WO2020091242A1 - 구리 배리어층 연마용 슬러리 조성물 - Google Patents

구리 배리어층 연마용 슬러리 조성물 Download PDF

Info

Publication number
WO2020091242A1
WO2020091242A1 PCT/KR2019/012950 KR2019012950W WO2020091242A1 WO 2020091242 A1 WO2020091242 A1 WO 2020091242A1 KR 2019012950 W KR2019012950 W KR 2019012950W WO 2020091242 A1 WO2020091242 A1 WO 2020091242A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
slurry composition
cmp
copper
polishing
Prior art date
Application number
PCT/KR2019/012950
Other languages
English (en)
French (fr)
Inventor
김승환
이승훈
이승현
Original Assignee
영창케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영창케미칼 주식회사 filed Critical 영창케미칼 주식회사
Publication of WO2020091242A1 publication Critical patent/WO2020091242A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Definitions

  • the present invention generally relates to a chemical mechanical planarizing (CMP) method for removing barrier metals, more specifically, nitriding with a diffusion barrier in the presence of an interconnect structure in an integrated circuit device. It relates to a CMP slurry composition for chemical mechanical polishing of tantalum or tantalum.
  • the CMP slurry according to the present invention is a useful composition comprising deionized water, abrasives, abrasive enhancers and corrosion inhibitors, dispersion stabilizers, chelating agents.
  • a pH adjuster and a dispersion stabilizer can be used to improve the dispersibility and stability of the abrasive particles, and to provide a CMP slurry composition having an excellent polishing rate and selectivity compared to conventional abrasive slurries.
  • the polishing composition of the present invention also has a high step removal efficiency when the CMP process is applied, and suppresses occurrence of dishing, corrosion or scratches on the polishing target film, thereby providing a high-quality surface.
  • copper Since copper has many advantages in terms of efficiency such as excellent electromigration resistance and low electrical resistance, it has been mainly used as a finite electrical connection material for semiconductor integrated circuits such as micronized and highly integrated ULSI.
  • Copper forms a porous oxide layer composed of CuO, CuO2, Cu (OH) 3 including Cu + or Cu2 +, which are copper oxide ions, during the CMP process.
  • TEOS tetraethoxysilane
  • tungsten made of silicon
  • electrochemically is sensitive to corrosion compared to tungsten, so the polishing rate may be high.
  • dishing or erosion easily occurs, and particularly, the components of the polishing slurry and the foreign substances such as oxides generated during the polishing process through the porous membrane are copper. The phenomenon that penetrates the oxide layer occurs. These phenomena can cause problems in the next process, photolithography, etc.
  • the circuits are Given that performance depends, it can cause fatal defects.
  • Copper is very caustic in many dielectric materials, such as silicon dioxide and low-K or doped versions of silicon dioxide, so a diffusion barrier layer is needed to prevent diffusion of copper into the underlying dielectric material.
  • Typical barrier materials include tantalum, tantalum nitride, tantalum silicon nitride, titanium, titanium nitride, titanium-silicon nitride, titanium-titanium nitride, titanium-tungsten, tungsten, tungsten nitride and tungsten-silicon nitride do.
  • CMP chemical-mechanical-leveling treatment
  • the CMP process is typically performed in a two-step sequence. Initially, the polishing process uses a “first stage” slurry specifically designed to quickly remove copper.
  • the “second stage” slurry removes the barrier material.
  • second stage slurries require good selectivity to remove barrier materials without adversely affecting the physical or electrical properties of the interconnect structure. Since traditional alkali polishing slurries have much higher Ta / TaN removal rates than acid slurries, commercial second stage slurries typically have a basic to neutral pH. Another factor highlighting the advantages of the neutral to basic pH barrier metal polishing slurry is the need to preserve the metal overlying the barrier metal during the second stage polishing. The metal removal rate should be very low to reduce dishing of the metal interconnect.
  • barrier slurry compositions require high barrier removal rates, very low post-polishing topography, no corrosion defects and very low scratch or corrosion, and select any kind of abrasive, oxidizer or additive Depending on whether or not, it is possible to effectively polish a metal insulating film or a diffusion wall or a metal layer at a desired polishing ratio while minimizing the fluctuation range of important variables in semiconductor processes such as incompleteness, surface roughness, surface defects, erosion and corrosion of the polished surface.
  • a polishing slurry can be prepared.
  • Patent Document 1 Korean Registered Patent Publication No. 10-1465604
  • Patent Document 2 Patent Document 2 Korean Registered Patent Publication No. 10-1548715
  • Patent Document 3 Patent Document 3 Korean Registered Patent Publication No. 10-1698490
  • the objective of the present invention is to reduce the dishing, corrosion and defect among the problems arising from the above-mentioned copper CMP process compared to the existing slurry, and the step removal rate for the silicon oxide film and the copper film can be rapidly polished compared to the conventional slurry.
  • the present invention is an abrasive made of colloidal silica;
  • One or more additives selected from the group consisting of heterocyclic compounds, nitrides, organic acids, copper polishing rate improvers, dispersion stabilizers and pH adjusters;
  • it is composed of a residual amount of solvent, and provides a slurry composition for CMP characterized in that the polishing by controlling the polishing ratio and the selectivity for the silicon oxide film, the tantalum film and the copper film by adjusting the content of the additive and the solvent.
  • the colloidal silica is characterized in that the particle size is 30 to 120nm.
  • the heterocyclic compound is two or more nitrogen atoms, 1,2,4H-triazole, 5-methylbenzotriazole, tetrazole, imidazole, 1,2-dimethylimide It is characterized by at least one member selected from the group consisting of sol, benzotriazole (BTA), 1 H-benzotriazole acetonitrile and piperazine.
  • the nitride is potassium nitrate (KNO3), nitric acid (HNO3), ammonium nitrate (NH4NO3), iron nitrate (Fe (NO3) 2), copper nitrate (Cu (NO3) 2), etc. Can be used, or can be used by mixing them.
  • the organic acid is citric acid (citric acid), glutaric acid (glutaric acid), malic acid (malic acid), maleic acid (maleic acid), oxalic acid (oxalic acid), phthalic acid (phthalic acid) , Succinic acid, tartaric acid, and acetic acid.
  • NTA nitrotriacetic acid
  • iminodiacetic acid IDA
  • MIDA methyl iminodiacetic acid
  • HIDA hydroxyethyl iminodiacetic acid
  • HIDA diethylenetri Diethylenetriamine pentaacetic acid
  • EDTA Ethylenediamine tetraacetic acid
  • HEDTA N-hydroxyethyl ethylenediamine tetraacetic acid
  • Methodhylethyl Characterized by at least one selected from the group of amino acids consisting of ethylenediamine tetraacetic acid (MEDTA), triethylene tetraamine hexaacetic acid (TTHA).
  • the Cu abrasive enhancer is selected from a group of guanidine salts consisting of guanidine carbonate, guanidine acetate, guanidine sulfate, guanidine nitrate It can be one.
  • the dispersion stabilizer includes polyvinyl alcohol (PVA), ethylene glycol (EG), glycerin, polyethylene glycol (PEG), polypropylene glycol (PPG) or polyvinylpyrrolidone (PVP). Or two or more selected from them.
  • PVA polyvinyl alcohol
  • EG ethylene glycol
  • PPG polypropylene glycol
  • PVP polyvinylpyrrolidone
  • nonionic dispersant known to be applicable to the slurry composition for CMP may be used without particular limitation.
  • the pH adjusting agent may be used alone or in combination with KOH, NH4OH, NaOH, TMAH, TBAH, HNO3, etc. in order to adjust the pH range to be basic.
  • the pH must be precisely controlled because it is closely related to the particle stability and polishing rate of the slurry.
  • the slurry composition for CMP is 1 to 15% by weight of an abrasive consisting of colloidal silica, a heterocyclic compound, a nitride, an organic acid group, a Cu polishing rate improver, and a dispersion stabilizer based on the total weight of the composition. And 0.001 to 7% by weight of one or more additives selected from the group consisting of a pH adjuster and the rest is characterized in that it comprises a solvent.
  • the slurry composition for CMP is characterized in that the pH is 9 to 12.
  • the slurry composition for CMP is characterized by simultaneously polishing a polished film formed of two or more types selected from a silicon oxide film, a tantalum film, and a copper film.
  • the polishing is characterized in that the polishing selectivity of the tantalum film, the silicon oxide film, and the copper film is 1: 1-4: 1-2.
  • the barrier composition for CMP according to the present invention has a high step removal efficiency with respect to a silicon oxide film and a copper film layer, thereby improving productivity.
  • the copper wiring layer of the semiconductor device layer having excellent reliability and properties can be formed more efficiently, which can greatly contribute to obtaining a high-performance semiconductor device.
  • step 1 after removal of overburden copper, the polished wafer surface has non-uniform local and overall flatness due to step height differences at various locations. Low-density features tend to have high copper steps, while high-density features tend to have low steps.
  • step after step 1 is very necessary for a step 2 CMP slurry with selective polishing relative to the copper to oxide removal rate.
  • selectivity ratio means different removal rates for different materials under the same polishing conditions.
  • the barrier slurry preferably provides at least one of the following in step 2 of the CMP process of the patterned wafer. Provides desirable removal rates for various types of film, provides low level of wafer non-uniformity (WIW NU), and has low residues on the polished wafer after CMP process, selectable for various polishing layers It is to provide rain.
  • WIW NU wafer non-uniformity
  • a specific featured distortion that is not suitable for semiconductor manufacturing is damage to copper vias or metal lines caused by additional corrosion and chemical components that interact with the copper vias or metal lines in the CMP process. Therefore, it is very important to use a corrosion inhibitor in the barrier CMP slurry to reduce further corrosion of the copper vias or trenches during the CMP process and also to reduce defects.
  • the chemical reaction of the barrier CMP composition in a step 2 CMP process includes an oxidation reaction induced by an oxidizing agent used in the CMP slurry, for example H 2 O 2 .
  • an oxidizing agent used in the CMP slurry for example H 2 O 2 .
  • the surface of the metal, eg copper, line, via, or trench, barrier material, such as Ta, is oxidized with each metal oxide film.
  • copper is oxidized to cuprous oxide or cuprous oxide mixtures
  • Ta is oxidized to Ta 2 O 5 .
  • Chelates, ligands, or other chemical additives that can be chemically bound to the copper cations and tantalum cations are used in the barrier slurry to promote copper oxide and tantalum oxide dissolution to promote copper, line, via, or trench and barrier layers or barrier films. Can improve the removal rate.
  • the slurry to be developed in the present invention significantly reduces corrosion or defects occurring during the copper CMP process, and the polishing removal rate for silicon oxide films, copper films, and tantalum films can be rapidly polished compared to conventional slurries. It is intended to provide a purpose.
  • the slurry for polishing a copper barrier layer according to the present invention includes an abrasive made of colloidal silica; One or more additives selected from the group consisting of heterocyclic compounds, nitrides, organic acids, copper polishing rate improvers, dispersion stabilizers and pH adjusters; And a residual amount of solvent.
  • the colloidal silica refers to a colloidal solution in which silica particles having a nanoparticle size do not settle and are stably dispersed in a solvent.
  • the colloidal silica has a particle size of 30 to 120 nm, which is preferable in terms of properly maintaining the scratch and removal rate, and more preferably when the particle size is 50 to 80 nm.
  • the particle size of the colloidal silica is less than 30 nm, the removal rate for the film quality decreases, so the process takes a long time, and if it exceeds 120 nm, it is not preferable because it is vulnerable to scratch.
  • the abrasive made of the colloidal silica that is, the colloidal silica preferably contains 1% to 15% by weight based on the total weight of the composition.
  • the colloidal silica is used in an amount of less than 1% by weight, the solid content is insufficient to reduce the removal rate (Removal rate), and when it is used in excess of 15% by weight, it is not preferable because aggregation occurs due to excessive content.
  • the heterocyclic compound is two or more nitrogen atoms, 1,2,4H-triazole, 5-methylbenzotriazole, tetrazole, imidazole, 1,2 -Dimethylimidazole, benzotriazole (BTA), 1 H-benzotriazole acetonitrile or one or more selected from the group consisting of piperazine.
  • the corrosion inhibitor may be from about 0.005% to about 0.5% by weight of the slurry composition in terms of corrosion inhibition effect, polishing rate and stability of the slurry composition, but is not limited thereto.
  • the corrosion inhibitor When the corrosion inhibitor is less than about 0.005% by weight, polishing of the copper film is impossible to control and a dishing problem may occur. When the corrosion inhibitor is greater than about 0.5% by weight, the polishing rate of the copper film is lowered and residue remains. Problems may arise.
  • the polishing rate improver for tantalum that can be used in the CMP slurry of the present invention is a nitride.
  • Nitride is a material used as an etching solution for tantalum or titanium carbide, and is effective in removing tantalum during CMP polishing.
  • Potassium nitrate (KNO3), nitric acid (HNO3), ammonium nitrate (NH4NO3), iron nitrate (Fe (NO3) 2), copper nitrate (Cu (NO3) 2), etc. may be used as the nitride used in the present invention. , These may be used in combination.
  • titanium or tantalum is a relatively stable material, and is easily etched into a mixture of hydrofluoric acid and nitric acid, and has a property of reacting slowly to basicity and aqua regia.
  • the amount of nitride used in the slurry is preferably present in the range of about 0.05 to 20% by weight, most preferably present in about 0.1 to 10% by weight.
  • chelating agents or complexing agents that control the rate of copper removal relative to the barrier metal removal rate that can be used in the CMP slurries of the present invention.
  • the chelating agent is to inhibit the re-adsorption of the copper oxide oxidized by the chelate reaction with the copper oxide to the copper layer to be polished layer, thereby increasing the polishing rate for copper and reducing surface defects.
  • CMP planarization of the dielectric / metal composite structure can be further improved by adding a chelating agent that is selective for the desired metal component to the slurry.
  • Chelating agents that can be used in the present invention are citric acid, glutaric acid, malic acid, maleic acid, oxalic acid, phthalic acid, succinic acid ( It is characterized by succinic acid), tartaric acid, and acetic acid.
  • NTA nitrotriacetic acid
  • IDA iminodiacetic acid
  • MIDA methyl iminodiacetic acid
  • HIDA hydroxyethyl iminodiacetic Acid
  • HIDA Diethylenetriamine pentaacetic acid
  • EDTA Ethylenediamine tetraacetic acid
  • MEDTA Methyl ethylenediamine tetraacetic acid
  • TTHA Triethylene tetraamine hexaacetic acid
  • the chelating agent is added in an amount of 0.05 to 5w / w% based on the weight of the slurry composition.
  • the concentration is 0.1 to 3w / w%.
  • the concentration is 0.1 to 1w / w%. In an excessive amount, the chelating agent does not exhibit the desired effect of the present invention, and in an excessive amount, the chelating agent is consumed without additional effects.
  • the copper polishing rate enhancer that can be used in the CMP slurry of the present invention is a guanidine salt, and this material is effective in improving the polishing rate of the copper film layer as the Cu surface weakens by forming a complex with Cu oxide during CMP polishing.
  • the group of guanidine salts used in the present invention is characterized by at least one selected from the group consisting of guanidine carbonate, guanidine acetate, guanidine sulfate, and guanidine nitrate.
  • the copper polishing rate improver is added in an amount of 0.1 to 2 w / w% based on the weight of the slurry composition.
  • the concentration is 0.2 to 1 w / w%.
  • the concentration is 0.2 to 0.5w / w%.
  • Dispersing stabilizers that can be used in the CMP slurry of the present invention are non-ionic dispersants such as polyvinyl alcohol (PVA), ethylene glycol (EG), glycerin, polyethylene glycol (PEG), polypropylene glycol (PPG) or polyvinylpyrrolidone ( PVP) and the like, and two or more selected from them may be used.
  • PVA polyvinyl alcohol
  • EG ethylene glycol
  • PPG polypropylene glycol
  • PVP polyvinylpyrrolidone
  • the slurry composition for CMP may include the nonionic dispersant in an amount of 0.5 to 5% by weight, preferably 1 to 2% by weight based on 100% by weight of the abrasive particles.
  • the nonionic dispersant is adsorbed on the particle surface in solution, and contains one or more functional groups having affinity for the particle, so that it strongly and continuously adsorbs on the particle surface to increase the particle size.
  • the dispersion force is determined according to the structure of the dispersant around the particles and the adsorption type or the thickness of the dispersant layer, and the dispersion stability is maintained by the steric repulsive force. Therefore, it also plays a role in improving the appropriate polishing rate for the silicon oxide film.
  • the content of the dispersant is less than 0.5% by weight relative to 100% by weight of the abrasive particles, the dispersing power is low and precipitation proceeds quickly, so precipitation may occur during transport of the polishing liquid, and the supply of the abrasive may not be uniform.
  • the content of the dispersant exceeds 5% by weight relative to 100% by weight of the abrasive particles, a dispersant layer that acts as a kind of cushion around the abrasive particles is formed thick, making it difficult for the abrasive surface to come into contact with the abrasive surface. The speed may decrease.
  • the slurry composition for CMP according to an embodiment of the present invention preferably has a pH of 9 to 12 in terms of stability of the composition. If the pH range is less than 9, the aggregation phenomenon and removal rate of the colloidal particles are unstable, and when the pH range exceeds 12, the removal rate is unstable.
  • KOH, NH4OH, NaOH, TMAH, TBAH, HNO3, etc. can be used as a basic material alone or in combination, and the pH is precisely related to the particle stability and polishing rate of the slurry composition. Should be adjusted.
  • the solvent is used to control the removal rate of the film by adjusting the concentration of the composition, and can be used by diluting with an additive, and the solvent is deionized water, water, etc. Can be used, but it is most preferable to use deionized water.
  • the polishing target film of the slurry composition may include a copper-containing film.
  • the composition of the slurry is selected from the group consisting of titanium (Ti), tantalum (Ta), ruthenium (Ru), molybdenum (Mo), cobalt (Co) or gold (Au) used as a copper-containing film and a barrier film.
  • Ti titanium
  • Ta tantalum
  • Ru ruthenium
  • Mo molybdenum
  • Co cobalt
  • Au gold
  • a desired polishing rate can be adjusted for an oxide film used in a thin film or a semiconductor insulating film containing any one of the following. Accordingly, the slurry composition may also exhibit excellent polishing selectivity between the polishing target film and other thin films.
  • the content of silica was all 15% by weight
  • PVP Polyvinylpyrrolidone
  • Experimental Example 1 to Experimental Example 3 and Comparative Experimental Example 1 were measured by measuring the polishing rate selection ratio and dishing by the slurry compositions of Examples 1 to 3 and Comparative Examples 1 and 2, respectively. And Comparative Experimental Example 2, and described in Table 2 below.
  • polishing equipment 12 inch (300 mm) CMP equipment-AP-300 (CTS)
  • polishing pad IC1010 (Dow)
  • polishing rate was measured using a 12-inch (300 mm) CMP device
  • polishing rates of Cu and Ta were calculated using a 4-point probe (CMT-SR 5000, AIT Co., Ltd).
  • PTEOS, OXIDE calculated the polishing rate by measuring the thickness change before and after CMP using Atlas equipment of Nanometrics.
  • the selection ratio was calculated by the polishing rate of each film as follows.
  • the dishing (dishing) measurement was calculated by measuring the thickness of each film as follows with a transmission electron microscope (JEM-2000, JEOL).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

본 발명은 연마입자; 헤테로고리화합물, 질소화물, 킬레이트제, 구리 연마율 향상제, 분산안정제 및 pH 조정제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제; 및 잔량의 용매를 포함하는 CMP용 슬러리 조성물에 관한 것이며, 실리콘산화막과 구리막층간에 대하여 단차 제거 효율이 높고 구리막층에 대한 디싱, 부식, defect 등을 최소화하여 연마할 수 있는 효과를 나타내는 것이다.

Description

구리 배리어층 연마용 슬러리 조성물
본 발명은 일반적으로 배리어 금속을 제거하기 위한 화학적 기계 평탄화(chemical mechanical planarizing, CMP) 방법 에 관한 것이며, 보다 구체적으로는, 집적 회로 디바이스(integrated circuit device)에서 상호접속 구조재의 존재 하에 확산 방지막으로 질화탄탈 또는 탄탈의 화학 기계적 연마를 위한 CMP 슬러리 조성물에 관한 것이다. 본 발명에 의한 CMP 슬러리는 탈이온수, 연마제, 연마향상제 및 부식 방지제, 분산안정제, 킬레이트제를 포함하는 유용한 조성물이다. 연마 조성물의 pH가 9 내지 12로 유지되도록 pH 조정제와 분산안정제를 통해 연마 입자의 분산성과 안정성을 향상시키고 기존의 연마 슬러리에 비해 연마 속도 및 선택비가 우수한 CMP 슬러리 조성물을 제공할 수 있다.
본 발명의 연마 조성물은 또한 CMP 공정이 적용될 때 단차 제거 효율이 높고 연마 대상막에 디싱, 부식 또는 스크래치 등 발생하는 것을 억제해 양질의 표면을 제공한다.
최근에는 반도체 제조 공정기술의 발전으로 반도체 산업에서는 집적 회로를 형성하는데 구리 전기 상호접속재(interconnect)에 의존하는 일이 증가하고 있다. 이들 구리 상호접속재는 전기 저항율이 낮고 전기이동(electromigration)에 대한 저항성이 크다.
구리는 우수한 전자이동(electromigration) 내성 및 낮은 전기 저항성 등의 효율성 측면에서 많은 장점을 가지고 있기 때문에 미세화 및 고집적화된 ULSI와 같은 반도체 집적 회로의 유한 전기적 접속 재료로 주되어 왔다.
그러나 드라이 에칭(etching)에 의한 패턴화가 어려워 구리를 집적 회로로 사용하지 못하는 한계가 있었기 때문에 이를 극복하기 위해 이중 상감(dual damascene) 공정에 따른 CMP 공정으로 구리 인터커넥트를 형성하는 방법이 제안되었다. 구리는 CMP 공정 시 구리 산화물 이온인 Cu+ 혹은 Cu2+를 포함하는 CuO, CuO₂, Cu(OH)₃ 등으로 구성된 다공성 산화막 층을 형성한다.
그런데, 구리는 실리콘 재질의 테트라에톡시실란(tetraethoxysilane, TEOS) 또는 텅스텐 등의 다른 재질에 비하여 상대 적으로 연약하고 전기화학적으로도 텅스텐에 비하여 부식(corrosion)에 민감하기 때문에, 연마속도는 높을 수 있으나 대신 과연마(over-polishing) 및 스크래치로 인한 디싱(dishing)이나 침식(erosion) 등이 쉽게 발생하고, 특히 다공성막질의 구멍을 통하여 연마 슬러리의 성분과 연마공정 중에 발생한 산화물 등의 이물질이 구리 산화막 층을 침투하는 현상이 일어난다. 이러한 현상은 다음 공정인 포토리소그래피(photolithography) 공정 등에서 문제를 일으킬 수 있으며, 특히 배선 의 설계에 따라 6-7개 이상의 층(layer)으로 구성되는 고집적 회로의 경우 각 층의 평탄화도에 따라서 회로의 성능이 좌우 됨을 감안할 때 치명적인 불량의 원인이 될 수 있다.
구리는 많은 유전체 물질, 이를테면 이산화규소 및 저-K 또는 도핑된 버전(doped version)의 이산화규소에서 가성이 매우 크므로, 확산 배리어 층이 하층 유전체 물질로 구리의 확산을 방지하는데 필요하다.
전형적인 배리어 물질은 탄탈룸, 탄탈룸 니트리드, 탄탈룸실리콘 니트리드, 티타늄, 티타늄 니트리드, 티타늄-실리콘 니트리드, 티타늄-티타늄 니트리드, 티타늄-텅스텐, 텅스텐, 텅스텐 니트리드 및 텅스텐-실리콘 니트리드를 포함한다.
고밀도 집적 회로의 요구 증가에 부응하여, 제조업자들은 현재 금속 상호접속 구조재의 복수 오버라잉(overlying) 층을 함유한 집적 회로를 조립하고 있다. 디바이스 조립 중에, 각 상호접속 층을 평탄화하면 패킹 밀도, 공정 균일성, 생산 품질을 개선하며, 가장 중요하게는, 칩 제조업자가 복수 층 집적 회로를 조립하는 것을 가능하게 한다. 칩 제조업자들은 평판 표면을 제조하는데 비교적효율이 좋은 수단으로서 화학적-기계적-평탄화 처리(CMP)에 의존하고 있다.
CMP 공정은 전형 적으로는 2 단계 순서로 수행된다. 처음에, 폴리싱 공정은 특히 구리를 신속하게 제거하도록 설계된 "제 1 단계" 슬러리를 사용한다.
초기 구리 제거 후에, "제 2 단계" 슬러리는 배리어 물질을 제거한다. 전형적으로, 제 2 단계 슬러리는 상호접속 구조재의 물리적 구조 또는 전기 특성에 악영향이 없이 배리어 물질을 제거하는 우수한 선택성을 요구한다. 전통적으로 알칼리 폴리싱 슬러리가 산성 슬러리 보다 훨씬 높은 Ta/TaN 제거 속도(removal rate)를 가지고 있으므로, 상업적인 제 2 단계 슬러리는 전형적으로 염기성 내지 중성의 pH를 가지고 있다. 중성 내지 염기성 pH 배리어 금속 폴리싱 슬러리의 장점을 강조하는 다른 요인은 제 2 단계 폴리싱 중에 배리어 금속을 오버라잉하는 금속을 보존할 필요성에 관한 것이다. 금속 제거 속도는 금속 상호접속재의 디싱(dishing)을 감소시키도록 매우 낮아야 한다.
따라서 화학 기계적 연마방법에 있어서, 이러한 배리어 슬러리 조성물은 높은 배리어 제거 속도, 아주 낮은 연마 후 토포그래피(topography), 부식 결함 없음 및 매우 낮은 스크래치 또는 부식이 필요하며 어떠한 종류의 연마제, 산화제 또는 첨가제를 선택하는가에 따라, 연마된 표면의 불완전성, 표면거침성, 표면결함, 침식 및 부식 등의 반도체 공정에 있어서 중요한 변수들의 변동폭을 최소화하면서 목적하는 연마비율로 금속 절연막이나 확산벽 또는 금속층을 효과적으로 연마할 수 있는 연마용 슬러리가 제조될 수 있다.
(선행기술문헌)
(특허문헌 1) (특허문헌 1) 대한민국등록특허공보 제10-1465604호
(특허문헌 2) (특허문헌 2) 대한민국등록특허공보 제10-1548715호
(특허문헌 3) (특허문헌 3) 대한민국등록특허공보 제10-1698490호
일반적으로 구리 CMP 기술에 있어서 상기한 화학약품을 이용하여 실험을 수행한 결과, 구리와 탄탈화물의 연마량 불량으로 인한 CMP 작업 처리량의 문제, 구리 물질의 부식으로 인한 장치 성능과 생산수율 감소, 층 평탄화 문제 및 연마시 발생되는 디싱 현상 등에서 하나이상의 결함 등이 발생된다. 또한 구리 막질을 연마하는 공정의 경우 적절한 연마 속도와 함께 낮은 표면 결함 수준을 달성하여야 한다. 그렇지 못할 경우에는 연마 공정 시간이 길어지거나 표면 결함이 나타날 수 있다.
본 발명의 목적은 상기에서 언급한 구리 CMP 공정상 발생하는 문제중 디싱, 부식, defect을 기존 슬러리 대비 현저히 감소시키고 실리콘산화막과 구리막에 대한 단차 제거율이 종래의 슬러리와 비교해 빠르게 연마할 수 있는 CMP용 슬러리 조성물을 제공하고자 하는데 목적이 있다.
상기 목적을 달성하기 위하여, 본 발명은 콜로이달실리카로 이루어진 연마제; 헤테로고리화합물, 질소화물, 유기산, 구리 연마율 향상제, 분산안정제 및 pH 조정제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제; 및 잔량의 용매로 구성되고, 상기 첨가제 및 용매의 함량 조절을 통해 실리콘산화막, 탄탈막 및 구리막에 대한 선택비와 연마율을 조절하여 연마하는 것을 특징으로 하는 CMP용 슬러리 조성물을 제공한다.
본 발명의 바람직한 일 구현예에서, 상기 콜로이달실리카는 입자 크기가 30 내지 120nm인 것을 특징으로 한다.
본 발명의 바람직한 일 구현예에서, 상기 헤테로고리화합물은 질소원자가 2개 이상인 것으로서, 1,2,4H-트리아졸, 5-메틸벤조트리아졸, 테트라졸, 이미다졸, 1,2-디메틸이미다졸 , 벤조트리아졸(BTA) , 1 H-벤조트리아졸아세톤니트릴 및 피페라진으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.
본 발명의 바람직한 일 구현예에서, 상기 질소화물은 질산칼륨 (KNO3), 질산 (HNO3), 질산암모늄 (NH4NO3), 질산철 (Fe(NO3)2) 및 질산구리 (Cu(NO3)2) 등을 사용할 수 있으며, 이들을 혼합하여 사용할 수도 있다.
본 발명의 바람직한 일 구현예에서, 상기 유기산은 시트르산(citric acid), 글루타르산(glutaric acid), 말산(malic acid), 말레산(maleic acid), 옥살산(oxalic acid), 프탈산(phthalic acid), 숙신산(succinic acid) 및 타르타르산(tartaric acid), 아세트산(acetic acid) 으로 이루어 진 카르복실산군 에서 선택되는 어느 하나가 될 수 있다. 또한 니트릴로트리아세트산(Nitrilotriacetic acid, NTA), 이미노디아세트산(Iminodiacetic acid, IDA), 메틸 이미노디아세트산(Methyl iminodiacetic acid, MIDA), 히드록시에틸이미노디아세트산(Hydroxyethyl iminodiacetic acid, HIDA), 디에틸렌트리아민 펜타아세트산(Diethylenetriamine pentaacetic acid, DPTA), 에틸렌디아민 테트라아세트산(Ethylenediamine tetraacetic acid, EDTA), N-히드록시에틸 에틸렌디아민 테트라아세트산(N-hydroxyethyl ethylenediamine tetraacetic acid, HEDTA), 메틸 에틸렌디아민 테트라아세트산(Methyl ethylenediamine tetraacetic acid, MEDTA), 트리에틸렌 테트라아민 헥사아세트산(Triethylene tetraamine hexaacetic acid, TTHA) 등으로 이루어진 아미노산 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.
본 발명의 바람직한 일 구현예에서, 상기 Cu 연마향상제는 구아니딘 카보네이트(Guanidine carbonate), 구아니딘 아세테이트(Guanidine acetate), 구아니딘 설페이트(Guanidine sulfate), 구아니딘 니트레이트(Guanidine nitrate) 으로 이루어진 구아니딘 염군에서 선택되는 어느 하나가 될 수 있다.
본 발명의 바람직한 일 구현에서 상기 분산안정제는 폴리비닐알콜(PVA), 에틸렌글리콜(EG), 글리세린, 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG) 또는 폴리비닐피롤리돈(PVP) 등을 들 수 있고, 이들 중에서 선택된 2종 이상을 사용할 수도 있다.
다만, 이에 한정되는 것은 아니며, CMP용 슬러리 조성물에 적용 가능한 것으로 알려진 비이온성 분산제를 별다른 제한 없이 사용할 수 있다.
본 발명의 바람직한 일 구현에서 상기 pH 조정제는 pH 범위가 염기성이 되도록 조절하기 위하여 KOH, NH4OH, NaOH, TMAH, TBAH, HNO3 등을 단독 또는 혼합하여 사용할 수 있다. pH는 슬러리의 입자 안정성 및 연마 속도와 밀접하게 관련되어있기 때문에 정밀하게 조절해야 한다.
본 발명의 바람직한 일 구현예에서, 상기 CMP용 슬러리 조성물은 조성물 총 중량에 대하여, 콜로이달실리카로 이루어진 연마재 1 내지 15 중량%, 헤테로고리화합물, 질소화물, 유기산군, Cu 연마율 향상제, 분산안정제 및 pH 조정제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제 0.001 내지 7 중량% 및 나머지는 용매를 포함하는 것을 특징으로 한다.
발명의 바람직한 일 구현예에서, 상기 CMP용 슬러리 조성물은 pH가 9 내지 12인 것을 특징으로 한다.
본 발명의 바람직한 일 구현예에서, 상기 CMP용 슬러리 조성물은 실리콘산화막, 탄탈막 및 구리막 중에서 선택되는 2종 이상으로 형성되는 피연마막을 동시에 연마하는 것을 특징으로 한다.
본 발명의 바람직한 일 구현예에서, 상기 연마는 탄탈막, 실리콘산화막 및 구리막의 연마 선택비가 1 : 1~4 : 1~2 인 것을 특징으로 한다.
본 발명에 따른 CMP용 배리어 조성물은 실리콘산화막과 구리막층간에 대하여 단차 제거 효율이 높아 생산성 향상을 도모할 수 있다.
또한 구리막층에 대한 디싱, 부식, defect 등을 최소화하면서 연마할 수 있어 신뢰성 및 특성이 우수한 반도체 디바이스층의 구리 배선층 등을 보다 효율적으로 형성 할 수 있으므로 고성능의 반도체 디바이스를 얻는데 크게 기여할 수 있다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다. 다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명연마 장비: 12 인치용법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
일반적으로 단계 1에서는 오버 버든 구리(overburden copper)의 제거 후에, 연마된 웨이퍼 표면은 다양한 위치에서의 단차(step height) 차이로 인해서 불균일한 국소 및 전체 평탄도를 지닌다. 저밀도 피처는 구리 단차가 높은 반면 고밀도 피처는 낮은 단차를 가지는 경향이다.
단계 1 후의 단차로 인해서 구리 대 옥사이드 제거 속도에 상대적인 선택적인 연마를 가지는 단계 2 CMP 슬러리가 매우 필요하게 된다.
본 발명에서 선택비(Selectivity ratio)라 함은 동일 연마 조건에서 서로 다른 물질에 대한 다른 제거율을 의미한다.
배리어 슬러리는 패턴 형성된 웨이퍼의 CMP 공정 2 단계에서 바람직하게는 다음 중 하나 이상을 제공한다. 다양한 유형의 필름에 대해 바람직한 제거 속도를 제공, 낮은 수준의 연마 웨이퍼 불균일도(within wafer non-uniformity: WIW NU)제공, CMP 공정 후의 연마 웨이퍼상에 낮은 잔류물들이 존재, 다양한 연마층에 대해 선택비를 제공하는 것이다.
반도체 제조에 적합하지 않는 특이적 특성의 왜곡(specific featured distortion)은 CMP 공정에서 구리 비아 또는 금속 라인과 상호 작용하는 화학적 성분과 추가 부식에 의해서 야기된 구리 비아 또는 금속 라인에 대한 손상이다. 따라서 배리어 CMP 슬러리에 부식억제제를 사용하여 CMP 공정 동안에 구리 비아 또는 트렌치의 추가 부식을 감소시키고 또한 결함을 감소시키는 것이 매우 중요하다.
단계 2 CMP 공정에서 배리어 CMP 조성물의 화학 반응은 CMP 슬러리내에 사용되는 산화제, 예를 들어, H2O2에 의해 유도된 산화 반응을 포함한다. 금속 예를 들어, 구리, 라인, 비아, 또는 트렌치, 배리어 물질, 에컨대, Ta의 표면은 각각의 금속옥사이드 필름으로 산화된다.
전형적으로 구리는 산화제일구리 또는 산화제이구리 혼합물로 산화되고, Ta는 Ta2O5로 산화된다. 구리 양이온 및 탄탈럼 양이온에 화학적으로 결합될 수 있는 킬레이트, 리간드 또는 다른 화학적 첨가제가 배리어 슬러리에 사용되어 구리 옥사이드 및 탄탈럼 옥사이드 용해를 촉진시켜 구리, 라인, 비아, 또는 트렌치 및 배리어 층 또는 배리어 필름의 제거 속도를 향상시킬 수 있다.
따라서 본 발명에서 개발하고자 하는 슬러리는 구리 CMP 공정상 동안에 발생하는 부식 또는 결함을 현저히 감소시키고 실리콘산화막, 구리막 및 탄탈막에 대한 연마 제거율을 종래의 슬러리와 비교해 빠르게 연마할 수 있는 CMP 용 슬러리 조성물을 제공하고자 하는데 목적이 있다.
본 발명에 따른 구리 배리어층 연마용 슬러리는 콜로이달실리카로 이루어진 연마재; 헤테로고리화합물, 질소화물, 유기산, 구리 연마율 향상제, 분산안정제 및 pH 조정제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제; 및 잔량의 용매로 구성된다.
상기 콜로이달실리카는 나노 입경의 실리카 입자가 침강이 일어나지 않고 용매에 안정적으로 분산된 콜로이드 용액을 의미한다. 상기 콜로이달실리카는 입자 크기가 30 내지 120nm인 것이 스크레치(Scratch) 및 제거율(Removal rate)을 절적하게 유지하기 위한 측면에서 바람직하고, 입자 크기가 50 내지 80nm일 경우 더욱 바람직하다.
만일, 콜로이달실리카의 입자크기가 30nm 미만일 경우에는 막질에 대한 제거율(Removal rate)이 감소하여 공정 진행시간이 오래 걸리게 되고, 120nm을 초과할 경우에는 스크레치(Scratch)에 취약하기 때문에 바람직하지 않다.
상기 콜로이달실리카로 이루어진 연마재, 즉 콜로이달실리카는 조성물 총 중량에 대하여, 1% 내지 15 중량%를 포함하는 것이 바람직하다.
만일 콜로이달실리카를 1 중량% 미만으로 사용할 경우에는 Solid 함량이 부족하여 제거율(Removal rate)이 감소하고, 15 중량%를 초과하여 사용할 경우에는 과도한 함량으로 인한 응집 현상이 일어나기 때문에 바람직하지 않다.
본 발명의 일 실시예에 따른 CMP용 슬러리 조성물에 있어서 헤테로고리화합물은 질소원자가 2개 이상인 것으로서, 1,2,4H-트리아졸, 5-메틸벤조트리아졸, 테트라졸, 이미다졸, 1,2-디메틸이미다졸, 벤조트리아졸(BTA), 1 H-벤조트리아졸아세톤니트릴 또는 피페라진으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다. 상기 부식 방지제는 부식 억제 효과, 연마 속도 및 슬러리 조성물의 안정성 측면에서 상기 슬러리 조성물 중 약 0.005 중량% 내지 약 0.5 중량%인 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 부식방지제가 약 0.005 량% 미만인 경우 구리막의 연마 제어가 불가능하여 디싱 문제가 발생될 수 있고, 상기 부식억제제가 약 0.5 중량% 초과인 경우 구리막의 연마율이 낮아지고 잔류물(residue)이 남는 문제가 발생될 수 있다.
본 발명의 CMP 슬러리에 사용될 수 있는 탄탈화물에 대한 연마율 향상제는 질소화물이다. 질소화물은 탄탈이나 티타늄화물에 대한 에칭액으로 이용되는 물질로서, CMP 연마시 탄탈의 제거에 효과적이다.
본 발명에 사용되는 질소화물로는 질산칼륨(KNO3), 질산(HNO3), 질산암모늄(NH4NO3), 질산철(Fe(NO3)2) 및 질산구리(Cu(NO3)2) 등을 사용할 수 있으며, 이들을 혼합조성하여 사용할 수도 있다. 일반적으로 티타늄이나 탄탈화물은 상대적으로 안정한 물질로서 플루오로화 수소산과 질산 혼합물에 에칭되기 쉬우며, 염기성과 왕수(aqua regia)에 대하여 느리게 반응하는 성질을 가지고 있다. 일반적으로 슬러리에 사용되는 질소화물의 양은 약 0.05 ~ 20 중량%의 범위에서 존재하는 것이 바람직하며, 약 0.1 ~ 10 중량%로 존재하는 것이 가장 바람직하다.
본 발명의 CMP 슬러리에 사용될 수 있는 배리어 금속 제거 속도에 대해 구리 제거 속도를 조절하는 킬레이트제(Chelating agent)또는 착화제(Complexing Agents이다.
킬레이트제는 구리 산화물과의 킬레이트 반응으로 산화된 구리 산화물이 피연마층인 구리층에 재흡착되는 것을 억제하여, 구리에 대한 연마 속도를 증가시키고 표면 결함을 감소시키는 것이다. 목적하는 금속 성분에 대해 선택적인 킬레이트제를 슬러리에 부가함으로써 유전체/금속 복합물 구조의 CMP 평탄화를 더욱 개선시킬 수 있다.
이것은 금속 상의 침식 속도를 증가시키고, 유전체상 제거에 대한 금속의 선택비를 증가시켜서 평탄화 공정이 더욱 효율적이 되도록 한다.
본 발명에서 사용될 수 있는 킬레이트제는 시트르산(citric acid), 글루타르산(glutaric acid), 말산(malic acid), 말레산(maleic acid), 옥살산(oxalic acid), 프탈산(phthalic acid), 숙신산(succinic acid) 및 타르타르산(tartaric acid), 아세트산(acetic acid)으로 이루어진 카르복실산군으로부터 선택되는 1종 이상인 것을 특징으로 한다.
아미노산계 킬레이트제로는 니트릴로트리아세틱 에시드(Nitrilotriacetic acid, NTA), 이미노디아세틱 에시드(Iminodiacetic acid, IDA), 메틸 이미노디아세틱 에시드(Methyl iminodiacetic acid, MIDA), 히드록시에틸 이미노디아세틱 에시드(Hydroxyethyl iminodiacetic acid, HIDA), 디에틸렌트리아민 펜타아세틱 에시드(Diethylenetriamine pentaacetic acid, DPTA), 에틸렌디아민 테트라아세틱 에시드(Ethylenediamine tetraacetic acid, EDTA), N-히드록시에틸 에틸렌디아민 테트라아세틱 에시드(N-hydroxyethyl ethylenediamine tetraacetic acid, HEDTA), 메틸 에틸렌디아민 테트라아세틱 에시드(Methyl ethylenediamine tetraacetic acid, MEDTA), 트리에틸렌 테트라아민 헥사아세틱 에시드(Triethylene tetraamine hexaacetic acid, TTHA) 등으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.
킬레이트제는 슬러리 조성물의 중량에 기초하여 0.05 내지 5w/w%의 양으로 부가한다. 바람직하게는 농도가 0.1 내지 3w/w%이다. 가장 바람직하게는 농도가 0.1 내지 1w/w%이다. 과소량으로는 킬레이트제가 본 발명이 목적하는 효과를 나타내지 않고, 과대량으로는 킬레이트제가 부가적인 효과없이 소모되어 버린다.
본 발명의 CMP 슬러리에 사용될 수 있는 구리 연마율 향상제는 구아니딘 염이며 이 물질은 CMP 연마시 Cu oxide와 complex 형성에 의해 Cu 표면이 약해짐에 따른 구리막층의 연마율 향상에 효과적이다. 본 발명에 사용되는 구아니딘 염군은 구아니딘 카보네이트(Guanidine carbonate), 구아니딘 아세테이트(Guanidine acetate), 구아니딘 설페이트(Guanidine sulfate), 구아니딘 니트레이트(Guanidine nitrate)으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 한다.
구리 연마율 향상제는 슬러리 조성물의 중량에 기초하여 0.1 내지 2w/w%의 양으로 부가한다. 바람직하게는 농도가 0.2 내지 1w/w%이다. 가장 바람직하게는 농도가 0.2 내지 0.5w/w%이다. 과소량 투입시 구리 연마율 향상제가 본 발명이 목적하는 효과를 나타내지 않고, 과대량으로는 구리막층이 과연마로 인한 디싱 등 결함의 우려가 발생된다.
본 발명의 CMP 슬러리에 사용될 수 있는 분산안정제는 비이온성 분산제로 폴리비닐알콜(PVA), 에틸렌글리콜(EG), 글리세린, 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG) 또는 폴리비닐피롤리돈(PVP) 등을 들 수 있고, 이들 중에서 선택된 2종 이상을 사용할 수도 있다.
상기 CMP용 슬러리 조성물은 상기 비이온성 분산제를 연마 입자 100중량%에 대하여 0.5 내지 5 중량%, 바람직하게는 1 내지 2 중량%의 함량으로 포함할 수 있다. 상기 비이온성 분산제는 용액 상에서 입자 표면에 흡착되는데, 입자와 친화력을 갖는 관능기를 한 개 이상 포함하고 있어서 입자 표면에 강하고 지속적으로 흡착하여 입자의 크기를 증가시키는 역할을 한다.
입체적 분산(steric dispersion) 방법에서는 입자 주위의 분산제의 구조 및 흡착 형태 또는 분산제층의 두께 등에 따라 분산력이 결정되며, 입체적 반발력에 의하여 분산 안정성이 유지된다. 따라서 실리콘 산화막에 대해서도 적절한 연마율을 향상 시킬 수 있는 역할을 한다.
분산제의 함량이 연마 입자 100중량%에 대하여 0.5중량% 미만인 경우에는 분산력이 낮아 침전이 빨리 진행되므로 연마액의 이송시 침전이 발생되어 연마재의 공급이 균일하지 못할 수 있다. 이에 반하여, 분산제의 함량이 연마 입자 100중량%에 대하여 5중량%를 초과하는 경우에는 연마재 입자 주변에 일종의 쿠션 역할을 하는 분산제층이 두껍게 형성되어, 연마제 표면이 연마면에 접촉되기가 어려워져서 연마속도가 낮아질 수 있다.
본 발명의 일 실시예에 따른 CMP용 슬러리 조성물은 pH가 9 내지 12인 것이 조성물의 안정성 측면에서 바람직하다. 만일, pH 범위가 9 미만일 경우에는 콜로이달 입자의 응집 현상 및 제거율(Removal rate)이 불안정하고 pH 범위가 12 를 초과할 경우는 제거율(Removal rate)이 불안정하기 때문에 바람직하지 않다.
상기 pH 범위가 되도록 조절하기 위하여 염기성 물질로는 KOH, NH4OH, NaOH, TMAH, TBAH, HNO3 등을 단독 또는 혼합하여 사용할 수 있으며 pH는 슬러리 조성물의 입자 안정성과 연마 속도와 밀접하게 관련되어 있기 때문에 정밀하게 조절해야 한다.
본 발명의 일 실시예에 따른 CMP용 슬러리 조성물에 있어서, 상기 용매는 조성물의 농도를 조절하여 막질의 제거율을 조절하기 위하여 사용되는 것으로서, 첨가제에 희석시켜 사용할 수 있으며, 용매는 탈이온수, 물 등을 사용할 수 있으나, 탈이온수를 사용하는 것이 가장 바람직하다.
상기 슬러리 조성물의 연마 대상막은 구리 함유막을 포함하는 것 일 수도 있다.
또한, 상기 슬러리의 조성물은 구리 함유막과 배리어막으로 사용되는 티타늄(Ti), 탄탈(Ta), 루테늄(Ru), 몰리브덴(Mo), 코발트(Co) 또는 금(Au)으로 이루어진 군에서 선택되는 어느 하나를 포함하는 박막 또는 반도체 절연막에 사용되는 산화막에 대해 원하는 연마율을 조정할 수 있다. 이에 따라 상기 슬러리 조성물은 연마 대상막과 다른 박막 간의 우수한 연마 선택비도 나타낼 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 그러나 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
[실시예 및 비교예]
하기 표 1에 기재된 함량에 따라 실시예 1 내지 3 및 비교예 1 내지 2의 구리 배리어층 연마용 슬러리 조성물을 제조하였다.
이때, 실시예 및 비교예에서 silica의 함량은 모두 15중량%로 하였고,
pH 조정제는 모두 KOH를 이용하여 0.2중량%로 하였으며,
질소화합물은 모두 KNO3를 이용하여 1.0중량%로 하였다.
헤테로고리 화합물 유기산 구리연마율향상제 분산안정제
성분 함량(wt%) 성분 함량(wt%) 성분 함량(wt%) 성분 함량(wt%) 성분 함량(wt%)
실시예 1 BTA 0.1 AA 0.06 GC 0.2 PVP 0.07
실시예 2 BTA 0.1 IDA 0.1 AA 0.06 GC 0.2 PVP 0.1
실시예 3 BTA 0.1 IDA 0.1 AA 0.06 GC 0.3 PVP 0.15
비교예 1 BTA 0.1
비교예 2 BTA 0.02
BTA : Benzotriazole
IDA : Iminodiacetic acid
AA : Acetic acid
GC : Guanidine carbonate
PVP : Polyvinylpyrrolidone
[실험예 및 비교실험예]
실시예 1 내지 실시예 3과 비교예 1 및 비교예 2와 같은 슬러리 조성물에 의한 연마율(Removal Rate) 선택비 및 디싱(dishing)을 각각 측정하여 실험예 1 내지 실험예 3 및 비교실험예 1 및 비교실험예 2로 표시하여 아래 표 2에 기재하였다.
[연마 조건]
1. 연마 장비: 12 인치용(300 mm) CMP 장비 - AP-300 (CTS 社)
2. 연마 패드: IC1010 (Dow 社)
3. 플레이튼 스피드 (Platen speed): 103 rpm
4. 헤드 스피드 (Head speed): 97 rpm
5. 유량 (Flow rate): 300 cc/min
5. 압력: 2.2 psi
연마율 측정은 12 인치용(300 mm) CMP 장비를 이용하여 연마한 경우, Cu, Ta의 연마율은 4-포인트 프로브(CMT-SR 5000, AIT Co., Ltd)를 이용하여 계산하였으며
OXIDE인 PTEOS는 나노메트릭스 社의 Atlas 장비를 이용하여 CMP 전후 두께 변화를 측정하여 연마율을 계산하였다.
선택비는 다음과 같이 각 막질의 연마율에 의하여 계산하였다.
선택비 = Oxide 연마율/ Cu 연마율
디싱(dishing) 측정은 투과 전자현미경(JEM-2000, JEOL)으로 각 막질의 두께를 다음과 같이 측정하여 계산하였다.
- Cu dishing = (Cu edge thickness - Cu center thickness)
- Ox dishing = (Ox edge thickness - Ox center thickness)
연마율(Å/min) 선택비 디싱(Å)
Cu Ta Ox Ox/Cu 1-1㎛
실험예 1 420 370 1,011 2.41 42.00
실험예 2 479 392 1,185 2.47 46.00
실험예 3 555 455 1,385 2.50 59.00
비교실험예 1 390 290 850 2.18 75.00
비교실험예 2 380 300 900 2.37 128.00
표 2에 기재된 실험예 1 내지 실험예 3 및 비교실험예 1 및 비교실험예 2의 제거율, 선택비 및 디싱(dishing) 값을 평가하면, 아래와 같다.
첫째, 착화제(Complexing Agents)와 구리 연마율 향상제인 구아니딘 카보네이트(Guanidine carbonate)를 사용한 실험예 1 내지 실험예 3은 기존의 비교실험예 1 및 비교실험예 2에 비해 구리막의 연마율이 크게 증가하는 것을 알 수 있다.
둘째, 분산안정제인 폴리비닐피롤리돈(PVP)을 사용한 실험예 1 내지 실험예 3은 기존의 비교실험예 1 및 비교실험예 2에 비해 실리콘 산화막의 연마율이 현저하게 증가하는 것을 알 수 있다.
셋째, 실험예 1 내지 실험예 3에서 구리 연마율 향상제인 구아니딘 카보네이트(Guanidine carbonate)와 분산안정제인 폴리비닐피롤리돈(PVP)의 함량이 증가할수록 각각 구리막과 실리콘 산화막의 연마율이 현저하게 증가함을 알 수 있다.
이러한 이유로 실험예 1 내지 실험예 3은 기존의 비교실험예 1 및 비교실험예 2에 비하여 선택비가 우수하였다.
또한, 분산안정제인 폴리비닐피롤리돈(PVP)을 사용한 실험예 1 내지 실험예 3은 기존의 비교실험예 1 및 비교실험예 2에 비하여 구리막층의 디싱이 적음을 알 수 있다.
비교실험예 2의 경우 부식방식제 벤조트리아졸(BTA)의 함량이 적음으로 인해 구리막층의 연마율은 향상되지만 디싱이 증가되는 문제점이 나타난다.
이상과 같이 본 발명은 한정된 실시예로 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 제한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (17)

  1. 연마입자; 헤테로고리화합물, 질소화물, 킬레이트제, 구리 연마율 향상제, 분산안정제 및 pH 조정제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제; 및 잔량의 용매로 구성되는 CMP용 슬러리 조성물.
  2. 제1항에 있어서, 상기 연마입자는 나노 입경의 실리카 입자가 침강이 일어나지 않고 용매에 안정적으로 분산된 콜로이달 실리카인 것을 특징으로 하는 CMP용 슬러리 조성물.
  3. 제2항에 있어서, 상기 연마입자는 상기 슬러리 조성물 중 0.1 내지 15 중량%인 것을 특징으로 하는 CMP용 슬러리 조성물.
  4. 제3항에 있어서, 상기 연마입자는 입경이 90 내지 120 nm인 것을 특징으로 하는 CMP용 슬러리 조성물.
  5. 제1항에 있어서, 상기 헤테로고리화합물은 질소원자가 2개 이상인 것으로서, 1,2,4-H-트리아졸, 5-메틸벤조트리아졸, 테트라졸, 이미다졸, 1,2-디메틸이미다졸, 벤조트리아졸(BTA), 1 H-벤조트리아졸아세톤니트릴 및 피페라진으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 CMP용 슬러리 조성물.
  6. 제1항에 있어서, 상기 질소화물은 질산칼륨(KNO3), 질산(HNO3), 질산암모늄(NH4NO3 ), 질산철(Fe(NO3)2 ) 및 질산구리(Cu(NO3)2)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 CMP용 슬러리 조성물.
  7. 제6항에 있어서, 상기 질소화물은 상기 슬러리 조성물 중 0.1 내지 10 중량%인 것을 특징으로 하는 CMP용 슬러리 조성물.
  8. 제1항에 있어서, 상기 킬레이트제는,
    i) 카르복실산계 킬레이트제로서 시트르산(citric acid), 글루타르산(glutaric acid), 말산(malic acid), 말레산(maleic acid), 옥살산(oxalic acid), 프탈산(phthalic acid), 숙신산(succinic acid), 타르타르산(tartaric acid), 및 아세트산(acetic acid)으로 이루어진 군으로부터 선택되는 1종 이상인 것을 포함하고;
    ii) 아미노산계 킬레이트제로서 니트릴로트리아세틱 에시드(Nitrilotriacetic acid, NTA), 이미노디아세틱 에시드(Iminodiacetic acid, IDA), 메틸 이미노디아세틱 에시드(Methyl iminodiacetic acid, MIDA), 히드록시에틸 이미노디아세틱 에시드(Hydroxyethyl iminodiacetic acid, HIDA), 디에틸렌트리아민 펜타아세틱 에시드(Diethylenetriamine pentaacetic acid, DPTA), 에틸렌디아민 테트라아세틱 에시드(Ethylenediamine tetraacetic acid, EDTA), N-히드록시에틸 에틸렌디아민 테트라아세틱 에시드(N-hydroxyethyl ethylenediamine tetraacetic acid, HEDTA), 메틸 에틸렌디아민 테트라아세틱 에시드(Methyl ethylenediamine tetraacetic acid, MEDTA), 및 트리에틸렌 테트라아민 헥사아세틱 에시드(Triethylene tetraamine hexaacetic acid, TTHA)로 이루어진 군으로부터 선택되는 1종 이상인 것을 포함하는; 것을 특징으로 하는 CMP용 슬러리 조성물.
  9. 제8항에 있어서, 상기 킬레이트제는, 상기 슬러리 조성물 중 0.05 내지 5 중량%인 것을 특징으로 하는 CMP용 슬러리 조성물.
  10. 제1항에 있어서, 상기 구리 연마율 향상제는 구아니딘 카보네이트(Guanidine carbonate), 구아니딘 아세테이트(Guanidine acetate), 구아니딘 설페이트(Guanidine sulfate), 구아니딘 니트레이트(Guanidine nitrate)로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 CMP용 슬러리 조성물.
  11. 제10항에 있어서, 상기 구리 연마율 향상제는, 상기 슬러리 조성물 중 0.1 내지 2.0 중량%인 것을 특징으로 하는 CMP용 슬러리 조성물.
  12. 제1항에 있어서, 상기 분산안정제는 폴리비닐알콜(PVA), 에틸렌글리콜(EG), 글리세린, 폴리에틸렌글리콜(PEG), 폴리프로필렌글리콜(PPG) 및 폴리비닐피롤리돈(PVP)으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 CMP용 슬러리 조성물.
  13. 제12항에 있어서, 상기 분산안정제는 상기 연마 입자 100중량부에 대하여 0.5 내지 5 중량부인 것을 특징으로 하는 CMP용 슬러리 조성물.
  14. 제1항에 있어서, 상기 pH 조정제는 KOH, NH4OH, NaOH, TMAH, TBAH, HNO3으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 CMP용 슬러리 조성물.
  15. 제14항에 있어서, 상기 슬러리 조성물은 pH가 9 내지 12인 것을 특징으로 하는 CMP용 슬러리 조성물.
  16. 제1항에 있어서, 상기 연마 대상막은 구리 함유막과 배리어막으로 사용되는 티타늄(Ti), 탄탈(Ta), 루테늄(Ru), 몰리브덴(Mo), 코발트(Co) 및 금(Au) 이루어진 군에서 선택되는 어느 하나를 포함하는 박막 또는 반도체 절연막으로 사용되는 산화막을 포함하는 것을 특징으로 하는 CMP용 슬러리 조성물.
  17. 제16항에 있어서, 상기 CMP용 슬러리 조성물은 탄탈막, 실리콘산화막 및 구리막의 연마 선택비가 1 : 1~4 : 1~2 인 것을 특징으로 하는 CMP용 슬러리 조성물.
PCT/KR2019/012950 2018-10-31 2019-10-02 구리 배리어층 연마용 슬러리 조성물 WO2020091242A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0131474 2018-10-31
KR20180131474 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020091242A1 true WO2020091242A1 (ko) 2020-05-07

Family

ID=70464147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012950 WO2020091242A1 (ko) 2018-10-31 2019-10-02 구리 배리어층 연마용 슬러리 조성물

Country Status (2)

Country Link
TW (1) TWI701323B (ko)
WO (1) WO2020091242A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058712A (zh) * 2022-03-21 2022-09-16 万华化学集团电子材料有限公司 一种铜阻挡层化学机械抛光组合物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069785A (ko) * 2008-04-16 2012-06-28 히다치 가세고교 가부시끼가이샤 Cmp용 연마액 및 연마방법
KR20130020585A (ko) * 2011-08-15 2013-02-27 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 구리의 화학 기계적 연마 방법
KR101628878B1 (ko) * 2015-09-25 2016-06-16 영창케미칼 주식회사 Cmp용 슬러리 조성물 및 이를 이용한 연마방법
KR20170026492A (ko) * 2014-06-25 2017-03-08 캐보트 마이크로일렉트로닉스 코포레이션 구리 배리어 화학적-기계적 연마 조성물
KR101829635B1 (ko) * 2011-03-03 2018-03-29 다우 글로벌 테크놀로지스 엘엘씨 안정하고 농축가능한 화학 기계적 연마 조성물 및 관련 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790618B2 (en) * 2004-12-22 2010-09-07 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Selective slurry for chemical mechanical polishing
CN102101979A (zh) * 2009-12-18 2011-06-22 安集微电子(上海)有限公司 一种化学机械抛光液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069785A (ko) * 2008-04-16 2012-06-28 히다치 가세고교 가부시끼가이샤 Cmp용 연마액 및 연마방법
KR101829635B1 (ko) * 2011-03-03 2018-03-29 다우 글로벌 테크놀로지스 엘엘씨 안정하고 농축가능한 화학 기계적 연마 조성물 및 관련 방법
KR20130020585A (ko) * 2011-08-15 2013-02-27 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 구리의 화학 기계적 연마 방법
KR20170026492A (ko) * 2014-06-25 2017-03-08 캐보트 마이크로일렉트로닉스 코포레이션 구리 배리어 화학적-기계적 연마 조성물
KR101628878B1 (ko) * 2015-09-25 2016-06-16 영창케미칼 주식회사 Cmp용 슬러리 조성물 및 이를 이용한 연마방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058712A (zh) * 2022-03-21 2022-09-16 万华化学集团电子材料有限公司 一种铜阻挡层化学机械抛光组合物及其应用
CN115058712B (zh) * 2022-03-21 2024-02-27 万华化学集团电子材料有限公司 一种铜阻挡层化学机械抛光组合物及其应用

Also Published As

Publication number Publication date
TWI701323B (zh) 2020-08-11
TW202020105A (zh) 2020-06-01

Similar Documents

Publication Publication Date Title
EP1152046B1 (en) Polishing composition and polishing method employing it
JP4681538B2 (ja) 選択的バリヤ金属研磨溶液
EP1724819B1 (en) Polishing agent and polishing method
US6315803B1 (en) Polishing composition and polishing process
US20170183537A1 (en) Polishing slurry composition
US20050194565A1 (en) Polishing compound, its production process and polishing method
US20150104940A1 (en) Barrier chemical mechanical planarization composition and method thereof
KR20110063400A (ko) 금속의 화학 기계적 연마에 유용한 조성물 및 슬러리
JP2005522031A (ja) タンタルバリア除去溶液
JP4206233B2 (ja) 研磨剤および研磨方法
JP2006148136A (ja) バリヤ用研磨溶液
KR102421467B1 (ko) 텅스텐 패턴 웨이퍼 연마용 cmp 슬러리 조성물 및 이를 이용한 텅스텐 패턴 웨이퍼 연마 방법
WO2024010249A1 (ko) 구리 배리어층 연마용 cmp 슬러리 조성물
US20050009714A1 (en) Process and slurry for chemical mechanical polishing
KR101266537B1 (ko) 금속 배선 연마용 cmp 슬러리 조성물
WO2020091242A1 (ko) 구리 배리어층 연마용 슬러리 조성물
KR20210095548A (ko) 구리 배리어층 연마용 슬러리 조성물
US20100009540A1 (en) Polishing compound, its production process and polishing method
KR20100077814A (ko) 금속 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR100970094B1 (ko) 구리 배선 연마용 cmp 슬러리 조성물 및 이를 이용한연마 방법
JP2003133266A (ja) 研磨用組成物
JP2003218071A (ja) 研磨用組成物
JP2003151928A (ja) 研磨用組成物
KR100460312B1 (ko) 금속배선 연마용 슬러리 조성물
JP2003238942A (ja) 研磨用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878264

Country of ref document: EP

Kind code of ref document: A1