WO2016032145A1 - 연마 슬러리 조성물 - Google Patents

연마 슬러리 조성물 Download PDF

Info

Publication number
WO2016032145A1
WO2016032145A1 PCT/KR2015/008370 KR2015008370W WO2016032145A1 WO 2016032145 A1 WO2016032145 A1 WO 2016032145A1 KR 2015008370 W KR2015008370 W KR 2015008370W WO 2016032145 A1 WO2016032145 A1 WO 2016032145A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
abrasive particles
slurry composition
polishing slurry
tungsten
Prior art date
Application number
PCT/KR2015/008370
Other languages
English (en)
French (fr)
Inventor
윤주형
홍승철
윤영호
백운규
서지훈
김기정
이강천
Original Assignee
주식회사 케이씨텍
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140149265A external-priority patent/KR101660384B1/ko
Priority claimed from KR1020150098372A external-priority patent/KR20160024745A/ko
Application filed by 주식회사 케이씨텍, 한양대학교 산학협력단 filed Critical 주식회사 케이씨텍
Priority to US15/325,095 priority Critical patent/US20170183537A1/en
Priority to CN201580042750.8A priority patent/CN106661429B/zh
Publication of WO2016032145A1 publication Critical patent/WO2016032145A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing slurry composition.
  • the structure becomes narrower and higher, so the aspect ratio (depth / bottom width) is rapidly increasing, and the scratch effect of the previous 50-nano-semiconductor process is 30 nano-semiconductor. Affect more than 2 times in process. As a result, not only scratch but also the influence of topography on the surface of the film was sensitive.
  • the most important factors in the polishing process include the amount of polishing and the quality of the polishing surface. Recently, as the semiconductor design rule decreases, the importance of the quality of the polishing surface is maximized, and the polishing process for this is added.
  • Slurry compositions that do not improve topography cause tungsten overetch or unetch in post-polishing processes resulting in process failure or unstable operation of the device, leading to a sharp drop in semiconductor yield.
  • the conventional slurry compositions for tungsten polishing are designed to optimize the slurry composition with most of the polishing amount or the selectivity with the titanium and silicon oxide films, so that the topography improvement characteristics are low.
  • the present invention is to solve the above-mentioned problems, an object of the present invention is to improve the topography of the tungsten film quality to reduce the metal short, etch defect caused by the tungsten film quality topography, and to enable the next generation high integration process It is to provide a polishing slurry composition that can be made.
  • the abrasive particles And an oxidizing agent, wherein the polishing slurry composition includes polishing tungsten having a thickness of 10 kPa to 1,000 kPa and improving the topography of tungsten.
  • the abrasive particles include at least one selected from the group consisting of metal oxides, metal oxides coated with organic or inorganic substances, and the metal oxides in a colloidal state, and the metal oxides are silica, ceria, zirconia, alumina, Titania, barium titania, germania, manganese and at least one selected from the group consisting of magnesia, the abrasive particles may be 0.5 to 10% by weight of the polishing slurry composition.
  • the oxidizing agent is hydrogen peroxide, ferric nitrate, potassium iodide, potassium permanganate, nitric acid, ammonium chlorite, ammonium chlorate, ammonium iodide, ammonium perborate, ammonium perchlorate, ammonium periodate, tetramethyl ammonium chlorite, chlorate Selected from the group consisting of tetramethylammonium, tetramethylammonium iodide, tetramethylammonium perborate, tetramethylammonium perchlorate, tetramethylammonium periodate, 4-methylmorpholine N-oxide, pyridine-N-oxide and urea hydrogen peroxide To include at least one, wherein the oxidizing agent may be from 0.005% to 5% by weight of the polishing slurry composition.
  • the polishing slurry composition may include hydrogen peroxide-free or less than 1 wt% hydrogen peroxide.
  • the pH of the polishing slurry composition may be in the range of 1 to 4.
  • the secondary particle size of the first abrasive particles is 30 nm or more and less than 100 nm
  • the secondary particle size of the second abrasive particles is 100 nm or more and less than 250 nm
  • the secondary particle size of the third abrasive particles is 250 nm or more 500 It may be less than nm.
  • the first abrasive particles 10% by weight to 60% by weight of the total abrasive particles
  • the second abrasive particles 10% by weight to 60% by weight of the total abrasive particles
  • the third abrasive particles 10 out of the total abrasive particles It may be from about 60% by weight.
  • the first abrasive particles, the second abrasive particles, and the third abrasive particles are each independently at least one selected from the group consisting of metal oxides, metal oxides coated with organic or inorganic substances, and the metal oxides in a colloidal state. It includes, and the metal oxide may be at least one selected from the group consisting of silica, ceria, zirconia, alumina, titania, barium titania, germania, manganese and magnesia.
  • the oxidizing agent is hydrogen peroxide, ferric nitrate, potassium iodide, potassium permanganate, ammonium chlorite, ammonium chlorate, ammonium iodide, ammonium perborate, ammonium perchlorate, ammonium periodate, tetramethylammonium chlorate, tetramethyl chlorate, At least one selected from the group consisting of ammonium, tetramethylammonium iodide, tetramethylammonium perborate, tetramethylammonium perchlorate, tetramethylammonium periodate, 4-methylmorpholine N-oxide, pyridine-N-oxide and urea hydrogen peroxide Including any one, the oxidizing agent may be from 0.005% to 5% by weight of the polishing slurry composition.
  • the polishing slurry composition may include hydrogen peroxide-free or less than 1 wt% hydrogen peroxide.
  • Inorganic acids or inorganic acid salts including at least one selected from the group consisting of hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrofluoric acid, bromic acid, iodic acid and salts thereof; And formic acid, malonic acid, maleic acid, oxalic acid, acetic acid, adipic acid, citric acid, adipic acid, acetic acid, propionic acid, fumaric acid, lactic acid, salicylic acid, pimeline acid, benzoic acid, succinic acid, phthalic acid, butyric acid, glutaric acid, glutamic acid, It may further comprise at least one pH adjusting agent selected from the group consisting of: an organic acid or an organic acid salt including at least one selected from the group consisting of glycolic acid, lactic acid, aspartic acid, tartaric acid and salts thereof.
  • the surface of the tungsten-containing film using the polishing slurry composition may have a peak to valley (RPV) value of about 100 nm or less and a surface roughness of about 10 nm or less.
  • RSV peak to valley
  • the contact area of the abrasive particles is 0.5 to 0.9, the contact area may be calculated by the following equation (1):
  • A is the contact area
  • C 0 is the concentration of the abrasive particles wt%
  • the polishing slurry composition of the present invention can improve the yield caused by metal shorts and etch defects caused by film quality topography during tungsten polishing, and enable a next generation high integration process. In addition, since only the topography of tungsten is removed, tungsten is not wasted to waste and erosion, dishing, and the formation of residues of the metal layer on the surface of the workpiece. Defects can be significantly lowered.
  • the polishing slurry composition of the present invention is prepared by mixing two or three kinds of abrasive particles, and improves the yields caused by metal shorts and etch defects caused by membrane topography during tungsten polishing and improves next generation high integration.
  • the process can be enabled.
  • tungsten is not wasted to waste and erosion, dishing, and the formation of residues of the metal layer on the surface of the workpiece. Defects can be significantly lowered.
  • 1 is a topographical image of a tungsten membrane.
  • FIG. 2 is a cross-sectional view illustrating a topography improvement of tungsten film quality using the polishing slurry composition according to the embodiment of the first aspect of the present invention.
  • FIG 5 is an image of a surface after tungsten topography polishing using the polishing slurry composition according to the embodiment of the first aspect of the present invention.
  • Figure 6 shows the polishing rate of the tungsten wafer using the polishing slurry composition according to Comparative Examples 1 to 3 and Examples 1 to 7 of the second aspect of the present invention.
  • polishing slurry composition of the present invention will be described in detail with reference to Examples and drawings.
  • present invention is not limited to these embodiments and drawings.
  • the abrasive particles; And an oxidizing agent may provide a polishing slurry composition for polishing tungsten having a thickness of 10 Pa to 1,000 Pa and improving the topography of tungsten.
  • the polishing slurry composition according to the first aspect of the present invention is a polishing slurry composition which can be applied to topography improvement rather than securing a polishing amount of tungsten, and particularly for topography improvement for tungsten gate formation.
  • the polishing slurry composition according to the first aspect of the present invention may be, for example, polishing tungsten having a thickness of 10 kPa to 1,000 kPa, preferably 50 kPa to 500 kPa.
  • FIG. 1 is a topographic image of a tungsten film
  • FIG. 2 is a cross-sectional view illustrating a topography of tungsten film using a polishing slurry composition according to an embodiment of the first aspect of the present invention.
  • Tungsten film topography has a conical, rugged shape that is triangular in side.
  • the polishing slurry composition according to the present invention removes only the topography of tungsten, and has an effect of not over-polishing to waste tungsten.
  • the surface After polishing of tungsten using the polishing slurry composition according to the first aspect of the present invention, the surface has a peak to valley (RPV) value of 100 nm or less, in some cases 10 nm or less and surface roughness (Rq). 10 nm or less, in some cases, may be 1.5 nm or less.
  • the peak to valley value and the degree of surface roughness can be measured by atomic force microscopy.
  • the abrasive particles include at least one selected from the group consisting of metal oxides, metal oxides coated with organic or inorganic substances, and the metal oxides in a colloidal state, and the metal oxides are silica, ceria, zirconia, alumina, It may include at least one selected from the group consisting of titania, barium titania, germania, manganese and magnesia.
  • the abrasive particle size may be from 10 nm to 300 nm, in some cases from 50 nm to 100 nm. Since the abrasive particles are synthesized in a liquid phase, they should be 300 nm or less in order to secure particle uniformity. If the abrasive particles are less than 10 nm, excessively small particles may cause deterioration in cleaning performance and excessive defects may be generated on the wafer surface. There is a problem that the rate is lowered, and if it exceeds 300 nm, monodispersibility is not achieved, and there is a fear of occurrence of surface defects such as scratches.
  • the abrasive particles may be prepared by adjusting the calcination conditions and / or milling conditions, with large abrasive particles of 50 nm to 300 nm, in some cases 50 nm to 100 nm, and 10 nm to 50 nm, and in some cases 20 nm to 50 nm.
  • Small abrasive particles of may be mixed to have a particle size distribution in the form of a bimodal (bimodal). By mixing relatively large abrasive particles and relatively small abrasive particles, it is possible to have better dispersibility and to reduce scratches on the wafer surface.
  • the abrasive particles may be from 0.5% by weight to 10% by weight of the polishing slurry composition.
  • the polishing target film for example, tungsten may not be sufficiently polished during polishing, so that the planarization rate may be lowered. It may cause defects such as scratches.
  • the oxidizing agent is hydrogen peroxide, ferric nitrate, potassium iodide, potassium permanganate, nitric acid, ammonium chlorite, ammonium chlorate, ammonium iodide, ammonium perborate, ammonium perchlorate, ammonium periodate, tetramethyl ammonium chlorite, chlorate Selected from the group consisting of tetramethylammonium, tetramethylammonium iodide, tetramethylammonium perborate, tetramethylammonium perchlorate, tetramethylammonium periodate, 4-methylmorpholine N-oxide, pyridine-N-oxide and urea hydrogen peroxide It may be to include at least one. Among them, it is preferable to use hydrogen peroxide in view of the oxidizing power, the dispersion stability of the slurry, and the economics.
  • the oxidizing agent may be 0.005% by weight to 5% by weight in the polishing slurry composition, and preferably, 0.05% by weight to 1% by weight.
  • the polishing rate and etching rate for tungsten may be lowered.
  • the oxide layer on the surface of the tungsten may be hard to be polished smoothly. Without the oxide film, the topography may have poor characteristics due to dishing and erosion of tungsten.
  • the polishing slurry composition of the present invention since the oxidant directly affects the polishing rate and etching rate of tungsten, the polishing slurry composition of the present invention, which places importance on the quality of the tungsten surface, should be used with reduced concentration of hydrogen peroxide.
  • the polishing slurry composition according to the present invention may be one containing hydrogen peroxide-free or less than 1 wt% hydrogen peroxide.
  • the polishing slurry composition according to the first aspect of the present invention may include an oxidation promoter, wherein the oxidation promoter is an iron compound, ferrocyanide, chlorate, dichromate, hypochlorite, nitrate, persulfate and permanganate. It may be to include at least one selected from the group consisting of.
  • the iron compound of the oxidation accelerator is a compound that dissociates in water to provide iron ions (Fe 2 + , Fe 3 ), for example, ferric nitride may be used.
  • the oxidation promoter may be from 0.05% by weight to 10% by weight of the polishing slurry composition. If the oxidation promoter is less than 0.05% by weight, there may be a problem that it is difficult to obtain the polishing rate necessary for the topography removal, and if it exceeds 10% by weight, the problem of excessive oxidation of tungsten or deterioration of the dispersion property of the slurry during polishing There can be.
  • the pH adjusting agent may further include a material used to prevent corrosion of the metal or the polishing machine and to implement a pH range in which metal oxidation occurs easily, for example, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid, boric acid, amino acids. It may further comprise at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonia, ammonia derivatives, citric acid, tartaric acid, formic acid, maleic acid, oxalic acid, tartaric acid and acetic acid.
  • a material used to prevent corrosion of the metal or the polishing machine and to implement a pH range in which metal oxidation occurs easily for example, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, phosphoric acid, boric acid, amino acids. It may further comprise at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonia, ammonia derivatives, citric acid, tartaric acid,
  • the pH of the polishing slurry composition according to the present invention is preferably adjusted to give dispersion stability and an appropriate polishing rate according to the abrasive particles, it may be one having an acidic pH range of 1 to 4, preferably 2 to 3.
  • the polishing slurry composition may be for polishing a tungsten-containing substrate.
  • the tungsten-containing substrates include tungsten and tantalum, titanium, ruthenium, hafnium, other refractory metals, their nitrides and silicides.
  • the polishing slurry composition according to the second aspect of the present invention is a polishing slurry composition which can be applied to topography improvement rather than securing the polishing amount of tungsten, and particularly for topography improvement for tungsten gate formation.
  • a polishing slurry composition which can be applied to topography improvement rather than securing the polishing amount of tungsten, and particularly for topography improvement for tungsten gate formation.
  • Tungsten film topography has a conical, rugged shape that is triangular in side. Unlike conventional slurry compositions for tungsten topography improvement, the polishing slurry composition according to the present invention removes only the topography of tungsten, and has an effect of not over-polishing to waste tungsten.
  • the secondary particle size of the first abrasive particles is 30 nm or more and less than 100 nm
  • the secondary particle size of the second abrasive particles is 100 nm or more and less than 250 nm
  • the secondary particle size of the third abrasive particles is 250 nm or more 500 It may be less than nm.
  • the abrasive particles may be prepared by the first and second abrasive particles and the third abrasive particles by adjusting the calcination conditions and / or milling conditions, the first abrasive particles and the second abrasive particles are mixed, The first abrasive particles and the third abrasive particles or the second abrasive particles and the third abrasive particles may be mixed to have a bimodal particle size distribution. Alternatively, all of the first abrasive particles, the second abrasive particles, and the third abrasive particles may be mixed to have particle size distributions showing three peaks. By mixing relatively large abrasive particles and relatively small abrasive particles, it is possible to have better dispersibility and to reduce scratches on the wafer surface.
  • the first abrasive particles, the second abrasive particles, and the third abrasive particles are each independently at least one selected from the group consisting of metal oxides, metal oxides coated with organic or inorganic substances, and the metal oxides in a colloidal state. It includes, and the metal oxide may be at least one selected from the group consisting of silica, ceria, zirconia, alumina, titania, barium titania, germania, manganese and magnesia.
  • the first abrasive particles 10% by weight to 60% by weight of the total abrasive particles
  • the second abrasive particles 10% by weight to 60% by weight of the total abrasive particles
  • the third abrasive particles 10 out of the total abrasive particles It may be from about 60% by weight.
  • Topographical improvements in tungsten films are related to the contact area between the abrasive and the tungsten film.
  • the topography improvement effect was excellent, in particular, depending on the mixing ratio, the contact between the abrasive and the tungsten film
  • the area is calculated to be the range that improves dispersion stability.
  • the abrasive particles may be from 0.5% by weight to 10% by weight of the polishing slurry composition.
  • the content in the polishing slurry composition may be in the above range based on the total amount of the abrasive particles without the division of the first abrasive particles, the second abrasive particles, and the third abrasive particles.
  • the polishing target film for example, tungsten may not be sufficiently polished during polishing, thereby lowering the planarization rate, and the content of the abrasive particles is 10% by weight. If it is exceeded, it may cause defects such as defects and scratches.
  • the contact area of the abrasive particles may be 0.5 to 0.9.
  • the contact area of the abrasive particles is out of the range, there is a problem that the contact area between the abrasive particles and the tungsten film quality is small and sufficient polishing is not performed, and the topography of the tungsten film quality is not improved.
  • the contact area may be calculated by Equation 1 below.
  • A is the contact area
  • C 0 is the concentration of the abrasive particles wt%
  • the oxidizing agent is hydrogen peroxide, ferric nitrate, potassium iodide, potassium permanganate, ammonium chlorite, ammonium chlorate, ammonium iodide, ammonium perborate, ammonium perchlorate, ammonium periodate, tetramethylammonium chlorate, tetramethyl chlorate, At least one selected from the group consisting of ammonium, tetramethylammonium iodide, tetramethylammonium perborate, tetramethylammonium perchlorate, tetramethylammonium periodate, 4-methylmorpholine N-oxide, pyridine-N-oxide and urea hydrogen peroxide It may be to include any one. Among them, it is preferable to use hydrogen peroxide in view of the oxidizing power, the dispersion stability of the slurry, and the economics.
  • the oxidizing agent may be 0.005% by weight to 5% by weight in the polishing slurry composition, and preferably, 0.05% by weight to 1% by weight.
  • the polishing rate and etching rate for tungsten may be lowered.
  • the oxide layer on the surface of the tungsten may be hard to be polished smoothly. Without the oxide film, the topography may have poor characteristics due to dishing and erosion of tungsten.
  • the polishing slurry composition of the present invention since the oxidant directly affects the polishing rate and etching rate of tungsten, the polishing slurry composition of the present invention, which places importance on the quality of the tungsten surface, should be used with reduced concentration of hydrogen peroxide.
  • the polishing slurry composition according to the present invention may be one containing hydrogen peroxide-free or less than 1 wt% hydrogen peroxide.
  • pH adjusting agent is, for example, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrofluoric acid, bromic acid, Inorganic acid or inorganic acid salt containing at least one selected from the group consisting of iodic acid and salts thereof; And formic acid, malonic acid, maleic acid, oxalic acid, acetic acid, adipic acid, citric acid, adipic acid, acetic acid, propionic acid, fumaric acid, lactic acid, salicylic acid, pimeline acid, benzoic acid, succinic acid, phthalic acid, butyric acid, glutaric acid, glutamic acid, It may include at least one selected from the group consisting of an organic acid or an organic acid salt containing at least one selected from the group consisting of glycolic acid, lactic acid, aspartic acid, tart
  • the pH of the polishing slurry composition according to the second aspect of the present invention is preferably adjusted to give dispersion stability and an appropriate polishing rate according to the abrasive particles, and has an acidic pH range of 1 to 4, preferably 2 to 3 It may be.
  • the polishing slurry composition may be for polishing a tungsten-containing substrate.
  • the tungsten-containing substrates include tungsten and tantalum, titanium, ruthenium, hafnium, other refractory metals, their nitrides and silicides.
  • the polishing slurry composition may be to polish tungsten having a thickness of 10 kPa / min to 1000 kPa / min.
  • the surface of the tungsten-containing film using the slurry composition according to the second aspect of the present invention may have a peak to valley (RPV) value of 100 nm or less and a surface roughness of 10 nm or less.
  • the peak to valley value and the degree of surface roughness can be measured by atomic force microscopy.
  • the polishing slurry composition according to the second aspect of the present invention is prepared by mixing two or three kinds of abrasive particles, and when tungsten polishing is used, the yield that is generated due to metal short and etch defects caused by film topography. And enable the next generation of high integration processes. In addition, since only the topography of tungsten is removed, tungsten is not wasted to waste and erosion, dishing, and the formation of residues of the metal layer on the surface of the workpiece. Defects can be significantly lowered.
  • a polishing slurry composition was prepared that mixed 3.5 wt% silica and 0.5 wt% hydrogen peroxide and adjusted the pH with nitric acid to improve the topography of tungsten at pH 2.5.
  • a polishing slurry composition was prepared by mixing 3.5% silica and 8% hydrogen peroxide.
  • Tungsten-containing wafers were polished using the polishing slurry compositions of Examples and Comparative Examples under the following polishing conditions.
  • FIG. 3 is an image of the tungsten topography surface before polishing
  • FIG. 4 is an image of the surface after tungsten topography polishing using the polishing slurry composition according to the comparative example
  • FIG. 5 is an embodiment of the first aspect of the present invention.
  • the polishing slurry composition according to the embodiment of the present invention it can be seen that only the topography of tungsten is removed by only a slight addition of hydrogen peroxide.
  • silica first abrasive particles were mixed with 3.5% by weight of the total polishing slurry composition and 0.5% by weight of hydrogen peroxide to prepare a polishing slurry composition.
  • the pH was adjusted to 2.5 with nitric acid.
  • a polishing slurry composition similar to Comparative Example 1 was prepared except that only silica second abrasive particles were used.
  • a polishing slurry composition similar to Comparative Example 1 was prepared except that only silica third abrasive particles were used.
  • a polishing slurry composition was prepared under the same conditions as in Comparative Example 1 except that two kinds of abrasive particles were mixed and mixed at a ratio of 50% of silica first abrasive particles and 50% of silica second abrasive particles.
  • a polishing slurry composition was prepared under the same conditions as in Comparative Example 1 except that two kinds of abrasive particles were mixed and mixed at a ratio of 50% of silica first abrasive particles and 50% of silica third abrasive particles.
  • a polishing slurry composition was prepared under the same conditions as in Comparative Example 1 except that two kinds of abrasive particles were mixed and used at a ratio of 50% silica second abrasive particles and 50% silica third abrasive particles.
  • the same polishing slurry composition as in Comparative Example 1 was prepared except that three kinds of abrasive particles were mixed at a ratio of 20% silica first abrasive particles, 40% silica second abrasive particles and 40% silica third abrasive particles.
  • a polishing slurry composition was prepared in the same manner as in Comparative Example 1, except that three kinds of abrasive particles were mixed and used in a ratio of 40% silica first abrasive particle, 20% silica second abrasive particle and 40% silica third abrasive particle.
  • a polishing slurry composition was prepared in the same manner as in Comparative Example 1, except that three kinds of abrasive particles were mixed at a ratio of 40% of the first silica abrasive particles, 40% of the silica second abrasive particles, and 20% of the third silica abrasive particles.
  • the same polishing slurry composition as in Comparative Example 1 was prepared except that 33.3% of the first silica abrasive particles, 33.3% silica second abrasive particles, and 33.3% silica third abrasive particles were used.
  • Tungsten wafers were polished under the following polishing conditions using the polishing slurry compositions of Comparative Examples 1 to 3 and Examples 1 to 7 of the second aspect of the present invention.
  • polishing equipment CETR CP-4
  • Figure 6 shows the polishing rate of the tungsten wafer using the polishing slurry composition according to Comparative Examples 1 to 3 and Examples 1 to 7 of the second aspect of the present invention.
  • the lowest polishing rate was obtained using the polishing slurry composition of Example 6 in which three abrasive particles were mixed at a ratio of 40% silica first abrasive particles, 40% silica second abrasive particles and 20% silica third abrasive particles. It can be seen that.
  • Table 1 below shows the contact areas of the tungsten topography surface after polishing using the polishing slurry compositions of Comparative Examples 1 to 3 and Examples 1 to 7 according to the second aspect of the present invention.
  • the total contact area values of the polishing slurry compositions of Comparative Examples 1 to 3 and Examples 1 to 7 were the largest in Examples 4 to 7, in which three kinds of silica particles were mixed, followed by mixing in two kinds of silica particles. It can be seen that Examples 1 to 3 have larger total contact area values than the single compositions of Comparative Examples 1 to 3. Therefore, it can be seen that Examples 4 to 7, in which three kinds of silica particles having the largest total contact area value are mixed, are advantageous for improving tungsten topography.
  • FIGS. 7 to 16 are images of the surface after tungsten topography polishing using the polishing slurry compositions according to Comparative Examples 1 to 3 and Examples 1 to 7 of the second aspect of the present invention, respectively.
  • the surface of Examples 1 to 7 is superior to the topography improvement than Comparative Examples 1 to 3.
  • the surface of Examples 4 to 7 is superior to the surface of Examples 1 to 3, wherein the polishing slurry composition in which three kinds of silica are mixed with the polishing slurry composition in which two kinds of silica is mixed is tungsten It can be seen that this is due to the increase in the total contact area during the polishing polishing.
  • the polishing slurry composition in which two or three kinds of silica particles are mixed is improved in tungsten topography compared to the polishing slurry composition including the silica particles of a single composition.
  • the tungsten topography was improved in the polishing slurry composition in which three kinds of silica particles were mixed than two kinds of silica particles. This confirmed that the topography improvement was improved as the total contact area increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

본 발명은 연마 슬러리 조성물에 관한 것으로서, 본 발명의 제1 측면에 따른 연마 슬러리 조성물은 연마입자; 및 산화제;를 포함하고, 10 Å 내지 1,000 Å 두께의 텅스텐을 연마하고, 텅스텐의 토포그래피를 개선하는 것이고, 본 발명의 제2 측면에 따른 연마 슬러리 조성물은, 제1 연마입자, 제2 연마입자, 제3 연마입자 중 적어도 둘 이상의 연마입자; 및 산화제;를 포함하고, 상기 제1 연마입자의 1차 입도는 20 nm 이상 45 nm 미만이고, 상기 제2 연마입자의 1차 입도는 45 nm 이상 130 nm 미만이고, 상기 제3 연마입자의 1차 입도는 130 nm 이상 250 nm 미만인 것이다.

Description

연마 슬러리 조성물
본 발명은 연마 슬러리 조성물에 관한 것이다.
제품의 디자인 룰이 감소됨에 따라 구조는 폭이 좁고 높이가 높아져 종횡비(aspect ratio) (깊이/바닥너비)가 급격히 증가하고 있으며, 종전 50 나노급 반도체 공정에서 발생했던 스크래치의 영향이 30 나노급 반도체 공정에서 2 배 이상의 영향을 준다. 이로 인해 막질의 표면에 스크래치뿐만 아니라 토포그래피(topography)의 영향 또한 민감해졌다. 연마공정에서 가장 중요하게 고려되는 인자로는 연마량과 연마 표면의 품질 등이 있는데, 최근 반도체 디자인 룰 감소에 따라 연마 표면의 품질의 중요성이 극대화되어 이를 위한 연마공정이 추가되는 추세이다.
한편, 최근 반도체의 집적도가 높아짐에 따라 더 낮은 전류누설이 요구되고, 이를 충족하기 위해 고유전율 유전체와 금속게이트 구조가 고안되었다. 일반적으로 금속게이트 물질로 알루미늄이 많이 사용되었는데, 디자인 룰 감소에 따라 완전한 증착의 어려움과 높은 경도를 갖는 산화알루미늄 연마의 어려움 등의 문제로 인해 최근 게이트 물질로서 텅스텐을 사용하는 것에 대해서 많은 연구가 되고 있다. 그러나, 알루미늄 게이트에서 텅스텐 게이트로 구성 물질이 변화함에 따라 텅스텐은 증착 후 텅스텐 결정입도에 의해 토포그래피가 형성되고, 이는 원치 않은 메탈 간의 쇼트를 유발하여 반도체 수율을 감소시키는 현상을 발생하게 한다. 이러한 텅스텐의 연마 표면품질 개선을 위하여, 즉, 토포그래피 개선을 위한 연마는 차세대 공정을 위해 필수적이다. 토포그래피가 개선이 되지 않는 슬러리 조성물은 연마 후공정에서 텅스텐 오버에치(over etch) 또는 언에치(unetch)를 일으켜 공정 불량을 가져오거나 소자의 동작을 불안정하게 하여 반도체 수율을 급격히 하락시킨다. 또한, 종래의 텅스텐 연마를 위한 슬러리 조성물들은 대부분 연마량이나 타이타늄, 산화규소 막과의 선택비에 최적화되어 슬러리 조성을 설계하였으므로, 토포그래피 개선특성은 낮은 문제가 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 텅스텐 막질의 토포그래피를 개선하여 텡스텐 막질의 토포그래피에 의해 발생하던 메탈 쇼트, 에치 불량을 감소시키고, 차세대 고집적화 공정을 가능하게 할 수 있는 연마 슬러리 조성물을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 측면에 따르면, 연마입자; 및 산화제;를 포함하고, 10 Å 내지 1,000 Å 두께의 텅스텐을 연마하고, 텅스텐의 토포그래피를 개선하는 것인, 연마 슬러리 조성물을 제공한다.
상기 연마입자는, 금속산화물, 유기물 또는 무기물로 코팅된 금속산화물, 및 콜로이달 상태의 상기 금속산화물로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 금속산화물은 실리카, 세리아, 지르코니아, 알루미나, 티타니아, 바륨티타니아, 게르마니아, 망가니아 및 마그네시아로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 연마입자는 상기 연마 슬러리 조성물 중 0.5 중량% 내지 10 중량%인 것일 수 있다.
상기 산화제는, 과산화수소, 질산 제2 철, 요오드산 칼륨, 과망간산 칼륨, 질산, 아염소산 암모늄, 염소산 암모늄, 요오드산 암모늄, 과붕산 암모늄, 과염소산 암모늄, 과요오드산 암모늄, 아염소산 테트라메틸암모늄, 염소산 테트라메틸암모늄, 요오드산 테트라메틸암모늄, 과붕산 테트라메틸암모늄, 과염소산 테트라메틸암모늄, 과요오드산 테트라메틸암모늄, 4-메틸모폴린 N-옥사이드, 피리딘-N-옥사이드 및 유레아 과산화수소로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 산화제는 상기 연마 슬러리 조성물 중 0.005 중량% 내지 5 중량%인 것일 수 있다.
상기 연마 슬러리 조성물은 과산화수소-프리 또는 1 중량% 미만 과산화수소를 포함하는 것일 수 있다.
상기 연마 슬러리 조성물의 pH는 1 내지 4의 범위를 가지는 것일 수 있다.
본 발명의 제2 측면에 따르면, 제1 연마입자, 제2 연마입자, 제3 연마입자 중 적어도 둘 이상의 연마입자; 및 산화제;를 포함하고, 상기 제1 연마입자의 1차 입도는 20 nm 이상 45 nm 미만이고, 상기 제2 연마입자의 1차 입도는 45 nm 이상 130 nm 미만이고, 상기 제3 연마입자의 1차 입도는 130 nm 이상 250 nm 미만인 것인, 연마 슬러리 조성물을 제공한다.
상기 제1 연마입자의 2차 입도는 30 nm 이상 100 nm 미만이고, 상기 제2 연마입자의 2차 입도는 100 nm 이상 250 nm 미만이고, 상기 제3 연마입자의 2차 입도는 250 nm 이상 500 nm 미만인 것일 수 있다.
상기 제1 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%, 상기 제2 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%, 상기 제3 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%인 것일 수 있다.
상기 제1 연마입자, 제2 연마입자, 제3 연마입자는, 각각 독립적으로, 금속산화물, 유기물 또는 무기물로 코팅된 금속산화물, 및 콜로이달 상태의 상기 금속산화물로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 금속산화물은 실리카, 세리아, 지르코니아, 알루미나, 티타니아, 바륨티타니아, 게르마니아, 망가니아 및 마그네시아로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
상기 산화제는, 과산화수소, 질산 제2 철, 요오드산 칼륨, 과망간산 칼륨, 아염소산 암모늄, 염소산 암모늄, 요오드산 암모늄, 과붕산 암모늄, 과염소산 암모늄, 과요오드산 암모늄, 아염소산 테트라메틸암모늄, 염소산 테트라메틸암모늄, 요오드산 테트라메틸암모늄, 과붕산 테트라메틸암모늄, 과염소산 테트라메틸암모늄, 과요오드산 테트라메틸암모늄, 4-메틸모폴린 N-옥사이드, 피리딘-N-옥사이드 및 유레아 과산화수소로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 산화제는 상기 연마 슬러리 조성물 중 0.005 중량% 내지 5 중량%인 것일 수 있다.
상기 연마 슬러리 조성물은 과산화수소-프리 또는 1 중량% 미만 과산화수소를 포함하는 것일 수 있다.
염산, 질산, 인산, 황산, 불산, 브롬산, 요오드산 및 그의 염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 무기산 또는 무기산염; 및 포름산, 말론산, 말레인산, 옥살산, 초산, 아디프산, 구연산, 아디프산, 아세트산, 프로피온산, 푸마르산, 유산, 살리실산, 피멜린산, 벤조산, 숙신산, 프탈산, 부티르산, 글루타르산, 글루타민산, 글리콜산, 락트산, 아스파라긴산, 타르타르산 및 그의 염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 유기산 또는 유기산염;으로 이루어진 군에서 선택되는 적어도 하나의 pH 조절제를 더 포함하는 것일 수 있다.
상기 연마 슬러리 조성물을 이용한 텅스텐 포함 막의 연마 후 표면은 피크투밸리(peak to valley; Rpv) 값이 100 nm 이하 및 표면거칠기(roughness)가 10 nm 이하인 것일 수 있다.
상기 연마입자의 접촉면적(Contact area)은 0.5 내지 0.9이고, 상기 접촉면적은 하기의 수학식 1에 의해 계산되는 것일 수 있다:
Figure PCTKR2015008370-appb-I000001
(상기 A는 접촉면적이고, C 0는 연마입자의 농도 wt%이고,
Figure PCTKR2015008370-appb-I000002
는 입자의 지름(nm)임).
본 발명의 연마 슬러리 조성물은, 텅스텐 연마 시, 막질의 토포그래피에 의해 발생하던 메탈 쇼트, 에치 불량으로 인해 발생되던 수율을 향상시키고, 차세대 고집적화 공정을 가능하게 할 수 있다. 또한, 텅스텐의 토포그래피만을 제거하기 때문에 과연마를 진행하여 텅스텐을 낭비하지 않고, 이로전(erosion) 현상, 디싱(dishing) 현상, 및 피연마물 표면에 금속 층의 잔류물(residue) 형성 등의 표면 결함(defect)을 크게 낮출 수 있다.
본 발명의 연마 슬러리 조성물은 2종 또는 3종의 연마입자를 혼합하여 제조한 것으로서, 텅스텐 연마 시, 막질의 토포그래피에 의해 발생하던 메탈 쇼트, 에치 불량으로 인해 발생되던 수율을 향상시키고, 차세대 고집적화 공정을 가능하게 할 수 있다. 또한, 텅스텐의 토포그래피만을 제거하기 때문에 과연마를 진행하여 텅스텐을 낭비하지 않고, 이로전(erosion) 현상, 디싱(dishing) 현상, 및 피연마물 표면에 금속 층의 잔류물(residue) 형성 등의 표면 결함(defect)을 크게 낮출 수 있다.
도 1은 텅스텐 막질의 토포그래피 이미지이다.
도 2는 본 발명의 제1 측면의 일 실시예에 따른 연마 슬러리 조성물을 이용한 텅스텐 막질의 토포그래피 개선도를 나타낸 단면도이다.
도 3은 연마 전 텅스텐 토포그래피 표면의 이미지이다.
도 4는 비교예에 따른 연마 슬러리 조성물을 이용하여 텅스텐 토포그래피 연마 후 표면의 이미지이다.
도 5는 본 발명의 제1 측면의 실시예에 따른 연마 슬러리 조성물을 이용하여 텅스텐 토포그래피 연마 후 표면의 이미지이다.
도 6은 본 발명의 제2 측면의 비교예 1 내지 3, 실시예 1 내지 7에 따른 연마 슬러리 조성물을 이용한 텅스텐 웨이퍼의 연마율을 나타낸 것이다.
도 7 내지 도 16은 각각 본 발명의 제2 측면의 비교예 1 내지 비교예 3, 실시예 1 내지 실시예 7에 따른 연마 슬러리 조성물을 이용하여 텅스텐 토포그래피 연마 후 표면의 이미지이다.
이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 연마 슬러리 조성물에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.
본 발명의 제1 측면에 따르면, 연마입자; 및 산화제;를 포함하고, 10 Å 내지 1,000 Å 두께의 텅스텐을 연마하고, 텅스텐의 토포그래피를 개선하는 연마 슬러리 조성물을 제공할 수 있다.
본 발명의 제1 측면에 따른 연마 슬러리 조성물은 텅스텐의 연마량 확보보다 토포그래피(topography) 개선에 적용할 수 있는 연마 슬러리 조성물로서, 특히 텅스텐 게이트 형성을 위한 토포그래피 개선을 위한 것이다.
본 발명의 제1 측면에 따른 연마 슬러리 조성물은, 예를 들어, 10 Å 내지 1,000 Å, 바람직하게는, 50 Å 내지 500 Å 두께의 텅스텐을 연마하는 것일 수 있다.
도 1은 텅스텐 막질의 토포그래피 이미지이고, 도 2는 본 발명의 제1 측면의 일 실시예에 따른 연마 슬러리 조성물을 이용한 텅스텐 막질의 토포그래피 개선도를 나타낸 단면도이다. 텅스텐 막질의 토포그래피는 측면에서 보면 삼각형인 원뿔 모양의 울퉁불퉁한 형상을 가지고 있다. 종래의 텅스텐 토포그래피 개선을 위한 슬러리 조성물과는 달리 본 발명에 따른 연마 슬러리 조성물은 텅스텐의 토포그래피만을 제거하며, 과연마를 진행하여 텅스텐을 낭비하지 않는 효과가 있다.
본 발명의 제1 측면에 따른 연마 슬러리 조성물을 이용한 텅스텐의 연마 후 표면은 피크투밸리(peak to valley; Rpv) 값이 100 nm 이하, 경우에 따라 10 nm 이하 및 표면거칠기(roughness; Rq)가 10 nm 이하, 경우에 따라, 1.5 nm 이하인 것일 수 있다. 피크투밸리 값 및 표면거칠기의 정도는 원자현미경으로 측정할 수 있다.
상기 연마입자는, 금속산화물, 유기물 또는 무기물로 코팅된 금속산화물, 및 콜로이달 상태의 상기 금속산화물로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 금속산화물은 실리카, 세리아, 지르코니아, 알루미나, 티타니아, 바륨티타니아, 게르마니아, 망가니아 및 마그네시아로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
상기 연마입자 크기는 10 nm 내지 300 nm, 경우에 따라서는 50 nm 내지 100 nm인 것일 수 있다. 상기 연마입자는 액상에서 합성하기 때문에 입자 균일성을 확보하기 위해서 300 nm 이하이어야 하며, 10 nm 미만인 경우에는 작은 입자가 과도하게 발생하면 세정성이 저하되고, 웨이퍼 표면에 과량의 결함이 발생하여 연마율이 저하되는 문제점이 있고, 300 nm를 초과하는 경우 단분산성을 달성하지 못하여 스크래치와 같은 표면 결함의 발생의 우려가 있다.
상기 연마입자는 하소 조건 및/또는 밀링 조건의 조절에 의해 50 nm 내지 300 nm, 경우에 따라서는 50 nm 내지 100 nm의 큰 연마입자와 10 nm 내지 50 nm, 경우에 따라서는 20 nm 내지 50 nm의 작은 연마입자가 혼합되어 바이모달(bimodal) 형태의 입도 분포를 가지는 것일 수 있다. 상대적으로 큰 연마입자와 상대적으로 작은 연마입자가 혼재함으로써 더 우수한 분산성을 가지며, 웨이퍼 표면에 스크래치를 감소시키는 효과를 기대할 수 있다.
상기 연마입자는 상기 연마 슬러리 조성물 중 0.5 중량% 내지 10 중량%인 것일 수 있다. 상기 연마 슬러리 조성물 중 상기 연마입자의 함량이 0.5 중량% 미만일 경우 연마 시 연마 대상막, 예를 들어, 텅스텐을 충분히 연마하지 못하여 평탄화율이 저하될 우려가 있고, 10 중량%를 초과하면, 결함 및 스크래치 등 결점의 원인이 될 우려가 있다.
상기 산화제는, 과산화수소, 질산 제2 철, 요오드산 칼륨, 과망간산 칼륨, 질산, 아염소산 암모늄, 염소산 암모늄, 요오드산 암모늄, 과붕산 암모늄, 과염소산 암모늄, 과요오드산 암모늄, 아염소산 테트라메틸암모늄, 염소산 테트라메틸암모늄, 요오드산 테트라메틸암모늄, 과붕산 테트라메틸암모늄, 과염소산 테트라메틸암모늄, 과요오드산 테트라메틸암모늄, 4-메틸모폴린 N-옥사이드, 피리딘-N-옥사이드 및 유레아 과산화수소로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다. 이들 중 산화력과 슬러리의 분산 안정성, 및 경제성 측면에서 과산화수소를 사용하는 것이 바람직하다.
상기 산화제는 상기 연마 슬러리 조성물 중 0.005 중량% 내지 5 중량%인 것일 수 있으며, 바람직하게는, 0.05 중량% 내지 1 중량%일 수 있다. 상기 산화제가 상기 연마 슬러리 조성물 중 0.005 중량% 미만인 경우에는 텅스텐에 대한 연마 속도 및 에칭 속도가 저하될 수 있고, 5 중량% 초과인 경우에는 텅스텐 표면의 산화막이 하드(hard)해져서 연마가 순조롭게 이루어지지 않고 산화막이 성장하여 텅스텐의 디싱과 이로전(erosion)으로 인하여 토포그래피가 안좋은 특성을 가질 수 있다. 따라서, 산화제는 텅스텐의 연마 속도와 에칭 속도에 직접적인 영향을 주기 때문에, 텅스텐 표면의 품질을 중요시 여기는 본 발명의 연마 슬러리 조성물은 과산화수소의 농도를 줄여서 사용해야 한다. 이에, 본 발명에 따른 연마 슬러리 조성물은 과산화수소-프리 또는 1 중량% 미만 과산화수소를 포함하는 것일 수 있다.
경우에 따라, 본 발명의 제1 측면에 따른 연마 슬러리 조성물은 산화촉진제를 포함할 수도 있는데, 상기 산화촉진제는 철화합물, 페로시안화물, 염소산염, 중크롬산염, 하이포염소산염, 질산염, 과황산염 및 과망간산염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다. 상기 산화촉진제 중 철화합물은 물에서 해리하여 철 이온(Fe2 +, Fe3)을 제공하는 화합물로서, 예를 들어, 질산 철(ferric nitride)이 사용될 수 있다.
상기 산화촉진제는 상기 연마 슬러리 조성물 중 0.05 중량% 내지 10 중량%인 것일 수 있다. 산화촉진제가 0.05 중량% 미만일 경우, 토포그래피 제거를 위해 필요한 연마속도를 얻기 어려운 문제가 있을 수 있고, 10 중량%를 초과하면, 연마 시에 텅스텐이 과도하게 산화되거나 슬러리의 분산 특성이 저하되는 문제가 있을 수 있다.
pH 조절제는 금속 또는 연마기의 부식을 방지하고, 금속 산화가 쉽게 일어나는 pH 범위를 구현하기 위하여 사용되는 물질로서 더 포함할 수 있으며, 예를 들어, 염산, 질산, 황산, 아세트산, 인산, 붕산, 아미노산, 수산화나트륨, 수산화 칼륨, 암모니아, 암모니아 유도체, 구연산, 주석산, 포름산, 말레인산, 옥살산, 타르타르산 및 초산으로 이루어진 군에서 선택되는 적어도 하나를 더 포함할 수 있다.
본 발명의 따른 연마 슬러리 조성물의 pH는 연마입자에 따라 분산 안정성 및 적정한 연마속도를 내기 위해 조절되는 것이 바람직하며, 1 내지 4, 바람직하게는 2 내지 3의 산성의 pH 범위를 가지는 것일 수 있다.
상기 연마 슬러리 조성물은 텅스텐-함유 기판 연마용인 것일 수 있다. 상기 텅스텐-함유 기판은 텅스텐과 탄탈륨, 티탄, 루테늄, 하프늄, 기타 내화 금속, 그들의 질화물 및 규화물을 들 수 있다.
또한, 본 발명의 제2 측면에 따르면, 제1 연마입자, 제2 연마입자, 제3 연마입자 중 적어도 둘 이상의 연마입자; 및 산화제;를 포함하고, 상기 제1 연마입자의 1차 입도는 20 nm 이상 45 nm 미만이고, 상기 제2 연마입자의 1차 입도는 45 nm 이상 130 nm 미만이고, 상기 제3 연마입자의 1차 입도는 130 nm 이상 250 nm 미만인 것인, 연마 슬러리 조성물을 제공할 수 있다.
본 발명의 제2 측면에 따른 연마 슬러리 조성물은 텅스텐의 연마량 확보보다 토포그래피(topography) 개선에 적용할 수 있는 연마 슬러리 조성물로서, 특히 텅스텐 게이트 형성을 위한 토포그래피 개선을 위한 것이다. 2종 또는 3종의 연마입자를 포함함으로써 이로전(erosion) 현상, 디싱(dishing) 현상, 및 피연마물 표면에 금속 층의 잔류물(residue) 형성 등의 표면 결함(defect)을 크게 낮출 수 있다.
텅스텐 막질의 토포그래피는 측면에서 보면 삼각형인 원뿔 모양의 울퉁불퉁한 형상을 가지고 있다. 종래의 텅스텐 토포그래피 개선을 위한 슬러리 조성물과는 달리 본 발명에 따른 연마 슬러리 조성물은 텅스텐의 토포그래피만을 제거하며, 과연마를 진행하여 텅스텐을 낭비하지 않는 효과가 있다.
상기 제1 연마입자의 2차 입도는 30 nm 이상 100 nm 미만이고, 상기 제2 연마입자의 2차 입도는 100 nm 이상 250 nm 미만이고, 상기 제3 연마입자의 2차 입도는 250 nm 이상 500 nm 미만인 것일 수 있다.
상기 연마입자는 하소 조건 및/또는 밀링 조건의 조절에 의해 제1 연마입자, 제2 연마입자 및 제3 연마입자를 제조할 수 있으며, 제1 연마입자와 제2 연마입자가 혼합되는 것이거나, 제1 연마입자와 제3 연마입자 또는 제2 연마입자와 제3 연마입자가 혼합되어 바이모달(bimodal) 형태의 입도 분포를 가지는 것일 수 있다. 또는 제1 연마입자, 제2 연마입자 및 제3 연마입자 모두가 혼합되어 3가지 피크를 보이는 입도 분포를 가지는 것일 수 있다. 상대적으로 큰 연마입자와 상대적으로 작은 연마입자가 혼재함으로써 더 우수한 분산성을 가지며, 웨이퍼 표면에 스크래치를 감소시키는 효과를 기대할 수 있다.
상기 제1 연마입자, 제2 연마입자, 제3 연마입자는, 각각 독립적으로, 금속산화물, 유기물 또는 무기물로 코팅된 금속산화물, 및 콜로이달 상태의 상기 금속산화물로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고, 상기 금속산화물은 실리카, 세리아, 지르코니아, 알루미나, 티타니아, 바륨티타니아, 게르마니아, 망가니아 및 마그네시아로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
상기 제1 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%, 상기 제2 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%, 상기 제3 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%인 것일 수 있다.
텡스텐 필름의 토포그래피 개선은 연마제와 텅스텐 필름 간의 접촉면적과 관련이 있다. 제1 연마입자, 제2 연마입자 및 제3 연마입자를 상기 범위로 혼합한 연마제를 사용하는 경우에, 토포그래피 개선 효과가 뛰어남을 확인하였고, 특히, 혼합 비율에 따라, 연마제와 텅스텐 필름 간의 접촉 면적을 계산하여 분산안정성을 향상시키는 범위로 정한 것이다.
상기 연마입자는, 상기 연마 슬러리 조성물 중 0.5 중량% 내지 10 중량%인 것일 수 있다. 제1 연마입자, 제2 연마입자, 제3 연마입자의 구분 없이 연마입자의 총량을 기준으로 연마 슬러리 조성물 중의 함량이 상기 범위일 수 있다. 연마 슬러리 조성물 중 상기 연마입자의 함량이 0.5 중량% 미만일 경우, 연마 시 연마 대상막, 예를 들어, 텅스텐을 충분히 연마하지 못하여 평탄화율이 저하될 우려가 있고, 상기 연마입자의 함량이 10 중량% 초과일 경우, 결함 및 스크래치 등 결점의 원인이 될 우려가 있다.
상기 연마입자의 접촉면적(Contact area)은 0.5 내지 0.9인 것일 수 있다. 상기 연마입자의 접촉면적이 상기 범위를 벗어나는 경우, 상기 연마입자와 텅스텐 막질의 접촉면적이 작아 충분한 연마가 이루어지지 않고, 텅스텐 막질의 토포그래피 개선이 안되는 문제점이 있다.
상기 접촉면적은 하기의 수학식 1에 의해 계산되는 것일 수 있다.
Figure PCTKR2015008370-appb-I000003
(상기 A는 접촉면적이고, C 0는 연마입자의 농도 wt%이고,
Figure PCTKR2015008370-appb-I000004
는 입자의 지름(nm)임).
상기 산화제는, 과산화수소, 질산 제2 철, 요오드산 칼륨, 과망간산 칼륨, 아염소산 암모늄, 염소산 암모늄, 요오드산 암모늄, 과붕산 암모늄, 과염소산 암모늄, 과요오드산 암모늄, 아염소산 테트라메틸암모늄, 염소산 테트라메틸암모늄, 요오드산 테트라메틸암모늄, 과붕산 테트라메틸암모늄, 과염소산 테트라메틸암모늄, 과요오드산 테트라메틸암모늄, 4-메틸모폴린 N-옥사이드, 피리딘-N-옥사이드 및 유레아 과산화수소로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다. 이들 중 산화력과 슬러리의 분산 안정성, 및 경제성 측면에서 과산화수소를 사용하는 것이 바람직하다.
상기 산화제는 상기 연마 슬러리 조성물 중 0.005 중량% 내지 5 중량%인 것일 수 있으며, 바람직하게는, 0.05 중량% 내지 1 중량%일 수 있다. 상기 산화제가 상기 연마 슬러리 조성물 중 0.005 중량% 미만인 경우에는 텅스텐에 대한 연마 속도 및 에칭 속도가 저하될 수 있고, 5 중량% 초과인 경우에는 텅스텐 표면의 산화막이 하드(hard)해져서 연마가 순조롭게 이루어지지 않고 산화막이 성장하여 텅스텐의 디싱과 이로전(erosion)으로 인하여 토포그래피가 안좋은 특성을 가질 수 있다.
따라서, 산화제는 텅스텐의 연마 속도와 에칭 속도에 직접적인 영향을 주기 때문에, 텅스텐 표면의 품질을 중요시 여기는 본 발명의 연마 슬러리 조성물은 과산화수소의 농도를 줄여서 사용해야 한다. 이에, 본 발명에 따른 연마 슬러리 조성물은 과산화수소-프리 또는 1 중량% 미만 과산화수소를 포함하는 것일 수 있다.
금속 또는 연마기의 부식을 방지하고, 금속 산화가 쉽게 일어나는 pH 범위를 구현하기 위하여 사용되는 물질로서 더 포함할 수 있으며, pH 조절제는 예를 들어, 염산, 질산, 인산, 황산, 불산, 브롬산, 요오드산 및 그의 염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 무기산 또는 무기산염; 및 포름산, 말론산, 말레인산, 옥살산, 초산, 아디프산, 구연산, 아디프산, 아세트산, 프로피온산, 푸마르산, 유산, 살리실산, 피멜린산, 벤조산, 숙신산, 프탈산, 부티르산, 글루타르산, 글루타민산, 글리콜산, 락트산, 아스파라긴산, 타르타르산 및 그의 염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 유기산 또는 유기산염;으로 이루어진 군에서 선택되는 적어도 하나를 포함하는 것일 수 있다.
본 발명의 제2 측면에 따른 연마 슬러리 조성물의 pH는 연마입자에 따라 분산 안정성 및 적정한 연마속도를 내기 위해 조절되는 것이 바람직하며, 1 내지 4, 바람직하게는 2 내지 3의 산성의 pH 범위를 가지는 것일 수 있다.
상기 연마 슬러리 조성물은 텅스텐-함유 기판 연마용인 것일 수 있다. 상기 텅스텐-함유 기판은 텅스텐과 탄탈륨, 티탄, 루테늄, 하프늄, 기타 내화 금속, 그들의 질화물 및 규화물을 들 수 있다.
상기 연마 슬러리 조성물은 10 Å/min 내지 1000 Å/min 두께의 텅스텐을 연마하는 것일 수 있다.
본 발명의 제2 측면에 따른 슬러리 조성물을 이용한 텅스텐 포함 막의 연마 후 표면은 피크투밸리(peak to valley; Rpv) 값이 100 nm 이하 및 표면거칠기(roughness)가 10 nm 이하인 것일 수 있다. 피크투밸리 값 및 표면거칠기의 정도는 원자현미경으로 측정할 수 있다.
본 발명의 제2 측면에 따른 연마 슬러리 조성물은 2종 또는 3종의 연마입자를 혼합하여 제조한 것으로서, 텅스텐 연마 시, 막질의 토포그래피에 의해 발생하던 메탈 쇼트, 에치 불량으로 인해 발생되던 수율을 향상시키고, 차세대 고집적화 공정을 가능하게 할 수 있다. 또한, 텅스텐의 토포그래피만을 제거하기 때문에 과연마를 진행하여 텅스텐을 낭비하지 않고, 이로전(erosion) 현상, 디싱(dishing) 현상, 및 피연마물 표면에 금속 층의 잔류물(residue) 형성 등의 표면 결함(defect)을 크게 낮출 수 있다.
이하, 하기 실시예 및 비교예를 참조하여 본 발명의 제1 측면을 상세하게 설명하기로 한다. 그러나, 본 발명의 기술적 사상이 그에 의해 제한되거나 한정되는 것은 아니다.
[실시예]
실리카 3.5 중량% 및 과산화수소 0.5 중량%를 혼합하고, 질산으로 pH를 조절하여 pH 2.5의 텅스텐의 토포그래피를 개선하는 연마 슬러리 조성물을 제조하였다.
[비교예]
실리카 3.5 중량% 및 과산화수소 8 중량%을 혼합하여 연마 슬러리 조성물을 제조하였다.
실시예 및 비교예의 연마 슬러리 조성물을 이용하여 하기와 같은 연마 조건으로 텅스텐 함유 웨이퍼를 연마 하였다.
[연마 조건]
1. 연마장비: Bruker사의 CETR CP-4
2. 웨이퍼: 6 cm X 6 cm 텅스텐 웨이퍼
3. 플레이튼 압력(platen pressure): 3 psi
4. 스핀들 스피드(spindle speed): 69 rpm
5. 플레이튼 스피드(platen speed): 70 rpm
6. 유량(flow rate): 100 ml/min
7. 슬러리 고형분 함량: 3.5 중량%
도 3은 연마 전 텅스텐 토포그래피 표면의 이미지이고, 도 4는 비교예에 따른 연마 슬러리 조성물을 이용하여 텅스텐 토포그래피 연마 후 표면의 이미지이고, 도 5는 본 발명의 제1 측면의 실시예에 따른 연마 슬러리 조성물을 이용하여 텅스텐 토포그래피 연마 후 표면의 이미지이다. 비교예의 연마 슬러리 조성물을 이용한 경우 330 Å/min, 실시예의 연마 슬러리 조성물을 이용한 경우 556 Å/min을 연마하였다. 본 발명의 실시예에 따른 연마 슬러리 조성물은 과산화수소의 미량 첨가만으로 텅스텐의 토포그래피만을 제거한 것을 알 수 있다.
이하, 하기 실시예 및 비교예를 참조하여 본 발명의 제2 측면을 상세하게 설명하기로 한다. 그러나, 본 발명의 기술적 사상이 그에 의해 제한되거나 한정되는 것은 아니다.
[비교예 1]
실리카 제1 연마입자만을 전체 연마 슬러리 조성물 중 3.5 중량%, 과산화수소 0.5 중량%를 혼합하여 연마 슬러리 조성물을 제조하였다. 질산으로 pH는 2.5로 조절하였다.
[비교예 2]
실리카 제2 연마입자만을 사용한 것을 제외하고 비교예 1과 동일한 연마 슬러리 조성물을 제조하였다.
[비교예 3]
실리카 제3 연마입자만을 사용한 것을 제외하고 비교예 1과 동일한 연마 슬러리 조성물을 제조하였다.
[실시예 1]
실리카 제1 연마입자 50%와 실리카 제2 연마입자 50%의 비율로 2종의 연마입자를 혼합하여 사용한 것을 제외하고 비교예 1과 같은 조건으로 연마 슬러리 조성물을 제조하였다.
[실시예 2]
실리카 제1 연마입자 50%와 실리카 제3 연마입자 50%의 비율로 2종의 연마입자를 혼합하여 사용한 것을 제외하고 비교예 1과 같은 조건으로 연마 슬러리 조성물을 제조하였다.
[실시예 3]
실리카 제2 연마입자 50%와 실리카 제3 연마입자 50%의 비율로 2종의 연마입자를 혼합하여 사용한 것을 제외하고 비교예 1과 같은 조건으로 연마 슬러리 조성물을 제조하였다.
[실시예 4]
실리카 제1 연마입자 20%와 실리카 제2 연마입자 40%와 실리카 제3 연마입자 40%의 비율로 3종의 연마입자를 혼합하여 사용한 것을 제외하고 비교예 1과 동일한 연마 슬러리 조성물을 제조하였다.
[실시예 5]
실리카 제1 연마입자 40%와 실리카 제2 연마입자 20%와 실리카 제3 연마입자 40%의 비율로 3종의 연마입자를 혼합하여 사용한 것을 제외하고 비교예 1과 동일한 연마 슬러리 조성물을 제조하였다.
[실시예 6]
실리카 제1 연마입자 40%와 실리카 제2 연마입자 40%와 실리카 제3 연마입자 20%의 비율로 3종의 연마입자를 혼합하여 사용한 것을 제외하고 비교예 1과 동일한 연마 슬러리 조성물을 제조하였다.
[실시예 7]
실리카 제1 연마입자 33.3%와 실리카 제2 연마입자 33.3%와 실리카 제3 연마입자 33.3% 3종의 연마입자를 혼합하여 사용한 것을 제외하고 비교예 1과 동일한 연마 슬러리 조성물을 제조하였다.
본 발명의 제2 측면의 비교예 1 내지 3, 실시예 1 내지 7의 연마 슬러리 조성물을 이용하여 하기와 같은 연마 조건으로 텅스텐 웨이퍼를 연마하였다.
[연마 조건]
1. 연마장비: CETR CP-4
2. 웨이퍼: 6 cm X 6 cm 텅스텐 웨이퍼
3. 플레이튼 압력(platen pressure): 4 psi
4. 스핀들 스피드(spindle speed): 69 rpm
5. 플레이튼 스피드(platen speed): 70 rpm
6. 유량(flow rate): 100 ml/min
7. 슬러리 고형분 함량: 3.5 중량%
도 6은 본 발명의 제2 측면의 비교예 1 내지 3, 실시예 1 내지 7에 따른 연마 슬러리 조성물을 이용한 텅스텐 웨이퍼의 연마율을 나타낸 것이다. 실리카 제1 연마입자 40%, 실리카 제2 연마입자 40%, 실리카 제3 연마입자 20%의 비율로 3종의 연마입자를 혼합한 실시예 6의 연마 슬러리 조성물을 이용하였을 때 연마율이 가장 낮은 것을 알 수 있다.
하기 표 1은 본 발명의 제2 측면에 따른 비교예 1 내지 3, 실시예 1 내지 7의 연마 슬러리 조성물을 이용하여 연마 후 텅스텐 토포그래피 표면의 접촉 면적을 나타낸 것이다.
Figure PCTKR2015008370-appb-I000005
비교예 1 내지 3, 실시예 1 내지 7의 연마 슬러리 조성물의 총 접촉면적 값은 3종 실리카 입자를 혼합한 실시예 4 내지 실시예 7이 가장 크고, 그 다음 2종 실리카 입자를 혼합한 실시예 1 내지 실시예 3이 비교예 1 내지 비교예 3의 단일 조성보다 총 접촉면적 값이 큰 것을 알 수 있다. 따라서 총 접촉면적 값이 가장 큰 3종 실리카 입자를 혼합한 실시예 4 내지 실시예 7이 텅스텐 토포그래피 개선에 유리한 것을 알 수 있다.
도 7 내지 도 16은 각각 본 발명의 제2 측면의 비교예 1 내지 비교예 3, 실시예 1 내지 실시예 7에 따른 연마 슬러리 조성물을 이용하여 텅스텐 토포그래피 연마 후 표면의 이미지이다. 도 7 내지 도 16의 이미지를 참조하면, 비교예 1 내지 비교예 3 보다 실시예 1 내지 실시예 7의 표면이 토포그래피 개선에 우수한 것을 알 수 있다. 특히, 실시예 1 내지 실시예 3의 표면보다 실시예 4 내지 실시예 7의 표면이 우수한데, 이는 2종의 실리카를 혼합한 연마 슬러리 조성물보다 3종의 실리카를 혼합한 연마 슬러리 조성물이 텅스텐 토포그래피 연마 시 총 접촉면적 증가에 의한 것임을 알 수 있다.
이로써, 2종 또는 3종의 실리카 입자를 혼합한 연마 슬러리 조성물을 이용한 경우가 단일 조성의 실리카 입자를 포함하는 연마 슬러리 조성물에 비해 텅스텐 토포그래피가 개선됨을 확인할 수 있다. 특히, 2종의 실리카 입자보다 3종의 실리카 입자를 혼합한 연마 슬러리 조성물에서 텅스텐 토포그래피 개선에 더 우수함을 확인할 수 있었다. 이는, 총 접촉면적 증가에 따라 토포그래피 개선이 우수해 진 것임을 확인하였다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 제한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (14)

  1. 연마입자; 및
    산화제;
    를 포함하고,
    10 Å 내지 1,000 Å 두께의 텅스텐을 연마하고, 텅스텐의 토포그래피를 개선하는 것인,
    연마 슬러리 조성물.
  2. 제1항에 있어서,
    상기 연마입자는,
    금속산화물, 유기물 또는 무기물로 코팅된 금속산화물, 및 콜로이달 상태의 상기 금속산화물로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고,
    상기 금속산화물은 실리카, 세리아, 지르코니아, 알루미나, 티타니아, 바륨티타니아, 게르마니아, 망가니아 및 마그네시아로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고,
    상기 연마입자는 상기 연마 슬러리 조성물 중 0.5 중량% 내지 10 중량%인 것인, 연마 슬러리 조성물.
  3. 제1항에 있어서,
    상기 산화제는,
    과산화수소, 질산 제2 철, 요오드산 칼륨, 과망간산 칼륨, 질산, 아염소산 암모늄, 염소산 암모늄, 요오드산 암모늄, 과붕산 암모늄, 과염소산 암모늄, 과요오드산 암모늄, 아염소산 테트라메틸암모늄, 염소산 테트라메틸암모늄, 요오드산 테트라메틸암모늄, 과붕산 테트라메틸암모늄, 과염소산 테트라메틸암모늄, 과요오드산 테트라메틸암모늄, 4-메틸모폴린 N-옥사이드, 피리딘-N-옥사이드 및 유레아 과산화수소로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고,
    상기 산화제는 상기 연마 슬러리 조성물 중 0.005 중량% 내지 5 중량%인 것인, 연마 슬러리 조성물.
  4. 제1항에 있어서,
    상기 연마 슬러리 조성물은 과산화수소-프리 또는 1 중량% 미만 과산화수소를 포함하는 것인, 연마 슬러리 조성물.
  5. 제1항에 있어서,
    상기 연마 슬러리 조성물의 pH는 1 내지 4의 범위를 가지는 것인, 연마 슬러리 조성물.
  6. 제1 연마입자, 제2 연마입자, 제3 연마입자 중 적어도 둘 이상의 연마입자; 및
    산화제;
    를 포함하고,
    상기 제1 연마입자의 1차 입도는 20 nm 이상 45 nm 미만이고,
    상기 제2 연마입자의 1차 입도는 45 nm 이상 130 nm 미만이고,
    상기 제3 연마입자의 1차 입도는 130 nm 이상 250 nm 미만인 것인, 연마 슬러리 조성물.
  7. 제6항에 있어서,
    상기 제1 연마입자의 2차 입도는 30 nm 이상 100 nm 미만이고,
    상기 제2 연마입자의 2차 입도는 100 nm 이상 250 nm 미만이고,
    상기 제3 연마입자의 2차 입도는 250 nm 이상 500 nm 미만인 것인,
    연마 슬러리 조성물.
  8. 제6항에 있어서,
    상기 제1 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%,
    상기 제2 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%,
    상기 제3 연마입자는, 전체 연마입자 중 10 중량% 내지 60 중량%인 것인,
    연마 슬러리 조성물.
  9. 제6항에 있어서,
    상기 제1 연마입자, 제2 연마입자, 제3 연마입자는, 각각 독립적으로,
    금속산화물, 유기물 또는 무기물로 코팅된 금속산화물, 및 콜로이달 상태의 상기 금속산화물로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고,
    상기 금속산화물은 실리카, 세리아, 지르코니아, 알루미나, 티타니아, 바륨티타니아, 게르마니아, 망가니아 및 마그네시아로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것인, 연마 슬러리 조성물.
  10. 제6항에 있어서,
    상기 산화제는,
    과산화수소, 질산 제2 철, 요오드산 칼륨, 과망간산 칼륨, 아염소산 암모늄, 염소산 암모늄, 요오드산 암모늄, 과붕산 암모늄, 과염소산 암모늄, 과요오드산 암모늄, 아염소산 테트라메틸암모늄, 염소산 테트라메틸암모늄, 요오드산 테트라메틸암모늄, 과붕산 테트라메틸암모늄, 과염소산 테트라메틸암모늄, 과요오드산 테트라메틸암모늄, 4-메틸모폴린 N-옥사이드, 피리딘-N-옥사이드 및 유레아 과산화수소로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하고,
    상기 산화제는 상기 연마 슬러리 조성물 중 0.005 중량% 내지 5 중량%인 것인, 연마 슬러리 조성물.
  11. 제6항에 있어서,
    상기 연마 슬러리 조성물은 과산화수소-프리 또는 1 중량% 미만 과산화수소를 포함하는 것인, 연마 슬러리 조성물.
  12. 제6항에 있어서,
    염산, 질산, 인산, 황산, 불산, 브롬산, 요오드산 및 그의 염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 무기산 또는 무기산염; 및
    포름산, 말론산, 말레인산, 옥살산, 초산, 아디프산, 구연산, 아디프산, 아세트산, 프로피온산, 푸마르산, 유산, 살리실산, 피멜린산, 벤조산, 숙신산, 프탈산, 부티르산, 글루타르산, 글루타민산, 글리콜산, 락트산, 아스파라긴산, 타르타르산 및 그의 염으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 유기산 또는 유기산염;
    으로 이루어진 군에서 선택되는 적어도 하나의 pH 조절제를 더 포함하는 것인, 연마 슬러리 조성물.
  13. 제6항에 있어서,
    상기 연마 슬러리 조성물을 이용한 텅스텐 포함 막의 연마 후 표면은 피크투밸리(peak to valley; Rpv) 값이 100 nm 이하 및 표면거칠기(roughness)가 10 nm 이하인 것인, 연마 슬러리 조성물.
  14. 제6항에 있어서,
    상기 연마입자의 접촉면적(Contact area)은 0.5 내지 0.9이고,
    상기 접촉면적은 하기의 수학식 1에 의해 계산되는 것인, 연마 슬러리 조성물.
    Figure PCTKR2015008370-appb-I000006
    (상기 A는 접촉면적이고, C 0는 연마입자의 농도 wt%이고,
    Figure PCTKR2015008370-appb-I000007
    는 입자의 지름(nm)임).
PCT/KR2015/008370 2014-08-26 2015-08-11 연마 슬러리 조성물 WO2016032145A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/325,095 US20170183537A1 (en) 2014-08-26 2015-08-11 Polishing slurry composition
CN201580042750.8A CN106661429B (zh) 2014-08-26 2015-08-11 抛光浆料组合物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2014-0111222 2014-08-26
KR20140111222 2014-08-26
KR10-2014-0149265 2014-10-30
KR1020140149265A KR101660384B1 (ko) 2014-10-30 2014-10-30 연마 슬러리 조성물
KR1020150098372A KR20160024745A (ko) 2014-08-26 2015-07-10 연마 슬러리 조성물
KR10-2015-0098372 2015-07-10

Publications (1)

Publication Number Publication Date
WO2016032145A1 true WO2016032145A1 (ko) 2016-03-03

Family

ID=55399995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008370 WO2016032145A1 (ko) 2014-08-26 2015-08-11 연마 슬러리 조성물

Country Status (1)

Country Link
WO (1) WO2016032145A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063763A (ko) * 2002-01-24 2003-07-31 한국과학기술연구원 텅스텐 씨엠피용 슬러리
KR100697293B1 (ko) * 2005-10-04 2007-03-20 삼성전자주식회사 화학기계적 연마용 연마제 및 이를 이용한 화학기계적연마방법
KR20090128389A (ko) * 2007-02-27 2009-12-15 히다치 가세고교 가부시끼가이샤 금속용 연마액 및 연마방법
KR20120069784A (ko) * 2008-04-16 2012-06-28 히다치 가세고교 가부시끼가이샤 Cmp용 연마액 및 연마방법
KR101257336B1 (ko) * 2012-04-13 2013-04-23 유비머트리얼즈주식회사 연마용 슬러리 및 이를 이용한 기판 연마 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063763A (ko) * 2002-01-24 2003-07-31 한국과학기술연구원 텅스텐 씨엠피용 슬러리
KR100697293B1 (ko) * 2005-10-04 2007-03-20 삼성전자주식회사 화학기계적 연마용 연마제 및 이를 이용한 화학기계적연마방법
KR20090128389A (ko) * 2007-02-27 2009-12-15 히다치 가세고교 가부시끼가이샤 금속용 연마액 및 연마방법
KR20120069784A (ko) * 2008-04-16 2012-06-28 히다치 가세고교 가부시끼가이샤 Cmp용 연마액 및 연마방법
KR101257336B1 (ko) * 2012-04-13 2013-04-23 유비머트리얼즈주식회사 연마용 슬러리 및 이를 이용한 기판 연마 방법

Similar Documents

Publication Publication Date Title
US6447371B2 (en) Chemical mechanical polishing slurry useful for copper/tantalum substrates
US6436834B1 (en) Chemical-mechanical abrasive composition and method
EP1098948B1 (en) Chemical mechanical polishing slurry useful for copper/tantalum substrate
US20170183537A1 (en) Polishing slurry composition
TWI396731B (zh) 多成分之阻障研磨溶液
JP3450247B2 (ja) 金属配線形成方法
US20020032987A1 (en) Chemical mechanical polishing slurry and method for using same
TWI485235B (zh) 化學機械研磨組成物及其相關方法
US20120153218A1 (en) Polishing composition
WO2013100447A1 (ko) Cmp 슬러리 조성물 및 이를 이용한 연마 방법
JP2000160139A (ja) 研磨用組成物およびそれを用いた研磨方法
WO2018026099A1 (ko) 텅스텐 베리어층 연마용 슬러리 조성물
WO2013100451A1 (ko) Cmp 슬러리 조성물 및 이를 이용한 연마 방법
TW200409808A (en) Polishing compound composition, method for producing same and polishing method
WO2017052280A1 (ko) Cmp용 슬러리 조성물 및 이를 이용한 연마방법
US20080116171A1 (en) Method For The Preferential Polishing Of Silicon Nitride Versus Silicon Oxide
JP3602393B2 (ja) 化学的機械的研磨用スラリー
WO2024010249A1 (ko) 구리 배리어층 연마용 cmp 슬러리 조성물
WO2020130332A1 (ko) 연마 슬러리 조성물
WO2016032145A1 (ko) 연마 슬러리 조성물
WO2017057906A1 (ko) 유기막 연마용 cmp 슬러리 조성물 및 이를 이용한 연마방법
WO2020091242A1 (ko) 구리 배리어층 연마용 슬러리 조성물
KR101660384B1 (ko) 연마 슬러리 조성물
KR101710580B1 (ko) 연마 슬러리 조성물
KR101682097B1 (ko) 연마 슬러리 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15325095

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836540

Country of ref document: EP

Kind code of ref document: A1