, and the switch signal is directly sent to D1, D2, and D3, and two complementary signals control one bridge arm.
  • the three bridge arms are output by the microprocessor 1402, three switching signals, S v . Control, S V .
  • the signals are different, the inverter 1405 outputs different voltage vectors, and controls the AC motor 1406 to rotate the AC motor 1406. It is consistent with the given frequency f of the given device 1401.
  • the basic voltage vector output by the microprocessor 1402 in FIG. 14 is ⁇ . See Figure 6, voltage vector distribution diagram for two-level SVPWM.
  • the corresponding switch signal is 110, that is, S v .
  • the corresponding switch states are 1, 1 and 0 respectively, and the corresponding power electronic devices D1, D2, and D3 are respectively turned on, turned on, and turned off; corresponding power electronics
  • the states of devices D4, D5, and D6 are off, off, and on, respectively.
  • the inverter converts the DC voltage ⁇ ⁇ into a three-phase AC voltage Uu, UV, Uw ⁇ > according to the switching state of the power electronic device, and supplies it to the AC motor 1406, so that the AC motor 1406 rotates at the same frequency as the given device 1401.
  • the given frequency f is consistent to achieve synchronous modulation.
  • the reference voltage frequency f is a real-time gather or is collected according to a preset time interval, when calculating the change amount of the angle of the reference voltage vector, the integration algorithm is used, so that the change of the frequency f is also taken into consideration, through the system.
  • the angle of simultaneous modulation can be more accurate.
  • the synchronous modulation system of the present invention is applicable to any level series, and the calculation process is not complicated by the increase in the number of levels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Description

一种基于空间矢量的同步调制方法及系统
本申请要求于 2008年 6月 13日提交中国专利局、 申请号为 200810111288.4、 发明名称为"一种基于空间矢量的同步调制方法及系统"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及矢量调制领域, 特别涉及一种基于空间矢量的同步调制方法。 背景技术
交流传动系统是指以电机为控制对象, 通过变压变频 (VVVF, Variable Voltage Variable Frequency )方式调节交流电机转速和转矩的一种新型传动系 统。 交流传动系统一般由主回路、 控制系统和控制对象 -交流电机组成。 主回 路包括直流母线、 直流支撑电容、 以及由功率半导体器件组成的变流器。 控制 系统是构建在数字信号处理器 (DSP, Digital Signal Processor)或中央处理器 ( CPU, Central Processing Unit )等硬件平台上, 运用滑差控制、 磁场定向控制 或直接转矩控制等各种交流电机控制理论的实时控制系统,它通过对传动系统 中电机转速、 电机电流和直流母线电压等信号的釆集和处理, 能够根据要求的 转速或转矩指令,控制主回路中功率半导体器件的通断来调节作用于电机的交 流电压的幅值和频率, 实现对电机转速和转矩的控制。
脉冲宽度调制 (PWM, Pulse Width Modulation)是交流传动控制系统中一个 极其重要的组成部分,该部分的功能是根据输入的参考电压和当前直流母线电 压,控制调节主回路功率半导体器件通断的脉冲信号宽度,使主回路输出的基 波电压等于输入的参考电压。 根据调制比的不同, PWM分为异步调制和同步 调制, 异步调制时变流器开关频率保持不变。 同步调制时, 变流器开关频率同 变流器输出基波频率之间严格地保持比例关系,开关频率随着基波频率的变化 而变化。相对于异步调制, 同步调制的一个显著优点是不仅能一直保持变流器 输出三相交流电压的对称, 而且能够实现相电压的半波对称( HWS, Half Wave Symmetry )和四分之一波对称( QWS, Quarter Wave Symmetry ) , 从而减少氐 次谐波。 同步调制常用于大功率传动系统的高速区。
对于所述同步调制, 目前主要有三角载波比较法和多边形轨迹跟踪法, 下 面首先介绍三角形载波比较法。 三角形载波比较法:变流器的三相调制波与同一个三角载波比较以输出三 相 PWM信号, 而且三角形载波的频率与调制波的频率之比不变, 保证变流器 开关频率同变流器输出基波频率之间严格保持比例关系。为了克服低频时开关 频率过低, 谐波增加, 高频时开关频率过高, 器件难以承受的缺点, 釆用分段 同步调制, 即把变流器输出频率范围划分成若干个频率段,每个频率段内保持 载波比为恒值, 不同频率段的载波比不同。 参见图 1 , 现有技术分段同步调制 示意图。 图 1中实线的斜率为载波比, 随着调制波频率的增加而分段增加, 上 面的虚线为变流器开关频率的上限。 0 ~ _;或者/2 ~ /3即为一个频率段。参见表 1 , 各个频率段的载波比。
表 1 , 各个频率段的载波比
频率 载波比
/2〜/; N3
三角载波比较法分为以下步骤:
步骤 101: 釆样调制波的频率 f。
步骤 102: 由步骤 1中的频率, 查表 1得到所述频率对应的载波比 N。
步骤 103: 根据上述载波比 N, 确定相应的角度 = 2 r/N。
步骤 104: 根据上述角度 得到调制波频率相应的定时值 Τ = ΑΘΙ α = ΑΘΙ2τ^ = \INf , 并送第一定时器。
步骤 105: 根据图 2所示的现有技术调制比-频率曲线得到调制比 m。 调制 比定义为 m = rs /rdc , ^为直流侧电压, 为参考电压矢量的幅值。
步骤 106: 查正弦表得到第一个 u、 v、 w的正弦值。 步骤 107: 由公式 7; = (l + m sin 2^d ) ( i )分别计算1;、 V、 W相开关导
通和关断的时间, 并将关断时间送入第二、 三、 四定时器。 其中, ™为调制比,
7为控制周期, 7;为导通时间, ;'为关断时间, /为调制波频率。
步骤 108: 开中断, 读频率改变标志, 如果改变, 跳到步骤 102 , 如果未改 变, 继续判断。
第一定时器中断步骤为: 判断釆样次数是否是 Ν, 如果是, 则釆样调制波 的频率, 并判断频率是否改变, 如果频率改变, 则置频率改变标志。 如果釆样 次数没有达到 Ν, 则查正弦表得到下一步 U、 V、 W的正弦值。 根据公式(1 ) 分别计算 U、 V、 W相开关导通和关断的时间, 并将关断时间送入定时器 1、 2、 3。
第二、 三、 四定时器中断步骤为: 判断产生中断的定时器, 定时器 1为 U 相, 定时器 2为 V相, 定时器 3为 W相。 判断釆样次数的奇偶, 奇数输出开关信 号 1 , 偶数输出开关信号 0。 更新定时值为导通时间。
多边形轨迹跟踪法: 当电动机转速不是很低, 定子电阻压降忽略可得, 异 步 电 动 机 的 定 子 电 压 与 定 子 磁链 的 矢 量 关 系 为 : =^(ιμ^α) = ωψ^Λα+π,2) ( 2 ) , 由公式(2 )可得, 当磁链幅值 一定时, fs at 与角频率 &成正比, 方向与定子磁链 正交。 当磁链矢量在空间旋转一周时, 电压矢量也连续地按磁链圓的切线方向运动 2 τ , 轨迹与磁链圓重合。 这样, 交流电机旋转磁链的轨迹问题就转化为电压空间矢量的运动轨迹问题。理想情 况下, 希望磁链轨迹为一圓形, 但两电平电压型变流器的电压空间矢量有限, 无法使磁链轨迹为一圓形, 因此用与圓形最接近的多边形来代替圓形。 下面以 正 12边形为例说明多边形轨迹跟踪的变化。 参见图 3 , 现有技术多边形轨迹追 踪法中的正 12边形。 以正 12边形代替圓形, 其中的 6条边可直接用非零电压矢 量产生, 另外 6条边则需要通过矢量合成的方式产生, 得到 30边形。 参见图 4 , 现有技术多边形轨迹追踪法中的 30边形磁链轨迹。 随着调制波频率的提高, 载 波比下降, 30边形转换为 18边形, 参见图 5 , 现有技术多边形轨迹追踪法中的 18边形磁链轨迹。 最终变为 6边形, 进入方波。 其具体步骤 201 - 205与三角载 波比较法步骤 101 - 105相同, 在此不再赘述, 仅介绍后续不同的步骤。
步骤 206: 根据公式
Figure imgf000006_0001
Τη = Τ - Τ—Τ 步骤 207 : 进行零矢量的分割,确定每一小步矢量持续的时间并送緩冲区。 步骤 208: 送定时值 Τ到第一定时器, 并开中断。
步骤 209: 如果緩冲区的值被取走则执行下一步, 否则等待。
步骤 210: 如果已经计算次数少于 N/6则跳到步骤 207 , 否则跳到步骤 201。 第一定时器中断步骤为: 取緩冲区数据, 输出第一段的电压矢量, 送第一 段电压矢量对应的时间到第二定时器。
第二定时器的中断步骤为: 输出下一段的电压矢量, 送下一段电压矢量对 应的时间到第二定时器。
通过上述三角载波比较法和多变形轨迹追踪法,都是以时间为基准进行计 算, 首先根据频率 f确定载波比 Ν, 即釆样数; 再根据频率 f和釆样数 N, 确定釆 样经过的角度 由经过的角度 计算釆样经过的时间 T, 根据公式(3 )计 算 PWM输出的时间, 将相应的时间送入定时器, 通过在相应的时间内输出相 应的电压矢量达到输出相应角度的目的。这两种方法都必须将角度换算成时间 来进行计算, 再通过定时器达到输出 PWM的目的, 整个计算过程繁瑣, 并且 根据调制波的频率确定定时值,但在这段时间内输入频率可能变化, 这将导致 PWM实际输出的角度与预定的角度不一致, 这样同步调制的性能就变坏, 甚 至达不到同步调制的目的。
发明内容 本发明的目的是提供一种基于空间矢量调制的同步调制定时方法,减少了 计算步骤, 使同步调制的角度更准确。
本发明提供一种基于空间矢量的同步调制方法, 包括:
釆样参考电压矢量的频率 f; 由所述频率 f查频率与载波比的关系表, 得 到载波比 N;
由 = 2 / N获得所述参考电压矢量经过的角度 ; 由^ = (Nth - 1) χ Δ 获 得参考电压矢量调制的角度^ , N表示第几次釆样;
才艮据调制比 -频率曲线得到调制比 m;
由参考电压矢量调制的角度 、 经过的角度 和调制比 m计算合成所述 参考电压矢量的三个基本电压矢量的输出角度;
将所述参考电压矢量角度 0的变化量 与所述三个基本电压矢量的输出 角度比较,根据比较结果输出基本电压矢量; 由所述基本电压矢量合成与所述 参考电压矢量一致的输出电压。
优选地,所述釆样参考电压矢量的频率 f 是实时釆集或按照预先设定的时 间间隔釆集。
优选地, 由参考电压矢量调制的角度 、 经过的角度 和调制比 计 算合成所述参考电压矢量的三个基本电压矢量的输出角度, 具体为:
Άθ, = Αθχ άι
< ΑΘ2 = Αθχ ά2,其中 Δ 、 Αθ2 , Δ 分别为所述三个基本电压矢量 、 V2 、 Αθ0 = Αθχ ά0 „输出的角度; 其中 、 d2、 为对于所述经过的角度 的占空比, 由
Figure imgf000007_0001
获得。
优选地, 将所述参考电压矢量角度 的变化量 与所述三个基本电压矢 量的输出角度比较, 根据比较结果输出基本电压矢量, 包括
设定所述参考电压矢量角度 的变化量 与所述三个基本电压矢量的输 出角度的比较次序和比较数值;
在每个预先设置的步长 7;内, 判断所述参考电压矢量角度 的变化量 是否大于参考电压矢量经过的角度 如果是, 则提取緩冲区的数据, 并设 置所述参考电压矢量角度 0的变化量 为 0。
优选地,按如下公式 Δ = 6f (t) - (0) = 获得所述参考电压矢量角度 的变化量 Δ , 其中设每个釆样初始时刻的 (0) = 0; 在每个所述步长 7;内, 离散化为 Δ ( = 2 7 + Δ 1) , 其中 k表示当前时刻, k-1表示上一时刻。 优选地, 在判断所述参考电压矢量角度 ^的变化量 是否大于参考电压 矢量经过的角度 之后还包括以下步骤: 判断所述緩冲区的数据是否被提取, 如果是, 则所述 ^加1 ; 判断 ^是否大于 N/6 , 如果是, 则指向下一个扇区。
本发明还一种基于空间矢量的同步调制系统, 包括给定设备、 微处理器; 所述给定设备, 用于给定参考电压矢量的频率 f;
所述微处理器, 用于实现同步调制算法, 包括以下单元,
釆样单元, 用于釆样所述给定参考电压矢量的频率 f; 由所述频率 f查频 率与载波比的关系表, 得到载波比 N;
第一计算单元, 用于由 Δ^ = 2 τ/ 计算所述参考电压矢量经过的角度 Δ 由^ = (N - 1) X 计算参考电压矢量调制的角度^ , Nth表示第几次釆样; 获得单元, 用于由调制比-频率曲线获得调制比 m;
第二计算单元, 用于由参考电压矢量调制的角度 、 经过的角度 和调 制比 m计算合成所述参考电压矢量的三个基本电压矢量的输出角度;
比较单元, 用于将所述参考电压矢量角度 ^的变化量 与所述三个基本 电压矢量的输出角度比较;
输出单元,用于根据比较结果输出基本电压矢量, 由所述基本电压矢量合 成与所述参考电压矢量一致的输出电压。
优选地, 所述系统还包括逆变器和交流电机, 所述逆变器用于将直流电压
Vdc变换为三相交流电压 Uu、 U V、 u w传送给所述交流电机, 控制交流电机的旋 转频率与所述给定参考电压矢量的频率 f一致。
优选地, 所述第二计算单元, 用于由参考电压矢量调制的角度^、经过的 角度 和调制比 m计算合成所述参考电压矢量的三个基本电压矢量的输出角 度, 具体为: Αθ, = Αθχ^
Αθ2 = Αθχά2,其中 Δ 、 Αθ2 , Δ 分别为所述三个基本电压矢量 、 V2 Αθη = Αθχάη «输出的角度; 、 d2、 为对于角度的占空比, 由 d2 = V3msin(6'm) 获
dn = \— d,—d 付。
优选地, 所述微处理器还包括设定单元和判断单元, 所述设定单元用于设 定所述参考电压矢量角度 0的变化量 与所述三个基本电压矢量的输出角度 的比较次序和比较数值; 所述判断单元用于, 在预先设置每个的步长 7;内, 判 断所述参考电压矢量角度 的变化量 是否大于参考电压矢量经过的角度 Αθ ,如果是,则取走緩冲区的数据,并置所述参考电压矢量角度 Θ的变化量 为 0。
优选地, 所述微处理器还包括第三计算单元, 用于由公式
Aef = 0f (t) - 0f (0) = iTrfdt计算所述参考电压矢量角度 的变化量 Δ , 其中设 每个釆样初始时刻的 (0) = 0; 在所述每个步长 7;内, 上式离散化为
Aef (k) = 27fTs + Aef (k - \) , 其中 k表示当前时刻, k-1表示上一时刻。 优选地, 所述系统还包括非门和驱动电路, 所述非门用于产生与输出单元 输出的三个基本电压矢量相反的信号;所述驱动电路用于放大所述三个基本电 压矢量。
与现有技术相比, 本发明具有以下优点:
本发明由参考电压矢量调制的角度^、 经过的角度 和调制比 m计算合 成所述参考电压矢量的三个基本电压矢量的输出角度,将所述参考电压矢量角 度 ^的变化量 与所述三个基本电压矢量的输出角度比较, 根据比较结果输 出相应的基本电压矢量。 本发明直接以角度为基准,计算三个基本电压矢量的 输出角度, 通过比较角度的变化来达到输出相应基本电压矢量的目的,使逆变 器输出的电压与所述参考电压矢量一致。本发明直接以角度为基准, 不仅避免 了将角度换算成时间来计算, 减少了计算步骤, 而且可以在参考电压频率 f动 态变化时, 准确地保持同步调制角度。
附图说明
图 1是现有技术分段同步调制示意图;
图 2是现有技术调制比 -频率曲线图;
图 3是现有技术多边形轨迹追踪法中的正 12边形;
图 4是现有技术多边形轨迹追踪法中的 30边形磁链轨迹;
图 5是现有技术多边形轨迹追踪法中的 18边形磁链轨迹;
图 6是现有技术二电平 SVPWM的电压矢量分布图;
图 7是本发明基于空间矢量的同步调制方法第一实施例流程图; 图 8是本发明基本电压矢量的输出角度与基本电压矢量的关系; 图 9 是本发明参考电压矢量角度的变化量与基本电压矢量输出的角度比 较第一示意图;
图 10是本发明参考电压矢量角度的变化量与基本电压矢量输出的角度比 较第二示意图;
图 11是本发明基于空间矢量的同步调制方法第二实施例流程图; 图 12是本发明基于空间矢量的同步调制系统第一实施例结构图; 图 13是本发明基于空间矢量的同步调制系统第二实施例结构图; 图 14是图 13对应的结构框图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图和 具体实施方式对本发明作进一步详细的说明。
为了有利于本领域技术人员更好实施本发明,下面以二电平为例说明空间 矢量脉冲宽度调制 ( SVPWM, Space Vector Pulse Width Modulation ) 的原理。 SVPWM方法是基于电机磁链轨迹跟踪的控制思想而得到的一种 PWM方法。 对于交流电机,在忽略定子电阻时, 电机定子电压空间矢量的积分即是电机定 子磁链空间矢量, 因此控制作用于电机的电压矢量的大小和方向及作用的时 间, 就能控制电机的磁链轨迹。 但是变流器输出数量有限的基本电压矢量, 作 用于电机的理想电压矢量及作用时间,根据磁链轨迹不变的原则, 分配给某些 基本电压矢量来完成。 参见图 6, 该图为现有技术二电平 SVPWM的电压矢量 分布图。 图中所示的 〜 是基本电压矢量, 〜 是有效电压矢量, f。、 则 为零矢量 „。 根据伏秒平衡原理, 可得到下面的方程(4)。
£+l)TVse]edt = VlTl +V2T2 +VnuUT0 (4) 其中 为参考电压矢量, 、 和 „为合成所述参考电压矢量 的三个基本 电压矢量, Ί\、 和?1。分别^^本矢量 、 和 „的作用时间。 求解方程(4) 可得方程( 5 ),
T =^τηΤύη{--θ)
3
< Τ2 = mTsm(e) ( 5 )
τ0=τ-τλ2 为了计算的通用性, 一般釆用计算基本电压矢量作用时间的占空比 dx=Tx/T的方式, 从而实现算法与 T无关的目的, 如果要计算作用时间 Tx, 再由 Tx=T*dx计算得到, 由方 (5)可得对应的占空比方程(6)。
Figure imgf000011_0001
下面结合图 7具体说明本发明的实现方法, 参见图 7, 该图为本发明基于 空间矢量的同步调制方法第一实施例流程图。
S701: 釆样参考电压矢量的频率 f; 由所述频率 f查频率与载波比的关系 表, 得到载波比 N。
S702: 由 Θ = 1πΙΝ获得所述参考电压矢量经过的角度 ; 由 ^ =(N-i)x^获得参考电压矢量调制的角度^, N表示第几次釆样, 即第 几次釆样所述参考电压矢量, 每个扇区的釆样次数为 N/6。 所述参考电压矢量 经过的角度 就是同步调制需要输出的角度。
S703: 才艮据调制比 -频率曲线得到调制比 m。
S704: 由参考电压矢量调制的角度 、 经过的角度 和调制比 m计算合 成所述参考电压矢量的三个基本电压矢量的输出角度。三个基本电压矢量的输 出角度之和为所述同步调制需要输出的角度。
S705: 将所述参考电压矢量角度 0的变化量 与所述三个基本电压矢量 的输出角度比较,根据比较结果输出基本电压矢量; 由所述基本电压矢量合成 与所述参考电压矢量一致的输出电压。
本发明通过将所述参考电压矢量角度 ^的变化量 与所述三个基本电压 矢量的输出角度进行比较, 实现输出基本电压矢量的目的, 不需要将角度换算 成时间, 而是直接以角度为基准进行计算, 减少了计算步骤, 便于同步调制的 实现。
下面介绍如何由参考电压矢量调制的角度 、 经过的角度 和调制比 m 计算合成所述参考电压矢量的三个基本电压矢量的输出角度。虽然所述参考电 压矢量的角速度是不断变化的, 但可以设所述参考电压矢量经过的角度 的 平均速度是 , 由公式(7)可得经过 的时间, 将公式(7)代入公式(5) 可得公式( 8 )。
Figure imgf000012_0001
公式(7) 中的 Δ 、 Αθ2, Δ 分别为三个基本电压矢量 、 f2、 „输出 的角度。 化简公式(8)可得公式(9), 公式(9) 两边同除以 则得到公式 (10)
Figure imgf000012_0002
公式(10)与公式(6)形式上虽然一样, 但公式(10)中的 、 d2、 为 对于角度 的占空比, 而不是对时间的占空比。 如果希望得到实际输出的角 度, 可以通过公式( 11 )将 、 d2、 分别乘以 即可, 其中 Δ 、 Αθ2, Αθ0 分别为所述三个基本电压矢量 、 V2 、 „输出的角度。
Άθ, =Αθχάι
< Αθ2 =Αθχά2 ( 11 )
Αθ0 = Αθχά0 参见图 8, 该图为本发明基本电压矢量的输出角度与基本电压矢量的关系 图。 图 8 中 为所述参考电压矢量, 为所述参考电压矢量经过的角度, 其 中 、 、 „为合成所述参考电压矢量 的三个基本电压矢量, △ 、△ 、△ 分别为三个基本电压矢量 、 f2、 „输出的角度。 并且三个基本电压矢量的 输出角度 Δ 、 Αθ2, Δ 之和为所述同步调制需要输出的角度 Δ^。
下面具体介绍如何计算参考电压矢量角度 0的变化量 Δ 。 由角度与角频 率之间的关系 = J" fttft = J" iTrfdt可得 ef it) = fQ Infdt + 6f (0),设每个釆样初始时刻的
6f (0) = 0,则得到 (t)的变化量 Δ 为 = (t) - 6f (0) = £ iTfdt ,在所述每个步 长 rs内, 上式离散化为 Δ ( ) = 2^ +Δ (A- 1) ( 12)其中 k表示当前时刻, k-1 表示上一时刻。 下面详细介绍如何实现基本电压矢量的输出, 将所述参考电压矢量角度 的变化量 与所述三个基本电压矢量的输出角度比较, 根据比较的结果输出 相应的基本电压矢量。
参见图 9, 该图为本发明参考电压矢量角度的变化量与基本电压矢量输出 的角度比较第一示意图。 从图 9中可以看出, 随着 Δ 的增加, 比较可得, 当 Δ 小于 Δ 时, 输出基本电压矢量 ; 当 Δ 大于 Δ 并且小于 Δ +Δ 时, 输 出基本电压矢量 当 Δ 大于 Δ +Δ 并且小于 Δ +Δ +Δ 时, 输出基本电 压矢量 „。本发明可以根据实际需要, 调整角度的比较次序和比较数值, 达 到对基本电压矢量输出次序和方式的控制。
参见图 10, 该图为本发明参考电压矢量角度的变化量与基本电压矢量输 出的角度比较第二示意图。 图中首先比较的是 Δ , 相应先输出基本电压矢量 f2
当然也可以先比较 1/2*Δ , 相应输出基本电压矢量 然后比较 1/2* Δ + Δ ,相应输出基本电压矢量 , 再比较 1/2* Δ + Δ + Δ ,相应输出 基本电压矢量^ ^, 最后比较4 + 4 + 4 ,相应输出基本电压矢量 ^。
下面通过图 11来详细说明本发明的具体实现方法。 参见图 11 , 该图为本 发明基于空间矢量的同步调制方法第二实施例流程图。 所述方法包括以下步 骤:
S1101 :釆样参考电压矢量的频率 f, 由所述频率 f查频率与载波比的关系 表,得到载波比 N。所述釆样参考电压矢量的频率 f 是实时釆集或按照预先设 定的时间间隔釆集。
S1102: 由 Δ^ = 2 / 获得所述参考电压矢量经过的角度 由
^ = (N - l) xA 获得参考电压矢量调制的角度^ , N表示第几次釆样, 即第 几次釆样所述参考电压矢量, 每个扇区的釆样次数为 N/ 6。 所述参考电压矢量 经过的角度 就是同步调制需要输出的角度。
S1103: 才艮据调制比-频率曲线得到调制比 m。 调制比 -频率曲线参见图 2所示。
S1104: 由参考电压矢量调制的角度 、经过的角度 和调制比 m计算合 成所述参考电压矢量的三个基本电压矢量的输出角度。三个基本电压矢量的输 出角度之和为所述同步调制需要输出的角度。
S1105:设定所述参考电压矢量角度的变化量与所述三个基本电压矢量的 输出角度的比较次序和比较数值。本发明可以根据实际需要,调整角度的比较 次序和比较数值, 达到对基本电压矢量输出次序和方式的控制。 参见图 9和图 10, 两种不同比较次序和比较数值, 对应输出的基本电压矢量的次序和不同, 当然, 也可以改变比较数值, 得到输出的基本电压矢量的数值也不同。
S1106:启动定时器。
S1107:判断参考电压矢量角度的变化量 Δ 是否大于参考电压矢量经过的 角度 Δ 。 如果是, 执行 S1108, 否则执行 S1109。
S1108:取緩冲区数据, 并且置 Δ 为零。
S1109:计算 Δ 。 每次 置零后, 重新计算其数值, 由公式(12 )获得。 S1110:将所述参考电压矢量角度 ø的变化量 与所述三个基本电压矢量 的输出角度比较, 根据比较结果输出基本电压矢量。 例如, 参见图 9, 参考电 压矢量角度的变化量与基本电压矢量输出的角度比较第一示意图。从图中可以 看出, 随着 Δ 的增加, 比较可得, 当 Δ 小于 Δ 时, 输出基本电压矢量 ; 当 Δ 大于 Δ 并且小于 Δ +Δ 时, 输出基本电压矢量 当 Δ 大于 Δ +Δ 并且小于 Δ +Δ +Δ 时, 输出基本电压矢量^ ^。
S1111:判断定时器是否达到定时值。如果是,执行 S1107,否则执行 S1112。 S1112:緩冲区数据是否被取走。 如果是, 执行 S1113, 否则执行 Sllll。 S1113: Nj 。 表示进行下一次釆样, 即釆集下一个参考电压矢量的频 率。
S1114: Nth>NI6。 判断 ^是否大于 N/6 , 如果是, 执行 S1101, 否则执 行 S1104。 如果 N>N/6 , 表示本扇区已经走完, 指向下一个扇区, 并执行 S1101。
本发明实施例所述方法直接通过角度的比较, 控制基本电压矢量的输出, 不需要将角度换算成时间, 减少了计算步骤。 由于参考电压矢量的频率 f是实 时釆集或按照预先设定的时间间隔釆集, 计算 时, 釆用积分算法, 再借助 定时器控制 的计算时间, 时间越短, 计算结果越精确, 这样将频率 f的变 化也考虑了进来, 同步调制的角度能够更准确。 本方法中的公式(10)乘以角 度即是同步调制的输出角度,乘以时间则为异步调制的定时值,将 SVPWM异 步调制和同步调制的公式统一起来, 更有利于算法的实现。
本发明的同步调制方法适用于任意电平级数,计算过程不因电平级数的增 加而变得更复杂。
对于上述基于空间矢量的同步调制方法,本发明还提供了基于空间矢量的 同步调制的系统, 下面结合具体实施例来详细说明其组成部分。
参见图 12, 本发明基于空间矢量的同步调制系统第一实施例结构图。 所述系统包括给定设备 110和微处理器 220。
所述给定设备 110, 给定所述参考电压矢量的频率 f, 频率给定信号由电 位器给定, 经过模数转换器转换为数字信号,传递给所述微控制器 220的釆样 单元 1201。
所述微处理器 220是整个系统的核心,用来实现同步调制算法,具体包括: 釆样单元 1201、 第一计算单元 1202、 获得单元 1203、 第二计算单元 1204、 比 较单元 1205、 输出单元 1206。
釆样单元 1201 ,釆样所述给定设备 110给定的所述参考电压矢量的频率 f, 由所述频率 f查频率与载波比的关系表, 得到载波比 N。
第一计算单元 1202, 由 = 2 /W获得所述参考电压矢量经过的角度 由^ =(N-i)x^获得参考电压矢量调制的角度^, N表示第几次釆样, 即 第几次釆样所述参考电压矢量, 每个扇区的釆样次数为 N/ 6。 所述参考电压矢 量经过的角度 就是同步调制需要输出的角度。
获得单元 1203, 由调制比-频率曲线获得调制比 m。 参见图 2所示的调 制比 -频率曲线。
第二计算单元 1204, 由参考电压矢量调制的角度 、 经过的角度 和调 制比 m计算合成所述参考电压矢量的三个基本电压矢量的输出角度。
比较单元 1205, 将所述参考电压矢量角度 0的变化量 与所述三个基本 电压矢量的输出角度比较。
输出单元 1206, 用于根据比较结果输出基本电压矢量, 由所述基本电压 矢量合成与所述参考电压矢量一致的输出电压。
本发明通过比较单元 1205 将所述参考电压矢量角度 ^的变化量 与所 述三个基本电压矢量的输出角度进行比较, 输出单元 1206根据比较结果输出 基本电压矢量, 不需要将角度换算成时间, 而是直接以角度为基准进行计算, 减少了计算步骤, 便于同步调制的实现。
参见图 13, 本发明基于空间矢量的同步调制系统第二实施例结构图。 以 逆变系统为例来说明本发明的应用。 当然也可以应用在其他变流系统中, 例如 整流系统。本发明系统第二实施例与系统第一实施例的区别是增加了设定单元 1306、 第三计算单元 1307、 判断单元 1308。
设定单元 1306, 设定所述参考电压矢量角度 ^的变化量 与所述三个基 本电压矢量的输出角度的比较次序和比较数值;
第三计算单元 1307, 计算所述参考电压矢量角度 ^的变化量 Δ^ , 具体为 A6>f = 6>f(t) - (0) = [ ^dt, 其中设每个釆样初始时刻的 (0) = 0; 在所述每个 步长 7;内, 上式离散化为 Δ ( ) = 2^ +Δ (A- 1) , 其中 k表示当前时刻, k-1 表示上一时刻。
判断单元 1308, 在预先设置的每个步长 7;内, 判断所述参考电压矢量角 度 0的变化量 是否大于参考电压矢量经过的角度 如果是, 则提取緩冲 区的数据, 并置所述参考电压矢量角度 的变化量 为 0。
本发明实施例所述系统直接通过角度的比较, 控制输出基本电压矢量, 不 需要将角度换算成时间, 减少了计算步骤。 由于参考电压频率 f是实时釆集或 按照预先设定的时间间隔釆集, 计算 时, 釆用积分算法, 再通过设置计算 的步长;, 7;越小即时间越短, 计算结果越精确, 这样就可以将频率 f 的 变化考虑进来, 使得同步调制的角度更准确。
为了使本领域技术人员更充分实施本发明,下面结合本发明的实际应用来 详细说明本发明的实现。
本发明实施例所述的系统还可以包括非门 1311、 驱动电路 1312、 逆变器
1313、 及交流电机 1314。
所述非门 1311 , 将微处理器输出的开关信号取反。 从微处理器出来的信 号一路直接供给逆变器 1313的电力电子器件,一路经过所述非门 1311供给逆 变器 1313的同一个桥臂的另一个电力电子器件。
所述驱动电路 1312, 增强微处理器输出的开关信号的驱动能力。
所述逆变器 1313 , 将直流电压变为三相交流电压, 输送给交流电机 1314。 所述交流电机 1314, 为控制对象, 逆变器 1313输出的三相交流电压输送 给所述交流电机 1314 , 使交流电机 1314的旋转频率与给定的频率 f一致。
参见图 14 , 该图为本发明基于空间矢量的同步调制系统第二实施例的电 路原理图。 所述系统包括给定设备 1401、 控制设备 440、 逆变器 1405、 交流 电机 1406 , 其中所述控制设备 440包括微处理器 1402、 非门 1403、 驱动电路
1404。
给定设备 1401 , 给定所述参考电压矢量的频率 f, 频率给定信号由电位器 或信号发生器给定, 经过模数转换器转换为数字信号, 传递给所述微控制器 1402。
微处理器 1402, 是整个系统的核心, 实现同步调制算法。 将接收到的所 述参考电压矢量的频率 f, 通过同步调制算法, 输出相对应的基本电压矢量。 非门 1403 , 将微控制器 1402输出的开关信号取反。
驱动电路 1404 , 将微处理器 1402输出的开关信号放大。
逆变器 1405 , 将直流电压^ ^变换为三相交流电压 uu、 uv、 uw, 包括一个 滤波电容和 6个电力电子器件。 滤波电容用于保证直流电压的稳定, 电力电子 器件 D1和 D4、 D2和 D5、 D3和 D6分别组成一个桥臂, 用于控制一相电压 , 微处理器 1402输出的开关信号为 1时电力电子器件导通, 信号为 0则关断。 微处理器 1402输出的开关信号经过非门 1403取反, 分别送给 D4、 D5、 D6 , 开关信号直接送给 Dl、 D2、 D3 , 两个互补的信号控制一个桥臂。 三个桥臂由 微处理器 1402输出的三个开关信号 、 Sv . 控制, 、 Sv . 信号不同, 逆变器 1405输出不同的电压矢量, 控制交流电机 1406 , 使交流电机 1406旋 转的频率同给定设备 1401给定的频率 f一致。
下面结合图 6和图 14 , 以二电平电压空间矢量为例, 详细说明本发明同 步调制的实现。 例如, 图 14中的微处理器 1402输出的基本电压矢量为 ^。 参 见图 6 ,二电平 SVPWM的电压矢量分布图。 对应的开关信号为 110 , 即 、 Sv . 对应的开关状态分别为 1、 1、 0 , 对应的电力电子器件 Dl、 D2、 D3 状态分别为导通、 导通、 关断; 对应的电力电子器件 D4、 D5、 D6状态分别 为关断、 关断、导通。逆变器才艮据所述电力电子器件的开关状态将直流电压^ ^ 变换为三相交流电压 Uu、 U V、 Uw ·> 输送给交流电机 1406 , 使交流电机 1406 旋转的频率同给定设备 1401给定的频率 f一致, 实现同步调制。
由于参考电压频率 f是实时釆集或按照预先设定的时间间隔釆集, 计算参 考电压矢量的角度的变化量时, 釆用积分算法, 这样将频率 f的变化也考虑了 进来, 通过本系统同步调制的角度能够更准确。
本发明的同步调制系统适用于任意电平级数,计算过程不因电平级数的增 加而变得更复杂。
以上所述,仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的 限制。 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发明。 任何 熟悉本领域的技术人员, 在不脱离本发明技术方案范围情况下, 都可利用上述 揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰 ,或修改 为等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本 修改、等同变化及修饰, 均仍属 于本发明技术方案保护的范围内

Claims

权 利 要 求
1、 一种基于空间矢量的同步调制方法, 其特征在于, 包括:
釆样参考电压矢量的频率 f; 由所述频率 f查频率与载波比的关系表, 得 到载波比 N;
由 = 2 / N获得所述参考电压矢量经过的角度 ; 由^ = (Nth - 1) χ Δ 获 得参考电压矢量调制的角度^ , N表示第几次釆样;
才艮据调制比 -频率曲线得到调制比 m;
由参考电压矢量调制的角度 、 经过的角度 和调制比 m计算合成所述 参考电压矢量的三个基本电压矢量的输出角度;
将所述参考电压矢量角度 0的变化量 与所述三个基本电压矢量的输出 角度比较,根据比较结果输出基本电压矢量; 由所述基本电压矢量合成与所述 参考电压矢量一致的输出电压。
2、 根据权利要求 1所述的方法, 其特征在于, 所述釆样参考电压矢量的 频率 f 是实时釆集或按照预先设定的时间间隔釆集。
3、 根据权利要求 1所述的方法, 其特征在于, 由参考电压矢量调制的角 度^、 经过的角度 和调制比 计算合成所述参考电压矢量的三个基本电 压矢量的输出角度, 具体为:
Άθ, = Αθχ άι
< ΑΘ2 = Αθχ ά2,其中 Δ 、 Αθ2 , Δ 分别为所述三个基本电压矢量 、 V2 、 Αθ0 = Αθχ ά0 „输出的角度; 其中 、 d2、 为对于所述经过的角度 的占空比, 由
Figure imgf000020_0001
< d2 = 3m m(e 获得。
4、 根据权利要求 1 所述的方法, 其特征在于, 将所述参考电压矢量角度 的变化量 与所述三个基本电压矢量的输出角度比较, 根据比较结果输出 基本电压矢量, 包括
设定所述参考电压矢量角度 的变化量 与所述三个基本电压矢量的输 出角度的比较次序和比较数值; 在每个预先设置的步长 7;内, 判断所述参考电压矢量角度 0的变化量 是否大于参考电压矢量经过的角度 如果是, 则提取緩冲区的数据, 并设 置所述参考电压矢量角度 的变化量 为 0。
5、 根据权利要求 4所述的方法, 其特征在于, 按如下公式 4 = (0- (0) = £2 获得所述参考电压矢量角度 的变化量4 , 其中设 每个釆样初始时刻的 (0) = 0; 在每个所述步长 7;内, 离散化为 Aef (k) = 27fTs + Aef (k - \) , 其中 k表示当前时刻, k-1表示上一时刻。
6、 根据权利要求 4所述的方法, 其特征在于, 在判断所述参考电压矢量 角度 的变化量 是否大于参考电压矢量经过的角度 之后还包括以下步 骤: 判断所述緩冲区的数据是否被提取, 如果是, 则所述 ¾加 1 ; 判断 ^是 否大于 N/ 6 , 如果是, 则指向下一个扇区。
7、 一种基于空间矢量的同步调制系统, 其特征在于, 包括给定设备、 微 处理器;
所述给定设备, 用于给定参考电压矢量的频率 f;
所述微处理器, 用于实现同步调制算法, 包括以下单元,
釆样单元, 用于釆样所述给定参考电压矢量的频率 f; 由所述频率 f查频 率与载波比的关系表, 得到载波比 N;
第一计算单元, 用于由 Δ^ = 2 τ/ 计算所述参考电压矢量经过的角度 Δ 由^ = (N - 1) X 计算参考电压矢量调制的角度^ , Nth表示第几次釆样; 获得单元, 用于由调制比-频率曲线获得调制比 m;
第二计算单元, 用于由参考电压矢量调制的角度 、 经过的角度 和调 制比 m计算合成所述参考电压矢量的三个基本电压矢量的输出角度;
比较单元, 用于将所述参考电压矢量角度 ^的变化量 与所述三个基本 电压矢量的输出角度比较;
输出单元,用于根据比较结果输出基本电压矢量, 由所述基本电压矢量合 成与所述参考电压矢量一致的输出电压。
8、 根据权利要求 7所述的系统, 其特征在于, 所述系统还包括逆变器和 交流电机, 所述逆变器用于将直流电压^ ^变换为三相交流电压 Uu、 U V、 u w传 送给所述交流电机,控制交流电机的旋转频率与所述给定参考电压矢量的频率 f一致。
9、 根据权利要求 7所述的系统, 其特征在于, 所述第二计算单元, 用于 由参考电压矢量调制的角度 、 经过的角度 和调制比 m计算合成所述参考 电压矢量的三个基本电压矢量的输出角度, 具体为:
Άθ, =Αθχάι
Αθ2 =Αθχά2,其中 Δ 、 Αθ2, Δ 分别为所述三个基本电压矢量 、 V2 、 Αθη =Αθχάη „输出的角度; d、、 d7 , 为对于角度的占空比, 由 d2 =V3msin(6'm) 获
dn =\— d,— d 得。
10、根据权利要求 7所述的系统, 其特征在于, 所述微处理器还包括设定 单元和判断单元, 所述设定单元用于设定所述参考电压矢量角度 的变化量 与所述三个基本电压矢量的输出角度的比较次序和比较数值; 所述判断单 元用于, 在预先设置每个的步长 7;内, 判断所述参考电压矢量角度 ^的变化量 是否大于参考电压矢量经过的角度 如果是, 则取走緩冲区的数据, 并 置所述参考电压矢量角度 的变化量 为 0。
11、 根据权利要求 10所述的系统, 其特征在于, 所述微处理器还包括第 三计算单元, 用于由公式 Δ = 0fit) - (0) = [iTrfdt计算所述参考电压矢量角度 的变化量 Δ , 其中设每个釆样初始时刻的 (0) = 0; 在所述每个步长 7;内, 上式离散化为 Δ ( ) = 2^ +Δ 1) , 其中 k表示当前时刻, k-1表示上一时 刻。
12、 根据权利要求 7所述的系统, 其特征在于, 所述系统还包括非门和驱动电 路, 所述非门用于产生与输出单元输出的三个基本电压矢量相反的信号; 所述 驱动电路用于放大所述三个基本电压矢量。
PCT/CN2009/070448 2008-06-13 2009-02-17 一种基于空间矢量的同步调制方法及系统 WO2009149624A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011512814A JP5593310B2 (ja) 2008-06-13 2009-02-17 空間ベクトルベースの同期変調方法およびシステム
EP09761249.3A EP2290805B1 (en) 2008-06-13 2009-02-17 A space vector based synchronous modulating method and system
US12/997,792 US8450957B2 (en) 2008-06-13 2009-02-17 Space vector based synchronous modulating method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810111288.4 2008-06-13
CNB2008101112884A CN100557943C (zh) 2008-06-13 2008-06-13 一种基于空间矢量的同步调制方法

Publications (1)

Publication Number Publication Date
WO2009149624A1 true WO2009149624A1 (zh) 2009-12-17

Family

ID=40035257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070448 WO2009149624A1 (zh) 2008-06-13 2009-02-17 一种基于空间矢量的同步调制方法及系统

Country Status (5)

Country Link
US (1) US8450957B2 (zh)
EP (1) EP2290805B1 (zh)
JP (1) JP5593310B2 (zh)
CN (1) CN100557943C (zh)
WO (1) WO2009149624A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100557943C (zh) * 2008-06-13 2009-11-04 株洲南车时代电气股份有限公司 一种基于空间矢量的同步调制方法
CN101771380B (zh) * 2010-02-11 2013-09-25 哈尔滨工业大学(威海) 直接转矩控制的变频器空间矢量调制方法
CN101873077A (zh) * 2010-06-29 2010-10-27 上海大学 单驱动电源多电平电流型逆变电路及其控制装置和方法
CN101938251B (zh) * 2010-09-27 2012-09-05 株洲南车时代电气股份有限公司 一种交流异步传动系统动力输出方法
CN102843090B (zh) * 2011-06-21 2014-11-19 株洲南车时代电气股份有限公司 基于svpwm调制的永磁同步电机开环控制方法及系统
CN102361407B (zh) * 2011-10-20 2013-01-02 四川科陆新能电气有限公司 一种电压空间矢量脉宽调制方法
CN102510262B (zh) * 2011-11-01 2014-03-12 东南大学 变频调速控制器
CN102684529A (zh) * 2012-05-30 2012-09-19 无锡市大元广盛电气有限公司 一种空间电压矢量脉宽调制方法
KR101601444B1 (ko) 2014-07-04 2016-03-21 현대자동차주식회사 모터 구동 시스템의 인버터 6-스텝 제어 장치 및 방법
FR3024304B1 (fr) * 2014-07-25 2018-03-02 Somfy Sas Procede et unite de controle et/ou de protection d’un actionneur d’un equipement mobile d’un batiment
CN105375852A (zh) * 2015-11-30 2016-03-02 冶金自动化研究设计院 一种抑制逆变器分段同步调制电压电流冲击的方法
CN105450142B (zh) * 2015-12-16 2018-09-28 四川长虹电器股份有限公司 一种电机控制方法及空调
EP3479466B1 (en) * 2016-07-01 2023-03-29 ABB Schweiz AG Starting an induction machine
CN106788029B (zh) * 2016-12-22 2019-04-30 南京埃斯顿自动化股份有限公司 一种空间矢量过调制处理方法
CN110313125B (zh) * 2017-04-13 2023-02-28 深圳市海浦蒙特科技有限公司 控制力矩电机的方法及系统
CN107196543B (zh) * 2017-07-05 2018-07-27 合肥工业大学 共直流母线开绕组异步电机系统零序环流抑制方法
US10951146B1 (en) * 2019-09-09 2021-03-16 Karma Automotive Llc Method to improve output current harmonic distribution in a segmented drive system
CN110635736B (zh) * 2019-09-23 2021-08-24 北京机械设备研究所 一种永磁同步电机低功耗控制方法及控制电路
CN113359671B (zh) * 2019-11-01 2022-02-18 河南嘉晨智能控制股份有限公司 一种交流电机控制器的安全运行控制系统
CN113271027B (zh) * 2021-07-12 2021-09-17 希望森兰科技股份有限公司 一种二极管钳位的三电平逆变器高性能同步过调制算法
CN113676114B (zh) * 2021-07-23 2023-09-12 山东省科学院自动化研究所 基于电压矢量作用时间调节的三相电机直接转矩控制方法
CN114257224B (zh) * 2022-03-01 2022-05-20 浙江飞旋科技有限公司 同步优化脉宽调制的处理方法、装置及电子设备
CN114977957B (zh) * 2022-04-30 2024-04-19 宁波诺丁汉大学 基于微移动的铁氧体磁阻同步电机转子的初始角检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487658A (zh) * 2003-08-22 2004-04-07 清华大学 一种基于空间矢量调制的多电平逆变器的控制方法
JP2004120854A (ja) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd 電動機の制御装置
EP1722470A2 (de) 2005-05-13 2006-11-15 Schrödl, Manfred Verfahren und Schaltungsanordnung zur näherungsweisen Einstellung eines Spannungsraumzeigers
CN101009477A (zh) * 2007-01-15 2007-08-01 南京航空航天大学 基于电压空间矢量的调制方法
CN101174811A (zh) * 2007-10-19 2008-05-07 奇瑞汽车有限公司 一种采用空间矢量脉冲宽度调制的电机控制方法和装置
CN101291130A (zh) * 2008-06-13 2008-10-22 株洲南车时代电气股份有限公司 一种基于空间矢量的同步调制方法及系统
CN101330271A (zh) * 2008-08-01 2008-12-24 株洲南车时代电气股份有限公司 一种基于空间矢量的闭环同步调制方法及系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635609B2 (ja) * 1987-09-08 1997-07-30 株式会社東芝 インバータ装置の三相pwm信号発生回路
JP2830274B2 (ja) 1990-01-17 1998-12-02 株式会社明電舎 可変速駆動装置の電流制御方式
US5706186A (en) * 1996-09-23 1998-01-06 Allen-Bradley Company, Inc. Hybrid pulse width modulation method and apparatus
JP3346223B2 (ja) 1997-06-10 2002-11-18 株式会社日立製作所 モータ制御方法及びモータ制御システム
USRE38439E1 (en) * 1999-05-12 2004-02-24 Otis Elevator Company Control of a DC matrix converter
US6166930A (en) * 1999-05-12 2000-12-26 Otis Elevator Company Reduced common voltage in a DC matrix converter
US6058028A (en) * 1999-05-12 2000-05-02 Otis Elevator Company Control of a DC matrix converter
AU2001281851A1 (en) * 2000-07-17 2002-01-30 Abm Greiffenberger Antriebstechnik Gmbh Method for sensorless drive control of an electric vehicle and drive control operating according to said method
US6388419B1 (en) * 2000-09-01 2002-05-14 Ford Global Technologies, Inc. Motor control system
WO2002050989A1 (fr) * 2000-12-07 2002-06-27 Kabushiki Kaisha Yaskawa Denki Convertisseur pwm de calage au point neutre a trois niveaux et unite de commande de tension du point neutre
KR100488529B1 (ko) * 2003-05-20 2005-05-11 삼성전자주식회사 3상모터구동용 인버터의 제어장치 및 제어방법
DE102004038415A1 (de) 2004-07-30 2006-03-23 Aesculap Ag & Co. Kg Chirurgische Maschine und Verfahren zum Steuern und/oder Regeln einer chirurgischen Maschine
ES2624929T3 (es) * 2004-08-27 2017-07-18 Mitsubishi Denki Kabushiki Kaisha Generador de señal PWM de tres fases
EP1811641B1 (en) * 2006-01-23 2010-08-04 ABB Oy Method for starting pulse width modulation
JP4582125B2 (ja) * 2006-04-20 2010-11-17 ダイキン工業株式会社 電力変換装置
CN100454754C (zh) 2006-09-12 2009-01-21 冶金自动化研究设计院 采用pwm脉宽调制同步切换的电压型变频调速系统及其方法
DE102006052042A1 (de) * 2006-10-30 2008-05-15 Bombardier Transportation Gmbh Steuerung und/oder Regelung eines 3-Phasen-Stromrichters für den Betrieb einer Asynchronmaschine
ITVA20070010A1 (it) * 2007-01-17 2008-07-18 St Microelectronics Srl Metodo e relativo dispositivo per determinare i tre duty cycle dei segnali pwm di controllo di un inverter
US7683568B2 (en) * 2007-09-28 2010-03-23 Rockwell Automation Technologies, Inc. Motor drive using flux adjustment to control power factor
DE102008018885A1 (de) * 2008-04-14 2009-10-22 Sew-Eurodrive Gmbh & Co. Kg Leiterplatte, Verfahren zur Bestimmung eines Stromraumzeigers, Umrichter, Leiterplatte und Baureihe von Umrichtern
JP5471255B2 (ja) * 2009-09-30 2014-04-16 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
JP5252229B2 (ja) * 2009-10-02 2013-07-31 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
US8339094B2 (en) * 2010-03-11 2012-12-25 GM Global Technology Operations LLC Methods, systems and apparatus for overmodulation of a five-phase machine
EP2469692B1 (en) * 2010-12-24 2019-06-12 ABB Research Ltd. Method for controlling a converter
US8446117B2 (en) * 2011-01-03 2013-05-21 GM Global Technology Operations LLC Methods, systems and apparatus for adjusting duty cycle of pulse width modulated (PWM) waveforms
US8742712B2 (en) * 2011-01-26 2014-06-03 GM Global Technology Operations LLC Methods, systems and apparatus for controlling third harmonic voltage when operating a multi-phase machine in an overmodulation region

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120854A (ja) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd 電動機の制御装置
CN1487658A (zh) * 2003-08-22 2004-04-07 清华大学 一种基于空间矢量调制的多电平逆变器的控制方法
EP1722470A2 (de) 2005-05-13 2006-11-15 Schrödl, Manfred Verfahren und Schaltungsanordnung zur näherungsweisen Einstellung eines Spannungsraumzeigers
CN101009477A (zh) * 2007-01-15 2007-08-01 南京航空航天大学 基于电压空间矢量的调制方法
CN101174811A (zh) * 2007-10-19 2008-05-07 奇瑞汽车有限公司 一种采用空间矢量脉冲宽度调制的电机控制方法和装置
CN101291130A (zh) * 2008-06-13 2008-10-22 株洲南车时代电气股份有限公司 一种基于空间矢量的同步调制方法及系统
CN101330271A (zh) * 2008-08-01 2008-12-24 株洲南车时代电气股份有限公司 一种基于空间矢量的闭环同步调制方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KULKA D ET AL., DIRECT TORQUE CONTROLLING TECHNIQUE WITH SYNCHRONOUS OPTIMIZED PULSE PATTERN
LUK P C K ET AL., A LOW COST PC-BASED USER INTERACTIVE INDUCTION MOTOR DRIVE SYSTEM
See also references of EP2290805A4

Also Published As

Publication number Publication date
JP2011523340A (ja) 2011-08-04
US20110110413A1 (en) 2011-05-12
JP5593310B2 (ja) 2014-09-17
CN101291130A (zh) 2008-10-22
EP2290805B1 (en) 2017-05-17
US8450957B2 (en) 2013-05-28
EP2290805A1 (en) 2011-03-02
EP2290805A4 (en) 2015-06-24
CN100557943C (zh) 2009-11-04

Similar Documents

Publication Publication Date Title
WO2009149624A1 (zh) 一种基于空间矢量的同步调制方法及系统
WO2009049501A1 (fr) Procédé et dispositif de commande de moteur utilisant une modulation de largeur d&#39;impulsion à vecteur spatial
US6462491B1 (en) Position sensorless motor control apparatus
CN103633910B (zh) 一种用于软起动的电压空间矢量控制装置及其控制方法
CN113661648B (zh) 确定无刷永磁电机的转子的位置的方法
US9716454B2 (en) Driving circuit and driving method for permanent magnet synchronous motor
US9419549B2 (en) Method and apparatus for controlling an electric machine in a six-step mode
CN102790575B (zh) 基于电流预测的永磁同步电机控制方法及系统
CN102263531A (zh) 控制电机转矩的方法和装置
JP2753288B2 (ja) Pwmインバータの制御方法およびその制御装置ならびにpwmインバータシステム
JP2003111472A (ja) グラウンド基準電圧制御された電気機械のためのスイッチング方法
JP2007028891A (ja) モーター制御方法とその装置
JP2012235659A (ja) 回転機の制御装置
CN104038114A (zh) 单绕组直流无刷电机的正弦波电压驱动系统及其控制方法
US20170040921A1 (en) Voltage sense control circuit, voltage sense control driving circuit and driving method for permanent magnet synchronous motor
CN105207514B (zh) 一种用于多相变频器的多相平顶波的生成方法
Cai Implementation and Analysis of Direct Torque Control for Permanent Magnet Synchronous Motor Using Gallium Nitride based Inverter
Djahbar et al. Control strategy of three-phase matrix converter fed induction motor drive system
JP5696572B2 (ja) 回転機の制御装置
JP2007252139A (ja) 電動機制御装置および電動機制御方法
Zhang et al. A position sensorless control strategy for brushless DC motor based on bus current hysteresis loop
Chen et al. Models and simulation of the switched reluctance motor drive system
WO2023037579A1 (ja) インバータ制御装置、電動パワーステアリングシステム、電動車両システム
JP2010193566A (ja) モータ制御装置
WO2023195172A1 (ja) モータ制御装置、モータ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09761249

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12997792

Country of ref document: US

Ref document number: 2011512814

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009761249

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009761249

Country of ref document: EP