WO2009128494A1 - Cmp用研磨液及び研磨方法 - Google Patents
Cmp用研磨液及び研磨方法 Download PDFInfo
- Publication number
- WO2009128494A1 WO2009128494A1 PCT/JP2009/057641 JP2009057641W WO2009128494A1 WO 2009128494 A1 WO2009128494 A1 WO 2009128494A1 JP 2009057641 W JP2009057641 W JP 2009057641W WO 2009128494 A1 WO2009128494 A1 WO 2009128494A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- cmp
- colloidal silica
- silica particles
- interlayer insulating
- Prior art date
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 282
- 238000000034 method Methods 0.000 title claims abstract description 54
- 239000002245 particle Substances 0.000 claims abstract description 123
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 81
- 239000008119 colloidal silica Substances 0.000 claims abstract description 64
- 239000011229 interlayer Substances 0.000 claims abstract description 55
- 239000011164 primary particle Substances 0.000 claims abstract description 29
- 238000009826 distribution Methods 0.000 claims abstract description 11
- 238000002296 dynamic light scattering Methods 0.000 claims abstract description 8
- 238000004438 BET method Methods 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 81
- 229910052751 metal Inorganic materials 0.000 claims description 70
- 239000002184 metal Substances 0.000 claims description 70
- 230000004888 barrier function Effects 0.000 claims description 44
- 239000002002 slurry Substances 0.000 claims description 43
- 239000000758 substrate Substances 0.000 claims description 42
- 239000004020 conductor Substances 0.000 claims description 40
- 239000010410 layer Substances 0.000 claims description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000007800 oxidant agent Substances 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 229910044991 metal oxide Inorganic materials 0.000 claims description 13
- 150000004706 metal oxides Chemical class 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- -1 tungsten nitride Chemical class 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 229920000620 organic polymer Polymers 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- 229910001362 Ta alloys Inorganic materials 0.000 claims description 3
- 229910001080 W alloy Inorganic materials 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 150000003482 tantalum compounds Chemical class 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 150000003304 ruthenium compounds Chemical class 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 150000003609 titanium compounds Chemical class 0.000 claims description 2
- 150000003658 tungsten compounds Chemical class 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 abstract description 16
- 239000011163 secondary particle Substances 0.000 abstract description 8
- 238000007517 polishing process Methods 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 90
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 21
- 238000002156 mixing Methods 0.000 description 17
- 239000004065 semiconductor Substances 0.000 description 14
- 239000002904 solvent Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910000881 Cu alloy Inorganic materials 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000013329 compounding Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000002156 adsorbate Substances 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229960002449 glycine Drugs 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical group C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical group 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000013905 glycine and its sodium salt Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N guanidine group Chemical group NC(=N)N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 description 1
- 239000001230 potassium iodate Substances 0.000 description 1
- 229940093930 potassium iodate Drugs 0.000 description 1
- 235000006666 potassium iodate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 150000003536 tetrazoles Chemical group 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/04—Lapping machines or devices; Accessories designed for working plane surfaces
- B24B37/042—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
- B24B37/044—Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
Definitions
- the present invention relates to a polishing liquid for CMP and a polishing method used for polishing in a wiring formation process of a semiconductor device.
- CMP chemical mechanical polishing
- the so-called damascene method is mainly employed, in which a thin film of copper or copper alloy is deposited and embedded on an insulating film in which grooves are formed in advance, and the thin film other than the grooves is removed by CMP to form embedded wiring.
- This technique is disclosed in Patent Document 2, for example.
- a general method of metal CMP for polishing a conductive material such as copper or copper alloy is to apply a polishing pad (also called polishing cloth) on a circular polishing surface plate (platen) and polish the surface of the polishing pad for metal. While immersing in the liquid, press the surface of the substrate on which the metal film is formed against the surface of the polishing pad, rotate the polishing platen while applying a predetermined pressure (hereinafter referred to as polishing pressure) to the metal film from the back surface of the polishing pad, The metal film on the convex portion is removed by relative mechanical friction between the polishing liquid and the convex portion of the metal film.
- polishing pressure a predetermined pressure
- the metal polishing liquid used in CMP is generally composed of an oxidizer and abrasive particles, and a metal oxide solubilizer and a protective film forming agent are further added as necessary. It is considered that the basic mechanism is to first oxidize the surface of the metal film with an oxidizing agent and scrape the oxidized layer with abrasive particles.
- Non-Patent Document 1 Since the oxide layer on the metal surface of the recess does not touch the polishing pad so much and the effect of scraping off by the abrasive particles does not reach, the metal layer of the protrusion is removed and the substrate surface is flattened with the progress of CMP. This detail is disclosed in Non-Patent Document 1, for example.
- etching polishing liquid
- the polishing rate by CMP is improved by adding a metal oxide solubilizer
- the oxide layer on the metal film surface in the recess is also etched to expose the metal film surface
- the metal film surface is further oxidized by the oxidant, and this is repeated.
- the etching of the metal film in the recesses proceeds.
- a phenomenon occurs in which the central portion of the surface of the metal wiring embedded after polishing is depressed like a dish (hereinafter referred to as dishing), and the planarization effect is impaired.
- a protective film forming agent is further added.
- the protective film forming agent forms a protective film on the oxide layer on the surface of the metal film and prevents dissolution of the oxide layer in the polishing liquid.
- This protective film can be easily scraped off by abrasive particles, and it is desirable not to decrease the polishing rate by CMP.
- BTA benzoic acid
- protective film forming agent composed of aminoacetic acid or amide sulfuric acid such as glycine.
- a conductive material 3 made of a metal layer for wiring such as copper or a copper alloy is disposed under the conductive material 3 for preventing diffusion of copper into the interlayer insulating film 1 and improving adhesion.
- a layer of barrier metal 2 (hereinafter also referred to as a barrier layer) is formed.
- the barrier metal 2 for example, a tantalum compound such as tantalum, a tantalum alloy, or tantalum nitride is used.
- the CMP process it is necessary to remove the exposed barrier metal 2 by CMP in a portion other than the wiring portion in which the conductive material is embedded.
- barrier metals 2 are higher in hardness than the conductive material 3, even when a polishing material for the conductive material is combined, a sufficient polishing rate cannot be obtained, and flatness often deteriorates. . Therefore, a first step of polishing the conductive material 3 from the state of FIG. 1A to FIG. 1B and a second step of polishing the barrier metal 2 from the state of FIG. 1B to FIG. 1C.
- a two-stage polishing method consisting of processes has been studied.
- the second polishing step of polishing the barrier metal 2 it is common to polish a part of the thickness of the convex interlayer insulating film 1 in order to improve flatness (over polishing).
- a silicon oxide film has been mainly used as the interlayer insulating film 1, but recently, in order to improve the performance of LSI, use of a silicon-based material or an organic polymer having a lower dielectric constant than that of the silicon oxide film has been attempted. Examples include organosilicate glass starting from trimethylsilane, which is a k (low dielectric constant) film, and a fully aromatic ring-based low-k film.
- the polishing rate of the barrier metal 2 and the interlayer insulating film 1 is preferably high in order to shorten the polishing process time and improve the throughput.
- the dispersion stability tends to deteriorate, and the settling of abrasive particles tends to occur. That is, when the polishing liquid is used after being stored for a certain period of time, there is a problem that the polishing rate of the interlayer insulating film tends to decrease and flatness cannot be obtained. Accordingly, a barrier layer polishing rate equivalent to that of a conventional barrier layer polishing liquid and a sufficiently high polishing rate for the interlayer insulating film are required.
- the present invention has good dispersion stability of abrasive particles in the CMP polishing liquid, can polish the interlayer insulating film at a high polishing rate, and maintains the characteristics while polishing the barrier layer.
- An object of the present invention is to provide a polishing slurry for CMP having a high speed.
- Another object of the present invention is to provide a polishing method in the manufacture of a semiconductor device or the like that is excellent in miniaturization, thinning, dimensional accuracy, electrical characteristics, high reliability, and low cost.
- the present invention uses colloidal silica particles as abrasive particles, the average primary particle diameter of the colloidal silica is within a predetermined range, It was found that having a shape close to a true sphere and being slightly associated in the polishing slurry for CMP are important factors.
- the present invention provides: A polishing slurry for CMP containing a medium and colloidal silica particles dispersed in the medium, wherein the colloidal silica particles are provided under the following conditions (1) to (3); (1) A biaxial average primary particle diameter (R 1 ) of 35 to 55 nm when 20 arbitrary particles are selected from images obtained by observing the colloidal silica particles with a scanning electron microscope (SEM). (2) The specific surface area calculation value (S 0 ) of a true sphere having the same particle diameter as the biaxial average primary particle diameter (R 1 ) obtained in (1) above, and the colloidal silica particles measured by the BET method.
- SEM scanning electron microscope
- the value (S 1 / S 0 ) obtained by dividing the specific surface area (S 1 ) is 1.20 or less.
- a CMP polishing liquid capable of polishing an interlayer insulating film at high speed can be obtained, and throughput can be improved by shortening the polishing process time.
- the polishing method of the present invention in which chemical mechanical polishing is performed using this polishing slurry for CMP is highly productive, has excellent miniaturization, thinning, dimensional accuracy, electrical characteristics, and high reliability. Suitable for manufacturing electronic devices.
- FIG. 1 is a schematic cross-sectional view of a general damascene process.
- FIG. 1 (a) is a state before polishing
- FIG. 1 (b) is a case where a wiring metal (conductive material) is polished until a barrier layer is exposed.
- FIG. 1C shows a state in which polishing is performed until the convex portions of the interlayer insulating film are exposed.
- FIG. 2 is an example of a particle shape for which the biaxial average primary particle diameter is calculated.
- FIGS. 3A to 3D are schematic cross-sectional views illustrating an example of a wiring layer forming process in a semiconductor device.
- FIG. 4 is a schematic cross-sectional view of an example of overpolishing in the second polishing step.
- the polishing slurry for CMP of the present invention comprises a medium and colloidal silica particles as abrasive particles dispersed in the medium.
- the colloidal silica particles include the following (1) to (3 ) The conditions indicated; (1) A biaxial average primary particle diameter (R 1 ) of 35 to 55 nm when 20 arbitrary particles are selected from images obtained by observing the colloidal silica particles with a scanning electron microscope (SEM). (2) The specific surface area calculation value (S 0 ) of a true sphere having the same particle diameter as the biaxial average primary particle diameter (R 1 ) obtained in (1) above, and the colloidal silica particles measured by the BET method.
- the value (S 1 / S 0 ) obtained by dividing the specific surface area (S 1 ) is 1.20 or less.
- the blending amount of the colloidal silica particles is preferably 2.0 to 8.0% by mass with respect to 100% by mass of the polishing slurry for CMP.
- colloidal silica particles (I. Colloidal silica particles) (Ii. Biaxial average primary particle diameter)
- colloidal silica added to the CMP polishing liquid of the present invention those having relatively good dispersion stability in the polishing liquid and a relatively small number of polishing flaws generated by CMP are preferable.
- particles having a biaxial average primary particle diameter of 35 nm or more and 55 nm or less obtained from the result of observation of 20 arbitrary particles with a scanning electron microscope are preferable, and colloidal silica of 40 nm to 50 nm is more preferable.
- the biaxial average primary particle size is 35 nm or more, the polishing rate of the interlayer insulating film is improved, and when it is 55 nm or less, the dispersion stability in the polishing liquid tends to be good.
- the biaxial average primary particle size is determined as follows. First, an appropriate amount of colloidal silica (generally having a solid content of 5 to 40 wt%) dispersed in water is weighed into a container. Next, a chip obtained by cutting a wafer with pattern wiring into 2 cm square is immersed in the container for about 30 seconds. The chip is taken out, transferred to a container containing pure water, rinsed for about 30 seconds, and the chip is blown dry with nitrogen. Thereafter, the chip is placed on a sample stage for SEM observation, an acceleration voltage of 10 kV is applied, the particles are observed at a magnification of 100,000, and an image is taken. Any 20 images are selected from the obtained images.
- the selected particle has a shape as shown in FIG. 2, a rectangle (circumscribed rectangle 5) that circumscribes the particle 4 and has the longest diameter is guided. Then, the major axis of the circumscribed rectangle 5 is L, the minor axis is B, and the biaxial average primary particle diameter of one particle is calculated as (L + B) / 2. This operation is performed on 20 arbitrary particles, and the average value obtained is referred to as the biaxial average primary particle diameter (R 1 ) in the present invention.
- the colloidal silica used in the polishing liquid of the present invention has a degree of association of particles of 1.30 or less in that a preferable polishing rate of the interlayer insulating film is obtained and the dispersion stability in the polishing liquid is excellent.
- the degree of association is the ratio between the secondary particle diameter (Rs) of the colloidal silica particles and the biaxial average primary particle diameter (R 1 ) described in the section (Ii), that is, Rs / R 1 It shall be indicated by the value of.
- the secondary particle diameter (Rs) is diluted with water as necessary so that an appropriate amount of the polishing slurry for CMP is taken and falls within the range of scattered light intensity required by the dynamic light scattering particle size distribution analyzer. To adjust the measurement sample. Next, this measurement sample is put into a dynamic light scattering particle size distribution analyzer, and the value obtained as D50 is taken as the average particle diameter.
- a dynamic light scattering type particle size distribution meter having such a function for example, model number N5 manufactured by Coulter, Inc. may be mentioned.
- a sample can be prepared from a slurry containing colloidal silica by the above-described method, and the secondary particle size can be measured.
- the fact that the degree of association of colloidal silica is small means that the unit particles are close to a sphere, and in the constant polishing target surface (wafer surface) where the unit particles are present in the polishing liquid, The number that can be contacted increases.
- the degree of association is 1 and the degree of association is 2
- the degree of association 1 is higher than that of the degree of association 2. Since the number concentration is doubled, more unit particles can contact the wafer surface. Therefore, it is considered that the polishing rate of the interlayer insulating film is increased.
- the polishing rate of the interlayer insulating film is higher for the particles closer to the sphere because the area where one particle can contact the polishing surface becomes larger.
- the colloidal silica used in the polishing slurry for CMP of the present invention is preferably a particle closer to a sphere. From this viewpoint, the measured value of the BET specific surface area obtained by the measurement and the theoretical value of the specific surface area when the particle is a true sphere are obtained, and the ratio between the two (measured value / theoretical value; hereinafter referred to as the sphericity) Is a small requirement. Specifically, the sphericity is preferably 1.20 or less, more preferably 1.15 or less, and even more preferably 1.13 or less.
- the biaxial average primary particle diameter (R 1 ) obtained from the result of observing 20 arbitrary abrasive particles with a scanning electron microscope is determined by the method in the column (Ii).
- R 1 [m] represents the biaxial average primary particle diameter
- d [g / m 3 ] represents the density of the particles.
- the density d can be measured using a gas phase substitution method, and a value of 2.05 ⁇ 10 6 [g / m 3 ] can be used as the true density of the colloidal silica particles.
- the measured value (S 1 ) of the specific surface area of the actual particles is obtained.
- a general measurement method there is a BET method.
- an inert gas such as nitrogen is physically adsorbed on the surface of solid particles at a low temperature, and the specific surface area can be estimated from the molecular cross-sectional area and adsorbed amount of the adsorbate.
- NOVA-1200 manufactured by Yuasa Ionics
- a gas adsorption specific surface area / pore distribution measurement device is measured by a constant volume method using nitrogen gas as an adsorption gas, and obtained as an Area.
- the value obtained is defined as the BET specific surface area.
- the above is measured twice, and the average value is defined as the BET specific surface area in the present invention.
- the molecular layer physical adsorption amount v at a certain adsorption equilibrium pressure P is expressed by the following equation (2).
- P / v (P s -P) at three points of 0.1, 0.2, and 0.3 were measured as relative pressure measurement points, and obtained from the slope and intercept of the obtained straight line.
- the specific surface area is obtained by multiplying v m by the area occupied by nitrogen molecules (m 2 ) and the Avogadro number (pieces / mol).
- the total surface area of the particles contained in the powder per unit mass is the specific surface area.
- the colloidal silica parameters such as the biaxial average primary particle diameter, the degree of association, and the sphericity can be controlled to some extent based on the knowledge of the colloidal silica manufacturer. Is available.
- two or more kinds of abrasive particles can be used in combination as long as the above properties are satisfied.
- the fact that the sphericity of colloidal silica is close to 1 means that the particle is close to a sphere, and the particle in the polishing liquid has a certain polishing target surface (wafer surface).
- the area that can be contacted increases.
- the surface shape is smooth compared to when the sphericity is large, so that more area can be in contact with the wafer surface than when the shape is uneven. become. Therefore, it is considered that the polishing rate of the interlayer insulating film is increased.
- the blending amount of colloidal silica in the CMP polishing liquid is preferably 2.0 to 8.0% by mass with respect to 100% by mass of the CMP polishing liquid. If the amount of colloidal silica having the above characteristics is 2.0% by mass or more, a good polishing rate for the interlayer insulating film tends to be obtained, and if it is 8.0% by mass or less, the particles are aggregated and settled. Tends to be more suppressed, and as a result, good dispersion stability and storage stability tend to be obtained.
- the compounding amount here is a compounding amount in a state of being prepared in a state that can be used in the CMP polishing step, and is not a compounding amount at the time of separation storage or concentration storage described later.
- the CMP polishing liquid of the present invention is characterized in that the interlayer insulating film can be polished at high speed. However, it is preferable to keep the polishing rate of the conductive material and the barrier metal at a favorable value in order to be suitably used in the over-polishing step in the barrier metal polishing described later.
- the pH of the polishing liquid of the present invention is preferably 1.5 to 5.5. If pH is 1.5 or more, it becomes easy to suppress the corrosion with respect to an electroconductive substance, and it becomes easy to suppress the dishing resulting from an electroconductive substance being grind
- the medium for the polishing liquid for CMP is not particularly limited, but a medium containing water as a main component is preferable, and more specifically, deionized water, ion-exchanged water, ultrapure water, or the like is preferable.
- an organic solvent other than water may be added as necessary.
- These organic solvents can be used as a solubilizing agent for components that are difficult to dissolve in water, or can be used for the purpose of improving the wettability of the polishing slurry for CMP to the surface to be polished.
- These techniques are disclosed in International Publication WO03 / 038883 pamphlet, International Publication WO00 / 39844 pamphlet and the like, and the disclosure contents thereof are incorporated herein by reference.
- the organic solvent in the polishing slurry for CMP of this invention The thing which can be mixed with water arbitrarily is preferable and can be used individually by 1 type or in mixture of 2 or more types.
- organic solvent used as a solubilizer examples include alcohols and polar solvents such as acetic acid.
- alcohols and polar solvents such as acetic acid.
- polar solvents such as acetic acid.
- examples include pyrrolidone, ethyl acetate, ethyl lactate, and sulfolane.
- it is at least one selected from glycol monoethers, alcohols, and carbonates.
- the blending amount of the organic solvent is preferably 0.1 to 95% by mass, more preferably 0.2 to 50% by mass with respect to 100% by mass of the polishing slurry for CMP.
- the content is preferably 0.5 to 10% by mass. If the blending amount is 0.1% by mass or more, the effect of improving the wettability of the polishing liquid to the substrate tends to be obtained, and if it is 95% by mass or less, handling of the CMP polishing liquid becomes difficult. This is preferable in terms of the manufacturing process.
- the blending amount of water may be the remainder, and there is no particular limitation as long as it is contained. Further, it is also used as a diluent for diluting a concentrated and stored polishing liquid described later to a concentration suitable for use.
- the CMP polishing liquid of the present invention contains a metal oxide solubilizer and a metal oxidizer (hereinafter simply referred to as an oxidizer) for the main purpose of obtaining a polishing rate for the conductive material and the barrier metal. Can do. Further, when the pH of the polishing slurry for CMP is low, there is a possibility that etching of the conductive material may occur. Therefore, a metal anticorrosive can be contained for the purpose of suppressing this. Hereinafter, these components will be described.
- the metal oxide solubilizer that can be used in the polishing slurry for CMP of the present invention is used for the purpose of adjusting pH and dissolving a conductive substance, and is not particularly limited as long as it has the function.
- Specific examples include organic acids, organic acid esters, organic acid salts, inorganic acids, inorganic acid salts, and the like.
- a typical example of the salt is an ammonium salt.
- organic acids such as formic acid, malonic acid, malic acid, tartaric acid, citric acid, salicylic acid, and adipic acid are preferable in that the etching rate can be effectively suppressed while maintaining a practical CMP rate.
- an inorganic acid such as sulfuric acid is preferable because a high polishing rate for the conductive material is easily obtained.
- metal oxide solubilizers can be used alone or in combination of two or more, and the organic acid and the inorganic acid may be used in combination.
- the blending amount is 0.001% by mass or more with respect to 100% by mass of the CMP polishing liquid in that a good polishing rate for the conductive material and the barrier metal is easily obtained. It is preferable to set it as 0.002 mass% or more, and it is especially preferable to set it as 0.005 mass% or more. Further, since it tends to suppress etching and prevent the polishing surface from being roughened, the blending amount is preferably 20% by mass or less, more preferably 10% by mass or less, and more preferably 5% by mass. % Or less is particularly preferable.
- the metal anticorrosive agent that can be used in the polishing slurry for CMP of the present invention is not particularly limited as long as it has a protective film-forming ability with respect to a conductive substance.
- a triazole skeleton examples thereof include those having a pyrazole skeleton, those having a pyramidine skeleton, those having an imidazole skeleton, those having a guanidine skeleton, those having a thiazole skeleton, those having a tetrazole skeleton, and the like. These can be used alone or in combination of two or more.
- the blending amount of the metal anticorrosive is preferably 0.001% by mass or more and 0.002% by mass or more with respect to 100% by mass of the CMP polishing liquid in order to obtain the effect. More preferred. Moreover, it is preferable to set it as 10 mass% or less at the point which suppresses a grinding
- the oxidizing agent that can be used in the polishing slurry for CMP of the present invention is not particularly limited as long as it has the ability to oxidize the conductive material.
- hydrogen peroxide, nitric acid, hydrogen peroxide examples thereof include potassium iodate, hypochlorous acid, ozone water, etc.
- hydrogen peroxide is particularly preferable. These can be used alone or in combination of two or more.
- the substrate is a silicon substrate including an integrated circuit element
- contamination with alkali metal, alkaline earth metal, halide, or the like is not desirable, so an oxidizing agent that does not contain a nonvolatile component is desirable.
- hydrogen peroxide is most suitable because ozone water has a severe compositional change over time. Note that in the case where the substrate to be applied is a glass substrate or the like that does not include a semiconductor element, an oxidizing agent that includes a nonvolatile component may be used.
- the blending amount is preferably 0.001% by mass or more, and 0.005% by mass with respect to 100% by mass of the CMP polishing liquid from the viewpoint of obtaining an oxidizing action on the metal. % Or more, more preferably 0.01% by mass or more. Moreover, it is preferable to set it as 50 mass% or less at the point which can suppress the roughness which may arise on a grinding
- hydrogen peroxide is used as the oxidant, it can be usually obtained as hydrogen peroxide solution, so the hydrogen peroxide solution is blended so that the hydrogen peroxide finally falls within the above range.
- the CMP polishing liquid of the present invention has the great features that the polishing rate for the interlayer insulating film is high and the margin as the polishing liquid material is wide. That is, when the type and amount of one component are changed in order to improve one characteristic of a polishing slurry for CMP, a delicate balance between various components is lost and another characteristic tends to deteriorate. was there. For example, when the type of component is changed in order to improve the flatness of the surface after polishing, the polishing rate, which is the most important factor, may decrease.
- the polishing slurry for CMP of the present invention has a high effect of improving the polishing performance (particularly the polishing rate) by the abrasive particles, it is easy to adjust the characteristics with other components.
- various types of polishing liquids can be obtained by changing the types and addition amounts of the components described as “IV. Other components”. This means that the polishing rate for the interlayer insulating film is not significantly affected even if the polishing rate of the conductive material or the barrier metal is increased or decreased using known knowledge. Therefore, by changing the other components, the polishing rate of the barrier metal and the conductive material is higher than the polishing rate of the conductive material. It becomes easy to obtain a so-called non-selective CMP polishing liquid of the same level.
- polishing liquid of the present invention a relatively high polishing rate of the interlayer insulating film can be obtained even with a relatively small amount of added abrasive particles, which is advantageous in terms of cost.
- the polishing liquid can be concentrated to a high concentration. That is, the slurry containing colloidal silica particles and one or two liquids containing components other than the colloidal silica particles can be stored separately, and mixed and used in the CMP polishing step.
- the blending amount of the colloidal silica particles can be adjusted to 2.0 to 8.0% by mass with respect to 100% by mass of the CMP polishing liquid.
- the polishing rate can be adjusted to a preferred value, but this may reduce the stability of the abrasive particles.
- the polishing liquid of the present invention is divided into a slurry containing at least the colloidal silica and an additive liquid containing other components (for example, a component capable of reducing the dispersion stability of the colloidal silica).
- an additive liquid containing other components for example, a component capable of reducing the dispersion stability of the colloidal silica.
- the polishing liquid containing the colloidal silica, metal oxide solubilizer, oxidizer, metal anticorrosive and water the oxidizing agent that may affect the dispersion stability of the colloidal silica is separated from the colloidal silica. Can be saved.
- the colloidal silica used in the polishing slurry for CMP of the present invention has the characteristics that the biaxial average primary particle diameter, the degree of association, and the sphericity are in the ranges described so far, so that the dispersibility is extremely excellent. , And can be dispersed in a medium at a high concentration.
- the conventional colloidal silica has a limit of about 10% by mass even when the dispersibility is enhanced by a known method, and when added more than this, coagulation sedimentation occurs.
- the colloidal silica used in the polishing slurry for CMP of the present invention can be dispersed in the medium by 10% by mass or more, and can be easily dispersed in the medium up to about 12% by mass.
- the CMP polishing liquid of the present invention can be transported / stored in a highly concentrated state, which is extremely advantageous in terms of process.
- it when it is used as a polishing slurry for CMP containing 5% by mass of colloidal silica, it means that it can be concentrated three times during storage / transport.
- a concentrated slurry containing at least 10% by mass of the colloidal silica, an additive solution containing other components, and a diluted solution are mixed immediately before the polishing step, or A CMP polishing liquid can be obtained by supplying while adjusting the flow rate so as to obtain a desired concentration during polishing.
- the diluent may contain components other than colloidal silica.
- a concentrated slurry, a hydrogen peroxide solution as a diluent containing an oxidizing agent, and an additive solution containing other components It is also possible to divide.
- the polishing liquid of the present invention as described above can be applied to the formation of a wiring layer in a semiconductor device.
- it can be used for CMP on a substrate having a conductive material layer, a barrier metal layer, and an interlayer insulating film.
- the polishing method of the present invention includes an interlayer insulating film having a concave portion and a convex portion on a surface, a layer of a barrier metal that covers the interlayer insulating film along the surface, and a conductive material that fills the concave portion and covers the barrier metal.
- a part of the thickness of the convex portion of the interlayer insulating film may be further polished and flattened from the end point at which the convex interlayer insulating film is exposed. Then, chemical mechanical polishing is performed while supplying the CMP polishing liquid of the present invention in the second polishing step.
- the conductive material examples include copper, copper alloy, copper oxide or copper alloy oxide, tungsten, tungsten alloy, silver, gold, and the like, which are mainly composed of metal, and copper is the main component. Is preferred.
- the conductive material layer a film in which the material is formed by a known sputtering method or plating method can be used.
- interlayer insulating film examples include a silicon-based film and an organic polymer film.
- silicon-based coating examples include silicon dioxide, fluorosilicate glass, organosilicate glass obtained using trimethylsilane or dimethoxydimethylsilane as a starting material, silicon oxynitride, silica-based coating such as silsesquioxane hydride, silicon carbide, and the like. And silicon nitride.
- the organic polymer film may be a wholly aromatic low dielectric constant interlayer insulating film.
- organosilicate glass is preferable.
- These films are formed by CVD, spin coating, dip coating, or spraying.
- Specific examples of the insulating film include an interlayer insulating film in an LSI manufacturing process, particularly a multilayer wiring forming process.
- the barrier metal layer is formed to prevent diffusion of a conductive material into the interlayer insulating film and to improve the adhesion between the insulating film and the conductive material.
- Tantalum, tantalum nitride, tantalum alloy, other tantalum compounds, titanium examples include titanium nitride, titanium alloys, other titanium compounds, tungsten, tungsten nitride, tungsten alloys, other tungsten compounds, at least one barrier metal selected from ruthenium and other ruthenium compounds, and a laminated film containing the barrier metal. It is done.
- an apparatus for polishing for example, when polishing with a polishing pad, a general apparatus having a holder that can hold a substrate to be polished and a surface plate that is connected to a motor capable of changing the number of rotations and has a polishing pad attached thereto.
- a simple polishing apparatus can be used.
- polishing pad general nonwoven fabric, foamed polyurethane, porous fluororesin, etc. can be used, and there is no particular limitation.
- the polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 200 min ⁇ 1 or less so that the substrate does not jump out.
- the polishing pressure on the polishing pad of the semiconductor substrate having the surface to be polished is preferably 1 to 100 kPa, and 5 to 50 kPa in order to satisfy the uniformity in the wafer surface of the CMP rate and the flatness of the pattern. It is more preferable.
- CMP polishing liquid is continuously supplied to the polishing pad by a pump or the like.
- a pump or the like it is preferable that the surface of a polishing pad is always covered with polishing liquid.
- the substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like. It is preferable to perform a chemical mechanical polishing process according to the present invention and to add a substrate cleaning process.
- the polishing method of the present invention can be applied to the formation of a wiring layer in a semiconductor device, for example.
- an interlayer insulating film 1 such as silicon dioxide is laminated on a silicon substrate 6.
- a predetermined pattern of concave portions 7 is formed on the surface of the interlayer insulating film by known means such as resist layer formation and etching to have convex portions and concave portions.
- Interlayer insulating film is used.
- a barrier metal 2 such as tantalum covering the interlayer insulating film is formed on the interlayer insulating film along the irregularities of the surface by vapor deposition or CVD.
- three layers of conductive material made of a wiring metal such as copper, which covers the barrier metal so as to fill the concave portion, are formed by vapor deposition, plating, CVD or the like.
- the formation thickness of the interlayer insulating film 1, the barrier metal 2 and the conductive material 3 is preferably about 0.01 to 2.0 ⁇ m, 1 to 100 nm, and 0.01 to 2.5 ⁇ m, respectively.
- the conductive material 3 layer on the surface of the semiconductor substrate is formed using, for example, the conductive material polishing liquid having a sufficiently high polishing rate ratio of the conductive material / barrier metal. Polishing by CMP (first polishing step).
- CMP first polishing step
- the desired barrier pattern is obtained in which the convex barrier metal on the substrate is exposed on the surface and the conductive material film is left in the concave.
- the obtained pattern surface can be polished as a surface to be polished for the second polishing step in the polishing method of the present invention using the CMP polishing liquid of the present invention.
- the exposed barrier metal and the conductive material of the recess are formed by chemical mechanical polishing using the polishing liquid of the present invention capable of polishing the conductive material, the barrier metal, and the interlayer insulating film. To polish.
- the entire interlayer insulating film under the convex barrier metal is exposed, leaving the conductive material layer serving as a wiring layer in the concave portion, and the barrier metal is formed at the boundary between the convex portion and the concave portion.
- the polishing is finished when a desired pattern having an exposed cross section is obtained.
- overpolishing for example, when the time until a desired pattern is obtained in the second polishing step is 100 seconds, In addition to polishing for 100 seconds, polishing for an additional 50 seconds may be referred to as over-polishing 50%), and polishing may be performed to a depth including a part of the convex interlayer insulating film.
- over-polished portion 8 is indicated by a dotted line.
- An interlayer insulating film and a second-layer metal wiring are further formed on the metal wiring formed in this manner, an interlayer insulating film is formed again between and on the wiring, and then polished to obtain a semiconductor substrate. Make the surface smooth throughout. By repeating this process a predetermined number of times, a semiconductor device having a desired number of wiring layers can be manufactured (not shown).
- the CMP polishing liquid of the present invention is not only for polishing the silicon compound film formed on the semiconductor substrate as described above, but also for inorganic substances such as silicon oxide film, glass, silicon nitride formed on a wiring board having predetermined wiring.
- Optical glass such as insulating films, optical masks such as photomasks, lenses, and prisms, inorganic conductive films such as ITO, glass and crystalline materials, optical integrated circuits, optical switching elements, optical waveguides, optical fiber end faces, scintillator optics, etc.
- polishing substrates such as single crystals for solids, single crystals for solid lasers, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, and magnetic heads.
- colloidal silica AK is 5.0% by mass
- malic acid is 0.5% by mass as a metal oxide solubilizer, and is used as a metal anticorrosive.
- Each material was mixed so that it might become 0.1 mass% of benzotriazole, 0.5 mass% of hydrogen peroxide as an oxidizing agent, and 93.9 mass% of water, and the polishing liquid for CMP was prepared.
- the hydrogen peroxide used was 30% hydrogen peroxide and added so as to have the above blending ratio.
- Each value of the biaxial average primary particle diameter (R 1 ), sphericity S 1 / S 0 , and degree of association (Rs / R 1 ) of colloidal silicas A to K is as shown in Table 1.
- (I-2) Preparation of polishing liquid for CMP for evaluating dispersion stability
- the blending amount of the abrasive particles is changed from 5.0% by mass to 12% by mass.
- a polishing slurry for CMP was prepared in the same manner as in (I-1) except that the blending amount of was changed from 93.9% by mass to 86.9% by mass.
- Biaxial average primary particle diameter (R 1 )
- the colloidal silicas A to K were first weighed in containers in a state where they were normally dispersed in water. Next, a chip obtained by cutting the wafer with pattern wiring into 2 cm square was immersed in the container for about 30 seconds. The chip was taken out and rinsed with pure water for about 30 seconds, and the chip was blown with nitrogen. Thereafter, the chip was placed on a sample stage for SEM observation, an acceleration voltage of 10 kV was applied, particles were observed at a magnification of 100,000 times with a scanning electron microscope, and an image was taken.
- a rectangle (circumscribed rectangle) that circumscribes the selected particle and is arranged so that the major axis is the longest is derived.
- the major axis of the circumscribed rectangle 5 is L
- the minor axis is B
- the axial average primary particle size was calculated. This operation was carried out on 20 arbitrary particles, and the average value of the obtained values was determined and used as the biaxial average primary particle diameter (R 1 ).
- the specific surface area (S 1 ) of the colloidal silica particles measured by the BET method was determined. That is, about 100 g of colloidal silica A to K dispersed in water was put in a dryer and dried at 150 ° C. to obtain silica particles. About 0.4 g of the obtained silica particles were put into a measuring cell of a BET specific surface area measuring device (NOVA-1200 Yuasa Ionics) and vacuum deaerated at 150 ° C. for 60 minutes. Measurement was performed by a constant volume method using nitrogen gas as the adsorption gas, and the value obtained as Area was defined as the BET specific surface area. The above was measured twice, and the average value was defined as the BET specific surface area (S 1 ) in the present invention.
- NOVA-1200 Yuasa Ionics BET specific surface area measuring device
- Polishing and cleaning equipment CMP polishing machine (Applied Materials, product name MIRRA) -Polishing pad: Polyurethane foam resin-Surface plate rotation speed: 93 times / min -Head rotation speed: 87 times / min ⁇ Polishing pressure: 14 kPa ⁇ Abrasive supply amount: 200 ml / min ⁇ Polishing time: 60 seconds (Blanket substrate) Blanket substrate (a): A silicon substrate in which silicon dioxide having a thickness of 1000 nm is formed by a CVD method.
- Blanket substrate (c) A silicon substrate on which a copper film having a thickness of 1600 nm is formed by sputtering.
- the polishing rate was determined for each of the three types of blanket substrates after polishing and cleaning as follows.
- the film thickness before and after polishing was measured using a film thickness measuring device RE-3000 (manufactured by Dainippon Screen Mfg. Co., Ltd.), and was determined from the film thickness difference.
- the film thickness before and after polishing was measured using a metal film thickness measuring device (model number VR-120 / 08S manufactured by Hitachi Kokusai Electric Co., Ltd.), and the difference in film thickness I asked for it.
- Table 1 shows the polishing rate measurement results.
- Comparative Examples 1 to 8 are not colloidal silica particles that satisfy all of the prescribed particle properties (1) to (3). These dispersion stability was good and bad, and the polishing rate of the interlayer insulating film was about 40 to 70 nm / min.
- polishing particle amount of polishing liquid for CMP of Example 1 (Examination of polishing particle amount of polishing liquid for CMP of Example 1)
- the compounding amount of abrasive particles of the polishing slurry for CMP using colloidal silica of Example 1 is changed from 5.0% by mass to 3.0% by mass, and the compounding amount of water is increased from 93.9% by mass to 96.9% by mass.
- a polishing slurry for CMP (Example 4) was prepared in the same manner as in (I-1) except that the changes were made.
- the polishing rate of the two-component silicon dioxide blanket substrate (a), tantalum nitride blanket substrate (b), and copper blanket substrate (c) was evaluated by the evaluation method described above. The results are shown in Table 2 together with the results of Example 1.
- the polishing rate of the interlayer insulating film is about 81 to 102 nm / min, even when the blending amount of the abrasive particles of the CMP polishing liquid of Example 1 is changed to some extent, which is higher than that of Comparative Examples 1 to 8. It was confirmed that polishing was possible.
- a CMP polishing liquid capable of polishing an interlayer insulating film at high speed can be obtained, and throughput can be improved by shortening the polishing process time.
- polishing method of the present invention in which chemical mechanical polishing is performed using this polishing slurry for CMP is highly productive, has excellent miniaturization, thinning, dimensional accuracy, electrical characteristics, and high reliability. Suitable for manufacturing electronic devices.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
媒体と、前記媒体に分散しているコロイダルシリカ粒子とを含有するCMP用研磨液であって、前記コロイダルシリカ粒子は、下記(1)~(3)に示される条件;
(1)前記コロイダルシリカ粒子を走査型電子顕微鏡(SEM)により観察した画像から任意の20個を選択したときの二軸平均一次粒子径(R1)が35~55nm
(2)前記(1)で求めた二軸平均一次粒子径(R1)と同じ粒径を有する真球体の比表面積計算値(S0)で、BET法により測定された前記コロイダルシリカ粒子の比表面積(S1)を割った値(S1/S0)が1.20以下
(3)CMP用研磨液中における、動的光散乱方式粒度分布計により測定された前記コロイダルシリカ粒子の二次粒子径(Rs)と、前記(1)で求めた二軸平均一次粒子径(R1)との比(会合度:Rs/R1)が1.30以下
の全てを満たす場合に、優れた特性を有し、さらに前記コロイダルシリカ粒子の配合量がCMP用研磨液100質量%に対して2.0~8.0質量%でより優れた特性を有することを見いだしたものである。
(1)前記コロイダルシリカ粒子を走査型電子顕微鏡(SEM)により観察した画像から任意の20個を選択したときの二軸平均一次粒子径(R1)が35~55nm
(2)前記(1)で求めた二軸平均一次粒子径(R1)と同じ粒径を有する真球体の比表面積計算値(S0)で、BET法により測定された前記コロイダルシリカ粒子の比表面積(S1)を割った値(S1/S0)が1.20以下
(3)CMP用研磨液中における、動的光散乱方式粒度分布計により測定された前記コロイダルシリカ粒子の二次粒子径(Rs)と、前記(1)で求めた二軸平均一次粒子径(R1)との比(会合度:Rs/R1)が1.30以下
の全てを満たすCMP用研磨液である。前記コロイダルシリカ粒子の配合量は、CMP用研磨液100質量%に対して2.0~8.0質量%であると好ましい。
(I-i.二軸平均一次粒子径)
本発明のCMP用研磨液に添加するコロイダルシリカとしては、研磨液中での分散安定性が比較的良く、CMPにより発生する研磨傷の発生数の比較的少ないものが好ましい。具体的には、任意の粒子20個を走査型電子顕微鏡により観察した結果から得られる二軸平均一次粒子径が35nm以上、55nm以下の粒子であることが好ましく、40nm~50nmのコロイダルシリカがより好ましい。二軸平均一次粒子径が35nm以上であると層間絶縁膜の研磨速度が向上し、また55nm以下であると、研磨液中での分散安定性が良好になる傾向がある。
本発明の研磨液に使用されるコロイダルシリカは、好ましい層間絶縁膜の研磨速度が得られ、また研磨液中での分散安定性に優れる点で、粒子の会合度が1.30以下であるものが好ましく、会合度が1.25以下である粒子であるものがより好ましい。本発明では、会合度は、コロイダルシリカ粒子の二次粒子径(Rs)と、前記(I-i)欄で述べた二軸平均一次粒子径(R1)との比、すなわちRs/R1の値で示すものとする。
本発明のCMP用研磨液に使用するコロイダルシリカは、より球体に近い粒子である方が好ましい。この観点で、測定により得られるBET比表面積の測定値と、仮に粒子が真球であった場合の比表面積の理論値をもとめ、両者の比(測定値/理論値。以下真球度という)が小さいことを要件とする。具体的には、前記真球度は、1.20以下であることが好ましく、1.15以下であることがより好ましく、1.13以下であることがさらに好ましい。
(式(1)中、R1[m]は前記二軸平均一次粒子径を示し、d[g/m3]は前記粒子の密度を示す。)
前記密度dは、気相置換法を用いて測定することができ、コロイダルシリカ粒子の真密度としては、2.05×106[g/m3]との値を用いることができる。
ここで、Psは測定温度における吸着質気体の飽和蒸気圧、vmは単分子層吸着量(mol/g)、cは定数である。(2)式を変形すると、
P/v(Ps-P)=1/vmc+(c-1)/vmc・P/Ps ・・・(3)
上式より、P/v(Ps-P)を相対圧力P/Psに対してプロットすれば直線が得られる。例えば、相対圧力測定点として、0.1、0.2、および0.3の3点でのP/v(Ps-P)を測定して、得られた直線の傾きおよび切片から求めたvmに窒素分子の占有面積(m2)とアボガドロ数(個/mol)を掛けたものが比表面積となる。単位質量あたりの粉体に含まれる粒子の表面積の総和が比表面積である。
CMP用研磨液中のコロイダルシリカの配合量は、CMP用研磨液100質量%に対して、2.0~8.0質量%とすることが好ましい。前記の特性を有するコロイダルシリカの配合量が2.0質量%以上であれば、層間絶縁膜に対する良好な研磨速度が得られる傾向があり、8.0質量%以下であれば、粒子の凝集沈降がより抑制しやすくなり、結果として良好な分散安定性・保存安定性が得られる傾向にある。なお、ここでの配合量とは、CMP研磨工程に使用しうる状態に調製した状態での配合量であり、後述する分液保存時又は濃縮保存時の配合量ではない。
本発明のCMP用研磨液は、層間絶縁膜を高速に研磨できることを特長とする。しかしながら、後述するバリア金属の研磨においてオーバー研磨する工程に好適に使用するためには、導電性物質及びバリア金属の研磨速度も良好な値に保つことが好ましい。このような点で本発明の研磨液のpHは、1.5~5.5であることが好ましい。pHが1.5以上であれば、導電性物質に対する腐食を抑制しやすくなり、導電性物質が過剰に研磨されることに起因するディッシングを抑制しやすくなる。また酸性が強すぎる場合と比較して、取り扱いが容易になる。また、pHが5.5以下であれば、導電性物質及びバリア金属に対しても良好な研磨速度を得ることができる。
CMP用研磨液の媒体としては、特に制限されないが、水を主成分とするものが好ましく、より具体的には、脱イオン水、イオン交換水、超純水等が好ましい。
本発明のCMP用研磨液は、導電性物質及びバリア金属に対する研磨速度を得ることを主な目的として、さらに酸化金属溶解剤や、金属の酸化剤(以下、単に酸化剤という)を含有することができる。また、CMP用研磨液のpHが低い場合には、導電性物質のエッチングが生じる恐れがあるため、これを抑制する目的で金属防食剤を含有することができる。以下、これらの成分について説明する。
前記で説明してきたような酸化金属溶解剤などの成分を含むことによって、研磨速度を好ましい値に調整することができるが、これによって研磨粒子の安定性が低下することがある。これを避けるために、本発明の研磨液は、少なくとも前記のコロイダルシリカを含むスラリと、それ以外の成分(例えば、コロイダルシリカの分散安定性を低下させうる成分)を含む添加液とに分けて保存することができる。例えば、前記のコロイダルシリカ、酸化金属溶解剤、酸化剤、金属防食剤及び水を含有する研磨液の場合、コロイダルシリカの分散安定性に影響を与える可能性がある酸化剤をコロイダルシリカと分けて保存することができる。
本発明のCMP用研磨液に使用されるコロイダルシリカは、二軸平均一次粒子径、会合度及び真球度がこれまで説明した範囲にあるため、分散性に極めて優れるという特性を有しており、媒体に高濃度に分散させることができる。従来のコロイダルシリカは、公知の方法で分散性を高めた場合であってもせいぜい10質量%程度の含有量が限界であり、これ以上添加すると凝集沈降が起こる。しかしながら、本発明のCMP用研磨液に使用されるコロイダルシリカは、10質量%以上媒体に分散させることができ、12質量%程度までは容易に媒体に分散させることが可能である。また、最大で18質量%程度まで分散させることが可能である。このことは、本発明のCMP用研磨液が高い濃縮状態で運搬/保存できることを意味しており、プロセス上極めて有利である。例えば、コロイダルシリカを5質量%含有するCMP用研磨液として使用する場合、保存/運搬時は3倍濃縮が可能であることを意味する。
以上のような本発明の研磨液を、半導体デバイスにおける配線層の形成に適用できる。例えば導電性物質の層と、バリア金属の層、層間絶縁膜を有する基板へのCMPに使用することができる。
(I-1)CMP用研磨液の調製
研磨粒子(砥粒)として、コロイダルシリカA~Kを5.0質量%、酸化金属溶解剤としてリンゴ酸を0.5質量%、金属の防食剤としてベンゾトリアゾールを0.1質量%、酸化剤として過酸化水素を0.5質量%及び水93.9質量%となるように各材料を混合してCMP用研磨液を調製した。なお、上記過酸化水素は30%過酸化水素水を使用し、前記配合比となるように添加した。コロイダルシリカA~Kの二軸平均一次粒子径(R1)、真球度S1/S0、会合度(Rs/R1)の各値は、表1に示されるとおりである。
研磨液中の研磨粒子の分散安定性を評価するために、研磨粒子の配合量を5.0質量%から12質量%に、水の配合量を93.9質量%から86.9質量%に変更した以外は、前記(I-1)と同様にしてCMP用研磨液を調製した。
なお、表1中、コロイダルシリカA~Kの特性は、下記のようにして調べた。
コロイダルシリカA~Kを、まず、それぞれ通常水に分散している状態で、容器に適量量り取った。次に、その容器に、パターン配線付きウェハを2cm角に切ったチップを約30秒浸した。前記チップを取り出して純水で約30秒間すすぎ、そのチップを窒素ブロー乾燥した。その後、前記チップをSEM観察用の試料台に乗せ、加速電圧10kVを掛け、走査型電子顕微鏡10万倍の倍率にて粒子を観察、画像を撮影した。
コロイダルシリカA~Kについて、BET法により測定されたコロイダルシリカ粒子の比表面積(S1)を求めた。すなわち、水に分散しているコロイダルシリカA~Kおよそ100gを乾燥機に入れて、150℃にて乾燥させてシリカ粒子を得た。得られたシリカ粒子およそ0.4gを、BET比表面積測定装置(NOVA-1200ユアサアイオニクス製)の測定セルに入れて150℃で60分間、真空脱気した。吸着ガスとして窒素ガスを用いる定容法で測定し、Areaとして得られる値をBET比表面積とした。上記を2回測定し、その平均値を本発明におけるBET比表面積(S1)とした。
実施例1~3及び比較例1~8の研磨液について、動的光散乱方式による粒度分布計(コールタ社の型番N5型)を用いて、次のようにコロイダルシリカA~Kの研磨液中における二次粒子径の平均値を求め、これをRsとした。すなわち、CMP用研磨液を適量量り取り、粒度分布計が必要とする散乱光強度の範囲に入るように必要に応じて水で希釈して測定サンプルを調製した。次にこの測定サンプルを、粒度分布計に投入し、D50として得られる値を二次粒子径の平均値(Rs)とした。
(II-1:研磨速度)
前記(I-1)で得られた研磨液を用いて、下記研磨条件で、3種類のブランケット基板(ブランケット基板a~c)を研磨・洗浄した。
・研磨、洗浄装置:CMP用研磨機(アプライドマテリアルズ社製、製品名MIRRA)
・研磨パッド:発泡ポリウレタン樹脂
・定盤回転数:93回/min
・ヘッド回転数:87回/min
・研磨圧力:14kPa
・研磨液の供給量:200ml/min
・研磨時間:60秒
(ブランケット基板)
・ブランケット基板(a):
厚さ1000nmの二酸化ケイ素をCVD法で形成したシリコン基板。
厚さ200nmの窒化タンタル膜をスパッタ法で形成したシリコン基板。
厚さ1600nmの銅膜をスパッタ法で形成したシリコン基板。
前記(I-2)で調製した分散安定性評価用CMP用研磨液を、それぞれ60℃の恒温槽に2週間保管した後、研磨液中の研磨粒子についての沈降の有無を目視で確認することで、研磨液中の研磨粒子の分散安定性を評価した。結果を表1に示す。
実施例1~3のコロイダルシリカを用いたCMP用研磨液においては、分散安定性は良好であり、層間絶縁膜の研磨速度が90~97nm/min程度と高速に研磨できることが確認された。
実施例1のコロイダルシリカを用いたCMP用研磨液の研磨粒子の配合量を5.0質量%から3.0質量%に、水の配合量を93.9質量%から96.9質量%に変更した以外は、前記(I-1)と同様にしてCMP用研磨液(実施例4)を調製した。また、研磨粒子の配合量を5.0質量%から7.0質量%に、水の配合量を93.9質量%から90.9質量%に変更した以外は、前記(I-1)と同様にしてCMP用研磨液(実施例5)を調製した。
2 バリア層
3 導電性物質
4 粒子
5 外接長方形
6 基板
7 凹部
8 オーバー研磨された部分
L 外接長方形の長径
B 外接長方形の短径
Claims (12)
- 媒体と、前記媒体に分散しているコロイダルシリカ粒子とを含むCMP用研磨液であって、
前記コロイダルシリカ粒子は下記(1)~(3)の条件
(1)前記コロイダルシリカ粒子を走査型電子顕微鏡により観察した画像から任意の20個を選択したときの二軸平均一次粒子径(R1)が35~55nm
(2)前記(1)で求めた二軸平均一次粒子径(R1)と同じ粒径を有する真球体の比表面積計算値(S0)で、BET法により測定された前記コロイダルシリカ粒子の比表面積(S1)を割った値(S1/S0)が1.20以下
(3)CMP用研磨液中における、動的光散乱方式粒度分布計により測定された前記コロイダルシリカ粒子の二次粒子径(Rs)と、前記(1)で求めた二軸平均一次粒子径(R1)との比(会合度:Rs/R1)が1.30以下
を満たすCMP用研磨液。 - 前記コロイダルシリカ粒子は、配合量がCMP用研磨液100質量%に対して2.0~8.0質量%である請求項1記載のCMP用研磨液。
- さらに、酸化金属溶解剤及び水を含む請求項1または2記載のCMP用研磨液。
- pHが1.5以上、5.5以下である請求項1~3のいずれか記載のCMP用研磨液。
- さらに、金属の酸化剤を含む請求項1~4のいずれか記載のCMP用研磨液。
- さらに、金属の防食剤を含む請求項1~5のいずれか記載のCMP用研磨液。
- コロイダルシリカ粒子を含むスラリと、コロイダルシリカ粒子以外の成分を含む一又は二の液とに分けて保存されるCMP用研磨液であって、CMP研磨工程に使用しうる状態に調合した場合に、前記コロイダルシリカ粒子の配合量が、CMP用研磨液100質量%に対して2.0~8.0質量%である請求項1~6のいずれか記載のCMP用研磨液。
- 表面に凹部及び凸部を有する層間絶縁膜と、前記層間絶縁膜を表面に沿って被覆するバリア金属の層と、前記凹部を充填してかつバリア金属を被覆する導電性物質層とを有する基板を研磨する研磨方法であって、
導電性物質層を研磨して前記凸部のバリア金属を露出させる第1の研磨工程と、少なくともバリア金属及び凹部の導電性物質層を研磨する第2の研磨工程を含み、
前記第2の研磨工程で請求項1~7のいずれか記載のCMP用研磨液を供給しながら化学機械研磨して凸部の層間絶縁膜を露出させる研磨方法。 - 層間絶縁膜が、シリコン系被膜又は有機ポリマ膜である請求項8記載の研磨方法。
- 導電性物質が、銅を主成分とする請求項8又は9記載の研磨方法。
- バリア金属が、前記層間絶縁膜へ前記導電性物質が拡散するのを防ぐバリア金属であって、タンタル、窒化タンタル、タンタル合金、その他のタンタル化合物、チタン、窒化チタン、チタン合金、その他のチタン化合物、タングステン、窒化タングステン、タングステン合金、その他のタングステン化合物、ルテニウム、その他のルテニウム化合物から選ばれる少なくとも1種を含む請求項8~10のいずれか記載の研磨方法。
- 第2の研磨工程でさらに凸部の層間絶縁膜の厚さの一部を研磨する請求項8~11のいずれか記載の研磨方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010508241A JP5513372B2 (ja) | 2008-04-16 | 2009-04-16 | Cmp用研磨液及び研磨方法 |
CN2009801132039A CN102007577B (zh) | 2008-04-16 | 2009-04-16 | Cmp用研磨液以及研磨方法 |
KR1020127015181A KR101263626B1 (ko) | 2008-04-16 | 2009-04-16 | Cmp용 연마액 및 연마방법 |
KR1020127015180A KR101263625B1 (ko) | 2008-04-16 | 2009-04-16 | Cmp용 연마액 및 연마방법 |
US12/937,463 US20110027997A1 (en) | 2008-04-16 | 2009-04-16 | Polishing liquid for cmp and polishing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-106740 | 2008-04-16 | ||
JP2008106740 | 2008-04-16 | ||
JP2009000875 | 2009-01-06 | ||
JP2009-000875 | 2009-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009128494A1 true WO2009128494A1 (ja) | 2009-10-22 |
Family
ID=41199181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/057641 WO2009128494A1 (ja) | 2008-04-16 | 2009-04-16 | Cmp用研磨液及び研磨方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110027997A1 (ja) |
JP (2) | JP5513372B2 (ja) |
KR (3) | KR101263625B1 (ja) |
CN (3) | CN102768954B (ja) |
TW (2) | TWI485234B (ja) |
WO (1) | WO2009128494A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014069139A1 (ja) * | 2012-11-02 | 2014-05-08 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
JP2015521380A (ja) * | 2012-05-07 | 2015-07-27 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | N−複素環を含む化合物を含むcmp(化学的機械研磨)組成物の存在下での、iii−v材料の化学的機械研磨(cmp)を含む半導体デバイスの製造方法 |
JP2017178644A (ja) * | 2016-03-29 | 2017-10-05 | 日立化成株式会社 | エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材 |
JP2018104547A (ja) * | 2016-12-26 | 2018-07-05 | ニッタ・ハース株式会社 | 研磨用スラリー |
JPWO2018012173A1 (ja) * | 2016-07-15 | 2019-05-30 | 株式会社フジミインコーポレーテッド | 研磨用組成物、研磨用組成物の製造方法および研磨方法 |
JPWO2018012176A1 (ja) * | 2016-07-15 | 2019-05-30 | 株式会社フジミインコーポレーテッド | 研磨用組成物、研磨用組成物の製造方法および研磨方法 |
WO2023212981A1 (zh) * | 2022-05-06 | 2023-11-09 | 长鑫存储技术有限公司 | 化学机械研磨工艺方法与装置 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100291840A1 (en) * | 2009-05-12 | 2010-11-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for conditioning chemical mechanical polishing apparatus using multiple conditioning disks |
TWI506129B (zh) * | 2011-09-15 | 2015-11-01 | Planar Solutions Llc | 均質摻合技術 |
TWI453273B (zh) * | 2011-11-07 | 2014-09-21 | Uwiz Technology Co Ltd | 研漿組成物及其用途 |
WO2013069623A1 (ja) * | 2011-11-08 | 2013-05-16 | 株式会社 フジミインコーポレーテッド | 研磨用組成物 |
US9309442B2 (en) * | 2014-03-21 | 2016-04-12 | Cabot Microelectronics Corporation | Composition for tungsten buffing |
WO2016032145A1 (ko) * | 2014-08-26 | 2016-03-03 | 주식회사 케이씨텍 | 연마 슬러리 조성물 |
KR101660384B1 (ko) * | 2014-10-30 | 2016-09-27 | 주식회사 케이씨텍 | 연마 슬러리 조성물 |
KR101854499B1 (ko) * | 2015-04-24 | 2018-05-04 | 삼성에스디아이 주식회사 | 구리 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 연마방법 |
JP6377656B2 (ja) * | 2016-02-29 | 2018-08-22 | 株式会社フジミインコーポレーテッド | シリコン基板の研磨方法および研磨用組成物セット |
CN108061737A (zh) * | 2017-12-06 | 2018-05-22 | 北京工业大学 | 一种锡基钎料互连焊点的电子背散射衍射样品的制备方法 |
SG10201904669TA (en) | 2018-06-28 | 2020-01-30 | Kctech Co Ltd | Polishing Slurry Composition |
WO2020091242A1 (ko) * | 2018-10-31 | 2020-05-07 | 영창케미칼 주식회사 | 구리 배리어층 연마용 슬러리 조성물 |
JP7453874B2 (ja) * | 2020-07-30 | 2024-03-21 | 芝浦メカトロニクス株式会社 | 基板処理方法、および基板処理装置 |
KR20220109659A (ko) | 2021-01-29 | 2022-08-05 | 에스케이실트론 주식회사 | 파이널 폴리싱 장치 |
KR102620964B1 (ko) * | 2021-07-08 | 2024-01-03 | 에스케이엔펄스 주식회사 | 반도체 공정용 연마 조성물 및 이를 이용한 연마된 물품의 제조방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08153780A (ja) * | 1995-04-24 | 1996-06-11 | Mitsubishi Materials Shilicon Corp | 半導体基板 |
JP2002141314A (ja) * | 2000-08-21 | 2002-05-17 | Toshiba Corp | 化学機械研磨用スラリおよび半導体装置の製造方法 |
JP2002338232A (ja) * | 2001-05-18 | 2002-11-27 | Nippon Chem Ind Co Ltd | 二次凝集コロイダルシリカとその製造方法及びそれを用いた研磨剤組成物 |
JP2007242839A (ja) * | 2006-03-08 | 2007-09-20 | Adeka Corp | 金属cmp用研磨組成物 |
JP2007266500A (ja) * | 2006-03-29 | 2007-10-11 | Toshiba Corp | タッチアップcmp用スラリーおよび半導体装置の製造方法 |
JP2008016678A (ja) * | 2006-07-06 | 2008-01-24 | Mitsui Chemicals Inc | 研磨用組成物 |
JP2008034818A (ja) * | 2006-07-05 | 2008-02-14 | Hitachi Chem Co Ltd | 貴金属類膜研磨用研磨液及び貴金属類膜の研磨方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4944836A (en) * | 1985-10-28 | 1990-07-31 | International Business Machines Corporation | Chem-mech polishing method for producing coplanar metal/insulator films on a substrate |
US4954142A (en) * | 1989-03-07 | 1990-09-04 | International Business Machines Corporation | Method of chemical-mechanical polishing an electronic component substrate and polishing slurry therefor |
JP3397501B2 (ja) * | 1994-07-12 | 2003-04-14 | 株式会社東芝 | 研磨剤および研磨方法 |
JP2000306873A (ja) * | 1999-04-20 | 2000-11-02 | Tokuyama Corp | 研磨方法 |
JP4264781B2 (ja) * | 1999-09-20 | 2009-05-20 | 株式会社フジミインコーポレーテッド | 研磨用組成物および研磨方法 |
KR100481651B1 (ko) * | 2000-08-21 | 2005-04-08 | 가부시끼가이샤 도시바 | 화학 기계 연마용 슬러리 및 반도체 장치의 제조 방법 |
JP2005136134A (ja) * | 2003-10-30 | 2005-05-26 | Sumitomo Bakelite Co Ltd | 研磨用組成物 |
KR20080022235A (ko) * | 2004-04-12 | 2008-03-10 | 히다치 가세고교 가부시끼가이샤 | 금속용 연마액 및 이것을 이용한 연마방법 |
JP2006147993A (ja) * | 2004-11-24 | 2006-06-08 | Hitachi Chem Co Ltd | Cmp用研磨液及び研磨方法 |
JP2007012679A (ja) * | 2005-06-28 | 2007-01-18 | Asahi Glass Co Ltd | 研磨剤および半導体集積回路装置の製造方法 |
JPWO2007123235A1 (ja) * | 2006-04-24 | 2009-09-10 | 日立化成工業株式会社 | Cmp用研磨液及び研磨方法 |
-
2009
- 2009-04-16 KR KR1020127015180A patent/KR101263625B1/ko not_active IP Right Cessation
- 2009-04-16 CN CN201210225793.8A patent/CN102768954B/zh active Active
- 2009-04-16 TW TW098112676A patent/TWI485234B/zh active
- 2009-04-16 CN CN201210226495.0A patent/CN102766409B/zh active Active
- 2009-04-16 WO PCT/JP2009/057641 patent/WO2009128494A1/ja active Application Filing
- 2009-04-16 US US12/937,463 patent/US20110027997A1/en not_active Abandoned
- 2009-04-16 JP JP2010508241A patent/JP5513372B2/ja active Active
- 2009-04-16 CN CN2009801132039A patent/CN102007577B/zh active Active
- 2009-04-16 KR KR1020127015181A patent/KR101263626B1/ko active IP Right Grant
- 2009-04-16 KR KR1020107022408A patent/KR101209990B1/ko active IP Right Grant
- 2009-04-16 TW TW104110901A patent/TWI522450B/zh active
-
2013
- 2013-09-19 JP JP2013194019A patent/JP5768852B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08153780A (ja) * | 1995-04-24 | 1996-06-11 | Mitsubishi Materials Shilicon Corp | 半導体基板 |
JP2002141314A (ja) * | 2000-08-21 | 2002-05-17 | Toshiba Corp | 化学機械研磨用スラリおよび半導体装置の製造方法 |
JP2002338232A (ja) * | 2001-05-18 | 2002-11-27 | Nippon Chem Ind Co Ltd | 二次凝集コロイダルシリカとその製造方法及びそれを用いた研磨剤組成物 |
JP2007242839A (ja) * | 2006-03-08 | 2007-09-20 | Adeka Corp | 金属cmp用研磨組成物 |
JP2007266500A (ja) * | 2006-03-29 | 2007-10-11 | Toshiba Corp | タッチアップcmp用スラリーおよび半導体装置の製造方法 |
JP2008034818A (ja) * | 2006-07-05 | 2008-02-14 | Hitachi Chem Co Ltd | 貴金属類膜研磨用研磨液及び貴金属類膜の研磨方法 |
JP2008016678A (ja) * | 2006-07-06 | 2008-01-24 | Mitsui Chemicals Inc | 研磨用組成物 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015521380A (ja) * | 2012-05-07 | 2015-07-27 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | N−複素環を含む化合物を含むcmp(化学的機械研磨)組成物の存在下での、iii−v材料の化学的機械研磨(cmp)を含む半導体デバイスの製造方法 |
WO2014069139A1 (ja) * | 2012-11-02 | 2014-05-08 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
US9505951B2 (en) | 2012-11-02 | 2016-11-29 | Fujimi Incorporated | Polishing composition |
JP2017178644A (ja) * | 2016-03-29 | 2017-10-05 | 日立化成株式会社 | エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材 |
JPWO2018012173A1 (ja) * | 2016-07-15 | 2019-05-30 | 株式会社フジミインコーポレーテッド | 研磨用組成物、研磨用組成物の製造方法および研磨方法 |
JPWO2018012176A1 (ja) * | 2016-07-15 | 2019-05-30 | 株式会社フジミインコーポレーテッド | 研磨用組成物、研磨用組成物の製造方法および研磨方法 |
US11111412B2 (en) | 2016-07-15 | 2021-09-07 | Fujimi Incorporated | Polishing composition, method for producing polishing composition, and polishing method |
JP7044704B2 (ja) | 2016-07-15 | 2022-03-30 | 株式会社フジミインコーポレーテッド | 研磨用組成物、研磨用組成物の製造方法および研磨方法 |
JP2018104547A (ja) * | 2016-12-26 | 2018-07-05 | ニッタ・ハース株式会社 | 研磨用スラリー |
WO2023212981A1 (zh) * | 2022-05-06 | 2023-11-09 | 长鑫存储技术有限公司 | 化学机械研磨工艺方法与装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI522450B (zh) | 2016-02-21 |
CN102768954B (zh) | 2015-03-25 |
CN102766409A (zh) | 2012-11-07 |
TWI485234B (zh) | 2015-05-21 |
TW201527509A (zh) | 2015-07-16 |
JPWO2009128494A1 (ja) | 2011-08-04 |
KR101209990B1 (ko) | 2012-12-07 |
KR101263626B1 (ko) | 2013-05-10 |
CN102766409B (zh) | 2014-06-11 |
CN102768954A (zh) | 2012-11-07 |
TW200948942A (en) | 2009-12-01 |
KR101263625B1 (ko) | 2013-05-10 |
JP5768852B2 (ja) | 2015-08-26 |
JP5513372B2 (ja) | 2014-06-04 |
JP2014057071A (ja) | 2014-03-27 |
US20110027997A1 (en) | 2011-02-03 |
KR20120069785A (ko) | 2012-06-28 |
CN102007577B (zh) | 2012-08-29 |
KR20120069784A (ko) | 2012-06-28 |
KR20100121693A (ko) | 2010-11-18 |
CN102007577A (zh) | 2011-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5768852B2 (ja) | Cmp用研磨液 | |
JP5967118B2 (ja) | Cmp研磨液及び研磨方法 | |
JP6028432B2 (ja) | Cmp用研磨液、cmp用研磨液用貯蔵液及び研磨方法 | |
WO2014007063A1 (ja) | Cmp用研磨液、貯蔵液及び研磨方法 | |
JP2013120885A (ja) | Cmp用研磨液及びこの研磨液を用いた研磨方法 | |
KR20140119096A (ko) | 금속용 연마액 및 연마 방법 | |
JP6939886B2 (ja) | 研磨方法及び研磨液 | |
JP2006147993A (ja) | Cmp用研磨液及び研磨方法 | |
JP2010108985A (ja) | 研磨方法 | |
JP2004349608A (ja) | 研磨液及び研磨方法 | |
JP6236990B2 (ja) | 金属用研磨液及び研磨方法 | |
JP2009147394A (ja) | 研磨液及び研磨方法 | |
JP2016003275A (ja) | タングステン系材料用研磨剤、研磨剤用貯蔵液、及び研磨方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980113203.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09731539 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010508241 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107022408 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12937463 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09731539 Country of ref document: EP Kind code of ref document: A1 |