WO2009125801A1 - ガスバリア性積層体およびその製造方法 - Google Patents

ガスバリア性積層体およびその製造方法 Download PDF

Info

Publication number
WO2009125801A1
WO2009125801A1 PCT/JP2009/057226 JP2009057226W WO2009125801A1 WO 2009125801 A1 WO2009125801 A1 WO 2009125801A1 JP 2009057226 W JP2009057226 W JP 2009057226W WO 2009125801 A1 WO2009125801 A1 WO 2009125801A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
compound
laminate
group
weight
Prior art date
Application number
PCT/JP2009/057226
Other languages
English (en)
French (fr)
Inventor
廣瀬航
尾下竜也
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2009550131A priority Critical patent/JP4486705B2/ja
Priority to AU2009234739A priority patent/AU2009234739B2/en
Priority to US12/937,076 priority patent/US9327475B2/en
Priority to KR1020107024990A priority patent/KR101220103B1/ko
Priority to CN2009801131604A priority patent/CN101990494B/zh
Priority to EP09729601.6A priority patent/EP2266793B1/en
Priority to ES09729601.6T priority patent/ES2438987T3/es
Publication of WO2009125801A1 publication Critical patent/WO2009125801A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/052Forming heat-sealable coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/08Coating on the layer surface on wood layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/12Coating on the layer surface on paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/75Printability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a gas barrier laminate and a method for producing the same.
  • Gas packaging properties particularly oxygen barrier properties are often required for packaging materials for packaging foods and various articles. This is to prevent influences such as oxidative deterioration of the package contents due to oxygen or the like. Particularly in the packaging of foods, there is a problem that microorganisms propagate due to the presence of oxygen and the contents decay. For this reason, in the conventional packaging material, the gas barrier layer which prevents permeation
  • a metal foil or a vapor deposition layer of a metal or a metal compound can be used.
  • an aluminum foil, an aluminum vapor deposition layer, a silicon oxide vapor deposition layer, an aluminum oxide vapor deposition layer, or the like is used. in use.
  • a metal layer such as an aluminum foil or an aluminum vapor-deposited layer has drawbacks such as invisible packaging contents and poor discardability.
  • metal compound layers such as a silicon oxide vapor deposition layer and an aluminum oxide vapor deposition layer have a drawback that the gas barrier property is remarkably lowered due to deformation or dropping of the packaging material or impact during transportation.
  • the gas barrier layer a layer made of a vinyl alcohol polymer having excellent gas barrier properties such as polyvinyl alcohol or ethylene-vinyl alcohol copolymer may be used. Since the layer made of these vinyl alcohol-based polymers is transparent and has the advantage that there are few problems in terms of disposal, the range of applications is expanding.
  • the vinyl alcohol polymer is crystallized by hydrogen bonding between hydroxyl groups in the molecule, and exhibits gas barrier properties. For this reason, the conventional vinyl alcohol polymer exhibits high gas barrier properties in a dry state, but in a state of moisture absorption due to the influence of water vapor or the like, hydrogen bonds are loosened and gas barrier properties tend to be lowered. Therefore, it is difficult for a vinyl alcohol polymer such as polyvinyl alcohol to exhibit a high gas barrier property under high humidity.
  • gas barrier materials materials containing hydrolyzed condensates of metal alkoxides (for example, tetramethoxysilane) and polymer compounds have been studied (for example, JP 2002-326303 A and JP 7-118543 A). Gazette, JP-A-2000-233478).
  • metal alkoxides for example, tetramethoxysilane
  • polymer compounds for example, JP 2002-326303 A and JP 7-118543 A. Gazette, JP-A-2000-233478).
  • a gas barrier material a material composed of polyacrylic acid and a crosslinking component has been studied (for example, JP-A-2001-310425).
  • a gas barrier layer made of a composition containing a hydrolysis condensate of a metal alkoxide and a polymer containing a —COO— group is immersed in a solution containing a divalent or higher metal ion. By this treatment, the —COO— group in the polymer is neutralized.
  • JP 2002-326303 A Japanese Patent Laid-Open No. 7-118543 JP 2000-233478 A JP 2001-310425 A WO2005 / 053954
  • one of the objects of the present invention is to display a high oxygen barrier property even if the gas barrier layer is thin, maintain a high oxygen barrier property even when retorting is performed under severe conditions, and further, printing,
  • An object of the present invention is to provide a gas barrier laminate having excellent dimensional stability at the time of processing such as laminating and flexibility of the gas barrier laminate, and further having mechanical properties close to those inherent in the base film.
  • the present inventors have found that an excellent gas barrier layer can be obtained by using a specific composition.
  • the present invention is based on this new finding.
  • the gas barrier laminate of the present invention is a gas barrier laminate including a base material and at least one gas barrier property layer laminated on the base material.
  • the compound (L) includes at least one compound (A) containing a metal atom to which a hydrolyzable characteristic group is bonded, and is included in the functional group of the polymer (X).
  • At least a part of the —COO— group is neutralized and / or reacted with the compound (P) containing two or more amino groups, and contained in the functional group of the polymer (X).
  • at least a part of the —COO— group is neutralized with a metal ion having a valence of 2 or more; [equivalent of amino group contained in the compound (P)] / [of the polymer (X)
  • the equivalent ratio of —COO— groups contained in the functional group] is in the range of 0.2 / 100 to 20.0 / 100.
  • the method of the present invention for producing a gas barrier laminate has hydrolyzability with (i) a polymer (X) containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group.
  • the compound (L) includes at least one compound (A) containing a metal atom to which a hydrolyzable characteristic group is bonded, and in the composition, the polymer (L) In the composition, at least a part of —COO— group contained in the functional group of X) is neutralized and / or reacted with the compound (P) containing two or more amino groups, Compound( ) Equivalents of amino groups contained in] / [the ratio of equivalents] of -COO- group contained in the functional group of the polymer (X) is in the range of 0.2 / 100 to 20.0 / 100.
  • Si may be classified into a semimetal, in this specification, it describes as one of metals.
  • the gas barrier laminate produced by the production method of the present invention constitutes another aspect of the gas barrier laminate of the present invention.
  • the gas barrier laminate of the present invention exhibits excellent oxygen barrier properties even when the gas barrier layer is thinned, retains excellent oxygen barrier properties even after retort treatment, and changes in appearance such as transparency are observed. In addition, these characteristics are maintained even when the retort conditions become severe. Moreover, since the gas barrier layer can be made thin in the gas barrier laminate of the present invention, the mechanical properties of the gas barrier laminate of the present invention approach those of the base film. Therefore, the gas barrier laminate of the present invention is excellent in mechanical properties such as flexibility and tensile strength and elongation, and is excellent in dimensional stability during processing such as printing and lamination.
  • the gas barrier laminate of the present invention includes a substrate and at least one layer having gas barrier properties laminated on the substrate.
  • the layer (hereinafter sometimes referred to as “gas barrier layer”) is composed of a composition containing the hydrolysis condensate of compound (L) and polymer (X).
  • the compound (L) is at least one compound containing a hydrolyzable characteristic group, and is typically at least one compound containing a metal atom to which the hydrolyzable characteristic group is bonded.
  • the polymer (X) is a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group.
  • At least one functional group selected from a carboxyl group and a carboxylic anhydride group contained in the polymer (X) may be referred to as “functional group (F)”.
  • At least a part of the —COO— group contained in the functional group (F) of the polymer (X) is neutralized and / or reacted with the compound (P) containing two or more amino groups.
  • at least a part of the —COO— group contained in the functional group (F) is neutralized with a divalent or higher metal ion.
  • at least a part of the functional group constitutes a salt with a divalent or higher valent metal ion.
  • the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of -COO-group contained in functional group of polymer (X)] was 0.2 / 100 to 20. It is in the range of 0/100.
  • [equivalent of amino group contained in compound (P)] / [equivalent of -COO- group contained in functional group of polymer (X)] is "number of moles of amino group contained in compound (P)" ] / [Number of moles of —COO— group contained in the functional group of the polymer (X)].
  • the gas barrier layer is laminated on at least one surface of the substrate.
  • a gas barrier layer may be laminated
  • the gas barrier laminate of the present invention may include layers other than the gas barrier layer.
  • the gas barrier layer may be laminated
  • the proportion of the hydrolyzed condensate of the compound (L) and the polymer (X) in the composition is, for example, 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 98% by weight or more.
  • the composition which comprises a gas barrier layer contains the hydrolysis-condensation product of a compound (L).
  • a compound (L) By hydrolyzing the compound (L), at least a part of the characteristic group of the compound (L) is substituted with a hydroxyl group.
  • the hydrolyzate condenses to form a compound in which metal atoms are bonded through oxygen. When this condensation is repeated, it becomes a compound that can be regarded as a metal oxide substantially.
  • the compound (L) contains a hydrolyzable characteristic group (functional group), and these groups are not bonded.
  • Hydrolysis and condensation reactions do not occur or are very slow. Therefore, in that case, it is difficult to obtain the effect of the present invention.
  • Si may be classified as a metalloid element, but in this specification, Si is described as a metal.
  • the hydrolysis condensate can be produced from a specific raw material using, for example, a technique used in a known sol-gel method.
  • the raw materials include compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed / condensed, A compound in which the compound (L) is completely hydrolyzed and partly condensed, or a combination thereof is used.
  • These raw materials may be produced by a known method, or commercially available ones may be used.
  • a condensate obtained by hydrolysis and condensation of about 2 to 10 molecules can be used as a raw material.
  • a material obtained by hydrolyzing and condensing tetramethoxysilane into a dimer to 10-mer linear condensate can be used as a raw material.
  • Examples of the characteristic group having hydrolyzability include groups exemplified as OR 1 and X 1 in the following formula (I).
  • the compound (L) includes at least one compound (A) including a metal atom to which a hydrolyzable characteristic group is bonded.
  • a typical compound (A) is at least one compound represented by the following formula (I).
  • M 1 (OR 1 ) q R 2 pqr X 1 r (I) [In Formula (I), M 1 represents Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La, or Nd.
  • R 1 represents an alkyl group.
  • R 2 represents an alkyl group, an aralkyl group, an aryl group or an alkenyl group.
  • X 1 represents a halogen atom.
  • p is equal to the valence of M 1 .
  • q represents an integer of 0 to p.
  • r represents an integer of 0 to p. 1 ⁇ q + r ⁇ p. ]
  • M 1 represents an atom selected from Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La, and Nd.
  • Si, Al, Ti or Zr is preferable, and Si, Al or Ti is particularly preferable.
  • the alkyl group represented by R 1 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, and the like, and preferably a methyl group or an ethyl group. is there.
  • Examples of the halogen atom represented by X 2 include a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • Examples of the alkyl group represented by R 2 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a t-butyl group, and an n-octyl group. Examples include benzyl group, phenethyl group, and trityl group.
  • examples of the aryl group represented by R 2 include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, and a mesityl group.
  • examples of the alkenyl group include a vinyl group and an allyl group.
  • Specific examples of the compound represented by the formula (I) include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, octyltrimethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane.
  • Silane alkoxides such as ethoxysilane, chlorotrimethoxysilane, chlorotriethoxysilane, dichlorodimethoxysilane, dichlorodiethoxysilane, trichloromethoxysilane, and trichloroethoxysilane; halogenated silanes such as vinyltrichlorosilane, tetrachlorosilane, and tetrabromosilane; Alkoxy titanium compounds such as titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, titanium methyltriisopropoxide; tetrachlorotitanium, etc.
  • Titanium rogenide alkoxy aluminum compounds such as aluminum trimethoxide, aluminum triethoxide, aluminum triisopropoxide, aluminum methyl diisopropoxide, aluminum tributoxide, diethoxyaluminum chloride; zirconium tetraethoxide, zirconium tetraisopropoxy And alkoxyzirconium compounds such as zirconium methyltriisopropoxide.
  • Preferred examples of the compound (A) represented by the formula (I) include tetramethoxysilane and tetraethoxysilane.
  • Compound (L) comprises at least one compound (B) containing a metal atom in which a hydrolyzable characteristic group and an alkyl group substituted with a functional group having reactivity with a carboxyl group are bonded. May be included.
  • a typical compound (B) is at least one compound represented by the following formula (II).
  • M 2 (OR 3 ) n X 2 k Z 2 mnk (II)
  • M 2 represents Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La, or Nd.
  • R 3 represents an alkyl group.
  • X 2 represents a halogen atom.
  • Z 2 represents an alkyl group substituted with a functional group having reactivity with a carboxyl group.
  • m is equal to the valence of M 2 .
  • n represents an integer of 0 to (m ⁇ 1).
  • k represents an integer of 0 to (m ⁇ 1). 1 ⁇ n + k ⁇ (m ⁇ 1). ]
  • M 2 is selected from Si, Al, Ti, Zr, Cu, Ca, Sr, Ba, Zn, Ga, Y, Ge, Pb, Sb, V, Ta, W, La and Nd. Represents an atom. M 2 is preferably Si, Al, Ti or Zr, and particularly preferably Si.
  • the alkyl group represented by R 3 include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, and a t-butyl group, preferably a methyl group or an ethyl group. is there.
  • Examples of the halogen atom represented by X 2 include a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • Examples of the functional group having reactivity with a carboxyl group that Z 2 has include an epoxy group, an amino group, a hydroxyl group, a halogen atom, a mercapto group, an isocyanate group, a ureido group, an oxazoline group, or a carbodiimide group.
  • An epoxy group, an amino group, an isocyanate group, a ureido group or a halogen atom is preferred, and for example, at least one selected from an epoxy group, an amino group and an isocyanate group is more preferred.
  • Examples of the alkyl group substituted with such a functional group include those exemplified for R 3 .
  • Specific examples of the compound represented by the formula (II) include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrichlorosilane, ⁇ -aminopropyltrimethoxysilane.
  • Preferred examples of the compound represented by the formula (II) include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -chloropropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane and ⁇ -aminopropyltriethoxysilane.
  • the ratio of [number of moles of M 1 atom derived from the compound represented by formula (I)] / [number of moles of M 2 atom derived from the compound represented by formula (II)] was 99.5 / 0. It is preferably in the range of 5 to 80.0 / 20.0. When this ratio is larger than 99.5 / 0.5, the hot water resistance of the gas barrier laminate may be lowered. Moreover, when this ratio becomes smaller than 80.0 / 20.0, the gas barrier property of the gas barrier laminate may be deteriorated. This ratio is more preferably in the range of 98.0 / 2.0 to 89.9 / 10.1.
  • [the number of moles of M 1 atom derived from the compound represented by formula (I)] is substantially the same as the [number of moles of the compound represented by formula (I)] used for generating the hydrolysis condensate.
  • [the number of moles of M 2 atom derived from the compound represented by the formula (II)] is substantially equal to the [number of moles of the compound represented by the formula (II)] used for the production of the hydrolysis condensate. be equivalent to. Therefore, in the following description, the ratio may be replaced with [number of moles of compound represented by formula (I)] / [number of moles of compound represented by formula (II)].
  • Ratio of the compound represented by formula (I) and the compound represented by formula (II) in the compound (L) in the case where the compound represented by formula (II) is not included, in the formula (I)
  • the proportion of the compound represented is, for example, 80 mol% or more, 90 mol% or more, 95 mol% or more, 95 mol% or more, 98 mol% or more, 99 mol% or more, or 100 mol%.
  • the number of molecules condensed in the hydrolysis condensate of the compound (L) can be controlled by the amount of water, the type and concentration of the catalyst used at the time of hydrolysis / condensation, the temperature at which the hydrolysis condensation is performed, and the like.
  • the sum of the weight of the organic component derived from the polymer (X)] is preferably in the range of 20.0 / 80.0 to 80.0 / 20.0. More preferably, it is in the range of ⁇ 69.9 / 30.1.
  • the weight of the inorganic component derived from the compound (L) can be calculated from the weight of the raw material used when preparing the composition. That is, compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed, compound (L) Assuming that the product is completely hydrolyzed and partly condensed, or a combination of these, is completely hydrolyzed and condensed into a metal oxide, and the weight of the metal oxide is calculated as compound (L). It is regarded as the weight of the inorganic component derived from.
  • the composition formula is A compound represented by M 1 O p / 2 is obtained. Further, when the compound (A) represented by the formula (I) contains R 2 , when it is completely hydrolyzed and condensed, the composition formula is M 1 O (q + r) / 2 R 2 (pqr ) . Of this compound, the portion of M 1 O (q + r) / 2 is a metal oxide.
  • R 2 is an organic component derived from the compound (L). Moreover, it calculates similarly about a compound (B). At this time, Z 2 is an organic component derived from the compound (L).
  • the weight of the ions is also the weight of the organic component derived from the polymer (X). Added to.
  • the compound (P) containing two or more amino groups is a compound different from the compound (L) and the polymer (X).
  • Specific examples of the compound (P) include alkylene diamines, polyalkylene polyamines, alicyclic polyamines, aromatic polyamines, polyvinylamines, etc., and the gas barrier property of the gas barrier laminate is better. From the viewpoint of, alkylene diamine is preferable.
  • the compound (P) include hydrazine, ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, diaminodiphenylmethane, 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane.
  • Xylylenediamine, chitosan polyallylamine, polyvinylamine and the like.
  • the compound (P) is preferably at least one selected from the group consisting of ethylenediamine, propylenediamine, and chitosan, for example, from the viewpoint that the gas barrier properties of the gas barrier laminate are improved. .
  • the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of -COO-group contained in functional group of polymer (X)] was 0.2 / It is in the range of 100 to 20.0 / 100 (for example, the range of 0.2 / 100 to 19.4 / 100). In this range, the gas barrier laminate exhibits good gas barrier properties. When the ratio is smaller than 0.2 / 100, the hot water resistance of the gas barrier laminate is lowered, and the gas barrier property after retorting is lowered. On the other hand, when the ratio is larger than 20.0 / 100, the gas barrier properties before and after the retort treatment of the gas barrier laminate are deteriorated.
  • the above ratio is preferably in the range of 1.0 / 100 to 4.9 / 100 for the reasons described above.
  • the composition constituting the gas barrier layer of the present invention may contain a compound (Q) containing two or more hydroxyl groups. According to this configuration, the gas barrier property after elongation of the gas barrier laminate is improved. More specifically, by adding the compound (Q), even if the gas barrier laminate is stretched, the gas barrier layer is less likely to be damaged, and as a result, the gas barrier layer retains high gas barrier properties even after being stretched. The gas barrier property of the gas barrier laminate is hardly lowered even in a state after elongation due to tension at the time of processing such as laminating or elongation when a bag filled with food is dropped.
  • Compound (Q) is a compound different from compound (L) and polymer (X).
  • the compound (Q) includes a low molecular weight compound and a high molecular weight compound.
  • Preferred examples of the compound (Q) include polyvinyl alcohol, partially saponified polyvinyl acetate, ethylene-vinyl alcohol copolymer, polyethylene glycol, polyhydroxyethyl (meth) acrylate, polysaccharides such as starch, starch and other polysaccharides. Polymer compounds such as polysaccharide derivatives derived from saccharides are included.
  • Carboxylic acid-containing polymer (polymer (X)) The composition constituting the gas barrier layer includes a neutralized product of a polymer containing at least one functional group selected from a carboxyl group and a carboxylic anhydride group.
  • the polymer (polymer (X)) may be referred to as a “carboxylic acid-containing polymer”.
  • the neutralized product of the carboxylic acid-containing polymer can be obtained by neutralizing at least a part of the —COO— group contained in the functional group of the carboxylic acid-containing polymer with a divalent or higher metal ion.
  • the carboxylic acid-containing polymer has two or more carboxyl groups or one or more carboxylic anhydride groups in one polymer molecule. Specifically, a polymer containing two or more structural units having one or more carboxyl groups such as an acrylic acid unit, a methacrylic acid unit, a maleic acid unit, and an itaconic acid unit in one molecule of the polymer is used. it can.
  • the polymer containing the structural unit which has the structure of carboxylic anhydrides such as a maleic anhydride unit and a phthalic anhydride unit, can also be used.
  • carboxylic acid-containing units (G) One type or two types of structural units having one or more carboxyl groups and / or structural units having a structure of carboxylic anhydride (hereinafter, these may be collectively referred to as “carboxylic acid-containing units (G)”) The above may be contained in the carboxylic acid-containing polymer.
  • the content of the carboxylic acid-containing unit (G) in all the structural units of the carboxylic acid-containing polymer is set to 10 mol% or more.
  • the content is more preferably 20 mol% or more, further preferably 40 mol% or more, and particularly preferably 70 mol% or more.
  • a carboxylic acid containing polymer contains both the structural unit which contains 1 or more of carboxyl groups, and the structural unit which has a structure of a carboxylic anhydride, the total of both should just be said range.
  • Other structural units other than the carboxylic acid-containing unit (G) that may be contained in the carboxylic acid-containing polymer are not particularly limited, but are methyl acrylate units, methyl methacrylate units, ethyl acrylate units, methacrylic acid.
  • Structural units derived from (meth) acrylic esters such as ethyl units, butyl acrylate units and butyl methacrylate units; structural units derived from vinyl esters such as vinyl formate units and vinyl acetate units; styrene units, One or more structural units selected from p-styrene sulfonic acid units; structural units derived from olefins such as ethylene units, propylene units, and isobutylene units.
  • the carboxylic acid-containing polymer contains two or more structural units
  • the carboxylic acid-containing polymer is in the form of an alternating copolymer, a random copolymer, a block copolymer, or a taper. It may be in the form of a type copolymer.
  • carboxylic acid-containing polymer examples include polyacrylic acid, polymethacrylic acid, and poly (acrylic acid / methacrylic acid).
  • the carboxylic acid-containing polymer may be at least one polymer selected from polyacrylic acid and polymethacrylic acid.
  • Specific examples of the case of containing other structural units other than the carboxylic acid-containing unit (G) include ethylene-maleic anhydride copolymers, styrene-maleic anhydride copolymers, isobutylene-maleic anhydride. Examples include alternating copolymers, ethylene-acrylic acid copolymers, and saponified ethylene-ethyl acrylate copolymers.
  • the molecular weight of the carboxylic acid-containing polymer is not particularly limited, but the number average molecular weight is 5,000 or more from the viewpoint of excellent gas barrier properties of the resulting gas barrier laminate and excellent mechanical properties such as drop impact strength. Preferably, it is preferably 10,000 or more, and more preferably 20,000 or more.
  • the upper limit of the number average molecular weight of the carboxylic acid-containing polymer is not particularly limited, but is generally 1,500,000 or less.
  • the molecular weight distribution of the carboxylic acid-containing polymer is not particularly limited, from the viewpoint of improving the surface appearance such as haze of the gas barrier laminate and the storage stability of the solution (U) described later,
  • the molecular weight distribution represented by the ratio of weight average molecular weight / number average molecular weight of the carboxylic acid-containing polymer is preferably in the range of 1 to 6, more preferably in the range of 1 to 5, and in the range of 1 to 4. More preferably.
  • the neutralized product of the carboxylic acid-containing polymer is a divalent or higher-valent metal having at least a part of at least one functional group (functional group (F)) selected from the carboxyl group and carboxylic anhydride group of the carboxylic acid-containing polymer. Obtained by neutralization with ions. In other words, this polymer contains a carboxyl group neutralized with a divalent or higher metal ion.
  • the metal ion neutralizing the functional group (F) is divalent or higher.
  • the functional group (F)) is not neutralized or neutralized only by monovalent ions, a laminate having good gas barrier properties cannot be obtained.
  • divalent or higher metal ions include calcium ions, magnesium ions, divalent iron ions, trivalent iron ions, zinc ions, divalent copper ions, lead ions, divalent mercury ions, barium ions, A nickel ion, a zirconium ion, an aluminum ion, a titanium ion, etc. can be mentioned.
  • the divalent or higher valent metal ion may be at least one ion selected from the group consisting of calcium ion, magnesium ion, barium ion, zinc ion, iron ion and aluminum ion.
  • the —COO— group contained in the functional group (F) of the carboxylic acid polymer is neutralized with, for example, 10 mol% or more (for example, 15 mol% or more) with a divalent or higher metal ion.
  • the carboxyl group and / or carboxylic anhydride group in the carboxylic acid-containing polymer is neutralized with a divalent or higher metal ion, the gas barrier laminate of the present invention exhibits good gas barrier properties.
  • the carboxylic anhydride group is considered to contain two —COO— groups. That is, when there are a moles of carboxyl groups and b moles of carboxylic acid anhydride groups, the total —COO— groups contained are (a + 2b) moles.
  • the proportion of the —COO— group contained in the functional group (F) is neutralized with a divalent or higher metal ion is preferably 60 mol% or more and 100 mol% or less, more preferably 70 mol% or more. More preferably, it is 80 mol% or more. By increasing the proportion of neutralization, higher gas barrier properties can be realized.
  • the degree of neutralization (ionization degree) of the functional group (F) is determined by measuring the infrared absorption spectrum of the gas barrier laminate by the ATR method (total reflection measurement method) or scraping the gas barrier layer from the gas barrier laminate,
  • the infrared absorption spectrum can be obtained by measuring by the KBr method. It can also be obtained from the value of the fluorescent X-ray intensity of the metal element used for ionization by fluorescent X-ray measurement.
  • the ionization degree of the polymer (X) constituting the gas barrier layer laminated on the substrate not containing an ester bond is measured by an infrared absorption spectrum.
  • the fluorescence X-ray intensity of the metal element used for ionization is determined by fluorescent X-ray measurement for the laminate in which the degree of ionization is measured.
  • the same measurement is implemented about the laminated body from which only an ionization degree differs.
  • a correlation between the degree of ionization and the fluorescent X-ray intensity of the metal element used for ionization is obtained, and a calibration curve is created.
  • composition constituting the gas barrier layer may be carbonate, hydrochloride, nitrate, hydrogen carbonate, sulfate, hydrogen sulfate, phosphate, boric acid within the range not impairing the effects of the present invention.
  • Salts inorganic acid metal salts such as aluminate; organic acid metal salts such as oxalate, acetate, tartrate, stearate; acetylacetonate metal complexes such as aluminum acetylacetonate, titanocene, etc.
  • Metal complexes such as cyclopentadienyl metal complexes and cyano metal complexes; layered clay compounds, crosslinking agents, plasticizers, antioxidants, ultraviolet absorbers, flame retardants and the like may be contained.
  • the composition constituting the gas barrier layer may contain a metal oxide fine powder, a silica fine powder, and the like.
  • base materials made of various materials can be used.
  • a film having a predetermined shape made of a film such as a thermoplastic resin film or a thermosetting resin film; a fiber assembly such as fabric or paper; wood; a metal oxide or a metal can be used.
  • a thermoplastic resin film is especially useful as a base material of the gas-barrier laminated body used for food packaging materials.
  • the substrate may also include a paper layer.
  • thermoplastic resin film examples include polyolefin resins such as polyethylene and polypropylene; polyester resins such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate and copolymers thereof; nylon 6, nylon 66, Polyamide resins such as nylon 12; polystyrene, poly (meth) acrylate, polyacrylonitrile, polyvinyl acetate, polycarbonate, polyarylate, regenerated cellulose, polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone And a film obtained by molding an ionomer resin or the like.
  • a film made of polyethylene, polypropylene, polyethylene terephthalate, nylon 6 or nylon 66 is preferable.
  • the thermoplastic resin film may be a stretched film or an unstretched film, but because the processing suitability of the gas barrier laminate of the present invention is excellent, such as a stretched film, A biaxially stretched film is particularly preferable.
  • the biaxially stretched film may be a biaxially stretched film produced by any of the simultaneous biaxial stretching method, the sequential biaxial stretching method, and the tubular stretching method.
  • the laminate of the present invention may further include an adhesive layer (H) disposed between the base material and the gas barrier layer.
  • the adhesive layer (H) made of an adhesive resin can be formed by treating the surface of the substrate with a known anchor coating agent or applying a known adhesive to the surface of the substrate.
  • an adhesive resin containing a urethane bond and having a nitrogen atom (a nitrogen atom of the urethane bond) occupying the entire resin is in the range of 0.5 to 12% by weight. I found it.
  • an adhesive resin By using such an adhesive resin, the adhesion between the substrate and the gas barrier layer can be particularly enhanced.
  • the content of nitrogen atoms (urethane bond nitrogen atoms) contained in the adhesive resin is more preferably in the range of 2 to 11% by weight, and still more preferably in the range of 3 to 8% by weight.
  • the adhesive resin containing a urethane bond a two-component reactive polyretane-based adhesive in which a polyisocyanate component and a polyol component are mixed and reacted is preferable.
  • the strength of the gas barrier laminate can be increased by increasing the thickness of the adhesive layer (H).
  • the thickness of the adhesive layer (H) is preferably in the range of 0.03 ⁇ m to 0.18 ⁇ m. According to this configuration, when processing such as printing or laminating is performed on the gas barrier laminate of the present invention, deterioration of gas barrier properties and appearance can be suppressed, and further, the gas barrier laminate of the present invention is used. It is possible to increase the drop strength of the packaging material.
  • the thickness of the adhesive layer (H) is more preferably in the range of 0.04 ⁇ m to 0.14 ⁇ m, and still more preferably in the range of 0.05 ⁇ m to 0.10 ⁇ m.
  • the total thickness of the gas barrier layers contained in the laminate is preferably 1.0 ⁇ m or less, for example 0.9 ⁇ m or less.
  • the dimensional change of the gas barrier laminate of the present invention during processing such as printing and laminating can be kept low, and the flexibility of the gas barrier laminate of the present invention is increased.
  • the characteristics can be brought close to the mechanical characteristics of the film itself used for the substrate.
  • the thickness of one gas barrier layer is preferably 0.05 ⁇ m or more (for example, 0.15 ⁇ m or more) from the viewpoint of improving the gas barrier properties of the gas barrier laminate of the present invention. Further, the total thickness of the gas barrier layer is more preferably 0.1 ⁇ m or more (for example, 0.2 ⁇ m or more). The thickness of the gas barrier layer can be controlled by the concentration of the solution used for forming the gas barrier layer and the coating method.
  • the laminate of the present invention may include a layer made of an inorganic material (hereinafter sometimes referred to as “inorganic layer”) between the base material and the gas barrier layer.
  • the inorganic layer can be formed of an inorganic material such as an inorganic oxide.
  • the inorganic layer can be formed by a vapor deposition method such as a vapor deposition method.
  • the inorganic substance constituting the inorganic layer is not particularly limited as long as it has a gas barrier property against oxygen, water vapor, and the like, and preferably has transparency.
  • the inorganic layer can be formed using an inorganic oxide such as aluminum oxide, silicon oxide, silicon oxynitride, magnesium oxide, tin oxide, or a mixture thereof.
  • aluminum oxide, silicon oxide, and magnesium oxide can be preferably used from the viewpoint of excellent barrier properties against gases such as oxygen and water vapor.
  • the preferred thickness of the inorganic layer varies depending on the type of inorganic oxide constituting the inorganic layer, but is usually in the range of 2 nm to 500 nm. Within this range, a thickness that provides good gas barrier properties and mechanical properties of the gas barrier laminate may be selected. When the thickness of the inorganic layer is less than 2 nm, the expression of the barrier property of the inorganic layer with respect to a gas such as oxygen or water vapor is not reproducible, and the inorganic layer may not exhibit a sufficient gas barrier property. When the thickness of the inorganic layer exceeds 500 nm, the gas barrier property of the inorganic layer tends to be lowered when the gas barrier laminate is pulled or bent.
  • the thickness of the inorganic layer is preferably in the range of 5 nm to 200 nm, more preferably in the range of 10 nm to 100 nm.
  • the inorganic layer can be formed by depositing an inorganic oxide on the substrate.
  • the forming method include a vacuum deposition method, a sputtering method, an ion plating method, a chemical vapor deposition method (CVD), and the like.
  • the vacuum evaporation method can be preferably used from the viewpoint of productivity.
  • a heating method in performing vacuum deposition any of an electron beam heating method, a resistance heating method, and an induction heating method is preferable.
  • the fine structure of the gas barrier layer is not particularly limited. However, when the gas barrier layer has the fine structure described below, it is preferable because a decrease in gas barrier properties when the gas barrier laminate is stretched can be suppressed.
  • a preferable fine structure is a sea-island structure composed of a sea phase ( ⁇ ) and an island phase ( ⁇ ).
  • the island phase ( ⁇ ) is a region where the ratio of the hydrolysis condensate of the compound (L) is higher than that of the sea phase ( ⁇ ).
  • the sea phase ( ⁇ ) and the island phase ( ⁇ ) each further have a fine structure.
  • the sea phase ( ⁇ ) is composed of a sea phase ( ⁇ 1) mainly composed of a neutralized product of a carboxylic acid-containing polymer and an island phase ( ⁇ 2) mainly composed of a hydrolysis condensate of the compound (L).
  • the sea island structure to be formed may be further formed.
  • the island phase ( ⁇ ) is composed of a sea phase ( ⁇ 1) mainly composed of a neutralized product of a carboxylic acid-containing polymer and an island phase ( ⁇ 2) mainly composed of a hydrolysis condensate of the compound (L).
  • the sea island structure to be formed may be further formed.
  • the ratio (volume ratio) of [island phase ( ⁇ 2) / sea phase ( ⁇ 1)] in the island phase ( ⁇ ) is the ratio of [island phase ( ⁇ 2) / sea phase ( ⁇ 1)] in the sea phase ( ⁇ ). Is preferably larger.
  • the diameter of the island phase ( ⁇ ) is preferably in the range of 30 nm to 1200 nm, more preferably in the range of 50 to 500 nm, and still more preferably in the range of 50 nm to 400 nm.
  • the diameter of the island phase ( ⁇ 2) and the island phase ( ⁇ 2) is preferably 50 nm or less, more preferably 30 nm or less, and even more preferably 20 nm or less.
  • an appropriate hydrolysis condensation of the compound (L) occurs in preference to the crosslinking reaction between the compound (L) and the carboxylic acid-containing polymer.
  • the specific compound (L) is used in an appropriate ratio with the carboxylic acid-containing polymer, and the compound (L) is preliminarily hydrolyzed and condensed before mixing with the carboxylic acid-containing polymer.
  • a method such as using a condensation catalyst can be employed.
  • the layer of the hydrolytic condensate of compound (L) formed on the surface of the gas barrier layer may be referred to as “skin layer”.
  • skin layer By forming the skin layer, the water resistance of the gas barrier layer surface is improved.
  • the skin layer made of the hydrolyzed condensate of compound (L) has a characteristic that the hydrophobic property is imparted to the surface of the gas barrier layer, and the gas barrier layer does not stick even when the gas barrier layers wet with water are stacked. To grant.
  • the present inventors have found that there is a correlation between the contact angle between the gas barrier layer and water and the preferred skin layer, and the preferred skin layer is formed when the contact angle satisfies the following conditions. I found out. When the contact angle between the gas barrier layer and water is less than 20 °, the skin layer may not be sufficiently formed.
  • the surface of the gas barrier layer easily swells with water, and if the laminates are stacked in a wet state, they may rarely stick together.
  • the contact angle is 20 ° or more, the skin layer is sufficiently formed, and the surface of the gas barrier layer does not swell with water, so that no sticking occurs.
  • the contact angle between the gas barrier layer and water is preferably 24 ° or more, and more preferably 26 ° or more.
  • the contact angle is preferably 65 ° or less, more preferably 60 ° or less, and still more preferably 58 ° or less.
  • the gas barrier laminate of the present invention may contain other layers (for example, a thermoplastic resin film or paper) in addition to the base material and the gas barrier layer. By adding such other layers, it is possible to impart heat sealability to the gas barrier laminate or to improve the mechanical properties of the gas barrier laminate.
  • other layers for example, a thermoplastic resin film or paper
  • gas barrier laminate of the present invention when a thermoplastic resin film or paper (layer) is used for the substrate are shown below.
  • film (layer) in order to simplify the description, the notation of “film (layer)” may be omitted and only the material may be described.
  • Examples of the configuration of the gas barrier laminate of the present invention include the following configurations. (1) Gas barrier layer / polyester / polyamide / polyolefin, (2) Gas barrier layer / polyester / gas barrier layer / polyamide / polyolefin, (3) polyester / gas barrier layer / polyamide / polyolefin, (4) Gas barrier layer / polyamide / polyester / polyolefin, (5) Gas barrier layer / polyamide / gas barrier layer / polyester / polyolefin, (6) Polyamide / Gas barrier layer / Polyester / Polyolefin, (7) Gas barrier layer / polyolefin / polyamide / polyolefin, (8) Gas barrier layer / polyolefin / gas barrier layer / polyamide / polyolefin, (9) Polyolefin / Gas barrier layer / Polyamide / Polyolefin, (10) Gas barrier layer / polyolefin / polyolefin, (11) Gas barrier layer / polyolef
  • the polyolefin is preferably polypropylene or polyethylene
  • the polyester is preferably polyethylene terephthalate (PET)
  • the polyamide is preferably nylon-6.
  • the hydroxyl group-containing polymer is preferably an ethylene-vinyl alcohol copolymer.
  • a package can be obtained using the gas barrier laminate of the present invention.
  • This package can be applied to various applications, and is preferably used for applications that require a gas barrier such as oxygen gas.
  • a package using the gas barrier laminate of the present invention is preferably used as a package for retort food.
  • a paper container can be obtained by using the base material containing a paper layer.
  • the production method of the present invention includes steps (i) and (ii).
  • Step (i) is a step of forming a layer made of a composition containing the polymer (X) and the hydrolysis condensate of the compound (L) on the substrate.
  • the layer is formed directly on the substrate or is formed on the substrate via another layer.
  • at least a part of —COO— group contained in the functional group (F) of the polymer (X) is neutralized and / or reacted with the compound (P) containing two or more amino groups.
  • the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of —COO— group contained in functional group (F) of polymer (X)] was 0.2 / 100. It is in the range of ⁇ 20.0 / 100.
  • the compounds contained in the compound (L) and the ratio of these compounds are the same as those described for the composition constituting the gas barrier layer.
  • Step (ii) is a step of bringing the layer formed in step (i) into contact with a solution containing divalent or higher metal ions (hereinafter, this step may be referred to as an ionization step). For example, it can be performed by spraying a solution containing divalent or higher metal ions on the formed layer, or immersing both the base material and the layer on the base material in a solution containing divalent or higher metal ions. .
  • the step (ii) at least a part of the —COO— group contained in the functional group (F) of the polymer (X) is neutralized.
  • step (i) since mixing of a compound (P) and a carboxylic acid containing polymer may cause both to react and the coating of a solution (U) may become difficult, a process (i) is compound (P) and It is preferable to include the step (ia) of preparing the solution (S) containing the acid (R).
  • the method for adjusting the solution (U) is not particularly limited as long as the solution (U) can be applied, and examples thereof include the following methods.
  • a method in which the compound (L), the solution (S) and, if necessary, a solvent are added to and mixed with the solution in which the polymer (X) is dissolved can be employed.
  • an oligomer (V) (one kind of hydrolysis condensate) is prepared from the compound (L) in the presence or absence of a solvent, and the polymer (X) is dissolved in the oligomer (V).
  • a method of mixing the prepared solution and the solution (S) can also be employed.
  • a compound (L) and an oligomer (V) may be added to a solution independently, and may be added to a solvent with the form of the solution which dissolved them.
  • a gas barrier laminate having particularly excellent gas barrier properties can be obtained by using the method (2).
  • the method (2) will be described more specifically.
  • the step (i) includes (ia) a step of preparing a solution (S) containing the compound (P) and the acid (R), and (ib) the compound (L). Preparing a solution (T) containing an oligomer obtained by hydrolyzing and condensing the solution, and (ic) a solution (U) containing the solution (S), the solution (T) and the polymer (X). A step of preparing, and (id) a step of forming the layer by applying the solution (U) to a substrate and drying it. Either step (ia) or step (ib) may be performed first or simultaneously.
  • step (ia) a solution (S) containing compound (P) and acid (R) is prepared.
  • S acid
  • R acid
  • the acid (R) produced by the exchange reaction between the salt of the amino group of compound (P) and acid (R) and the —COO— group of the carboxylic acid polymer is used in the drying step of step (id). It is preferably removed from the gas barrier layer.
  • the acid (R) is not particularly limited, but examples of preferable acid (R) include hydrochloric acid, nitric acid, carbonic acid, and acetic acid from the viewpoint of easy removal from the gas barrier layer in the drying step (id). Of these, hydrochloric acid is preferred.
  • the amount of acid (R) used in solution (S) is such that the ratio of [equivalent of acid (R)] / [equivalent of amino group of compound (P)] is 0.5 / 1 or more. Good. If the conditions of 0.5 / 1 or more are satisfied, gelation at the time of mixing with the carboxylic acid-containing polymer can be prevented.
  • the ratio of [equivalent of acid (R)] / [equivalent of amino group of compound (P)] is in the range of 0.5 / 1 to 10/1. It is preferably in the range of 0.7 / 1 to 5/1, more preferably in the range of 0.7 / 1 to 2/1.
  • oligomer (V) by hydrolyzing and condensing compound (L) in a reaction system containing compound (L), an acid catalyst, water, and if necessary, an organic solvent.
  • a technique used in a known sol-gel method can be applied.
  • the compound (L) may be previously hydrolyzed and condensed.
  • compound (L) compound (L), compound (L) partially hydrolyzed, compound (L) completely hydrolyzed, compound (L) partially hydrolyzed and condensed, and compound (L ) May be referred to as “compound (L) -based component”.
  • a known acid can be used as the acid catalyst used in the step (ib).
  • hydrochloric acid, sulfuric acid, nitric acid, p-toluenesulfonic acid, benzoic acid, acetic acid, lactic acid, butyric acid, carbonic acid, oxalic acid, malein An acid etc. are mentioned.
  • hydrochloric acid, sulfuric acid, nitric acid, acetic acid, lactic acid, and butyric acid are particularly preferable.
  • Preferred amount of acid catalyst may vary depending on the type of acid used, the metal atom to 1 mol of the compound (L), is preferably in the range of 1 ⁇ 10 -5 ⁇ 10 mol, 1 ⁇ 10 - It is more preferably in the range of 4 to 5 mol, and further preferably in the range of 5 ⁇ 10 ⁇ 4 to 1 mol.
  • the amount of the acid catalyst used is within this range, a gas barrier laminate having a high gas barrier property can be obtained.
  • the amount of water used in the step (ib) varies depending on the type of the compound (L), but is 0.05 to 10 equivalents relative to 1 equivalent of the hydrolyzable characteristic group of the compound (L). Preferably, it is in the range of 0.1 to 5 equivalents, more preferably in the range of 0.2 to 3 equivalents. When the amount of water used is in this range, a gas barrier laminate having particularly excellent gas barrier properties can be obtained.
  • step (ib) when a component containing water such as hydrochloric acid is used, it is preferable to determine the amount of water used in consideration of the amount of water introduced by the component.
  • an organic solvent may be used as necessary.
  • the organic solvent used will not be specifically limited if it is a solvent in which compound (L) dissolves.
  • alcohols such as methanol, ethanol, isopropanol, and normal propanol are preferably used as the organic solvent, and alcohols having the same molecular structure (alkoxy component) as the alkoxy group contained in the compound (L) are more preferably used. It is done.
  • methanol is preferred for tetramethoxysilane and ethanol is preferred for tetraethoxysilane.
  • the amount of the organic solvent used is not particularly limited, but the amount is preferably such that the concentration of the compound (L) is 1 to 90% by weight, more preferably 10 to 80% by weight, still more preferably 10 to 60% by weight. preferable.
  • the temperature of the reaction system is not necessarily limited, but is usually in the range of 2 to 100 ° C., preferably 4 to It is in the range of 60 ° C., more preferably in the range of 6 to 50 ° C.
  • the reaction time varies depending on the reaction conditions such as the amount and type of the catalyst, but is usually in the range of 0.01 to 60 hours, preferably in the range of 0.1 to 12 hours, more preferably 0.1 The range is up to 6 hours.
  • the reaction can be performed in an atmosphere of various gases such as air, carbon dioxide, nitrogen, and argon.
  • step (ib) the entire amount of compound (L) may be added to the reaction system at once, or may be added to the reaction system in small portions several times. In any case, it is preferable that the total amount of the compound (L) used satisfies the above preferable range.
  • Step (ic) includes a solution (T) containing the oligomer (V) obtained in step (ib), a solution (S) prepared in step (ia), and a polymer (X).
  • the method of mixing (2) the solution (S) with the solution in which the carboxylic acid-containing polymer is dissolved, and adding the solution to the solution (T) and mixing can also be employed. Furthermore, (3) a method in which a solution in which a carboxylic acid-containing polymer is dissolved is added to and mixed with the solution (T), and then the solution (S) is added and mixed.
  • the solution (T) to be added the solution in which the carboxylic acid-containing polymer is dissolved, and the solution (S) may be added at once. , May be added in portions.
  • a solution in which the carboxylic acid-containing polymer is dissolved in step (ic) can be prepared by the following method. What is necessary is just to select the solvent to be used according to the kind of carboxylic acid containing polymer.
  • a water-soluble polymer such as polyacrylic acid or polymethacrylic acid
  • water is suitable.
  • an alkaline substance such as ammonia, sodium hydroxide or potassium hydroxide is preferred.
  • alcohols such as methanol and ethanol; ethers such as tetrahydrofuran, dioxane and trioxane; ketones such as acetone and methyl ethyl ketone; glycols such as ethylene glycol and propylene glycol; methyl cellosolve; Glycol derivatives such as ethyl cellosolve and n-butyl cellosolve; glycerin; acetonitrile, dimethylformamide, dimethyl sulfoxide, sulfolane, dimethoxyethane and the like can also be used in combination.
  • a part (for example, 0.1 to 10 mol%) of the —COO— group contained in the functional group (F) is neutralized by monovalent ions. May be.
  • the degree of neutralization of the functional group (F) with monovalent ions is more preferably in the range of 0.5 to 5 mol%, from the viewpoint of improving the transparency of the gas barrier laminate, preferably 0.7 to 3 More preferably, it is in the range of mol%.
  • monovalent ions include ammonium ions, pyridinium ions, sodium ions, potassium ions, and lithium ions, with ammonium ions being preferred.
  • the solid content concentration of the solution (U) is preferably in the range of 3% by weight to 20% by weight from the viewpoint of the storage stability of the solution (U) and the coating property of the solution (U) on the substrate. It is more preferably in the range of 4% to 15% by weight, and still more preferably in the range of 5% to 12% by weight.
  • the pH of the solution (U) is preferably in the range of 1.0 to 7.0, and preferably 1.0 to 6. A range of 0 is more preferable, and a range of 1.5 to 4.0 is even more preferable.
  • the pH of the solution (U) can be adjusted by a known method.
  • acidic compounds such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, butyric acid, ammonium sulfate, sodium hydroxide, potassium hydroxide, ammonia, trimethylamine, pyridine
  • basic compounds such as sodium carbonate and sodium acetate.
  • a basic compound that provides a monovalent cation is used in the solution, a part of the carboxyl group and / or carboxylic anhydride group of the carboxylic acid-containing polymer may be neutralized with a monovalent ion. it can.
  • Step (id) will be described.
  • the state of the solution (U) prepared in the step (ic) changes with time, and finally becomes a gel-like composition.
  • the time until the solution (U) becomes gelled depends on the composition of the solution (U).
  • the solution (U) In order to stably apply the solution (U) to the substrate, it is preferable that the solution (U) has a stable viscosity over a long period of time and then gradually increases in viscosity.
  • the solution (U) was measured with a Brookfield viscometer (B-type viscometer: 60 rpm) even after standing at 25 ° C. for 2 days, based on the total amount of the compound (L) component.
  • Is preferably adjusted to be 1 N ⁇ s / m 2 or less (more preferably 0.5 N ⁇ s / m 2 or less, particularly preferably 0.2 N ⁇ s / m 2 or less).
  • the solution (U) has a viscosity of 1 N ⁇ s / m 2 or less (more preferably 0.1 N ⁇ s / m 2 or less, particularly preferably 0. It is more preferable to adjust the composition so as to be 05 N ⁇ s / m 2 or less.
  • the solution (U) has a viscosity of 1 N ⁇ s / m 2 or less (more preferably 0.1 N ⁇ s / m 2 or less, particularly preferably 0. More preferably, the composition is adjusted to be 05 N ⁇ s / m 2 or less.
  • adjusting the concentration of solids for example, adjusting pH, carboxymethylcellulose, starch, bentonite, tragacanth gum, stearate, alginate,
  • a method of adding a viscosity modifier such as methanol, ethanol, n-propanol, or isopropanol can be used.
  • an organic solvent that can be uniformly mixed with the solution (U) is added so long as the stability of the solution (U) is not hindered. May be.
  • organic solvents that can be added include alcohols such as methanol, ethanol, n-propanol, and isopropanol; ethers such as tetrahydrofuran, dioxane, and trioxane; ketones such as acetone, methyl ethyl ketone, methyl vinyl ketone, and methyl isopropyl ketone; ethylene glycol, Glycols such as propylene glycol; glycol derivatives such as methyl cellosolve, ethyl cellosolve, n-butyl cellosolve; glycerin; acetonitrile, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, sulfolane, dimethoxyethane
  • solution (U) may be carbonate, hydrochloride, nitrate, hydrogen carbonate, sulfate, hydrogen sulfate, phosphate, borate, alumina as long as it does not impair the effects of the present invention.
  • Inorganic acid metal salts such as acid salts; organic acid metal salts such as oxalate, acetate, tartrate and stearate; acetylacetonate metal complexes such as aluminum acetylacetonate; cyclopentadiene such as titanocene Metal complexes such as enyl metal complexes and cyano metal complexes; layered clay compounds, crosslinking agents, compounds containing two or more amino groups as described above (P), compounds containing two or more hydroxyl groups as described above (Q), and other It may contain a polymer compound, a plasticizer, an antioxidant, an ultraviolet absorber, a flame retardant and the like.
  • the solution (U) may contain fine metal oxide powder or fine silica powder.
  • the solution (U) prepared in the step (ic) is applied to at least one surface of the substrate in the step (id).
  • the surface of the substrate may be treated with a known anchor coating agent, or a known adhesive may be applied to the surface of the substrate.
  • the method for applying the solution (U) to the substrate is not particularly limited, and a known method can be used. Preferred methods include, for example, a casting method, a dipping method, a roll coating method, a gravure coating method, a screen printing method, a reverse coating method, a spray coating method, a kiss coating method, a die coating method, a metering bar coating method, and a chamber doctor combined coating method. And curtain coating method.
  • the solvent contained in the solution (U) is removed to obtain a laminate (laminate (I)) before the ionization step. It is done.
  • the method for removing the solvent is not particularly limited, and a known method can be applied. Specifically, methods such as a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method can be applied alone or in combination.
  • the drying temperature is not particularly limited as long as it is 15 to 20 ° C. or more lower than the flow start temperature of the base material and 15 to 20 ° C. or more lower than the thermal decomposition start temperature of the carboxylic acid-containing polymer.
  • the drying temperature is preferably in the range of 70 ° C to 200 ° C, more preferably in the range of 80 to 180 ° C, and further preferably in the range of 90 to 160 ° C.
  • the removal of the solvent may be carried out under normal pressure or reduced pressure.
  • a skin layer made of a hydrolyzable condensate of compound (L) is preferably formed on the surface of the gas barrier layer. Further, as described above, it is not preferable that the skin layer becomes too thick because the transparency of the gas barrier laminate is lowered.
  • a method for forming a skin layer having an appropriate thickness will be described below. According to the results of intensive studies by the present inventors, the presence or absence of the skin layer and the state of the skin layer formation are determined by the reactivity of the hydrolyzable condensate of the compound (L), the composition of the compound (L), It depends on the solvent used in the solution (U), the drying speed of the solution (U) after the solution (U) is applied to the substrate, and the like.
  • the contact angle of water with respect to the gas barrier layer surface is measured and the contact angle is smaller than the above-mentioned predetermined range, by increasing the reaction time of the step (ib) and the step (ic), It is possible to increase the contact angle (that is, to form an appropriate skin layer). On the contrary, when the contact angle is larger than the predetermined range, it is possible to reduce the contact angle by shortening the reaction time in the step (ib) and the step (ic).
  • the laminate (I) obtained by the above step is brought into contact with a solution containing metal ions having a valence of 2 or more (hereinafter sometimes referred to as solution (IW)) (ionization step),
  • solution (IW)) a solution containing metal ions having a valence of 2 or more
  • the gas barrier laminate (laminate (II)) of the present invention is obtained.
  • the ionization process may be performed at any stage as long as the effects of the present invention are not impaired.
  • the ionization step may be performed before or after being processed into the form of the packaging material, or may be performed after the packaging material is filled with the contents and sealed.
  • the solution (IW) can be prepared by dissolving in a solvent a compound (polyvalent metal compound) that releases metal ions having two or more valences upon dissolution.
  • a solvent used in preparing the solution (IW) it is desirable to use water, but it may be a mixture of an organic solvent miscible with water and water.
  • organic solvents examples include alcohols such as methanol, ethanol, n-propanol, and isopropanol; ethers such as tetrahydrofuran, dioxane, and trioxane; ketones such as acetone, methyl ethyl ketone, methyl vinyl ketone, and methyl isopropyl ketone; ethylene glycol, propylene glycol Glycols such as methyl cellosolve, ethyl cellosolve, and n-butyl cellosolve; glycerin; organic solvents such as acetonitrile, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, and dimethoxyethane.
  • alcohols such as methanol, ethanol, n-propanol, and isopropanol
  • ethers such as tetrahydrofuran, dioxane, and trioxane
  • ketones such as
  • compounds capable of releasing the metal ions exemplified for the gas barrier laminate of the present invention can be used.
  • polyvalent metal compound Only one type of polyvalent metal compound may be used, or two or more types may be used in combination.
  • Preferred polyvalent metal compounds include calcium acetate, calcium hydroxide, magnesium acetate, and zinc acetate. In addition, you may use these polyvalent metal compounds in the form of a hydrate.
  • the concentration of the polyvalent metal compound in the solution (IW) is not particularly limited, but is preferably in the range of 5 ⁇ 10 ⁇ 4 wt% to 50 wt%, more preferably 1 ⁇ 10 ⁇ 2 wt% to 30 wt%. More preferably, it is in the range of 1% by weight to 20% by weight.
  • the temperature of the solution (IW) is not particularly limited, but the higher the temperature, the faster the ionization rate of the carboxyl group-containing polymer.
  • the temperature is, for example, in the range of 30 to 140 ° C., preferably in the range of 40 ° C. to 120 ° C., and more preferably in the range of 50 ° C. to 100 ° C.
  • the method for removing the solvent is not particularly limited, and a known method can be applied. Specifically, drying methods such as a hot air drying method, a hot roll contact method, an infrared heating method, and a microwave heating method can be applied singly or in combination of two or more.
  • the temperature at which the solvent is removed is not particularly limited as long as it is 15 to 20 ° C. or more lower than the flow start temperature of the base material and 15 to 20 ° C. or lower than the thermal decomposition start temperature of the carboxylic acid-containing polymer.
  • the drying temperature is preferably in the range of 40 to 200 ° C, more preferably in the range of 60 to 150 ° C, and still more preferably in the range of 80 to 130 ° C.
  • the removal of the solvent may be carried out under normal pressure or reduced pressure.
  • the solvent in which the polyvalent metal compound dissolves a solvent that can be used for the solution (IW) can be used, and the same solvent as the solvent for the solution (IW) is preferably used.
  • the production method of the present invention further includes a step of heat-treating the layer formed in step (i) at a temperature of 120 to 240 ° C. after step (i) and before and / or after step (ii). But you can. That is, you may heat-process with respect to laminated body (I) or laminated body (II).
  • the heat treatment may be performed at any stage as long as the removal of the solvent of the coated solution (U) is almost completed, but the layered product (that is, the layered product (I)) before the ionization step is performed. By performing the heat treatment, a gas barrier laminate having a good surface appearance can be obtained.
  • the temperature of the heat treatment is preferably in the range of 120 ° C to 240 ° C, more preferably in the range of 140 to 240 ° C, and still more preferably in the range of 160 ° C to 220 ° C.
  • the heat treatment can be performed in air, under a nitrogen atmosphere, under an argon atmosphere, or the like. By performing the heat treatment, the amidation reaction of the amino group of the compound (P) and the —COO— group of the carboxylic acid-containing polymer further proceeds.
  • the oxygen barrier properties and appearance (transparency, etc.) after boil treatment and retort treatment are superior, and the gas barrier properties exhibit good oxygen barrier properties and appearance (transparency, etc.) even after retorting under severe retort conditions.
  • a laminate is obtained.
  • the laminate (I) or (II) may be irradiated with ultraviolet rays.
  • the ultraviolet irradiation may be performed any time after the removal of the solvent of the coated solution (U) is almost completed.
  • the method is not particularly limited, and a known method can be applied.
  • the wavelength of the ultraviolet rays to be irradiated is preferably in the range of 170 to 250 nm, more preferably in the range of 170 to 190 nm and / or in the range of 230 to 250 nm.
  • radiation such as an electron beam or ⁇ -ray may be irradiated.
  • Only one of heat treatment and ultraviolet irradiation may be performed, or both may be used in combination.
  • the gas barrier performance of the laminate may be expressed to a higher degree.
  • the surface of the base material is treated (treatment with an anchor coating agent or application of an adhesive) before application of the solution (U). You may give it.
  • the substrate coated with the solution (U) is compared. It is preferable to perform an aging treatment that is allowed to stand at a low temperature for a long time.
  • the temperature of the aging treatment is preferably in the range of 30 to 200 ° C, more preferably in the range of 30 to 150 ° C, and further preferably in the range of 30 to 120 ° C.
  • the aging time is preferably in the range of 0.5 to 10 days, more preferably in the range of 1 to 7 days, and further preferably in the range of 1 to 5 days.
  • the adhesive force between the base material and the gas barrier layer becomes stronger. It is preferable to perform the above heat treatment (heat treatment at 120 ° C. to 240 ° C.) after this aging treatment.
  • the gas barrier laminate of the present invention has an excellent barrier property against gases such as oxygen, water vapor, carbon dioxide gas, nitrogen, etc., and the excellent barrier property is exposed to bending conditions even under high humidity conditions. Can hold highly. In addition, it exhibits excellent gas barrier properties even after retorting. Thus, the gas barrier laminate of the present invention has good gas barrier properties that are not affected by environmental conditions such as humidity, and exhibits high gas barrier properties even after being exposed to bending conditions, and thus can be applied to various applications. .
  • the gas barrier laminate of the present invention is particularly useful as a food packaging material (particularly a retort food packaging material).
  • the gas barrier laminate of the present invention can also be used as a packaging material for packaging chemicals such as agricultural chemicals and pharmaceuticals, industrial materials such as precision materials, and clothing.
  • Measurement and evaluation in the following examples were performed by the following methods (1) to (8).
  • description of the abbreviation used by the following description about a measuring method and an evaluation method may be mentioned later.
  • a measurement result and an evaluation result it describes in the table
  • Oxygen barrier property before retort treatment Oxygen permeability was measured using an oxygen permeation measuring device ("MOCON OX-TRAN 2/20" manufactured by Modern Control).
  • the laminate was conditioned for 24 hours under conditions of a temperature of 23 ° C and a humidity of 50% RH. Thereafter, the laminate was cut into 15 cm ⁇ 15 mm with respect to the MD direction and the TD direction. The cut laminate was measured for tensile strength and Young's modulus by a method according to JIS-K7127 under the conditions of a temperature of 23 ° C. and a humidity of 50% RH.
  • Dry heat shrinkage (%) (l b ⁇ l a ) ⁇ 100 / l b [Wherein lb represents a length before heating. l a represents the length after heating. ]
  • the substrate was coated on the surface with a two-component anchor coating agent (Mitsui Takeda Chemical Co., Ltd., Takelac 626 (trade name) and Takenate A50 (trade name), hereinafter abbreviated as “AC”).
  • a stretched nylon film manufactured by Unitika Ltd., Emblem ON-BC (trade name), thickness of 15 ⁇ m, hereinafter sometimes abbreviated as “ON”) was used.
  • a standard sample [laminated body (layer made of neutralized polyacrylic acid / AC / ON)] having a carboxyl group neutralization degree of 0, 25, 50, 75, 80, and 90 mol% was prepared. Produced.
  • the infrared absorption spectrum was measured in the mode of ATR (total reflection measurement) using the Fourier-transform infrared spectrophotometer (The product made from Perkin Elmer, Spectrum One).
  • the two peaks corresponding to the C O stretching vibration in the layer consisting of neutralized product of polyacrylic acid, i.e., a peak observed in the range of 1600 cm -1 ⁇ 1850 cm -1 and 1500 cm -1 ⁇ 1600 cm -
  • the ratio of the maximum absorbance was calculated for the peak observed in the range of 1 .
  • the calibration curve 1 was created using the calculated ratio and the ionization degree of each standard sample.
  • the degree of ionization was calculated using the calibration curve 2 obtained by fluorescent X-ray intensity measurement.
  • the pouch was placed in a retort treatment apparatus (manufactured by Nisaka Seisakusho, Flavor Ace RCS-60) and subjected to retort treatment at 120 ° C. for 30 minutes and 0.15 MPa. After the retort treatment, heating was stopped, and the pouch was taken out from the retort treatment device when the internal temperature of the retort treatment device reached 60 ° C. Then, the pouch was left for 1 hour in a room at 20 ° C. and 65% RH. Thereafter, the heat-sealed portion was cut off with scissors, and the water adhering to the surface of the laminate was wiped off by lightly pressing a paper towel.
  • a retort treatment apparatus manufactured by Nisaka Seisakusho, Flavor Ace RCS-60
  • the pouch was left in a desiccator adjusted to 20 ° C. and 85% RH for one day or longer.
  • the oxygen barrier property after the retort treatment was evaluated by measuring the oxygen permeability of the laminate subjected to such a retort treatment.
  • the oxygen transmission rate was measured using an oxygen transmission amount measuring device (“MOCON OX-TRAN 2/20” manufactured by Modern Control). Specifically, the laminate is set so that the gas barrier layer faces the oxygen supply side and the CPP faces the carrier gas side, the temperature is 20 ° C., the humidity is 85% RH on the oxygen supply side, the humidity is 85% RH on the carrier gas side, The oxygen permeability (unit: cc / m 2 / day / atm) was measured under conditions of an oxygen pressure of 1 atm and a carrier gas pressure of 1 atm.
  • the laminated body of each Example has the same oxygen barrier property before and after the retort treatment as the laminated body of Reference Examples 1 and 2 although the coat layer is thin. Or more, and excellent in gas barrier properties and hot water resistance. Furthermore, the laminated body of each Example was approaching the performance of the base film itself shown in Reference Examples 3 and 4 with respect to tensile strength and elongation and Young's modulus. Moreover, the laminated body of each Example was improved compared with the laminated body of the reference examples 1 and 2 regarding the dry heat shrinkage rate. That is, the laminated body of each Example was excellent in workability. In addition, when the retort treatment was performed under severe conditions, the laminates of Reference Examples 1 and 2 slightly changed the appearance, but the laminates of the examples did not change the appearance, and the laminates of the examples were excellent. Showed hot water resistance.
  • the reaction time at the time of preparing the mixed liquid (T) was 1 hour, and in the subsequent examples, the reaction time was 5 hours.
  • the contact angle of the gas barrier layer could be increased and the skin layer could be made thicker.
  • the wet gas barrier layers are stacked on top of each other. Even when placed, the gas barrier layers did not stick together.
  • PAA Polyacrylic acid
  • 150,000 was dissolved in distilled water to obtain a PAA aqueous solution having a solid content concentration of 13% by weight in the aqueous solution.
  • 13% ammonia aqueous solution was added to this PAA aqueous solution to neutralize 1 mol% of the carboxyl group of PAA, thereby obtaining a partially neutralized aqueous solution of PAA.
  • EDA ethylenediamine
  • the ratio of [weight of inorganic component derived from tetramethoxysilane (TMOS)] / [weight of partially neutralized PAA] was 30.0 / 70.0, and [amino group of EDA] / [PAA
  • the mixed solution (U1) was prepared so that the equivalent ratio of [carboxyl group] was 0.2 / 100. Specifically, first, 50 parts by weight of TMOS was dissolved in 50 parts by weight of methanol. Subsequently, 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid were added so that the ratio of water to TMOS was 1.95 molar equivalent, and hydrolysis was performed at 10 ° C. for 1 hour.
  • a two-component anchor coating agent dissolved in 67 parts by weight of ethyl acetate (Mitsui Takeda Chemical Co., Ltd .: Takelac A-626 (trade name) 1 part by weight and Takenate A-50 (trade name) 2 parts by weight) Is coated on a stretched polyethylene terephthalate film (manufactured by Toray Industries, Inc., Lumirror P60 (trade name), thickness 12 ⁇ m, hereinafter sometimes abbreviated as “PET”), and dried to form a base material having an anchor coat layer (AC / PET) was prepared.
  • PET polyethylene terephthalate film
  • the mixed solution (U1) was coated on the anchor coat layer of the base material with a bar coater so that the thickness after drying was 0.4 ⁇ m, and dried at 120 ° C. for 5 minutes. Subsequently, coating was also performed on the opposite surface of the substrate in the same procedure.
  • the obtained laminate was aged at 40 ° C. for 3 days. Next, the laminate was heat-treated at 180 ° C. for 5 minutes using a dryer. Next, the laminate was immersed in a 2 wt% aqueous calcium acetate solution (85 ° C.) for 12 seconds, and then dried at 110 ° C. for 1 minute.
  • a laminate (A1) having a structure of gas barrier layer (0.4 ⁇ m) / AC (0.1 ⁇ m) / PET (12 ⁇ m) / AC (0.1 ⁇ m) / gas barrier layer (0.4 ⁇ m) is obtained. It was.
  • the gas barrier layer was colorless and transparent and had a very good appearance.
  • the degree of ionization, the oxygen permeability before retorting, the contact angle, the tensile strength and elongation, the Young's modulus, and the dry heat shrinkage rate were measured by the methods described above.
  • Example 2 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. And the liquid mixture (U2) was prepared by the same preparation ratio as Example 1 except having made the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] 1.0 / 100. Specifically, first, the mixture (T2) prepared by the same composition and method as the mixture (T1) of Example 1 was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred with PAA.
  • Example 2 Using the mixed solution (U2), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A2). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (2). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 3 to 6 and 33 the amount of EDA added was changed. From these examples, the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of -COO-group contained in functional group of polymer (X)] was 0.2 / 100 to 20. When in the range of 0/100, it was confirmed that excellent gas barrier properties and hot water resistance were exhibited. When the compound (P) is less than this range, the hot water resistance is lowered, and when it is more, the gas barrier property is lowered (see Comparative Examples 3 and 4). Further, from the viewpoint of better gas barrier properties and hot water resistance, the ratio is preferably in the range of 1.0 / 100 to 4.9 / 100 (see Examples 5 and 6).
  • Example 3 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. And the liquid mixture (U3) was prepared by changing only reaction time by the preparation ratio similar to Example 1.
  • FIG. 3 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1.
  • the liquid mixture (U3) was prepared by changing only reaction time by the preparation ratio similar to Example 1.
  • TMOS TMOS dissolved in 50 parts by weight of methanol. Thereto was added 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid so that the ratio of water to TMOS was 1.95 molar equivalents, and hydrolysis and condensation reaction at 10 ° C. for 5 hours. And a liquid mixture (T3) was obtained. Next, after the mixed liquid (T3) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 1.27 parts by weight of an EDA hydrochloride aqueous solution (S3) was added to obtain a mixed liquid (U3) having a solid content concentration of 5% by weight.
  • Example 3 Using the mixed solution (U3), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A3). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (3). Evaluation of the laminate and laminate was performed in the same manner as in Example 1.
  • Example 4 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. And the liquid mixture (U4) was prepared by the preparation ratio similar to Example 3 except having made the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] 19.4 / 100. Specifically, first, the mixture (T4) prepared by the same composition and method as the mixture (T3) of Example 3 was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred.
  • Example 1 Using the mixed solution (U4), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A4). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (4). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 5 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. And the liquid mixture (U5) was prepared by the preparation ratio similar to Example 3 except having made the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] 4.9 / 100. Specifically, first, the mixture (T5) prepared by the same composition and method as the mixture (T3) of Example 3 was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred.
  • Example 5 Using the mixed solution (U5), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A5). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (5). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 6 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. And the liquid mixture (U6) was prepared by the preparation ratio similar to Example 3 except having made the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] become 1.0 / 100. Specifically, first, the liquid mixture (T6) prepared by the same composition and method as the liquid mixture (T3) of Example 3 was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred with PAA.
  • Example 6 Using the mixed solution (U6), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A6). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (6). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 7 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. Subsequently, the molar ratio of [TMOS] / [ ⁇ -glycidoxydoxypropyltrimethoxysilane (GPTMOS)] is 99.5 / 0.5, [inorganic component derived from TMOS and GPTMOS] / [organic component of GPTMOS) And a partially neutralized product of PAA] in a mixed solution (so that the molar ratio of 30.0 / 70.0 and [amino group of EDA] / [carboxyl group of PAA] is 1.0 / 100) U7) was prepared.
  • TMOS and GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents, and 5 hours at 10 ° C. Hydrolysis and condensation reaction were performed to obtain a mixed solution (T7). Subsequently, after the mixed solution (T7) was diluted with 566 parts by weight of distilled water and 284 parts by weight of methanol, 352 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added while stirring. Further, 6.3 parts by weight of an EDA hydrochloride aqueous solution (S7) was added to obtain a mixed solution (U7) having a solid content concentration of 5% by weight.
  • Example 7 Using the mixed solution (U7), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A7). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (7). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 8 Using the mixed solution (U8), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A8). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (8). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 9 A mixed solution (U9) was prepared with the same charging ratio as in Example 7 except that the molar ratio of TMOS / GPTMOS was 89.9 / 10.1. Specifically, first, 42.6 parts by weight of TMOS and 7.4 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.2 parts by weight of distilled water and 7.8 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalent, and the mixture was hydrolyzed at 10 ° C. for 5 hours. Decomposition
  • Example 1 Using the mixed solution (U9), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A9). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (9). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 10 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. Subsequently, the molar ratio of [TMOS] / [GPTMOS] was 98.0 / 2.0, and the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA]. Was 32.4 / 67.6, and a mixed solution (U10) was prepared so that the molar ratio of [amino group of EDA] / [carboxyl group of PAA] was 1.1 / 100.
  • TMOS and GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents, and the mixture was hydrolyzed at 10 ° C. for 5 hours. Decomposition
  • disassembly and condensation reaction were performed and the liquid mixture (T10) was obtained.
  • Example 10 Using the mixed solution (U10), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A10). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (10). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1. Furthermore, the oxygen permeability after 10% elongation was also measured.
  • Example 11 A mixed solution (U11) was obtained with the same charging ratio as in Example 7 except that the molar ratio of TMOS to GPTMOS was 99.9 / 0.1. Specifically, first, 49.9 parts by weight of TMOS and 0.1 part by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents, and the mixture was hydrolyzed at 10 ° C. for 5 hours. Decomposition
  • Example 1 Using the mixed solution (U11), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A11). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (11). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 12 A mixed liquid (U12) was prepared at the same charging ratio as in Example 7 except that the molar ratio of TMOS / GPTMOS was 70.0 / 30.0. Specifically, first, 30 parts by weight of TMOS and 20 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol. Thereto was added 2.9 parts by weight of distilled water and 7.0 parts by weight of 0.1N hydrochloric acid so that the ratio of water to the total of TMOS and GPTMOS was 1.95 molar equivalents, Decomposition
  • Example 1 Using the mixed solution (U12), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A12). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (12). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 13 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. The same as in Example 10 except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 20.0 / 80.0.
  • a mixed solution (U13) was prepared at a charging ratio. Specifically, first, a mixed solution (T13) was obtained by the same composition and method as the mixed solution (T10) of Example 10.
  • Example 1 Using the mixed solution (U13), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A13). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (13). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 14 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. The same as in Example 10 except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 80.0 / 20.0.
  • a mixed solution (U14) was prepared at a charging ratio. Specifically, first, a mixed solution (T14) was obtained by the same composition and method as the mixed solution (T10) of Example 10.
  • Example 1 Using the mixed solution (U14), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A14). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (14). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 15 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. The same as in Example 10 except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 69.9 / 30.1. A mixed liquid (U15) was obtained at a charging ratio. Specifically, first, a mixed solution (T15) was obtained by the same composition and method as the mixed solution (T10) of Example 10.
  • Example 1 Using the mixed solution (U15), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A15). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (15). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 16 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. The same as in Example 10 except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 10.0 / 90.0.
  • a mixed liquid (U16) was obtained at a charging ratio. Specifically, first, a mixed solution (T16) was obtained by the same composition and method as the mixed solution (T10) of Example 10.
  • Example 1 Using the mixed solution (U16), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A16). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (16). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 17 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. The same as in Example 10 except that the weight ratio of [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 90.0 / 10.0.
  • a mixed liquid (U17) was obtained at a charging ratio. Specifically, first, a mixed solution (T17) was obtained by the same composition and method as the mixed solution (T10) of Example 10.
  • Example 1 Using the mixed solution (U17), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A17). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (17). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Examples 10 and 18 to 20 the type of compound (P) was changed. From these examples, it was confirmed that ethylenediamine, propylenediamine, and chitosan were preferable as the compound (P).
  • Example 18 1N-HCl was added to PDA so that the equivalent ratio of [amino group contained in propylenediamine (PDA)] / [HCl] was 1/1 to obtain PDA hydrochloride aqueous solution (S18).
  • a mixed solution (U18) was obtained by the same composition and method as the mixed solution (U10) of Example 10 except that the EDA hydrochloride aqueous solution was changed to the PDA hydrochloride aqueous solution (S18).
  • Example 10 Using the mixed solution (U18), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A18). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (18). Evaluation of the laminate and laminate was performed in the same manner as in Example 10.
  • Example 19 1N-HCl was added to chitosan so that the equivalent ratio of [amino group contained in chitosan] / [HCl] was 1/1 to obtain an aqueous chitosan hydrochloride solution (S19).
  • a mixed solution (U19) was obtained by the same composition and method as the mixed solution (U10) of Example 10 except that the EDA hydrochloride aqueous solution was changed to a chitosan hydrochloride aqueous solution (S19).
  • Example 1 Using the mixed solution (U19), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A19). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (19). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 20 1N-HCl was added to HMDA so that the equivalent ratio of [amino group contained in hexamethylenediamine (HMDA)] / [HCl] was 1/1 to obtain an aqueous HMDA hydrochloride (S20).
  • a mixed solution (U20) was obtained by the same composition and method as the mixed solution (U10) of Example 10 except that the EDA hydrochloride aqueous solution was changed to the HMDA hydrochloride aqueous solution (S20).
  • Example 1 Using the mixed solution (U20), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A20). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (20). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 10 and 21 to 23 [the ratio of the —COO— group contained in the functional group (F) neutralized with a divalent or higher-valent metal ion] (the above-mentioned ionization degree) was changed. From the results of Examples 10 and 21 to 23, in order to obtain a laminate having excellent gas barrier properties, it was confirmed that the ionization degree is preferably 60 mol% or more and 100 mol% or less, and more preferably 80 mol% or more. It was. In addition, the gas barrier laminate (Comparative Example 7) that was not ionized did not exhibit high hot water resistance and gas barrier properties.
  • Example 21 the liquid mixture (U21) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used.
  • Example 1 Using the mixed solution (U21), coating and heat treatment were performed in the same manner as in Example 1 to obtain a laminate. Ionization was performed by immersing this laminate in a 0.1 wt% aqueous calcium acetate solution (85 ° C.) for 12 seconds. Next, this laminate was dried in the same manner as in Example 1 to obtain a laminate (A21). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (21). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 22 the liquid mixture (U22) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used.
  • Example 1 Using the mixed solution (U22), coating and heat treatment were performed in the same manner as in Example 1 to obtain a laminate. Ionization was performed by immersing this laminate in a 0.2 wt% calcium acetate aqueous solution (85 ° C.) for 6 seconds. Next, this laminate was dried in the same manner as in Example 1 to obtain a laminate (A22). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (22). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 23 the liquid mixture (U23) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used.
  • Example 2 Using the mixed solution (U23), coating and heat treatment were performed in the same manner as in Example 1 to obtain a laminate. Ionization was performed by immersing this laminate in a 0.2 wt% aqueous calcium acetate solution (85 ° C.) for 12 seconds. Next, this laminate was dried in the same manner as in Example 1 to obtain a laminate (A23). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (23). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 6 and Example 24 confirmed the effect of using a compound (Q) containing two or more hydroxyl groups. From this, it was confirmed that the use of the compound (Q) improved the hot water resistance of the laminate, that is, the oxygen permeability after retorting, and further improved the elongation resistance, that is, the oxygen permeability after elongation.
  • Example 24 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1.
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA117 (trade name), hereinafter sometimes abbreviated as “PVA”
  • PVA polyvinyl alcohol
  • a mixed liquid (U24) was obtained at the same charging ratio as in Example 6 except that the PVA aqueous solution was added so that the equivalent ratio of [hydroxyl group of PVA] / [carboxyl group of PAA] was 18.2 / 100. .
  • liquid mixture (T24) obtained by the same composition and method as the liquid mixture (T6) obtained in Example 6 was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol. While stirring, 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was quickly added, and further 6.3 parts by weight of an aqueous EDA hydrochloride solution (S24) was added, followed by the above 10% by weight PVA aqueous solution. 51 parts by weight were added. In this way, a liquid mixture (U24) having a solid content concentration of 5% by weight was obtained.
  • Example 10 Using the mixed solution (U24), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A24). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (24). Evaluation of the laminate and laminate was performed in the same manner as in Example 10.
  • Example 25 the liquid mixture (U25) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used. Using the mixed solution (U25), coating and heat treatment were performed in the same manner as in Example 1 to obtain a laminate. Ionization was performed by immersing this laminate in a 2 wt% magnesium acetate aqueous solution (85 ° C.) for 12 seconds. Next, this laminate was dried in the same manner as in Example 1 to obtain a laminate (A25).
  • Example 2 Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (25). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 26 the liquid mixture (U26) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used. Using the mixed liquid (U26), coating and heat treatment were performed in the same manner as in Example 1 to obtain a laminate. Ionization was performed by immersing this laminate in a 2 wt% zinc acetate aqueous solution (85 ° C.) for 12 seconds. Next, this laminate was dried in the same manner as in Example 1 to obtain a laminate (A26).
  • Example 2 Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (26). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 27 In contrast to Example 10, in Example 27, the surface on which the solution (U) was coated to form the gas barrier layer was changed from both surfaces of the substrate to only one surface of the substrate. From this, the gas barrier layer exists only on one side of the base material, but the gas barrier property of the resulting laminate is slightly lowered, but the Young's modulus approaches the physical property value of the base material, and the workability may be improved. It was confirmed.
  • Example 27 the liquid mixture (U27) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used. Coating, heat treatment, ionization and drying were carried out in the same manner as in Example 1 except that the mixed liquid (U27) was used and the coating was made only on one side to obtain a laminate (A27).
  • a laminate (27) having a structure of PET / AC / gas barrier layer / adhesive / ON / adhesive / CPP was obtained in the same manner as in Example 1. Evaluation of the laminate and laminate was performed in the same manner as in Example 10.
  • the type of the substrate was changed from PET to ON. From this, it was confirmed that the use of PET as the base material has better gas barrier properties than the use of ON, and it was confirmed that PET is more suitable as the base material from the viewpoint of gas barrier properties.
  • the base material of the laminated body is turned ON, the ON itself has strength, so the structure of the laminated body is changed from a three-layer structure such as a laminated body / ON / CPP to a two-layer structure such as a laminated body / CPP. Therefore, there is an advantage that it is excellent in workability.
  • Example 28 the liquid mixture (U28) obtained by the same composition and method as the liquid mixture (U6) obtained in Example 6 was used. Coating, heat treatment, ionization, and drying were performed in the same manner as in Example 1 except that the mixed liquid (U28) was used and the base material was a stretched nylon film (“ON” above) to obtain a laminate (B28).
  • a two-component adhesive manufactured by Mitsui Takeda Chemical Co., Ltd., A-385 (trade name) and A-50 (trade name) was coated on an unstretched polypropylene film (“CPP” above). Dried. And the film and the laminated body (B28) were laminated. Thus, a laminate (28) having a structure of gas barrier layer / AC / ON / AC / gas barrier layer / adhesive / CPP was obtained. Evaluation of the laminate and laminate was performed in the same manner as in Example 10.
  • Example 29 In Example 29, the liquid mixture (U29) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used.
  • Example 28 Coating, heat treatment, ionization, and drying were performed in the same manner as in Example 28 except that the mixed solution (U29) was used to obtain a laminate (B29). Subsequently, lamination was performed in the same manner as in Example 28 to obtain a laminate (29). Evaluation of the laminate and laminate was performed in the same manner as in Example 10.
  • the laminate configuration was changed from gas barrier layer / AC / ON / AC / gas barrier layer / adhesive / CPP to PET / adhesive / gas barrier layer / AC / ON / AC / gas barrier. Changed to layer / adhesive / CPP. From this, it was confirmed that there was no change in the gas barrier property even when the gas barrier laminate having ON as a base material was used in two or three layers as a laminate. Therefore, it was confirmed that the laminate structure using ON as a base material can be used as two or three layers depending on the required performance.
  • Example 30 the liquid mixture (U30) obtained by the same composition and method as the liquid mixture (U6) obtained in Example 6 was used. Using the mixed solution (U30), coating, heat treatment, ionization and drying were carried out in the same manner as in Example 28 to obtain a laminate (B30).
  • Example 31 In Example 31, the liquid mixture (U31) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used.
  • Example 28 Except for using the mixed solution (U31), coating, heat treatment, ionization, and drying were performed in the same manner as in Example 28 to obtain a laminate (B31). Subsequently, lamination was performed in the same manner as in Example 30 to obtain a laminate (31). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 32 In contrast to Example 29, in Example 32, the surface on which the solution (U) was coated to form the gas barrier layer was changed from both surfaces of the substrate to only one surface of the substrate. From this, the gas barrier layer exists only on one side of the substrate, so that the gas barrier property of the resulting laminate is slightly lowered, but the Young's modulus approaches the physical property value of the substrate itself, and the workability may be improved. It was confirmed.
  • Example 32 the liquid mixture (U32) obtained by the same composition and method as the liquid mixture (U10) obtained in Example 10 was used. Coating, heat treatment, ionization, and drying were carried out in the same manner as in Example 28 except that the mixed liquid (U32) was used and the coating was made only on one side to obtain a laminate (B32).
  • Example 28 lamination was performed in the same manner as in Example 28 to obtain a laminate (32) having a structure of gas barrier layer / AC / ON / adhesive / CPP. Evaluation of the laminate was performed in the same manner as in Example 1.
  • the laminates of Reference Examples 1 and 2 are each a laminate in which PET and ON are used as the base material, the compound (P) is not used, and the thickness of one coat layer is 1 ⁇ m.
  • the coat layer (gas barrier layer) in the laminate is thick, the gas barrier property is excellent, but the tensile strength and Young's modulus are significantly different from those of the base film, and the workability is lowered, for example, the dry heat shrinkage rate is large.
  • ⁇ Reference Example 1> An aqueous solution of a partially neutralized product of PAA was prepared in the same manner as in Example 1. Subsequently, the molar ratio of TMOS / GPTMOS was 89.9 / 10.1, the [inorganic component derived from TMOS and GPTMOS] / [partial neutralized product of organic component of GPTMOS and PAA] was 31.5 / A mixed solution (U33) was prepared so as to be 68.5. Specifically, first, 46 parts by weight of TMOS and 8 parts by weight of GPTMOS were dissolved in 50 parts by weight of methanol.
  • a two-component anchor coating agent dissolved in 67 parts by weight of ethyl acetate (Mitsui Takeda Chemical Co., Ltd .: Takelac A-626 (trade name) 1 part by weight and Takenate A-50 (trade name) 2 parts by weight) was coated on a stretched polyethylene terephthalate film (the above “PET”) and dried to prepare a base material (AC (0.1 ⁇ m) / PET (12 ⁇ m)) having an anchor coat layer.
  • the mixed solution (U33) was coated on the anchor coat layer of the base material with a bar coater so that the thickness after drying was 1.0 ⁇ m, and dried at 120 ° C. for 5 minutes. In the same procedure, the other side of the substrate was also coated.
  • the obtained laminate was aged at 40 ° C. for 3 days. Next, the laminate was heat-treated at 180 ° C. for 5 minutes using a dryer. Next, the laminate was ionized by immersing it in a 2% by weight calcium acetate aqueous solution (85 ° C.) for 12 seconds, and then dried at 50 ° C. for 5 minutes.
  • a laminate (A33) having a structure of gas barrier layer (1.0 ⁇ m) / AC (0.1 ⁇ m) / PET (12 ⁇ m) / AC (0.1 ⁇ m) / gas barrier layer (1.0 ⁇ m) is obtained. It was.
  • the gas barrier layer was colorless and transparent and had a very good appearance.
  • the oxygen transmission rate before contact with the retort treatment, the contact angle, the Young's modulus, and the drying heat shrinkage rate were measured by the aforementioned methods.
  • Example 10 the laminate (A33) was laminated in the same manner as in Example 1 to obtain a laminate (33). Evaluation of the laminate and laminate was performed in the same manner as in Example 10.
  • Example 28 lamination was performed in the same manner as in Example 28 to obtain a laminate (34). Evaluation of the laminate and laminate was performed in the same manner as in Example 10.
  • a mixed liquid (U35) was obtained by the same composition and method as the mixed liquid (U33) of Reference Example 1 except that the solid content concentration was 5% by weight.
  • a mixed solution (T35) prepared by the same composition and method as the mixed solution (T33) of Reference Example 1 was diluted with 542 parts by weight of distilled water and 293 parts by weight of methanol. While stirring the obtained mixed solution, 308 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was quickly added thereto to obtain a mixed solution (U35) having a solid content concentration of 5% by weight.
  • Example 1 Using the mixed solution (U35), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A35). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (35). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • a mixed solution (U36) was obtained by the same composition and method as the mixed solution (U35) of Comparative Example 1. Except for using the mixed solution (U36), coating, heat treatment, ionization and drying were performed in the same manner as in Example 28 to obtain a laminate (B36). Subsequently, lamination was performed in the same manner as in Example 28 to obtain a laminate (36). Evaluation of the laminate and laminate was performed in the same manner as in Example 1.
  • the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of —COO— group contained in functional group of polymer (X)] was 0.2 / If it is less than 100, the hot water resistance of the laminate was lowered.
  • Comparative Example 4 when the above ratio was larger than 20.0 / 100, the gas barrier property of the laminate was lowered. That is, the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of —COO— group contained in functional group of polymer (X)] was 0.2 / 100 to 20.0 / 100. By being in the range, it was confirmed that excellent gas barrier properties and hot water resistance were exhibited.
  • ⁇ Comparative Example 3> A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1.
  • a mixed solution (U37) was prepared at the same charging ratio as in Example 3 except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 0.1 / 100.
  • a mixed solution (T37) prepared by the same composition and method as the mixed solution (T3) of Example 3 was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol.
  • Example 1 Using the mixed solution (U37), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A37). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (37). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • ⁇ Comparative example 4> A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1.
  • a mixed solution (U38) was prepared at the same charging ratio as in Example 3 except that the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] was 29.0 / 100.
  • a mixed solution (T38) prepared by the same composition and method as the mixed solution (T3) of Example 3 was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol.
  • Example 1 Using the mixed solution (U38), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A38). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (38). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • a mixed solution (U39) was prepared by changing the reaction time only in the same manner as in Comparative Example 4. Specifically, first, 50 parts by weight of TMOS was dissolved in 50 parts by weight of methanol. Subsequently, 3.3 parts by weight of distilled water and 8.2 parts by weight of 0.1N hydrochloric acid were added so that the ratio of water to TMOS was 1.95 molar equivalent, and hydrolysis and condensation were carried out at 10 ° C. for 1 hour. Reaction was performed and the liquid mixture (T39) was obtained.
  • the obtained mixed liquid (T39) was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then 354 parts by weight of a partially neutralized aqueous solution of PAA (concentration 13% by weight) was rapidly added thereto while stirring. Further, 190 parts by weight of an EDA hydrochloride aqueous solution (S38) was added to obtain a mixed solution (U39) having a solid content concentration of 5% by weight.
  • Example 1 Using the mixed solution (U39), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A39). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (39). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 1 Using the mixed solution (U40), coating and heat treatment were performed in the same manner as in Example 1 to obtain a laminate.
  • the laminate was not ionized and dried.
  • the laminate was laminated in the same manner as in Example 1 to obtain a laminate (40). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Example 33 A partially neutralized aqueous solution of PAA and an EDA hydrochloride aqueous solution were prepared in the same manner as in Example 1. And the liquid mixture (U41) was prepared by the preparation ratio similar to Example 3 except having made the equivalent ratio of [amino group of EDA] / [carboxyl group of PAA] 20.0 / 100. Specifically, first, the mixture (T41) prepared by the same composition and method as the mixture (T3) of Example 3 was diluted with 567 parts by weight of distilled water and 283 parts by weight of methanol, and then stirred.
  • Example 1 Using the mixed solution (U41), coating, heat treatment, ionization and drying were performed in the same manner as in Example 1 to obtain a laminate (A41). Subsequently, lamination was performed in the same manner as in Example 1 to obtain a laminate (41). Evaluation of the laminate and the laminate was performed in the same manner as in Example 1.
  • Table 1 shows the production conditions of the laminates in Examples, Reference Examples, and Comparative Examples.
  • Table 3 shows the evaluation results of the laminate.
  • the ratio of [equivalent of amino group contained in compound (P)] / [equivalent of -COO-group contained in functional group of polymer (X)] was 0.2.
  • Examples in the range of / 100 to 20.0 / 100 exhibited high oxygen barrier properties before and after retorting. And in the comparative example whose said ratio is not in the said range, the oxygen barrier property before a retort process and / or after a retort process was low.
  • the total thickness of the two gas barrier layers is 2 ⁇ m.
  • the oxygen barrier property can be improved without adding the compound (P).
  • workability will fall.
  • Comparative Example 1 which differs from Reference Example 1 only in the thickness of the gas barrier layer, the gas barrier properties before and after the retort treatment were greatly reduced.
  • the compound (P) was not added in an appropriate range, the gas barrier property was greatly lowered when the gas barrier layer was thinned.
  • the gas barrier laminate of the present invention can be effectively used as a packaging material for food, medicine, medical equipment, machine parts, clothing and the like. Among them, it is particularly effective for food packaging applications that require gas barrier properties under high humidity conditions.
  • a preferred application of the gas barrier laminate of the present invention includes a retort pouch.

Abstract

 本発明のガスバリア性積層体は、基材と基材に積層されたガスバリア層とを含む。ガスバリア層は、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(X)とを含む組成物からなる。重合体(X)の-COO-基の少なくとも一部は、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されている。重合体(X)の-COO-基の少なくとも一部は、2価以上の金属イオンで中和されている。[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の-COO-基の当量]の比が、0.2/100~20.0/100の範囲にある。

Description

ガスバリア性積層体およびその製造方法
 本発明は、ガスバリア性積層体およびその製造方法に関する。
 食品や様々な物品を包装するための包装材料には、ガスバリア性、特に酸素バリア性が要求されることが多い。これは、酸素等によって包装内容物が酸化劣化する等の影響を防ぐためである。特に食品の包装では、酸素が存在することによって微生物が繁殖し、内容物が腐敗するといった問題がある。このため、従来の包装材料では、酸素の透過を防ぐガスバリア層を設け、酸素等の透過を防止している。
 このようなガスバリア層としては、たとえば、金属箔や金属または金属化合物の蒸着層を使用することができ、一般的には、アルミニウム箔、アルミニウム蒸着層、酸化ケイ素蒸着層、酸化アルミニウム蒸着層等が使用されている。しかし、アルミニウム箔やアルミニウム蒸着層といった金属層は、包装内容物が見えないこと、廃棄性に劣ること等の欠点がある。また、酸化ケイ素蒸着層や酸化アルミニウム蒸着層等の金属化合物層は、包装材の変形や落下、輸送時の衝撃などでガスバリア性が著しく低下するなどの欠点がある。
 また、ガスバリア層として、ポリビニルアルコール、エチレン-ビニルアルコール共重合体等の、ガスバリア性に優れたビニルアルコール系重合体からなる層が用いられることもある。これらのビニルアルコール系重合体からなる層は透明であり、廃棄面での問題も少ないという利点があるため、用途範囲が広まりつつある。
 上記ビニルアルコール系重合体は、分子中の水酸基同士が水素結合することによって結晶化してガスバリア性を発揮する。このため、従来のビニルアルコール系重合体は、乾燥した状態では高いガスバリア性を示すものの、水蒸気等の影響で吸湿した状態では、水素結合が弛み、ガスバリア性が低下する傾向がある。従って、ポリビニルアルコール等のビニルアルコール系重合体では、高度なガスバリア性を高湿度下において発揮させることは難しい。
 また、ガスバリア性材料として、金属アルコキシド(たとえばテトラメトキシシラン)の加水分解縮合物と高分子化合物とを含む材料が研究されている(たとえば、特開2002-326303号公報、特開平7-118543号公報、特開2000-233478号公報)。
 更にガスバリア性材料として、ポリアクリル酸と架橋成分とからなる材料が研究されている(たとえば特開2001-310425号公報)。
 近年、食品包装材料に内容物を充填した後に、熱水中に浸漬して殺菌処理を行うレトルト食品が増加している。このような状況の中で、内容物が充填された食品包装材料が落下した時の破袋強度、熱水中で殺菌したのちの酸素バリア性、消費者に届くまでの高湿度下での酸素バリア性など、レトルト食品用包装材料に要求される性能の水準は、さらに高くなっている。特に、湿度に依存せずに高い酸素バリア性を発現し、レトルト処理を施したのちでも高い酸素バリア性を発現し、且つ強度および透明性に優れた包装材料が求められているが、上記従来の技術では、このような要求を充分に満足することができなかった。
 上記問題を解決するために、検討を行った結果、本発明者らは、ガスバリア層の特性を飛躍的に向上させる方法を見出した(WO2005/053954)。この方法では、金属アルコキシドの加水分解縮合物と、-COO-基を含有する重合体とを含む組成物からなるガスバリア層を、2価以上の金属イオンを含む溶液に浸漬する。この処理によって、重合体中の-COO-基が中和される。
 WO2005/053954の方法によれば、ガスバリア層の特性を飛躍的に向上させることが可能である。しかし、レトルトパウチに用いられる包装材などでは、過酷な条件での処理に耐える必要があり、より高い特性が求められている。また、印刷、ラミネートなどの加工時の寸法安定性、ガスバリア性積層体の柔軟性を高め、さらに基材フィルムが本来有する力学的な物性に、ガスバリア性積層体の力学的物性を近づけるためにも、ガスバリア層を薄くすることが求められている。しかし、ガスバリア層を薄くすると酸素バリア性が大きく低下する場合があった。
特開2002-326303号公報 特開平7-118543号公報 特開2000-233478号公報 特開2001-310425号公報 WO2005/053954
 このような状況に鑑み、本発明の目的の1つは、ガスバリア層が薄くても高い酸素バリア性を示し、過酷な条件でレトルト処理を行っても高い酸素バリア性を維持し、さらに印刷、ラミネートなどの加工時の寸法安定性、ガスバリア性積層体の柔軟性に優れ、さらに基材フィルムが本来有する力学的物性に近い力学的物性を有する、ガスバリア性積層体を提供することである。
 上記目的を達成するために検討を重ねた結果、本発明者らは、特定の組成物を用いることによって優れたガスバリア層が得られることを見出した。本発明はこの新たな知見に基づくものである。
 すなわち、本発明のガスバリア性積層体は、基材と、前記基材に積層された少なくとも1つのガスバリア性を有する層とを含むガスバリア性積層体であって、前記ガスバリア性を有する層は、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(X)とを含む組成物からなり、前記化合物(L)は、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物(A)を含み、前記重合体(X)の前記官能基に含まれる-COO-基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されており、前記重合体(X)の前記官能基に含まれる-COO-基の少なくとも一部が2価以上の金属イオンで中和されており、前記組成物において、[前記化合物(P)に含まれるアミノ基の当量]/[前記重合体(X)の前記官能基に含まれる-COO-基の当量]の比が0.2/100~20.0/100の範囲にある。
 また、ガスバリア性積層体を製造するための本発明の方法は、(i)カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含む重合体(X)と、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物とを含む組成物からなる層を基材上に形成する工程と、(ii)2価以上の金属イオンを含む溶液に前記層を接触させる工程とを含み、前記化合物(L)は、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物(A)を含み、前記組成物において、前記重合体(X)の前記官能基に含まれる-COO-基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されており、前記組成物において、[前記化合物(P)に含まれるアミノ基の当量]/[前記重合体(X)の前記官能基に含まれる-COO-基の当量]の比が0.2/100~20.0/100の範囲にある。
 なお、Siは半金属に分類されることがあるが、この明細書では、金属の1つとして記述する。
 本発明の製造方法で製造されたガスバリア性積層体は、本発明のガスバリア性積層体の別の側面を構成する。
 本発明のガスバリア性積層体は、ガスバリア層を薄くしても優れた酸素バリア性を示し、レトルト処理を施した後でも優れた酸素バリア性を保持し、且つ透明性などの外観変化は観察されず、さらにレトルト条件が過酷になってもこれらの特性は維持される。また、本発明のガスバリア性積層体ではガスバリア層を薄くできるため、本発明のガスバリア性積層体の機械的特性は基材フィルムの特性に近づく。そのため、本発明のガスバリア性積層体は、柔軟性、引張り強伸度などの力学的特性に優れ、また、印刷やラミネートなどの加工時の寸法安定性に優れる。
 以下、本発明の実施の形態について説明する。なお、以下の説明において特定の機能を発現する物質として具体的な化合物を例示する場合があるが、本発明はこれに限定されない。また、例示される材料は、特に記載がない限り、単独で用いてもよいし、組み合わせて用いてもよい。
 [ガスバリア性積層体]
 本発明のガスバリア性積層体は、基材と、基材に積層された少なくとも1つのガスバリア性を有する層とを含む。その層(以下、「ガスバリア層」という場合がある)は、化合物(L)の加水分解縮合物と、重合体(X)とを含む組成物からなる。化合物(L)は、加水分解性を有する特性基を含有する少なくとも1種の化合物であり、典型的には、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物である。重合体(X)は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体である。以下、重合体(X)に含まれる、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を「官能基(F)」という場合がある。重合体(X)の官能基(F)に含まれる-COO-基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)で中和および/または反応されている。さらに官能基(F)に含まれる-COO-基の少なくとも一部が2価以上の金属イオンで中和されている。換言すれば、上記官能基の少なくとも一部が2価以上の金属イオンと塩を構成している。上記組成物において、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる-COO-基の当量]の比は、0.2/100~20.0/100の範囲にある。なお、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる-COO-基の当量]は、「化合物(P)に含まれるアミノ基のモル数]/[重合体(X)の官能基に含まれる-COO-基のモル数]と読み替えることが可能である。
 ガスバリア層は、基材の少なくとも一方の面に積層されている。ガスバリア層は、基材の片面のみに積層されてもよいし、基材の両面に積層されてもよい。本発明のガスバリア性積層体は、ガスバリア層以外の層を含んでもよい。なお、ガスバリア層は、基材に直接積層されていてもよいし、他の層を介して基材に積層されていてもよい。すなわち、基材とガスバリア層との間に他の層が存在してもよい。
 化合物(L)の加水分解縮合物および重合体(X)が組成物に占める割合は、たとえば50重量%以上、70重量%以上、80重量%以上、90重量%以上、95重量%以上、または98重量%以上である。
 [加水分解縮合物]
 ガスバリア層を構成する組成物は、化合物(L)の加水分解縮合物を含む。化合物(L)が加水分解されることによって、化合物(L)の特性基の少なくとも一部が水酸基に置換される。さらに、その加水分解物が縮合することによって、金属原子が酸素を介して結合された化合物が形成される。この縮合が繰り返されると、実質的に金属酸化物とみなしうる化合物となる。ここで、この加水分解・縮合が起こるためには、化合物(L)が加水分解性を有する特性基(官能基)を含有していることが重要であり、それらの基が結合していない場合、加水分解、縮合反応が起こらないか極めて緩慢である。そのため、その場合には本発明の効果を得ることは困難である。なお、Siは、半金属元素に分類される場合があるが、この明細書では、Siを金属として説明する。
 該加水分解縮合物は、たとえば、公知のゾルゲル法で用いられる手法を用いて特定の原料から製造できる。該原料には、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解・縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものが用いられる。これらの原料は、公知の方法で製造してもよいし、市販されているものを用いてもよい。特に限定はないが、たとえば2~10個程度の分子が加水分解・縮合することによって得られる縮合物を、原料として用いることができる。具体的には、たとえば、テトラメトキシシランを加水分解・縮合させて、2~10量体の線状縮合物としたものを原料として用いることができる。
 加水分解性を有する特性基の例としては、以下の式(I)のOR1、X1として例示される基が挙げられる。
 化合物(L)は、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物(A)を含む。典型的な化合物(A)は、以下の式(I)で表される少なくとも1種の化合物である。
1(OR1q2 p-q-r1 r・・・(I)
[式(I)中、M1はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaまたはNdを表す。R1はアルキル基を表す。R2はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X1はハロゲン原子を表す。pはM1の原子価と等しい。qは0~pの整数を表す。rは0~pの整数を表す。1≦q+r≦pである。]
 式中、M1は、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaおよびNdから選択される原子を表すが、好ましくはSi、Al、TiまたはZrであり、特に好ましくはSi、AlまたはTiである。また、R1が表すアルキル基は、例えばメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、t-ブチル基などが挙げられ、好ましくは、メチル基またはエチル基である。X2が表すハロゲン原子としては塩素原子、臭素原子、ヨウ素原子などが挙げられ、塩素原子が好ましい。また、R2が表すアルキル基としては、例えばメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、t-ブチル基、n-オクチル基などが挙げられ、アラルキル基としては、例えばベンジル基、フェネチル基、トリチル基などが挙げられる。また、R2が表すアリール基としては、例えばフェニル基、ナフチル基、トリル基、キシリル基、メシチル基などが挙げられ、アルケニル基としては、例えばビニル基、アリル基などが挙げられる。
 式(I)で表される化合物の具体例には、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、オクチルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、クロロトリメトキシシラン、クロロトリエトキシシラン、ジクロロジメトキシシラン、ジクロロジエトキシシラン、トリクロロメトキシシラン、トリクロロエトキシシラン等のシランアルコキシド;ビニルトリクロロシラン、テトラクロロシラン、テトラブロモシラン等のハロゲン化シラン;チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、チタンメチルトリイソプロポキシド等のアルコキシチタン化合物;テトラクロロチタン等のハロゲン化チタン;アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリイソプロポキシド、アルミニウムメチルジイソプロポキシド、アルミニウムトリブトキシド、ジエトキシアルミニウムクロリド等のアルコキシアルミニウム化合物;ジルコニウムテトラエトキシド、ジルコニウムテトライソプロポキシド、ジルコニウムメチルトリイソプロポキシド等のアルコキシジルコニウム化合物等が挙げられる。式(I)で表される化合物(A)の好ましい例には、テトラメトキシシランおよびテトラエトキシシランが含まれる。
 化合物(L)は、加水分解性を有する特性基と、カルボキシル基との反応性を有する官能基で置換されたアルキル基とが結合している金属原子を含む少なくとも1種の化合物(B)を含んでもよい。典型的な化合物(B)は、以下の式(II)で表される少なくとも1種の化合物である。化合物(B)を含有させることによって、ボイル処理前後やレトルト処理前後における、本発明のガスバリア性積層体の酸素バリア性や透明性などの変化が更に少なくなる。
2(OR3n2 k2 m-n-k・・・(II)
[式(II)中、M2はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaまたはNdを表す。R3はアルキル基を表す。X2はハロゲン原子を表す。Z2は、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。mはM2の原子価と等しい。nは0~(m-1)の整数を表す。kは0~(m-1)の整数を表す。1≦n+k≦(m-1)である。]
 式(II)中、M2は、Si、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaおよびNdから選択される原子を表す。M2は、好ましくはSi、Al、TiまたはZrであり、特に好ましくはSiである。また、R3が表すアルキル基としては、例えばメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、t-ブチル基などが挙げられ、好ましくはメチル基またはエチル基である。X2が表すハロゲン原子としては、例えば塩素原子、臭素原子、ヨウ素原子などが挙げられ、塩素原子が好ましい。また、Z2が有する、カルボキシル基との反応性を有する官能基としては、エポキシ基、アミノ基、水酸基、ハロゲン原子、メルカプト基、イソシアネート基、ウレイド基、オキサゾリン基またはカルボジイミド基などが挙げられ、エポキシ基、アミノ基、イソシアネート基、ウレイド基またはハロゲン原子が好ましく、例えばエポキシ基、アミノ基およびイソシアネート基から選ばれる少なくとも1種がより好ましい。このような官能基で置換されるアルキル基としては、R3について例示したものが挙げられる。
 式(II)で表される化合物の具体例には、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリクロロシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリクロロシラン、γ-ブロモプロピルトリメトキシシラン、γ-ブロモプロピルトリエトキシシラン、γ-ブロモプロピルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルトリクロロシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリクロロシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリクロロシランなどが含まれる。式(II)で表される化合物の好ましい例は、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランである。
 化合物(L)が上記式(I)で表される少なくとも1種の化合物(A)と上記式(II)で表される少なくとも1種の化合物(B)とを含む場合、組成物において、[式(I)で表される化合物に由来するM1原子のモル数]/[式(II)で表される化合物に由来するM2原子のモル数]の比が、99.5/0.5~80.0/20.0の範囲にあることが好ましい。この比が、99.5/0.5より大きくなると、ガスバリア性積層体の耐熱水性が低下する場合がある。また、この比が80.0/20.0より小さくなると、ガスバリア性積層体のガスバリア性が低下する場合がある。この比は、98.0/2.0~89.9/10.1の範囲にあることがより好ましい。
 なお、[式(I)で表される化合物に由来するM1原子のモル数]は加水分解縮合物の生成に用いた[式(I)で表される化合物のモル数]に実質的に等しく、[式(II)で表される化合物に由来するM2原子のモル数]は、加水分解縮合物の生成に用いた[式(II)で表される化合物のモル数]に実質的に等しい。そのため、以下の説明では、上記比を、[式(I)で表される化合物のモル数]/[式(II)で表される化合物のモル数]に置き換えて説明する場合がある。
 化合物(L)に占める、式(I)で表される化合物および式(II)で表される化合物の割合(式(II)で表される化合物を含まない場合には、式(I)で表される化合物の割合)は、たとえば80モル%以上、90モル%以上、95モル%以上、95モル%以上、98モル%以上、99モル%以上、または100モル%である。
 化合物(L)の加水分解縮合物において縮合される分子の数は、加水分解・縮合に際して使用する、水の量、触媒の種類や濃度、加水分解縮合を行う温度などによって制御できる。
 ガスバリア層を構成する組成物では、ガスバリア性積層体のガスバリア性がより良好となる観点から、[化合物(L)に由来する無機成分の重量]/[化合物(L)に由来する有機成分の重量と重合体(X)に由来する有機成分の重量との合計]の比が20.0/80.0~80.0/20.0の範囲にあることが好ましく、30.0/70.0~69.9/30.1の範囲にあることがより好ましい。
 化合物(L)に由来する無機成分の重量は、該組成物を調製する際に使用する原料の重量から算出することができる。すなわち、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、化合物(L)が完全に加水分解しその一部が縮合したもの、あるいはこれらを組み合わせたものなどが完全に加水分解・縮合して金属酸化物になったと仮定し、その金属酸化物の重量を化合物(L)に由来する無機成分の重量とみなす。
 金属酸化物の重量の算出をより具体的に説明すると、式(I)で表される化合物(A)がR2を含まない場合、それが完全に加水分解・縮合したときには、組成式が、M1p/2で表される化合物となる。また、式(I)で表される化合物(A)がR2を含む場合、それが完全に加水分解・縮合したときには、組成式が、M1(q+r)/22 (p-q-r)で表される化合物となる。この化合物のうちM1(q+r)/2の部分が金属酸化物である。R2については、化合物(L)に由来する有機成分とする。また、化合物(B)についても同様に算出する。このとき、Z2については、化合物(L)に由来する有機成分とする。
 なお、金属イオンを含まないイオン(たとえばアンモニウムイオン)によって重合体(X)が中和されている場合、そのイオン(たとえばアンモニウムイオン)の重量も、重合体(X)に由来する有機成分の重量に加えられる。
 [化合物(P)]
 2つ以上のアミノ基を含有する化合物(P)は、化合物(L)および重合体(X)とは異なる化合物である。化合物(P)の具体例には、アルキレンジアミン類、ポリアルキレンポリアミン類、脂環族ポリアミン類、芳香族ポリアミン類、ポリビニルアミン類等が含まれるが、ガスバリア性積層体のガスバリア性がより良好となる観点からアルキレンジアミンが好ましい。
 化合物(P)の具体例には、ヒドラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルメタン、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、キシリレンジアミン、キトサン、ポリアリルアミン、ポリビニルアミン等が含まれる。化合物(P)は、ガスバリア性積層体のガスバリア性がより良好となる観点から、好ましくはエチレンジアミン、プロピレンジアミンおよびキトサンからなる群より選ばれる少なくとも1つであり、たとえばそれらのいずれか1つである。
 ガスバリア層を構成する組成物において、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる-COO-基の当量]の比は、0.2/100~20.0/100の範囲(たとえば0.2/100~19.4/100の範囲)にある。この範囲では、ガスバリア性積層体が良好なガスバリア性を示す。上記比が0.2/100より小さいと、ガスバリア性積層体の耐熱水性が低くなり、レトルト後のガスバリア性が低下する。一方、上記比が20.0/100より大きいと、ガスバリア性積層体のレトルト処理前後のガスバリア性が低下する。上記比は、前記した理由から、好ましくは1.0/100~4.9/100の範囲にある。
 [化合物(Q)]
 本発明のガスバリア層を構成する組成物は、2つ以上の水酸基を含有する化合物(Q)を含んでもよい。この構成によれば、ガスバリア性積層体の、伸長後のガスバリア性が向上する。より具体的には、化合物(Q)を添加することによって、ガスバリア性積層体が伸長されてもガスバリア層がダメージを受けにくくなり、その結果、伸長された後でも高いガスバリア性を保持し、印刷、ラミネートなどの加工時のテンションによる伸長、食品が充填された袋が落下した時の伸長などが起きた後の状態においても、ガスバリア性積層体のガスバリア性が低下しにくくなる。
 化合物(Q)は、化合物(L)および重合体(X)とは異なる化合物である。化合物(Q)には、低分子量の化合物および高分子量の化合物が含まれる。化合物(Q)の好ましい例には、ポリビニルアルコール、ポリ酢酸ビニルの部分けん化物、エチレン-ビニルアルコール共重合体、ポリエチレングリコール、ポリヒドロキシエチル(メタ)アクリレート、でんぷんなどの多糖類、でんぷんなどの多糖類から誘導される多糖類誘導体、といった高分子化合物が含まれる。
 [カルボン酸含有重合体(重合体(X))]
 ガスバリア層を構成する組成物は、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体の中和物を含む。その重合体(重合体(X))を、以下、「カルボン酸含有重合体」という場合がある。
 カルボン酸含有重合体の中和物は、カルボン酸含有重合体の官能基に含まれる-COO-基の少なくとも一部を2価以上の金属イオンで中和することによって得られる。カルボン酸含有重合体は、重合体1分子中に、2個以上のカルボキシル基または1個以上のカルボン酸無水物基を有する。具体的には、アクリル酸単位、メタクリル酸単位、マレイン酸単位、イタコン酸単位などの、カルボキシル基を1個以上有する構成単位を重合体1分子中に2個以上含有する重合体を用いることができる。また、無水マレイン酸単位や無水フタル酸単位などのカルボン酸無水物の構造を有する構成単位を含有する重合体を用いることもできる。カルボキシル基を1個以上有する構成単位および/またはカルボン酸無水物の構造を有する構成単位(以下、両者をまとめて「カルボン酸含有単位(G)」という場合がある)は、1種類または2種類以上がカルボン酸含有重合体に含まれていてもよい。
 また、カルボン酸含有重合体の全構成単位に占めるカルボン酸含有単位(G)の含有率を10モル%以上とすることによって、ガスバリア性が良好なガスバリア性積層体が得られる。この含有率は、20モル%以上であることがより好ましく、40モル%以上であることがさらに好ましく、70モル%以上であることが特に好ましい。なお、カルボン酸含有重合体が、カルボキシル基を1個以上含有する構成単位と、カルボン酸無水物の構造を有する構成単位の両方を含む場合、両者の合計が上記の範囲であればよい。
 カルボン酸含有重合体が含有していてもよい、カルボン酸含有単位(G)以外の他の構成単位は、特に限定されないが、アクリル酸メチル単位、メタクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸エチル単位、アクリル酸ブチル単位、メタクリル酸ブチル単位等の(メタ)アクリル酸エステル類から誘導される構成単位;ギ酸ビニル単位、酢酸ビニル単位などのビニルエステル類から誘導される構成単位;スチレン単位、p-スチレンスルホン酸単位;エチレン単位、プロピレン単位、イソブチレン単位などのオレフィン類から誘導される構成単位などから選ばれる1種類以上の構成単位を挙げることができる。カルボン酸含有重合体が、2種以上の構成単位を含有する場合、該カルボン酸含有重合体は、交互共重合体の形態、ランダム共重合体の形態、ブロック共重合体の形態、さらにはテーパー型の共重合体の形態のいずれであってもよい。
 カルボン酸含有重合体の具体例としては、ポリアクリル酸、ポリメタクリル酸、ポリ(アクリル酸/メタクリル酸)を挙げることができる。カルボン酸含有重合体は、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体であってもよい。また、上記したカルボン酸含有単位(G)以外の他の構成単位を含有する場合の具体例としては、エチレン-無水マレイン酸共重合体、スチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸交互共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エチル共重合体のケン化物などが挙げられる。
 カルボン酸含有重合体の分子量は特に制限されないが、得られるガスバリア性積層体のガスバリア性が優れる点、および落下衝撃強さなどの力学的物性が優れる点から、数平均分子量が5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることがさらに好ましい。カルボン酸含有重合体の数平均分子量の上限は特に制限がないが、一般的には1,500,000以下である。
 また、カルボン酸含有重合体の分子量分布も特に制限されるものではないが、ガスバリア性積層体のヘイズなどの表面外観、および後述する溶液(U)の貯蔵安定性などが良好となる観点から、カルボン酸含有重合体の重量平均分子量/数平均分子量の比で表される分子量分布は1~6の範囲であることが好ましく、1~5の範囲であることがより好ましく、1~4の範囲であることがさらに好ましい。
 [中和(イオン化)]
 カルボン酸含有重合体の中和物は、カルボン酸含有重合体のカルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基(官能基(F))の少なくとも一部を2価以上の金属イオンで中和することによって得られる。換言すれば、この重合体は、2価以上の金属イオンで中和されたカルボキシル基を含む。
 官能基(F)を中和する金属イオンは2価以上であることが重要である。官能基(F))が未中和または1価のイオンのみによって中和されている場合には、良好なガスバリア性を有する積層体が得られない。2価以上の金属イオンの具体例としてはカルシウムイオン、マグネシウムイオン、2価の鉄イオン、3価の鉄イオン、亜鉛イオン、2価の銅イオン、鉛イオン、2価の水銀イオン、バリウムイオン、ニッケルイオン、ジルコニウムイオン、アルミニウムイオン、チタンイオンなどを挙げることができる。たとえば、2価以上の金属イオンは、カルシウムイオン、マグネシウムイオン、バリウムイオン、亜鉛イオン、鉄イオンおよびアルミニウムイオンからなる群より選ばれる少なくとも1つのイオンであってもよい。
 カルボン酸重合体の官能基(F)に含まれる-COO-基は、たとえば10モル%以上(たとえば15モル%以上)が2価以上の金属イオンで中和されている。カルボン酸含有重合体中のカルボキシル基および/またはカルボン酸無水物基が2価以上の金属イオンで中和されることによって、本発明のガスバリア性積層体は、良好なガスバリア性を示す。
 なお、カルボン酸無水物基は、-COO-基を2つ含んでいるとみなす。すなわち、aモルのカルボキシル基とbモルのカルボン酸無水物基とが存在する場合、それに含まれる-COO-基は、全体で(a+2b)モルである。官能基(F)に含まれる-COO-基のうち、2価以上の金属イオンで中和されている割合は、好ましくは60モル%以上100モル%以下であり、より好ましくは70モル%以上であり、さらに好ましくは80モル%以上である。中和されている割合を高めることによって、より高いガスバリア性を実現できる。
 官能基(F)の中和度(イオン化度)は、ガスバリア性積層体の赤外吸収スペクトルをATR法(全反射測定法)で測定するか、または、ガスバリア性積層体からガスバリア層をかきとり、その赤外吸収スペクトルをKBr法で測定することによって求めることができる。また、蛍光X線測定によるイオン化に用いた金属元素の蛍光X線強度の値によっても求めることができる。
 赤外吸収スペクトルでは中和前(イオン化前)のカルボキシル基またはカルボン酸無水物基のC=O伸縮振動に帰属されるピークは1600cm-1~1850cm-1の範囲に観察され、中和(イオン化)された後のカルボキシル基のC=O伸縮振動は1500cm-1~1600cm-1の範囲に観察されるため、赤外吸収スペクトルにおいて両者を分離して評価することができる。具体的には、それぞれの範囲における最大の吸光度からその比を求め、予め作成した検量線を用いてガスバリア性積層体におけるガスバリア層を構成する重合体のイオン化度を算出することができる。なお、検量線は、中和度が異なる複数の標準サンプルについて赤外吸収スペクトルを測定することによって作成できる。
 ガスバリア層の膜厚が1μm以下であり、かつ基材がエステル結合を含む場合、ATR法による赤外吸収スペクトルでは基材のエステル結合のピークが検出され、ガスバリア層を構成するカルボン酸含有重合体(=重合体(X))の-COO-のピークと重なるため、イオン化度を正確に求めることができない。そこで、膜厚が1μm以下のガスバリア層を構成する重合体(X)のイオン化度は、蛍光X線測定の結果に基いて算出する。
 具体的には、エステル結合を含まない基材上に積層したガスバリア層を構成する重合体(X)のイオン化度を、赤外吸収スペクトルによって測定する。次に、イオン化度が測定された積層体について、蛍光X線測定によって、イオン化に用いた金属元素の蛍光X線強度を求める。続いて、イオン化度のみが異なる積層体について同様の測定を実施する。イオン化度と、イオン化に用いた金属元素の蛍光X線強度との相関を求め、検量線を作成する。そして、エステル結合を含む基材を用いたガスバリア性積層体について蛍光X線測定を行い、イオン化に用いた金属元素の蛍光X線強度から、上記検量線に基づいてイオン化度を求める。
 また、ガスバリア層を構成する組成物は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含有していてもよい。また、ガスバリア層を構成する組成物は、金属酸化物の微粉末やシリカ微粉末などを含有していてもよい。
 [基材]
 本発明のガスバリア性積層体を構成する基材としては、様々な材料からなる基材を用いることができる。たとえば、熱可塑性樹脂フィルムや熱硬化性樹脂フィルムといったフィルム;布帛や紙類等の繊維集合体;木材;金属酸化物や金属などからなる所定形状のフィルムを用いることができる。中でも、熱可塑性樹脂フィルムは、食品包装材料に用いられるガスバリア性積層体の基材として特に有用である。また、基材は紙層を含んでもよい。紙層を含む基材を用いることによって、紙容器用の積層体が得られる。なお、基材は複数の材料からなる多層構成のものであってもよい。
 熱可塑性樹脂フィルムとしては、たとえば、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレートやこれらの共重合体などのポリエステル系樹脂;ナイロン6、ナイロン66、ナイロン12などのポリアミド系樹脂;ポリスチレン、ポリ(メタ)アクリル酸エステル、ポリアクリロニトリル、ポリ酢酸ビニル、ポリカーボネート、ポリアリレート、再生セルロース、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、アイオノマー樹脂等を成形加工したフィルムを挙げることができる。食品包装材料に用いられる積層体の基材としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン6、またはナイロン66からなるフィルムが好ましい。
 前記熱可塑性樹脂フィルムは延伸フィルムであってもよいし、無延伸フィルムであってもよいが、本発明のガスバリア性積層体の印刷、ラミネートなどの加工適正が優れていることから、延伸フィルム、特に二軸延伸フィルムであることが好ましい。二軸延伸フィルムとしては、同時二軸延伸法、逐次二軸延伸法、チューブラ延伸法のいずれの方法で製造された二軸延伸フィルムであってもよい。
 また、本発明の積層体は、基材とガスバリア層との間に配置された接着層(H)をさらに含んでもよい。この構成によれば、基材とガスバリア層との接着性を高めることができる。接着性樹脂からなる接着層(H)は、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗工することで形成できる。様々な接着性樹脂について検討した結果、ウレタン結合を含有し、窒素原子(ウレタン結合の窒素原子)が樹脂全体に占める割合が0.5~12重量%の範囲である接着性樹脂が好ましいことを見出した。そのような接着性樹脂を用いることによって、基材とガスバリア層との接着性を特に高めることができる。基材とガスバリア層とを接着層(H)を介して強く接着することによって、本発明のガスバリア性積層体に対して印刷やラミネートなどの加工を施す際に、ガスバリア性や外観が悪化することを抑制できる。接着性樹脂に含まれる窒素原子(ウレタン結合の窒素原子)の含有率として2~11重量%の範囲であることがより好ましく、3~8重量%の範囲であることがさらに好ましい。
 ウレタン結合を含有する接着性樹脂としては、ポリイソシアネート成分とポリオール成分とを混合し反応させる二液反応型ポリレタン系接着剤が好ましい。
 接着層(H)を厚くすることによってガスバリア性積層体の強度を高めることができる。しかし、接着層(H)を厚くしすぎると、外観が悪化する。接着層(H)の厚さは、0.03μm~0.18μmの範囲にあることが好ましい。この構成によれば、本発明のガスバリア性積層体に対して印刷やラミネートなどの加工を施す際に、ガスバリア性や外観が悪化することを抑制でき、さらに、本発明のガスバリア性積層体を用いた包装材の落下強度を高めることができる。接着層(H)の厚さは、0.04μm~0.14μmの範囲にあることがより好ましく、0.05μm~0.10μmの範囲にあることがさらに好ましい。
 本発明のガスバリア性積層体では、積層体に含まれるガスバリア層の厚さの合計が、1.0μm以下であることが好ましく、たとえば0.9μm以下である。ガスバリア層を薄くすることによって、印刷、ラミネートなどの加工時における本発明のガスバリア性積層体の寸法変化を低く抑えることができ、さらに本発明のガスバリア性積層体の柔軟性が増し、その力学的特性を、基材に用いているフィルム自体の力学的特性に近づけることができる。本発明のガスバリア性積層体では、積層体に含まれるガスバリア層の厚さの合計が、1.0μm以下(たとえば0.9μm以下)の場合でも、20℃で85%RH雰囲気における酸素透過度を、1.1cm3/(m2・day・atm)以下(たとえば1.0cm3/(m2・day・atm)以下)とすることが可能である。ガスバリア層の1層の厚さは、本発明のガスバリア性積層体のガスバリア性が良好となる観点から、0.05μm以上(たとえば0.15μm以上)であることが好ましい。また、ガスバリア層の合計の厚さは0.1μm以上(たとえば0.2μm以上)であることがさらに好ましい。ガスバリア層の厚さは、ガスバリア層の形成に用いられる溶液の濃度や、塗工方法によって制御できる。
 また、本発明の積層体は、基材とガスバリア層との間に、無機物からなる層(以下、「無機層」という場合がある)を含んでもよい。無機層は、無機酸化物などの無機物で形成できる。無機層は、蒸着法などの気相成膜法で形成できる。
 無機層を構成する無機物は、酸素や水蒸気などに対するガスバリア性を有するものであればよく、好ましくは透明性を有するものである。たとえば、酸化アルミニウム、酸化珪素、酸窒化珪素、酸化マグネシウム、酸化錫、またはそれらの混合物といった無機酸化物で無機層を形成できる。これらの中でも、酸化アルミニウム、酸化ケイ素、酸化マグネシウムは、酸素や水蒸気などのガスに対するバリア性が優れる観点から好ましく用いることができる。
 無機層の好ましい厚さは、無機層を構成する無機酸化物の種類によって異なるが、通常、2nm~500nmの範囲である。この範囲で、ガスバリア性積層体のガスバリア性や機械的物性が良好となる厚さを選択すればよい。無機層の厚さが2nm未満である場合、酸素や水蒸気などのガスに対する無機層のバリア性の発現に再現性がなく、無機層が充分なガスバリア性を発現しない場合がある。無機層の厚さが500nmを超える場合は、ガスバリア性積層体を引っ張ったり屈曲させたりした場合に無機層のガスバリア性が低下し易くなる。無機層の厚さは、好ましくは5nm~200nmの範囲であり、さらに好ましくは10nm~100nmの範囲である。
 無機層は、基材上に無機酸化物を堆積させることによって形成できる。形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(CVD)などを挙げることができる。これらの中でも、真空蒸着法は、生産性の観点から好ましく用いることができる。真空蒸着を行う際の加熱方法としては、電子線加熱方式、抵抗加熱方式および誘導加熱方式のいずれかが好ましい。また、無機層と基材との密着性および無機層の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いて蒸着してもよい。また、無機層の透明性を上げるために、蒸着の際、酸素ガスなどを吹き込んで反応を生じさせる反応蒸着法を採用してもよい。
 ガスバリア層の微細構造は特に限定されるものではないが、ガスバリア層が以下に記載する微細構造を有する場合には、ガスバリア性積層体を伸長した際におけるガスバリア性の低下などが抑えられるため好ましい。好ましい微細構造としては、海相(α)および島相(β)からなる海島構造である。島相(β)は、海相(α)に比べて、化合物(L)の加水分解縮合物の割合が高い領域である。
 海相(α)と島相(β)とは、それぞれ、さらに微細構造を有することが好ましい。たとえば、海相(α)は、主にカルボン酸含有重合体の中和物からなる海相(α1)と、主に化合物(L)の加水分解縮合物からなる島相(α2)とによって構成される海島構造をさらに形成していてもよい。また、島相(β)は、主にカルボン酸含有重合体の中和物からなる海相(β1)と、主に化合物(L)の加水分解縮合物からなる島相(β2)とによって構成される海島構造をさらに形成していてもよい。島相(β)中における[島相(β2)/海相(β1)]の比率(体積比)は、海相(α)中における[島相(α2)/海相(α1)]の比率よりも大きいことが好ましい。島相(β)の径は、好ましくは30nm~1200nmの範囲であり、より好ましくは50~500nmの範囲であり、さらに好ましくは50nm~400nmの範囲である。島相(β2)および島相(α2)の径は、好ましくは50nm以下であり、より好ましくは30nm以下であり、さらに好ましくは20nm以下である。
 上記のような構造を得るためには、化合物(L)とカルボン酸含有重合体との架橋反応に優先して、化合物(L)の適切な加水分解縮合が起こる必要がある。そのために、特定の化合物(L)をカルボン酸含有重合体と適切な比率で使用する、化合物(L)をカルボン酸含有重合体と混合する前に予め加水分解縮合させておく、適切な加水分解縮合触媒を使用する、などの方法を取るなどの方法が採用できる。
 また、特定の製造条件を選択すると、化合物(L)の加水分解縮合物の割合が高い領域がガスバリア層の表面に層状に形成されることが見出された。以下、ガスバリア層表面に形成された化合物(L)の加水分解縮合物の層を「スキン層」ということがある。スキン層が形成されることによって、ガスバリア層表面の耐水性が向上する。化合物(L)の加水分解縮合物からなるスキン層は、疎水的な特性をガスバリア層表面に付与し、水に濡れた状態のガスバリア層同士を重ねてもそれらが膠着しない特性をガスバリア性積層体に付与する。さらに驚くことに、疎水的な特性を有するスキン層がガスバリア層の表面に形成されても、その表面に対する印刷用インクなどの濡れ性は良好である。製造条件によって、ガスバリア層のスキン層の有無、あるいは形成されるスキン層の状態が異なる。鋭意検討した結果、本発明者らは、ガスバリア層と水との接触角と、好ましいスキン層との間に相関があり、その接触角が以下の条件を満たすときに、好ましいスキン層が形成されることを見出した。ガスバリア層と水との接触角が20°未満のときはスキン層の形成が不充分なことがある。この場合、ガスバリア層の表面が水によって膨潤しやすくなり、水に濡れた状態で積層体同士を重ねておくと、まれにそれらが膠着する場合がある。また、接触角が20°以上のときはスキン層形成が充分であり、ガスバリア層の表面は水によって膨潤しないため、膠着は起きない。ガスバリア層と水との接触角は好ましくは、24°以上であり、さらに好ましくは26°以上である。また、接触角が65゜より大きいとスキン層が厚くなりすぎ、ガスバリア性積層体の透明性が低下する。したがって、接触角は65゜以下であることが好ましく、60゜以下であることがより好ましく、58゜以下であることがさらに好ましい。
 本発明のガスバリア性積層体は、基材およびガスバリア層に加えて、他の層(たとえば熱可塑性樹脂フィルムや紙)を含んでもよい。このような他の層を加えることによって、ガスバリア性積層体にヒートシール性を付与したり、ガスバリア性積層体の力学的物性を向上させたりすることができる。
 基材に熱可塑性樹脂フィルムまたは紙(層)を用いる場合の本発明のガスバリア性積層体の具体例を以下に示す。なお、以下の具体例では、記載を簡略化するために「フィルム(層)」の表記を省略して材料のみを記載する場合がある。
 本発明のガスバリア性積層体の構成の例には、以下の構成が含まれる。
(1)ガスバリア層/ポリエステル/ポリアミド/ポリオレフィン、
(2)ガスバリア層/ポリエステル/ガスバリア層/ポリアミド/ポリオレフィン、
(3)ポリエステル/ガスバリア層/ポリアミド/ポリオレフィン、
(4)ガスバリア層/ポリアミド/ポリエステル/ポリオレフィン、
(5)ガスバリア層/ポリアミド/ガスバリア層/ポリエステル/ポリオレフィン、
(6)ポリアミド/ガスバリア層/ポリエステル/ポリオレフィン、
(7)ガスバリア層/ポリオレフィン/ポリアミド/ポリオレフィン、
(8)ガスバリア層/ポリオレフィン/ガスバリア層/ポリアミド/ポリオレフィン、
(9)ポリオレフィン/ガスバリア層/ポリアミド/ポリオレフィン、
(10)ガスバリア層/ポリオレフィン/ポリオレフィン、
(11)ガスバリア層/ポリオレフィン/ガスバリア層/ポリオレフィン、
(12)ポリオレフィン/ガスバリア層/ポリオレフィン、
(13)ガスバリア層/ポリエステル/ポリオレフィン、
(14)ガスバリア層/ポリエステル/ガスバリア層/ポリオレフィン、
(15)ポリエステル/ガスバリア層/ポリオレフィン、
(16)ガスバリア層/ポリアミド/ポリオレフィン、
(17)ガスバリア層/ポリアミド/ガスバリア層/ポリオレフィン、
(18)ポリアミド/ガスバリア層/ポリオレフィン、
(19)ガスバリア/ポリエステル/紙、
(20)ガスバリア層/ポリアミド/紙、
(21)ガスバリア層/ポリオレフィン/紙、
(22)ポリエチレン(PE)層/紙層/PE層/ガスバリア層/ポリエチレンテレフタレート(PET)層/PE層、
(23)ポリエチレン(PE)層/紙層/PE層/ガスバリア層/ポリアミド層/PE層、
(24)PE層/紙層/PE層/ガスバリア層/PE、
(25)紙層/PE層/ガスバリア層/PET層/PE層、
(26)PE層/紙層/ガスバリア層/PE層、
(27)紙層/ガスバリア層/PET層/PE層、
(28)紙層/ガスバリア層/PE層、
(29)ガスバリア層/紙層/PE層、
(30)ガスバリア層/PET層/紙層/PE層、
(31)PE層/紙層/PE層/ガスバリア層/PE層/水酸基含有ポリマー層、
(32)PE層/紙層/PE層/ガスバリア層/PE層/ポリアミド層、
(33)PE層/紙層/PE層/ガスバリア層/PE層/ポリエステル層。
 ガスバリア性積層体のヒートシール性や力学的特性などの観点からは、ポリオレフィンとしてはポリプロピレンまたはポリエチレンが好ましく、ポリエステルとしてはポリエチレンテレフタレート(PET)が好ましく、ポリアミドとしてはナイロン-6が好ましい。また、水酸基含有ポリマーとしてはエチレン-ビニルアルコール共重合体が好ましい。なお、各層の間に、必要に応じて、他の層、たとえばアンカーコート層や接着剤からなる層を設けてもよい。
 本発明のガスバリア性積層体を用いて、包装体を得ることができる。この包装体は、様々な用途に適用でき、酸素ガスなどのガスのバリアが必要となる用途に好ましく用いられる。たとえば、本発明のガスバリア性積層体を用いてなる包装体は、レトルト食品の包装体として好ましく用いられる。また、紙層を含む基材を用いることによって、紙容器を得ることができる。
 [ガスバリア性積層体の製造方法]
 以下、本発明のガスバリア性積層体を製造するための方法について説明する。この方法によれば、本発明のガスバリア性積層体を容易に製造できる。本発明の製造方法に用いられる材料、および積層体の構成は、上述したものと同様であるので、重複する部分については説明を省略する場合がある。
 本発明の製造方法は、工程(i)および(ii)を含む。
 工程(i)は、重合体(X)と、化合物(L)の加水分解縮合物とを含む組成物からなる層を基材上に形成する工程である。その層は、基材上に直接形成されるか、または他の層を介して基材上に形成される。その組成物において、重合体(X)の官能基(F)に含まれる-COO-基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されている。その組成物において、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基(F)に含まれる-COO-基の当量]の比は、0.2/100~20.0/100の範囲にある。
 化合物(L)に含まれる化合物、およびそれらの化合物の割合については、ガスバリア層を構成する組成物について説明したものと同様である。
 工程(ii)は、2価以上の金属イオンを含む溶液に、工程(i)で形成された層を接触させる工程である(以下、この工程をイオン化工程という場合がある)。たとえば、形成した層に2価以上の金属イオンを含む溶液を吹きつけたり、基材と基材上の層とをともに2価以上の金属イオンを含む溶液に浸漬したりすることによって行うことができる。工程(ii)によって、重合体(X)の官能基(F)に含まれる-COO-基の少なくとも一部が中和される。
 以下、工程(i)について詳細に説明する。なお、化合物(P)とカルボン酸含有重合体とを混合すると、両者が反応してしまい溶液(U)の塗工が困難になることがあるため、工程(i)は、化合物(P)と酸(R)とを含む溶液(S)を調製する工程(i-a)を含むことが好ましい。溶液(U)の調整方法としては、溶液(U)が塗工できれば特に制限されるものではないが、例えば以下の方法を挙げることができる。
 方法(1)として、重合体(X)を溶解させた溶液に、化合物(L)、溶液(S)および必要に応じて溶媒を添加して混合する方法を採用できる。また、方法(2)として、溶媒存在下または無溶媒下で化合物(L)からオリゴマー(V)(加水分解縮合物の1種)を調製し、オリゴマー(V)に重合体(X)を溶解させた溶液および溶液(S)を混合する方法も採用することができる。なお、化合物(L)やオリゴマー(V)は、単独で溶液に加えてもよいし、それらを溶解させた溶液の形態で溶媒に加えてもよい。
 溶液(U)の調整方法としては、上記(2)の方法を用いることによって、ガスバリア性が特に優れたガスバリア性積層体が得られる。以下、(2)の方法について、より具体的に説明する。
 上記(2)の方法において、工程(i)は、(i-a)化合物(P)と酸(R)とを含む溶液(S)を調製する工程と、(i-b)化合物(L)を加水分解、縮合して得られるオリゴマーを含む溶液(T)を調製する工程と、(i-c)溶液(S)と溶液(T)と重合体(X)とを含む溶液(U)を調製する工程と、(i-d)溶液(U)を基材に塗工して乾燥させることによって上記の層を形成する工程と、を含んでもよい。工程(i-a)と工程(i-b)とは、どちらを先に行ってもよいし、同時に行ってもよい。
 工程(i-a)では、化合物(P)と酸(R)とを含む溶液(S)を調製する。化合物(P)のアミノ基を酸(R)で中和しておくことによって、カルボン酸含有重合体と混合してもゲル化しないようになる。化合物(P)のアミノ基と酸(R)とからなる塩と、カルボン酸重合体の-COO-基との交換反応で生成した酸(R)は、工程(i-d)の乾燥工程においてガスバリア層から取り除かれることが好ましい。交換反応の結果、化合物(P)のアミノ基とカルボン酸含有重合体の-COO-基とで中和反応が起こり、中和された塩の一部は引き続きアミド化反応によりアミド基になる。これらの中和反応およびアミド化反応によってカルボン酸含有重合体は架橋され、耐熱水性が発現される。
 酸(R)は特に限定されないが、工程(i-d)の乾燥工程においてガスバリア層から取り除き易いという観点から、好ましい酸(R)として、例えば塩酸、硝酸、炭酸、酢酸などを挙げることができ、中でも塩酸が好ましい。溶液(S)における酸(R)の使用量は、[酸(R)の当量]/[化合物(P)のアミノ基の当量]の比が、0.5/1以上となる量であればよい。0.5/1以上の条件を満たせばカルボン酸含有重合体との混合時のゲル化を防ぐことができる。ガスバリア性積層体のガスバリア性がより良好となる観点から、[酸(R)の当量]/[化合物(P)のアミノ基の当量]の比は、0.5/1~10/1の範囲にあることが好ましく、0.7/1~5/1の範囲にあることがより好ましく、0.7/1~2/1の範囲にあることがさらに好ましい。
 工程(i-b)は、たとえば、化合物(A)、または化合物(A)および化合物(B)を含む化合物(L)を、加水分解、縮合して得られるオリゴマー(V)を含む溶液(T)を調製する工程である。化合物(L)、酸触媒、水、および必要に応じて有機溶媒を含む反応系中において、化合物(L)を加水分解、縮合させることによってオリゴマー(V)を得ることが好ましい。具体的には、公知のゾルゲル法で用いられている手法を適用できる。化合物(L)としては、化合物(L)が予め加水分解、縮合されているものでもよい。以下、化合物(L)、化合物(L)が部分的に加水分解したもの、化合物(L)が完全に加水分解したもの、化合物(L)が部分的に加水分解縮合したもの、および化合物(L)が完全に加水分解しその一部が縮合したものから選ばれる少なくとも1つの化合物を、「化合物(L)系成分」という場合がある。
 工程(i-b)で用いる酸触媒としては、公知の酸を用いることができ、例えば塩酸、硫酸、硝酸、p-トルエンスルホン酸、安息香酸、酢酸、乳酸、酪酸、炭酸、シュウ酸、マレイン酸等が挙げられる。それらの中でも、塩酸、硫酸、硝酸、酢酸、乳酸、酪酸が特に好ましい。酸触媒の好ましい使用量は、使用する酸の種類によって異なるが、化合物(L)の金属原子1モルに対して、1×10-5~10モルの範囲にあることが好ましく、1×10-4~5モルの範囲にあることがより好ましく、5×10-4~1モルの範囲にあることがさらに好ましい。酸触媒の使用量がこの範囲にある場合、ガスバリア性が高いガスバリア性積層体が得られる。
 また、工程(i-b)で用いる水の使用量は、化合物(L)の種類によって異なるが、化合物(L)の加水分解性を有する特性基1当量に対して、0.05~10当量の範囲にあることが好ましく、0.1~5当量の範囲にあることがより好ましく、0.2~3当量の範囲にあることがさらに好ましい。水の使用量がこの範囲にある場合、ガスバリア性が特に優れるガスバリア性積層体が得られる。なお、工程(i-b)において、塩酸のように水を含有する成分を使用する場合には、その成分によって導入される水の量も考慮して水の使用量を決定することが好ましい。
 さらに、工程(i-b)の反応系においては、必要に応じて有機溶媒を使用してもよい。使用される有機溶媒は化合物(L)が溶解する溶媒であれば特に限定されない。たとえば、有機溶媒として、メタノール、エタノール、イソプロパノール、ノルマルプロパノール等のアルコール類が好適に用いられ、化合物(L)が含有するアルコキシ基と同種の分子構造(アルコキシ成分)を有するアルコールがより好適に用いられる。具体的には、テトラメトキシシランに対してはメタノールが好ましく、テトラエトキシシランに対してはエタノールが好ましい。有機溶媒の使用量は特に限定されないが、化合物(L)の濃度が好ましくは1~90重量%、より好ましくは10~80重量%、さらに好ましくは10~60重量%となる量であることが好ましい。
 工程(i-b)において、反応系中において化合物(L)の加水分解、縮合を行う際に、反応系の温度は必ずしも限定されないが、通常2~100℃の範囲であり、好ましくは4~60℃の範囲であり、さらに好ましくは6~50℃の範囲である。反応時間は触媒の量、種類等の反応条件に応じて相違するが、通常0.01~60時間の範囲であり、好ましくは0.1~12時間の範囲であり、より好ましくは0.1~6時間の範囲である。また、反応は、空気、二酸化炭素、窒素、アルゴンといった各種の気体の雰囲気下で行うことができる。
 工程(i-b)において、化合物(L)は、全量を一度に反応系に添加してもよいし、少量ずつ何回かに分けて反応系に添加してもよい。いずれの場合でも、化合物(L)の使用量の合計が、上記の好適な範囲を満たしていることが好ましい。
 工程(i-c)は、工程(i-b)で得られたオリゴマー(V)を含む溶液(T)と、工程(i-a)で調製した溶液(S)と、重合体(X)と、を含む溶液(U)を調製する工程である。溶液(U)は、溶液(T)、重合体(X)(=カルボン酸含有重合体)、溶液(S)、および必要に応じて水および/または有機溶剤を用いて調製することができる。たとえば、(1)カルボン酸含有重合体を溶解させた溶液に溶液(S)を混合し、その後溶液(T)を添加して混合する方法を採用できる。また、(2)カルボン酸含有重合体を溶解させた溶液に溶液(S)を混合し、その溶液を溶液(T)に添加して混合する方法も採用できる。さらに、(3)カルボン酸含有重合体を溶解させた溶液を、溶液(T)に添加して混合した後に、溶液(S)を添加して混合する方法も採用できる。
 上記した(1)、(2)、(3)の各方法において、添加する溶液(T)、カルボン酸含有重合体を溶解させた溶液、溶液(S)は、一度に添加しても良いし、分割して添加してもよい。
 工程(i-c)における、カルボン酸含有重合体を溶解させた溶液は以下の方法により調製できる。使用する溶媒は、カルボン酸含有重合体の種類に応じて選択すればよい。たとえば、ポリアクリル酸やポリメタクリル酸などの水溶性の重合体の場合には、水が好適である。イソブチレン-無水マレイン酸共重合体やスチレン-無水マレイン酸共重合体などの重合体の場合には、アンモニア、水酸化ナトリウムや水酸化カリウムなどのアルカリ性物質を含有する水が好適である。また、カルボン酸含有重合体の溶解の妨げにならない限り、メタノール、エタノール等のアルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル;アセトン、メチルエチルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n-ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタンなどを併用することも可能である。
 溶液(U)に含まれるカルボン酸含有重合体においては、官能基(F)に含まれる-COO-基の一部(たとえば0.1~10モル%)が1価のイオンによって中和されていてもよい。1価イオンによる官能基(F)の中和度は、ガスバリア性積層体の透明性が良好となる観点から、0.5~5モル%の範囲にあることがより好ましく、0.7~3モル%の範囲にあることがさらに好ましい。1価のイオンとしては、たとえば、アンモニウムイオン、ピリジニウムイオン、ナトリウムイオン、カリウムイオン、リチウムイオンなどが挙げられ、アンモニウムイオンが好ましい。
 溶液(U)における溶液(T)、重合体(X)(=カルボン酸含有重合体)、溶液(S)の混合比率は、得られるガスバリア層の組成物が前記した組成に関する要件を満たしていれば特に制限はない。
 溶液(U)の固形分濃度は、溶液(U)の保存安定性、および溶液(U)の基材に対する塗工性の観点から、3重量%~20重量%の範囲にあることが好ましく、4重量%~15重量%の範囲にあることがより好ましく、5重量%~12重量%の範囲にあることがさらに好ましい。
 溶液(U)の保存安定性、およびガスバリア性積層体のガスバリア性の観点から、溶液(U)のpHは、1.0~7.0の範囲にあることが好ましく、1.0~6.0の範囲にあることがより好ましく、1.5~4.0の範囲にあることがさらに好ましい。
 溶液(U)のpHは、公知の方法で調整でき、たとえば、塩酸、硝酸、硫酸、リン酸、酢酸、酪酸、硫酸アンモニウムといった酸性化合物や、水酸化ナトリウム、水酸化カリウム、アンモニア、トリメチルアミン、ピリジン、炭酸ナトリウム、酢酸ナトリウムといった塩基性化合物を添加することによって調整できる。このとき、溶液中に1価の陽イオンをもたらす塩基性化合物を用いると、カルボン酸含有重合体のカルボキシル基および/またはカルボン酸無水物基の一部を1価のイオンで中和することができる。
 工程(i-d)について説明する。工程(i-c)で調製される溶液(U)は、時間の経過とともに状態が変化し、最終的にはゲル状の組成物となる。溶液(U)がゲル状になるまでの時間は、溶液(U)の組成に依存する。基材に溶液(U)を安定的に塗工するためには、溶液(U)は、長時間にわたってその粘度が安定し、その後、徐々に粘度上昇するようなものであることが好ましい。溶液(U)は、化合物(L)系成分の全量を添加した時を基準として、25℃で2日間静置した後においても、ブルックフィールド粘度計(B型粘度計:60rpm)で測定した粘度が1N・s/m2以下(より好ましくは0.5N・s/m2以下で、特に好ましくは0.2N・s/m2以下)となるように組成を調整することが好ましい。また、溶液(U)は、25℃で10日間静置した後においても、その粘度が1N・s/m2以下(より好ましくは0.1N・s/m2以下で、特に好ましくは0.05N・s/m2以下)となるように組成を調整することがより好ましい。また、溶液(U)は、50℃で10日間静置した後においても、その粘度が1N・s/m2以下(より好ましくは0.1N・s/m2以下で、特に好ましくは0.05N・s/m2以下)となるように組成を調整することがさらに好ましい。溶液(U)の粘度が上記の範囲にある場合、貯蔵安定性に優れるとともに、得られるガスバリア性積層体のガスバリア性がより良好になることが多い。
 溶液(U)の粘度が上記範囲内になるように調整するには、例えば、固形分の濃度を調整する、pHを調整する、カルボキシメチルセルロース、でんぷん、ベントナイト、トラガカントゴム、ステアリン酸塩、アルギン酸塩、メタノール、エタノール、n-プロパノール、イソプロパノールなどの粘度調節剤を添加するといった方法を用いることができる。
 また、基材への溶液(U)の塗工を容易にするために、溶液(U)の安定性が阻害されない範囲で、溶液(U)に均一に混合することができる有機溶剤を添加してもよい。添加可能な有機溶剤としては、たとえば、メタノール、エタノール、n-プロパノール、イソプロパノールなどのアルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n-ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタンなどが挙げられる。
 また、溶液(U)は、所望により、本発明の効果を損なわない範囲内において、炭酸塩、塩酸塩、硝酸塩、炭酸水素塩、硫酸塩、硫酸水素塩、リン酸塩、ホウ酸塩、アルミン酸塩のような無機酸金属塩;シュウ酸塩、酢酸塩、酒石酸塩、ステアリン酸塩のような有機酸金属塩;アルミニウムアセチルアセトナートのようなアセチルアセトナート金属錯体、チタノセンなどのシクロペンタジエニル金属錯体、シアノ金属錯体等の金属錯体;層状粘土化合物、架橋剤、上述したアミノ基を二つ以上含む化合物(P)、上述した水酸基を二つ以上含む化合物(Q)、及びそれ以外の高分子化合物、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤等を含んでいてもよい。また、溶液(U)は、金属酸化物の微粉末やシリカ微粉末などを含んでいてもよい。
 工程(i-c)で調製された溶液(U)は、工程(i-d)において基材の少なくとも一方の面に塗工される。溶液(U)を塗工する前に、基材の表面を公知のアンカーコーティング剤で処理するか、基材の表面に公知の接着剤を塗布してもよい。溶液(U)を基材に塗工する方法は、特に限定されず、公知の方法を用いることができる。好ましい方法としては、たとえば、キャスト法、ディッピング法、ロールコーティング法、グラビアコート法、スクリーン印刷法、リバースコート法、スプレーコート法、キスコート法、ダイコート法、メタリングバーコート法、チャンバードクター併用コート法、カーテンコート法などが挙げられる。
 工程(i-d)で溶液(U)を基材上に塗工した後、溶液(U)に含まれる溶媒を除去することによって、イオン化工程前の積層体(積層体(I))が得られる。溶媒の除去の方法は特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法などの方法を単独で、または組み合わせて適用できる。乾燥温度は、基材の流動開始温度よりも15~20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15~20℃以上低い温度であれば特に制限されない。乾燥温度は、70℃~200℃の範囲にあることが好ましく、80~180℃の範囲にあることがより好ましく、90~160℃の範囲にあることがさらに好ましい。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。
 本発明のガスバリア性積層体では、ガスバリア層の表面に、化合物(L)の加水分解性縮合物からなるスキン層が形成されていることが好ましい。また、前記したように、スキン層が厚くなりすぎることは、ガスバリア性積層体の透明性が低下するために好ましくない。適度の厚さを有するスキン層を形成する方法について、以下に記載する。本発明者らが鋭意検討した結果によれば、スキン層の形成の有無、およびスキン層の形成の状態は、化合物(L)の加水分解性縮合物の反応度、化合物(L)の組成、溶液(U)に使用されている溶媒、溶液(U)を基材に塗工した後の溶液(U)の乾燥される速度などに依存する。例えば、ガスバリア層表面に対する水の接触角を測定し、接触角が前記した所定の範囲より小さい場合には、工程(i-b)、工程(i-c)の反応時間を長くすることによって、接触角を大きくすること(すなわち適切なスキン層を形成すること)が可能である。逆に接触角が前記した所定の範囲より大きい場合には、工程(i-b)、工程(i-c)の反応時間を短くすることによって、接触角を小さくすることが可能である。
 工程(ii)において、上記の工程によって得られる積層体(I)を、2価以上の金属イオンを含む溶液(以下、溶液(IW)という場合がある)に接触させること(イオン化工程)によって、本発明のガスバリア性積層体(積層体(II))が得られる。なお、イオン化工程は、本発明の効果を損なわない限り、どのような段階で行ってもよい。たとえば、イオン化工程は、包装材料の形態に加工する前あるいは加工した後に行ってもよいし、さらに包装材料中に内容物を充填して密封した後に行ってもよい。
 溶液(IW)は、溶解によって2価以上の金属イオンを放出する化合物(多価金属化合物)を、溶媒に溶解させることによって調製できる。溶液(IW)を調製する際に使用する溶媒としては、水を使用することが望ましいが、水と混和しうる有機溶媒と水との混合物であってもよい。そのような有機溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノールなどのアルコール;テトラヒドロフラン、ジオキサン、トリオキサン等のエーテル;アセトン、メチルエチルケトン、メチルビニルケトン、メチルイソプロピルケトン等のケトン;エチレングリコール、プロピレングリコール等のグリコール;メチルセロソルブ、エチルセロソルブ、n-ブチルセロソルブ等のグリコール誘導体;グリセリン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、ジメトキシエタン等の有機溶媒が挙げられる。
 多価金属化合物としては、本発明のガスバリア性積層体に関して例示した金属イオン(すなわち2価以上の金属イオン)を放出する化合物を用いることができる。たとえば、酢酸カルシウム、水酸化カルシウム、水酸化バリウム、塩化カルシウム、硝酸カルシウム、炭酸カルシウム、酢酸マグネシウム、水酸化マグネシウム、塩化マグネシウム、炭酸マグネシム、酢酸鉄(II)、塩化鉄(II)、酢酸鉄(III)、塩化鉄(III)、酢酸亜鉛、塩化亜鉛、酢酸銅(II)、酢酸銅(III)、酢酸鉛、酢酸水銀(II)、酢酸バリウム、酢酸ジルコニウム、塩化バリウム、硫酸バリウム、硫酸ニッケル、硫酸鉛、塩化ジルコニウム、硝酸ジルコニウム、硫酸アルミニウム、カリウムミョウバン(KAl(SO42)、硫酸チタン(IV)などを用いることができる。多価金属化合物は、1種類のみを用いても、2種類以上を組み合わせて用いてもよい。好ましい多価金属化合物としては、酢酸カルシウム、水酸化カルシウム、酢酸マグネシウム、酢酸亜鉛が挙げられる。なお、これらの多価金属化合物は、水和物の形態で用いてもよい。
 溶液(IW)における多価金属化合物の濃度は、特に制限されないが、好ましくは5×10-4重量%~50重量%の範囲にあり、より好ましくは1×10-2重量%~30重量%の範囲にあり、さらに好ましくは1重量%~20重量%の範囲にある。
 溶液(IW)に積層体(I)を接触させる際において、溶液(IW)の温度は、特に制限されないが、温度が高いほどカルボキシル基含有重合体のイオン化速度が速い。その温度は、たとえば30~140℃の範囲にあり、好ましくは40℃~120℃の範囲にあり、さらに好ましくは50℃~100℃の範囲にある。
 溶液(IW)に積層体(I)を接触させた後、その積層体に残留した溶媒を除去することが望ましい。溶媒の除去の方法は、特に制限がなく、公知の方法を適用できる。具体的には、熱風乾燥法、熱ロール接触法、赤外線加熱法、マイクロ波加熱法といった乾燥法を単独で、または2種以上を組み合わせて適用できる。溶媒の除去を行う温度は、基材の流動開始温度よりも15~20℃以上低く、かつカルボン酸含有重合体の熱分解開始温度よりも15~20℃以上低い温度であれば特に制限されない。乾燥温度は、好ましくは40~200℃の範囲にあり、より好ましくは60~150℃の範囲にあり、さらに好ましくは80~130℃の範囲にある。溶媒の除去は、常圧下または減圧下のいずれで実施してもよい。
 また、ガスバリア性積層体の表面の外観を損なわないためには、溶媒の除去を行う前または後に、積層体の表面に付着した過剰の多価金属化合物を除去することが好ましい。多価金属化合物を除去する方法としては、多価金属化合物が溶解していく溶剤を用いた洗浄が好ましい。多価金属化合物が溶解していく溶剤としては、溶液(IW)に用いることができる溶媒を用いることができ、溶液(IW)の溶媒と同一のものを用いることが好ましい。
 本発明の製造方法では、工程(i)の後であって工程(ii)の前および/または後に、工程(i)で形成された層を120~240℃の温度で熱処理する工程をさらに含んでもよい。すなわち、積層体(I)または積層体(II)に対して熱処理を施してもよい。熱処理は、塗工された溶液(U)の溶媒の除去がほぼ終了した後であれば、どの段階で行ってもよいが、イオン化工程を行う前の積層体(すなわち積層体(I))を熱処理することによって、表面の外観が良好なガスバリア性積層体が得られる。熱処理の温度は、好ましくは120℃~240℃の範囲にあり、より好ましくは140~240℃の範囲にあり、さらに好ましくは160℃~220℃の範囲にある。熱処理は、空気中、窒素雰囲気下、アルゴン雰囲気下などで実施することができる。熱処理を施すことによって、化合物(P)のアミノ基とカルボン酸含有重合体の-COO-基とのアミド化反応がより進行する。その結果、ボイル処理後やレトルト処理後における酸素バリア性および外観(透明性など)により優れ、苛酷なレトルト条件でレトルト処理した後も良好な酸素バリア性および外観(透明性など)を示すガスバリア性積層体が得られる。
 また、本発明の製造方法では、積層体(I)または(II)に、紫外線を照射してもよい。紫外線照射は、塗工された溶液(U)の溶媒の除去がほぼ終了した後であれば、いつ行ってもよい。その方法は、特に限定されず、公知の方法を適用できる。照射する紫外線の波長は、170~250nmの範囲にあることが好ましく、170~190nmの範囲及び/又は230~250nmの範囲にあることがより好ましい。また、紫外線照射に代えて、電子線やγ線などの放射線の照射を行ってもよい。
 熱処理と紫外線照射は、どちらか一方のみを行ってもよいし、両者を併用してもよい。熱処理及び/又は紫外線照射を行うことによって、積層体のガスバリア性能がより高度に発現する場合がある。
 基材とガスバリア層との間に接着層(G)を配置するために、溶液(U)の塗工前に、基材の表面に処理(アンカーコーティング剤による処理、または接着剤の塗布)を施してもよい。その場合、工程(i)(溶液(U)の塗工)の後であって上記熱処理および工程(ii)(イオン化工程)の前に、溶液(U)が塗工された基材を、比較的低温下に長時間放置する熟成処理を行うことが好ましい。熟成処理の温度は、30~200℃の範囲にあることが好ましく、30~150℃の範囲にあることがより好ましく、30~120℃の範囲にあることがさらに好ましい。熟成処理の時間は、0.5~10日の範囲にあることが好ましく、1~7日の範囲にあることがより好ましく、1~5日の範囲にあることがさらに好ましい。このような熟成処理を行うことによって、基材とガスバリア層との間の接着力がより強固となる。この熟成処理ののちに、さらに上記熱処理(120℃~240℃の熱処理)を行うことが好ましい。
 本発明のガスバリア性積層体は、酸素、水蒸気、炭酸ガス、窒素等の気体に対して優れたバリア性を有し、その優れたバリア性を高湿度条件下でも屈曲条件に晒された後でも高度に保持し得る。さらに、レトルト処理を施したのちでも、優れたガスバリア性を示す。このように、本発明のガスバリア性積層体は、湿度等の環境条件に左右されない良好なガスバリア性を有し、屈曲条件に晒された後でも高いガスバリア性を示すため、様々な用途に適用できる。たとえば、本発明のガスバリア性積層体は、食品用包装材料(特にレトルト食品用包装材料)として特に有用である。また、本発明のガスバリア性積層体は、農薬や医薬などの薬品、精密材料などの産業資材、および衣料などを包装するための包装材料として用いることもできる。
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によって限定されない。
 以下の実施例における測定および評価は、次に示す(1)~(8)の方法によって実施した。なお、測定方法および評価方法についての以下の説明で用いられる略称の説明は、後述する場合がある。また、測定結果および評価結果については、実施例および比較例の説明のあとに掲載する表に記載する。
 (1)レトルト処理前の酸素バリア性
 酸素透過量測定装置(モダンコントロール社製「MOCON OX-TRAN2/20」)を用いて酸素透過度を測定した。温度20℃、酸素圧1気圧、キャリアガス圧力1気圧の条件下で、酸素透過度(単位:cc/m2/day/atm)を測定した(cc=cm3)。キャリアガスとしては2体積%の水素ガスを含む窒素ガスを使用した。このとき、湿度を85%RHとし、酸素供給側とキャリアガス側とを同一の湿度とした。基材の片面のみにガスバリア層を形成した積層体については、酸素供給側にガスバリア層が向きキャリアガス側に基材が向くように積層体をセットした。
 (2)10%伸長後でレトルト処理前の酸素バリア性
 まず、積層体を30cm×21cmに切り出した。次に、切り出した積層体を、23℃、50%RHの条件で手動伸長装置を用いて10%伸長し、伸長状態で5分間保持した。その後、上記と同様の手法で酸素透過度を測定した。
 (3)接触角
 積層体を温度20℃、湿度65%RHの条件下で24時間調湿を行った。その後、自動接触角計(協和界面科学製、DM500)を用いて、温度20℃、湿度65%RHの条件で2μLの水をガスバリア層上に滴下した。そして、日本工業規格(JIS)-R3257に準拠した方法で、ガスバリア層と水との接触角を測定した。
 (4)引っ張り強伸度、ヤング率
 積層体を温度23℃、湿度50%RHの条件下で24時間調湿を行った。その後、積層体を、MD方向およびTD方向に対して15cm×15mmに切り出した。切り出した積層体について、温度23℃、湿度50%RHの条件で、JIS-K7127に準拠した方法によって、引っ張り強伸度およびヤング率を測定した。
 (5)乾熱収縮率
 積層体を10cm×10cmに切り出し、MDおよびTDにおける長さをノギスで測定した。この積層体を、乾燥機中において80℃で5分間加熱し、加熱後のMDおよびTDにおける長さを測定した。そして、以下の式から乾熱収縮率(%)を測定した。
乾熱収縮率(%)=(lb-la)×100/lb
[式中、lbは加熱前の長さを表す。laは加熱後の長さを表す。]
 (6)金属イオンによるカルボキシル基の中和度(イオン化度)
 [FT-IRによるイオン化度の算出]
 数平均分子量150,000のポリアクリル酸を蒸留水に溶解し、所定量の水酸化ナトリウムでカルボキシル基を中和した。得られたポリアクリル酸の中和物の水溶液を、基材上に、イオン化度の測定の対象となる積層体のガスバリア層と同じ厚さになるようにコートし、乾燥させた。基材には、2液型のアンカーコート剤(三井武田ケミカル株式会社製、タケラック626(商品名)およびタケネートA50(商品名)、以下「AC」と略記することがある)を表面にコートした延伸ナイロンフィルム(ユニチカ株式会社製、エンブレム ON-BC(商品名)、厚さ15μm、以下「ON」と略記することがある)を用いた。このようにして、カルボキシル基の中和度が、0、25、50、75、80、90モル%の標準サンプル[積層体(ポリアクリル酸の中和物からなる層/AC/ON)]を作製した。これらのサンプルについて、フーリエ変換赤外分光光度計(Perkin Elmer製、Spectrum One)を用いて、ATR(全反射測定)のモードで、赤外吸収スペクトルを測定した。そして、ポリアクリル酸の中和物からなる層に含まれるC=O伸縮振動に対応する2つのピーク、すなわち、1600cm-1~1850cm-1の範囲に観察されるピークと1500cm-1~1600cm-1の範囲に観察されるピークとについて、吸光度の最大値の比を算出した。そして、算出した比と、各標準サンプルのイオン化度とを用いて検量線1を作成した。
 基材として延伸ナイロンフィルム(上記「ON」)を用いた積層体について、フーリエ変換赤外分光光度計(Perkin Elmer製、Spectrum One)を用いて、ATR(全反射測定)のモードで、ガスバリア層に含まれるC=O伸縮振動のピークを観察した。イオン化前のカルボン酸含有重合体のカルボキシル基のC=O伸縮振動に帰属されるピークは、1600cm-1~1850cm-1の範囲に観察された。また、イオン化された後のカルボキシル基のC=O伸縮振動は1500cm-1~1600cm-1の範囲に観察された。そして、それぞれの範囲における最大の吸光度からその比を算出し、その比と上記検量線1とを用いてイオン化度を求めた。
 [蛍光X線によるイオン化度の算出]
 基材として前述したONを用いた積層体について、FT-IRの測定よりイオン化度の異なる標準サンプルを作製した。具体的には、イオン化度(イオン:カルシウムイオン)が0~100モル%間で約10モル%ずつ異なる11種類の標準サンプルを作製した。各々のサンプルについて、波長分散型蛍光X線装置(株式会社リガク製、ZSXminiII)を用いて、カルシウム元素の蛍光X線強度を測定し、予めFT-IRで測定したイオン化度から検量線2を作成した。得られた検量線2を用いて、各種条件で作製した積層体のカルシウムイオン化度を算出した。
 他の金属イオン(マグネシウムイオンや亜鉛イオン等)でイオン化する場合に関しても、上記と同様の方法で検量線2を作成し、イオン化度を算出した。
 ON以外の基材を用いた積層体(PETなど)についても、蛍光X線強度測定により得られた検量線2を用いて、イオン化度を算出した。
 (7)加水分解縮合物および重合体(X)の重量
 上述した方法によって、化合物(L)に由来する無機成分の重量、および、化合物(L)に由来する有機成分の重量と重合体(X)に由来する有機成分の重量との合計を算出した。
 (8)レトルト処理後の酸素バリア性
 ラミネート体(サイズ:12cm×12cm)を2枚作製した。そして、その2枚を、無延伸ポリプロピレンフィルム(トーセロ株式会社製、RXC-18(商品名)、厚さ50μm、以下「CPP」と略記することがある)が内側になるように重ねあわせたのち、ラミネート体の3辺をその端から5mmまでヒートシールした。ヒートシールされた2枚のラミネート体の間に蒸留水80gを注入したのち、残された第4辺を同様にヒートシールした。このようにして、蒸留水が中に入ったパウチを作製した。
 次に、そのパウチをレトルト処理装置(日阪製作所製、フレーバーエース RCS-60)に入れ、120℃、30分、0.15MPaの条件でレトルト処理を施した。レトルト処理後、加熱を停止し、レトルト処理装置の内部温度が60℃になった時点で、レトルト処理装置からパウチを取り出した。そして、20℃、65%RHの室内でパウチを1時間放置した。その後、ヒートシールされた部分をはさみで切り取り、ラミネート体の表面に付着した水を、紙タオルを軽く押し付けることによって拭き取った。その後、20℃、85%RHに調整したデシケータ内にパウチを1日以上放置した。このようなレトルト処理がされたラミネート体の酸素透過度を測定することによって、レトルト処理後の酸素バリア性を評価した。
 酸素透過度は、酸素透過量測定装置(モダンコントロール社製「MOCON OX-TRAN2/20」)を用いて測定した。具体的には、酸素供給側にガスバリア層が向きキャリアガス側にCPPが向くように積層体をセットし、温度20℃、酸素供給側の湿度85%RH、キャリアガス側の湿度85%RH、酸素圧1気圧、キャリアガス圧力1気圧の条件下で酸素透過度(単位:cc/m2/day/atm)を測定した。
 以下の各実施例と参考例1および2とを比較すると、各実施例の積層体は、コート層が薄いにも拘わらずレトルト処理前後の酸素バリア性が参考例1および2の積層体と同等かそれ以上であり、ガスバリア性および耐熱水性に優れていた。さらに、各実施例の積層体は、引っ張り強伸度およびヤング率に関して、参考例3および4で示される基材フィルム自体の性能に近づいていた。また、各実施例の積層体は、乾熱収縮率に関して、参考例1および2の積層体と比較して改善されていた。すなわち、各実施例の積層体は加工性に優れていた。また、過酷な条件でレトルト処理を行ったときに、参考例1および2の積層体はわずかに外観変化を起こしたが、実施例の積層体では外観変化はなく、実施例の積層体は優れた耐熱水性を示した。
 実施例1、2では混合液(T)調製時の反応時間を1時間とし、それ以降の実施例ではその反応時間を5時間とした。反応時間を1時間から5時間へ延ばすことで、ガスバリア層の接触角を大きくすることができ、スキン層を厚くすることができた。スキン層を厚くすることによって、選択されることがあまりない重さ(5kg)の内容物が入れられたパウチを過酷な条件でレトルト処理を行った後に、濡れた状態のガスバリア層同士を重ねておいたときでさえ、ガスバリア層同士が膠着することはなかった。
 <実施例1>
 数平均分子量150,000のポリアクリル酸(PAA)を蒸留水で溶解し、水溶液中の固形分濃度が13重量%であるPAA水溶液を得た。続いて、このPAA水溶液に、13%アンモニア水溶液を加え、PAAのカルボキシル基の1モル%を中和して、PAAの部分中和水溶液を得た。
 また、[エチレンジアミン(EDA)に含まれるアミノ基]/[HCl]の当量比が1/1となるように、EDAに1N-HClを加え、EDA塩酸塩水溶液(S1)を得た。
 続いて、[テトラメトキシシラン(TMOS)に由来する無機成分の重量]/[PAAの部分中和物の重量]の比が30.0/70.0となり、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が0.2/100となるように、混合液(U1)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解した。続いて、これにTMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で1時間、加水分解および縮合反応を行い、混合液(T1)を得た。次に、混合液(T1)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物の水溶液(濃度13重量%)354重量部を速やかに添加し、さらに上記EDA塩酸塩水溶液(S1)1.27重量部を加え、固形分濃度が5重量%の混合液(U1)を得た。
 一方、酢酸エチル67重量部に溶解させた2液型のアンカーコート剤(三井武田ケミカル株式会社製:タケラックA-626(商品名)1重量部およびタケネートA-50(商品名)2重量部)を、延伸ポリエチレンテレフタレートフィルム(東レ株式会社製、ルミラーP60(商品名)、厚さ12μm、以下「PET」と略記することがある)上にコートし、乾燥させることによってアンカーコート層を有する基材(AC/PET)を作製した。この基材のアンカーコート層上に、乾燥後の厚さが0.4μmとなるようにバーコータによって混合液(U1)をコートし120℃で5分間乾燥した。続いて、同様の手順で基材の反対側の面にも塗工を行った。得られた積層体を、40℃で3日間エージングを行なった。次に、乾燥機を用い180℃で5分間、積層体に熱処理を施した。次に、積層体を、2重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬し、その後、110℃で1分乾燥を行った。このようにして、ガスバリア層(0.4μm)/AC(0.1μm)/PET(12μm)/AC(0.1μm)/ガスバリア層(0.4μm)という構造を有する積層体(A1)を得た。そのガスバリア層は、無色透明で外観が非常に良好であった。積層体(A1)について、上述した方法にて、イオン化度、レトルト処理前酸素透過度、接触角、引っ張り強伸度、ヤング率、乾燥熱収縮率を測定した。
 続いて、延伸ナイロンフィルム(前記「ON」)、及び無延伸ポリプロピレンフィルム(前記「CPP」)のそれぞれの上に、2液型の接着剤(三井武田ケミカル株式会社製、A-385(商品名)およびA-50(商品名))をコートして乾燥させた。そして、これらと積層体(A1)とをラミネートした。このようにして、ガスバリア層/AC/PET/AC/ガスバリア層/接着剤/ON/接着剤/CPPという構造を有するラミネート体(1)を得た。該ラミネート体について、レトルト処理後の酸素透過度を上述した方法で評価した。
 <実施例2>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が1.0/100となるようにした以外は実施例1と同様の仕込み比で、混合液(U2)を調製した。具体的には、まず、実施例1の混合液(T1)と同様の組成、方法で調製した混合液(T2)を蒸留水567重量部、メタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S2)6.3重量部を加え、固形分濃度が5重量%の混合液(U2)を得た。
 混合液(U2)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A2)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(2)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例3~6および33において、EDAの添加量を変化させた。これらの実施例から、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる-COO-基の当量]の比が0.2/100~20.0/100の範囲にあるときに、優れたガスバリア性および耐熱水性が発現することが確かめられた。この範囲よりも化合物(P)が少ないと、耐熱水性が低下し、多いとガスバリア性が低下する(比較例3および4参照)。また、ガスバリア性および耐熱水性がより良好となる観点から、上記比は、1.0/100~4.9/100の範囲にあることが好ましい(実施例5および6参照)。
 <実施例3>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、実施例1と同様の仕込み比で、反応時間のみを変えて、混合液(U3)を調製した。
 具体的には、まず、TMOS50重量部をメタノール50重量部に溶解した。そこへTMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T3)を得た。次に、混合液(T3)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S3)1.27重量部を加え、固形分濃度5重量%の混合液(U3)を得た。
 混合液(U3)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い積層体(A3)を得た。続いて実施例1と同様にラミネートを行い、ラミネート体(3)を得た。積層体およびラミネート体の評価については実施例1と同様に行った。
 <実施例4>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が19.4/100となるようにした以外は実施例3と同様の仕込み比で、混合液(U4)を調製した。具体的には、まず、実施例3の混合液(T3)と同様の組成および方法で調製した混合液(T4)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S4)127重量部を加え、固形分濃度5重量%の混合液(U4)を得た。
 混合液(U4)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A4)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(4)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例5>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が4.9/100となるようにした以外は実施例3と同様の仕込み比で、混合液(U5)を調製した。具体的には、まず、実施例3の混合液(T3)と同様の組成および方法で調製した混合液(T5)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、EDA塩酸塩水溶液(S5)32重量部を加え、固形分濃度5重量%の混合液(U5)を得た。
 混合液(U5)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A5)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(5)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例6>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が1.0/100となるようにした以外は実施例3と同様の仕込み比で、混合液(U6)を調製した。具体的には、まず、実施例3の混合液(T3)と同様の組成、方法で調製した混合液(T6)を蒸留水567重量部、メタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S6)6.3重量部を加え、固形分濃度5重量%の混合液(U6)を得た。
 混合液(U6)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A6)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(6)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例7~12において、[式(I)で表される化合物のモル数]/[式(II)で表される化合物のモル数]の比を変化させた。
 実施例7、8、11、12から、耐熱水性およびガスバリア性を良好にするためには、[式(I)で表される化合物のモル数]/[式(II)で表される化合物のモル数]の比が99.5/0.5~80.0/20.0の範囲にあることが好ましいことが確かめられた。式(II)で表される化合物の含有量がこの範囲より少ないと、ガスバリア性積層体の耐熱水性が低下し、多いとガスバリア性が低下する。また、耐熱水性およびガスバリア性がより良好となる観点から、上記の比は、98.0/2.0~89.9/10.1の範囲にあることがより好ましい(実施例9および10参照)。
 <実施例7>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。続いて、[TMOS]/[γ-グリシドキシドキシプロピルトリメトキシシラン(GPTMOS)]のモル比が99.5/0.5、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が30.0/70.0、[EDAのアミノ基]/[PAAのカルボキシル基]のモル比が1.0/100となるように、混合液(U7)を調製した。具体的には、まず、TMOS49.6重量部およびGPTMOS0.4重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう、蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T7)を得た。続いて、混合液(T7)を、蒸留水566重量部およびメタノール284重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)352重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S7)6.3重量部を加え、固形分濃度5重量%の混合液(U7)を得た。
 混合液(U7)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A7)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(7)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例8>
 TMOS/GPTMOSのモル比が80.0/20.0となるようにした以外は実施例7と同様の仕込み比で、混合液(U8)を調製した。具体的には、まず、TMOS36重量部およびGPTMOS14重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.0重量部と0.1Nの塩酸7.4重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T8)を得た。続いて、混合液(T8)を、蒸留水520重量部およびメタノール301重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)267重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S8)4.8重量部を加え、固形分濃度5重量%の混合液(U8)を得た。
 混合液(U8)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A8)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(8)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例9>
 TMOS/GPTMOSのモル比が89.9/10.1となるようにした以外は実施例7と同様の仕込み比で、混合液(U9)を調製した。具体的には、まず、TMOS42.6重量部およびGPTMOS7.4重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.2重量部と0.1Nの塩酸7.8重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T9)を得た。続いて、混合液(T9)を、蒸留水542重量部およびメタノール293重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S9)5.5重量部を加え、固形分濃度5重量%の混合液(U9)を得た。
 混合液(U9)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A9)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(9)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例10>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。続いて、[TMOS]/[GPTMOS]のモル比が98.0/2.0となり、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が32.4/67.6となり、[EDAのアミノ基]/[PAAのカルボキシル基]のモル比が1.1/100となるように、混合液(U10)を調製した。具体的には、まず、TMOS48.5重量部およびGPTMOS1.5重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T10)を得た。続いて、混合液(T10)を、蒸留水562重量部およびメタノール293重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S10)6.2重量部を加え、固形分濃度5重量%の混合液(U10)を得た。
 混合液(U10)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A10)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(10)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。さらに、10%伸長後の酸素透過度の測定も行った。
 <実施例11>
 TMOSとGPTMOSのモル比が99.9/0.1となるようにした以外は実施例7と同様の仕込み比で、混合液(U11)を得た。具体的には、まず、TMOS49.9重量部およびGPTMOS0.1重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T11)を得た。続いて、混合液(T11)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S11)6.3重量部を加え、固形分濃度5重量%の混合液(U11)を得た。
 混合液(U11)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A11)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(11)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例12>
 TMOS/GPTMOSのモル比が70.0/30.0となるようにした以外は実施例7と同様の仕込み比で、混合液(U12)を調製した。具体的には、まず、TMOS30重量部およびGPTMOS20重量部を、メタノール50重量部に溶解した。そこへTMOSおよびGPTMOSの合計に対する水の割合が1.95モル当量となるよう蒸留水を2.9重量部と0.1Nの塩酸7.0重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T12)を得た。続いて、混合液(T12)を、蒸留水500重量部およびメタノール310重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)229重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S12)4.1重量部を加え、固形分濃度5重量%の混合液(U12)を得た。
 混合液(U12)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A12)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(12)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例13~17において、[化合物(L)に由来する無機成分の重量]/[化合物(L)に由来する有機成分の重量と重合体(X)に由来する有機成分の重量との合計]の比を変化させた。ガスバリア性積層体の耐熱水性およびガスバリア性、すなわちレトルト処理前後の酸素バリア性が良好となる観点から、上記比は20.0/80.0~80.0/20.0の範囲にあることが好ましい(実施例13、14、16および17参照)。さらに、レトルト処理前後の酸素バリア性がより良好となる観点から、上記比は30.0/70.0~69.9/30.1の範囲にあることがより好ましい(実施例11および15参照)。
 <実施例13>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が20.0/80.0となるようにした以外は実施例10と同様の仕込み比で、混合液(U13)を調製した。具体的には、まず、実施例10の混合液(T10)と同様の組成および方法で混合液(T13)を得た。続いて、混合液(T13)を、蒸留水842重量部およびメタノール405重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)595重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S13)10.6重量部を加え、固形分濃度5重量%の混合液(U13)を得た。
 混合液(U13)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A13)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(13)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例14>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が80.0/20.0となるようにした以外は実施例10と同様の仕込み比で、混合液(U14)を調製した。具体的には、まず、実施例10の混合液(T10)と同様の組成および方法で混合液(T14)を得た。続いて、混合液(T14)を、蒸留水211重量部およびメタノール135重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)32重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S14)0.6重量部を加え、固形分濃度5重量%の混合液(U14)を得た。
 混合液(U14)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A14)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(14)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例15>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が69.9/30.1となるようにした以外は実施例10と同様の仕込み比で、混合液(U15)を得た。具体的には、まず、実施例10の混合液(T10)と同様の組成および方法で混合液(T15)を得た。続いて、混合液(T15)を、蒸留水241重量部およびメタノール148重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)59重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S15)1.0重量部を加え、固形分濃度5重量%の混合液(U15)を得た。
 混合液(U15)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A15)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(15)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例16>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が10.0/90.0となるようにした以外は実施例10と同様の仕込み比で、混合液(U16)を得た。具体的には、まず、実施例10の混合液(T10)と同様の組成および方法で混合液(T16)を得た。続いて、混合液(T16)を、蒸留水1683重量部およびメタノール766重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)1346重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S16)24重量部を加え、固形分濃度5重量%の混合液(U16)を得た。
 混合液(U16)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A16)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(16)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例17>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が90.0/10.0となるようにした以外は実施例10と同様の仕込み比で、混合液(U17)を得た。具体的には、まず、実施例10の混合液(T10)と同様の組成および方法で混合液(T17)を得た。続いて、混合液(T17)を、蒸留水188重量部およびメタノール125重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)11重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S17)0.2重量部を加え、固形分濃度5重量%の混合液(U17)を得た。
 混合液(U17)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A17)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(17)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例10、18~20において、化合物(P)の種類を変化させた。これらの実施例から、化合物(P)としては、エチレンジアミン、プロピレンジアミン、キトサンが好ましいことが確認された。
 <実施例18>
 [プロピレンジアミン(PDA)に含まれるアミノ基]/[HCl]の当量比が1/1となるようPDAに1N-HClを加え、PDA塩酸塩水溶液(S18)を得た。EDA塩酸塩水溶液をPDA塩酸塩水溶液(S18)に変えた以外は実施例10の混合液(U10)と同様の組成および方法で、混合液(U18)を得た。
 混合液(U18)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A18)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(18)を得た。積層体およびラミネート体の評価については、実施例10と同様に行った。
 <実施例19>
 [キトサンに含まれるアミノ基]/[HCl]の当量比が1/1となるようキトサンに1N-HClを加え、キトサン塩酸塩水溶液(S19)を得た。EDA塩酸塩水溶液をキトサン塩酸塩水溶液(S19)に変えた以外は実施例10の混合液(U10)と同様の組成および方法で、混合液(U19)を得た。
 混合液(U19)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A19)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(19)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例20>
 [ヘキサメチレンジアミン(HMDA)に含まれるアミノ基]/[HCl]の当量比が1/1となるようHMDAに1N-HClを加え、HMDA塩酸塩水溶液(S20)を得た。EDA塩酸塩水溶液をHMDA塩酸塩水溶液(S20)に変えた以外は実施例10の混合液(U10)と同様の組成および方法で、混合液(U20)を得た。
 混合液(U20)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A20)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(20)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例10、21~23において、[官能基(F)に含まれる-COO-基の内、2価以上の金属イオンで中和されている割合](上述のイオン化度)を変化させた。実施例10、21~23の結果から、優れたガスバリア性を有する積層体を得るためには、イオン化度は60モル%以上100モル%以下が好ましく、80モル%以上がより好ましいことが確認された。また、イオン化が行われていないガスバリア性積層体(比較例7)は、高い耐熱水性およびガスバリア性を示さなかった。
 <実施例21>
 実施例21では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U21)を使用した。
 混合液(U21)を用い、実施例1と同様にコート、熱処理を行い、積層体を得た。この積層体を0.1重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬することによって、イオン化を行った。次に、この積層体を実施例1と同様に乾燥することによって、積層体(A21)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(21)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例22>
 実施例22では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U22)を使用した。
 混合液(U22)を用い、実施例1と同様にコート、熱処理を行い、積層体を得た。この積層体を0.2重量%の酢酸カルシウム水溶液(85℃)に6秒間浸漬することによって、イオン化を行った。次に、この積層体を実施例1と同様に乾燥することによって、積層体(A22)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(22)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例23>
 実施例23では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U23)を使用した。
 混合液(U23)を用い、実施例1と同様にコート、熱処理を行い、積層体を得た。この積層体を0.2重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬することによって、イオン化を行った。次に、この積層体を実施例1と同様に乾燥することによって、積層体(A23)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(23)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例6および実施例24で、2つ以上の水酸基を含有する化合物(Q)を用いた際の影響を確認した。これより、化合物(Q)を用いることで積層体の耐熱水性、つまりレトルト処理後の酸素透過度が向上し、さらに耐伸長性、つまり伸長後の酸素透過度が向上することが確かめられた。
 <実施例24>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。一方、ポリビニルアルコール(株式会社クラレ製、PVA117(商品名)、以下、「PVA」と略記する場合がある)を10重量%となるよう蒸留水に加え、85℃で3時間加熱することによってPVA水溶液を得た。
 [PVAの水酸基]/[PAAのカルボキシル基]の当量比が18.2/100となるようにPVA水溶液を加えた以外は実施例6と同様の仕込み比で、混合液(U24)を得た。
 具体的には、まず、実施例6で得られた混合液(T6)と同様の組成および方法で得られた混合液(T24)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S24)6.3重量部を加え、続いて上記10重量%PVA水溶液51重量部を加えた。このようにして、固形分濃度5重量%の混合液(U24)を得た。
 混合液(U24)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A24)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(24)を得た。積層体およびラミネート体の評価については、実施例10と同様に行った。
 実施例10、25、26において、重合体(X)(=カルボン酸含有重合体)が有する官能基(F)の中和(イオン化)に用いる2価以上の金属イオンの種類を変化させた。これよりCa、Mg、Znといった2価以上の金属イオンでイオン化を行うことで高い耐熱水性、ガスバリア性が発現されることが確認された。
 <実施例25>
 実施例25では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U25)を使用した。混合液(U25)を用い、実施例1と同様にコート、熱処理を行い、積層体を得た。この積層体を2重量%の酢酸マグネシウム水溶液(85℃)に12秒間浸漬することによって、イオン化を行った。次に、この積層体を、実施例1と同様に乾燥することによって、積層体(A25)を得た。
 続いて、実施例1と同様にラミネートを行い、ラミネート体(25)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例26>
 実施例26では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U26)を使用した。混合液(U26)を用い、実施例1と同様にコート、熱処理を行い、積層体を得た。この積層体を2重量%の酢酸亜鉛水溶液(85℃)に12秒間浸漬することによって、イオン化を行った。次に、この積層体を、実施例1と同様に乾燥することによって、積層体(A26)を得た。
 続いて、実施例1と同様にラミネートを行い、ラミネート体(26)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例10に対して、実施例27では、溶液(U)をコートしてガスバリア層を形成させる面を、基材の両面から、基材の片面のみに変化させた。これより、基材の片面にのみにガスバリア層が存在することで、得られる積層体のガスバリア性はやや低下するが、ヤング率が基材のもつ物性値に近づき、加工性が向上することが確かめられた。
 <実施例27>
 実施例27では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U27)を使用した。混合液(U27)を用いることおよびコートを片面のみにしたこと以外は実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A27)を得た。
 続いて、実施例1と同様の方法で、PET/AC/ガスバリア層/接着剤/ON/接着剤/CPPという構造を有するラミネート体(27)を得た。積層体およびラミネート体の評価については、実施例10と同様に行った。
 実施例6および10に対して、実施例28および29では、基材の種類をPETからONに変化させた。これより、基材としてはPETを用いた方がONを用いるよりガスバリア性が良好になることが確かめられ、ガスバリア性の観点からは基材としてPETがより適していることが確認された。但し積層体の基材をONとすると、ON自身が強度があるために、ラミネート体の構成を積層体/ON/CPPなどの3層構成から、積層体/CPPのような2層構成に簡易化することができるため、加工性の面で優れているといった利点がある。
 <実施例28>
 実施例28では、実施例6で得られた混合液(U6)と同様の組成および方法で得た混合液(U28)を使用した。混合液(U28)を用いることおよび基材を延伸ナイロンフィルム(上記「ON」)にした以外は実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(B28)を得た。
 続いて、無延伸ポリプロピレンフィルム(上記「CPP」)上に、2液型の接着剤(三井武田ケミカル株式会社製、A-385(商品名)およびA-50(商品名))をコートして乾燥した。そして、そのフィルムと積層体(B28)とをラミネートした。このようにして、ガスバリア層/AC/ON/AC/ガスバリア層/接着剤/CPPという構造を有するラミネート体(28)を得た。積層体およびラミネート体の評価については、実施例10と同様に行った。
 <実施例29>
 実施例29では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U29)を使用した。
 混合液(U29)を用いること以外は実施例28と同様にコート、熱処理、イオン化、乾燥を行い、積層体(B29)を得た。続いて、実施例28と同様にラミネートを行い、ラミネート体(29)を得た。積層体およびラミネート体の評価については、実施例10と同様に行った。
 実施例28および29に対し、実施例30および31では、ラミネート構成をガスバリア層/AC/ON/AC/ガスバリア層/接着剤/CPPからPET/接着剤/ガスバリア層/AC/ON/AC/ガスバリア層/接着剤/CPPに変化させた。これより、ONを基材としたガスバリア性積層体を、ラミネート体として2層で用いても3層で用いても、ガスバリア性に変化がないことが確かめられた。したがって、ONを基材とした積層体では、要求される性能によってラミネート構成を2層、3層と使い分け可能であることが確かめられた。
 <実施例30>
 実施例30では、実施例6で得られた混合液(U6)と同様の組成および方法で得た混合液(U30)を使用した。混合液(U30)を用い、実施例28と同様にコート、熱処理、イオン化、乾燥を行い、積層体(B30)を得た。
 続いて、延伸ポリエチレンテレフタレートフィルム(上記「PET」)、無延伸ポリプロピレンフィルム(上記「CPP」)のそれぞれの上に、2液型の接着剤(三井武田ケミカル株式会社製、A-385(商品名)およびA-50(商品名))をコートして乾燥させた。そして、それらのフィルムと積層体(B30)とをラミネートした。このようにして、PET/接着剤/ガスバリア層/AC/ON/AC/ガスバリア層/接着剤/CPPという構造を有するラミネート体(30)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例31>
 実施例31では、実施例10で得られた混合液(U10)と同様の組成、方法で得た混合液(U31)を使用した。
 混合液(U31)を用いること以外は実施例28と同様にコート、熱処理、イオン化、乾燥を行い、積層体(B31)を得た。続いて、実施例30と同様にラミネートを行い、ラミネート体(31)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例29に対して、実施例32では、溶液(U)をコートしてガスバリア層を形成させる面を、基材の両面から、基材の片面のみに変化させた。これより、基材の片面にのみにガスバリア層が存在することで、得られる積層体のガスバリア性はやや低下するが、ヤング率が基材自身の物性値に近づき、加工性が向上することが確かめられた。
 <実施例32>
 実施例32では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U32)を使用した。混合液(U32)を用いることおよびコートを片面のみにしたこと以外は実施例28と同様にコート、熱処理、イオン化、乾燥を行い、積層体(B32)を得た。
 続いて、実施例28と同様の方法でラミネートを行い、ガスバリア層/AC/ON/接着剤/CPPという構造を有するラミネート体(32)を得た。ラミネート体の評価については実施例1と同様に行った。
 参考例1および2の積層体は、基材としてそれぞれPET、ONを用い、化合物(P)を用いておらず、1つのコート層の厚さが1μmの積層体である。積層体におけるコート層(ガスバリア層)が厚いと、ガスバリア性には優れるが、引っ張り強伸度およびヤング率が基材フィルムと大きく異なり、さらに乾熱収縮率が大きいなど、加工性が低下する。
 <参考例1>
 PAAの部分中和物の水溶液は、実施例1と同様に調製した。続いて、TMOS/GPTMOSのモル比が89.9/10.1、[TMOSおよびGPTMOSに由来する無機成分]/[GPTMOSの有機成分とPAAの部分中和物]の重量比が31.5/68.5となるように、混合液(U33)を調製した。具体的には、まず、TMOS46重量部およびGPTMOS8重量部を、メタノール50重量部に溶解した。続いて、TMOSに対する水の割合が1.95モル当量となりpHが2以下となるよう蒸留水を3.2重量部と0.1Nの塩酸7.8重量部とを加え、10℃で5時間、加水分解および縮合反応を行い、混合液(T33)を得た。続いて、混合液(T33)を、蒸留水61重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、固形分濃度13重量%の混合液(U33)を得た。
 一方、酢酸エチル67重量部に溶解させた2液型のアンカーコート剤(三井武田ケミカル株式会社製:タケラックA-626(商品名)1重量部およびタケネートA-50(商品名)2重量部)を、延伸ポリエチレンテレフタレートフィルム(上記「PET」)上にコートし、乾燥させることによってアンカーコート層を有する基材(AC(0.1μm)/PET(12μm))を作製した。この基材のアンカーコート層上に、乾燥後の厚さが1.0μmとなるようにバーコータによって混合液(U33)をコートし、120℃で5分間乾燥した。同様の手順で、基材の他方の面にもコートを行った。得られた積層体について、40℃で3日間エージングを行った。次に、その積層体に対し、乾燥機を用い180℃で5分間熱処理を施した。次に、その積層体を2重量%の酢酸カルシウム水溶液(85℃)に12秒間浸漬することによってイオン化を行い、その後、50℃で5分間乾燥した。このようにして、ガスバリア層(1.0μm)/AC(0.1μm)/PET(12μm)/AC(0.1μm)/ガスバリア層(1.0μm)という構造を有する積層体(A33)を得た。そのガスバリア層は、無色透明で外観が非常に良好であった。積層体(A33)について、上述した方法によって、レトルト処理前酸素透過度、接触角、ヤング率、乾燥熱収縮率を測定した。
 続いて、積層体(A33)を用いて実施例1と同様にラミネートを行い、ラミネート体(33)を得た。積層体およびラミネート体の評価については、実施例10と同様に行った。
 <参考例2>
 参考例2では、参考例1で得られた混合液(U33)と同様の組成および方法で得た混合液(U34)を使用した。また、基材をONにした以外は、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(B34)を得た。
 続いて、実施例28と同様にラミネートを行い、ラミネート体(34)を得た。積層体およびラミネート体の評価については実施例10と同様に行った。
 積層体と基材フィルムについて、引っ張り強伸度およびヤング率の差異を確認するために、参考例3および4では基材フィルムの性能を示した。本発明の積層体の引っ張り強伸度およびヤング率が基材フィルムのそれらに近いほど、積層体の加工時の条件を基材フィルムの加工時の条件から変える必要がないので、加工性に優れているといえる。
 <参考例3>
 本発明の実施例等で用いた延伸ポリエチレンテレフタレートフィルム(「PET」;東レ株式会社製、ルミラーP60(商品名)、厚さ12μm)の性能を示した。
 <参考例4>
 本発明の実施例等で用いた延伸ナイロンフィルム(「ON」;ユニチカ株式会社製、エンブレムON-BC(商品名)、厚さ15μm)の性能を示した。
 参考例1および2に対して、比較例1および2ではガスバリア層の厚さを変化させた。化合物(P)が用いられていないこれらの組成では、ガスバリア層が薄くなると、引っ張り強伸度およびヤング率は基材フィルムのそれらに近づくが、ガスバリア性が著しく低下した。
 <比較例1>
 固形分濃度を5重量%にした以外は参考例1の混合液(U33)と同様の組成、方法で混合液(U35)を得た。具体的には、まず、参考例1の混合液(T33)と同様の組成および方法で調製した混合液(T35)を、蒸留水542重量部およびメタノール293重量部で希釈した。得られた混合液を攪拌しながら、これにPAAの部分中和物水溶液(濃度13重量%)308重量部を速やかに添加し、固形分濃度5重量%の混合液(U35)を得た。
 混合液(U35)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A35)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(35)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <比較例2>
 比較例1の混合液(U35)と同様の組成、方法で混合液(U36)を得た。混合液(U36)を用いること以外は実施例28と同様にコート、熱処理、イオン化、乾燥を行い、積層体(B36)を得た。続いて、実施例28と同様にラミネートを行い、ラミネート体(36)を得た。積層体およびラミネート体の評価については実施例1と同様に行った。
 比較例3に示されるように、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる-COO-基の当量]の比が、0.2/100よりも小さいと、積層体の耐熱水性が低下した。一方、比較例4に示されるように、上記の比が20.0/100よりも大きいと、積層体のガスバリア性が低下した。すなわち、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる-COO-基の当量]の比が、0.2/100~20.0/100の範囲にあることによって、優れたガスバリア性および耐熱水性を示すことが確かめられた。
 <比較例3>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。一方、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が0.1/100となるようにした以外は実施例3と同様の仕込み比で、混合液(U37)を調製した。具体的には、まず、実施例3の混合液(T3)と同様の組成および方法で調製した混合液(T37)を、蒸留水567重量部およびメタノール283重量部で希釈した。得られた混合液を攪拌しながら、これにPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S37)0.6重量部を加え、固形分濃度5重量%の混合液(U37)を得た。
 混合液(U37)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A37)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(37)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <比較例4>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。一方、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が29.0/100となるようにした以外は実施例3と同様の仕込み比で、混合液(U38)を調製した。具体的には、まず、実施例3の混合液(T3)と同様の組成および方法で調製した混合液(T38)を、蒸留水567重量部およびメタノール283重量部で希釈した。得られた混合液を攪拌しながら、これにPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S38)190重量部を加え、固形分濃度5重量%の混合液(U38)を得た。
 混合液(U38)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A38)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(38)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <比較例5>
 比較例4と同様の仕込みで反応時間のみを変えて、混合液(U39)を調製した。具体的には、まず、TMOS50重量部をメタノール50重量部に溶解した。続いて、TMOSに対する水の割合が1.95モル当量となるよう蒸留水を3.3重量部と0.1Nの塩酸8.2重量部とを加え、10℃で1時間、加水分解および縮合反応を行い、混合液(T39)を得た。得られた混合液(T39)を蒸留水567重量部およびメタノール283重量部で希釈した後に、攪拌しながら、これにPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S38)190重量部を加え、固形分濃度5重量%の混合液(U39)を得た。
 混合液(U39)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A39)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(39)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 比較例6から明らかなように、重合体(X)の官能基(カルボキシル基)の少なくとも一部が2価以上の金属イオンにより中和されていない場合には、得られる積層体において、良好な耐熱水性およびガスバリア性は発現しない。すなわち、中和を行うことによって初めて優れた耐熱水性およびガスバリア性が発現されることが確認された。
 <比較例6>
 比較例6では、実施例10で得られた混合液(U10)と同様の組成および方法で得た混合液(U40)を使用した。
 混合液(U40)を用い、実施例1と同様にコート、熱処理を行って積層体を得た。この積層体に対して、イオン化および乾燥は行わなかった。この積層体を用いて実施例1と同様にラミネートを行い、ラミネート体(40)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 <実施例33>
 PAAの部分中和物水溶液およびEDA塩酸塩水溶液は、実施例1と同様に調製した。そして、[EDAのアミノ基]/[PAAのカルボキシル基]の当量比が20.0/100となるようにした以外は実施例3と同様の仕込み比で、混合液(U41)を調製した。具体的には、まず、実施例3の混合液(T3)と同様の組成および方法で調製した混合液(T41)を、蒸留水567重量部およびメタノール283重量部で希釈した後、攪拌しながらPAAの部分中和物水溶液(濃度13重量%)354重量部を速やかに添加し、さらにEDA塩酸塩水溶液(S41)131重量部を加え、固形分濃度5重量%の混合液(U41)を得た。
 混合液(U41)を用い、実施例1と同様にコート、熱処理、イオン化、乾燥を行い、積層体(A41)を得た。続いて、実施例1と同様にラミネートを行い、ラミネート体(41)を得た。積層体およびラミネート体の評価については、実施例1と同様に行った。
 実施例、参考例および比較例における積層体の作製条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 積層体の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 ラミネート体の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示される様に、[化合物(P)に含まれるアミノ基の当量]/[重合体(X)の官能基に含まれる-COO-基の当量]の比が0.2/100~20.0/100の範囲にある実施例は、レトルト処理前後で高い酸素バリア性を示した。そして、上記比が上記範囲にない比較例では、レトルト処理前および/またはレトルト処理後の酸素バリア性が低かった。
 また、参考例1は、2つのガスバリア層の厚さの合計が2μmである。このようにガスバリア層を厚くすると、化合物(P)を添加しなくても酸素バリア性を高めることができる。しかし、その場合には、加工性が低下してしまう。参考例1とはガスバリア層の厚さのみが異なる比較例1は、レトルト処理前後でのガスバリア性が大きく低下した。このように、化合物(P)を適切な範囲で添加しない場合、ガスバリア層を薄くするとガスバリア性が大きく低下した。
 本発明のガスバリア性積層体は、食品、医薬、医療器材、機械部品、衣料等の包装材料として有効に使用できる。それらの中でも、高湿条件下でのガスバリア性が要求されるような食品包装用途に特に有効に使用される。本発明のガスバリア性積層体の好ましい用途には、レトルトパウチが含まれる。

Claims (16)

  1.  基材と、前記基材に積層された少なくとも1つのガスバリア性を有する層とを含むガスバリア性積層体であって、
     前記ガスバリア性を有する層は、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物と、カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含有する重合体(X)とを含む組成物からなり、
     前記化合物(L)は、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物(A)を含み、
     前記重合体(X)の前記官能基に含まれる-COO-基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されており、
     前記重合体(X)の前記官能基に含まれる-COO-基の少なくとも一部が2価以上の金属イオンで中和されており、
     前記組成物において、[前記化合物(P)に含まれるアミノ基の当量]/[前記重合体(X)の前記官能基に含まれる-COO-基の当量]の比が0.2/100~20.0/100の範囲にあるガスバリア性積層体。
  2.  前記少なくとも1つの層の厚さの合計が1μm以下であり、
     20℃で85%RH雰囲気における酸素透過度が1.1cm3/(m2・day・atm)以下である、請求項1に記載のガスバリア性積層体。
  3.  前記化合物(A)が、以下の式(I)で表される少なくとも1種の化合物である、請求項1に記載のガスバリア性積層体。
    1(OR1q2 p-q-r1 r・・・(I)
    [式(I)中、M1はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaまたはNdを表す。R1はアルキル基を表す。R2はアルキル基、アラルキル基、アリール基またはアルケニル基を表す。X1はハロゲン原子を表す。pはM1の原子価と等しい。qは0~pの整数を表す。rは0~pの整数を表す。1≦q+r≦pである。]
  4.  前記化合物(L)は、加水分解性を有する特性基と、カルボキシル基との反応性を有する官能基で置換されたアルキル基とが結合している金属原子を含む少なくとも1種の化合物(B)を含む、請求項1に記載のガスバリア性積層体。
  5.  前記化合物(B)が、以下の式(II)で表される少なくとも1種の化合物であり、
     [前記式(I)で表される化合物に由来するM1原子のモル数]/[前記式(II)で表される化合物に由来するM2原子のモル数]の比が、99.5/0.5~80.0/20.0の範囲にある、請求項4に記載のガスバリア性積層体。
    2(OR3n2 k2 m-n-k・・・(II)
    [式(II)中、M2はSi、Al、Ti、Zr、Cu、Ca、Sr、Ba、Zn、Ga、Y、Ge、Pb、Sb、V、Ta、W、LaまたはNdを表す。R3はアルキル基を表す。X2はハロゲン原子を表す。Z2は、カルボキシル基との反応性を有する官能基で置換されたアルキル基を表す。mはM2の原子価と等しい。nは0~(m-1)の整数を表す。kは0~(m-1)の整数を表す。1≦n+k≦(m-1)である。]
  6.  [前記化合物(L)に由来する無機成分の重量]/[前記化合物(L)に由来する有機成分の重量と前記重合体(X)に由来する有機成分の重量との合計]の比が、20.0/80.0~80.0/20.0の範囲にある、請求項1に記載のガスバリア性積層体。
  7.  前記化合物(P)が、エチレンジアミン、プロピレンジアミンおよびキトサンからなる群より選ばれる少なくとも1つである、請求項1に記載のガスバリア性積層体。
  8.  前記重合体(X)が、ポリアクリル酸およびポリメタクリル酸から選ばれる少なくとも1種の重合体である、請求項1に記載のガスバリア性積層体。
  9.  前記重合体(X)の前記官能基に含まれる-COO-基の60モル%以上が前記金属イオンによって中和されている、請求項1に記載のガスバリア性積層体。
  10.  前記金属イオンが、カルシウムイオン、マグネシウムイオン、バリウムイオン、亜鉛イオン、鉄イオンおよびアルミニウムイオンからなる群より選ばれる少なくとも1つのイオンである、請求項1に記載のガスバリア性積層体。
  11.  前記ガスバリア性を有する層と水との接触角が20°以上である、請求項1に記載のガスバリア性積層体。
  12.  前記組成物が、前記化合物(L)および前記重合体(X)とは異なる化合物(Q)を含み、
     前記化合物(Q)が2つ以上の水酸基を含有する、請求項1に記載のガスバリア性積層体。
  13.  (i)カルボキシル基およびカルボン酸無水物基から選ばれる少なくとも1つの官能基を含む重合体(X)と、加水分解性を有する特性基を含有する少なくとも1種の化合物(L)の加水分解縮合物とを含む組成物からなる層を基材上に形成する工程と、
     (ii)2価以上の金属イオンを含む溶液に前記層を接触させる工程とを含み、
     前記化合物(L)は、加水分解性を有する特性基が結合した金属原子を含む少なくとも1種の化合物(A)を含み、
     前記組成物において、前記重合体(X)の前記官能基に含まれる-COO-基の少なくとも一部が、2つ以上のアミノ基を含有する化合物(P)によって中和および/または反応されており、
     前記組成物において、[前記化合物(P)に含まれるアミノ基の当量]/[前記重合体(X)の前記官能基に含まれる-COO-基の当量]の比が0.2/100~20.0/100の範囲にある、ガスバリア性積層体の製造方法。
  14.  前記化合物(L)は、加水分解性を有する特性基と、カルボキシル基との反応性を有する官能基で置換されたアルキル基とが結合している金属原子を含む少なくとも1種の化合物(B)を含む、請求項13に記載の製造方法。
  15.  前記(i)の工程は、
     (i-a)前記化合物(P)と酸(R)とを含む溶液(S)を調製する工程と、
     (i-b)前記化合物(L)を、加水分解、縮合して得られるオリゴマーを含む溶液(T)を調製する工程と、
     (i-c)前記溶液(S)と前記溶液(T)と前記重合体(X)とを含む溶液(U)を調製する工程と、
     (i-d)前記溶液(U)を基材に塗工して乾燥させることによって前記層を形成する工程と、を含む請求項13に記載の製造方法。
  16.  前記(i)の工程の後であって前記(ii)の工程の前および/または後に、前記層を120℃~240℃の温度で熱処理する工程をさらに含む、請求項13に記載の製造方法。
PCT/JP2009/057226 2008-04-09 2009-04-08 ガスバリア性積層体およびその製造方法 WO2009125801A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009550131A JP4486705B2 (ja) 2008-04-09 2009-04-08 ガスバリア性積層体およびその製造方法
AU2009234739A AU2009234739B2 (en) 2008-04-09 2009-04-08 Gas barrier layered product and method for producing the same
US12/937,076 US9327475B2 (en) 2008-04-09 2009-04-08 Gas barrier layered product and method for producing the same
KR1020107024990A KR101220103B1 (ko) 2008-04-09 2009-04-08 가스 배리어성 적층체 및 이의 제조방법
CN2009801131604A CN101990494B (zh) 2008-04-09 2009-04-08 阻气性层压体及其制备方法
EP09729601.6A EP2266793B1 (en) 2008-04-09 2009-04-08 Laminate having gas barrier properties, and manufacturing method therefor
ES09729601.6T ES2438987T3 (es) 2008-04-09 2009-04-08 Laminado que tiene propiedades de barrera para gases, y método para su fabricación

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-101173 2008-04-09
JP2008101173 2008-04-09
JP2008246190 2008-09-25
JP2008-246190 2008-09-25

Publications (1)

Publication Number Publication Date
WO2009125801A1 true WO2009125801A1 (ja) 2009-10-15

Family

ID=41161932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057226 WO2009125801A1 (ja) 2008-04-09 2009-04-08 ガスバリア性積層体およびその製造方法

Country Status (8)

Country Link
US (1) US9327475B2 (ja)
EP (1) EP2266793B1 (ja)
JP (1) JP4486705B2 (ja)
KR (1) KR101220103B1 (ja)
CN (1) CN101990494B (ja)
AU (1) AU2009234739B2 (ja)
ES (1) ES2438987T3 (ja)
WO (1) WO2009125801A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143008A (ja) * 2008-12-17 2010-07-01 Kuraray Co Ltd ラミネートチューブ容器
JP2011213037A (ja) * 2010-04-01 2011-10-27 Kohjin Co Ltd ガスバリア性フィルム及び製造方法
JP2013010857A (ja) * 2011-06-29 2013-01-17 Kohjin Holdings Co Ltd ガスバリア性フィルム及び製造方法
JP2013059930A (ja) * 2011-09-14 2013-04-04 Kohjin Holdings Co Ltd ガスバリア性フィルム及び製造方法
WO2015053340A1 (ja) * 2013-10-10 2015-04-16 東洋製罐グループホールディングス株式会社 水分バリア性の良好なガスバリア性積層体
WO2016186075A1 (ja) * 2015-05-21 2016-11-24 三井化学東セロ株式会社 ガスバリア性積層体の製造方法
WO2016186074A1 (ja) * 2015-05-18 2016-11-24 三井化学東セロ株式会社 ガスバリア性積層体
US20170341352A1 (en) * 2014-12-04 2017-11-30 Mitsui Chemicals Tohcello, Inc. Gas barrier polymer, gas barrier film, and gas barrier laminate
JP6365804B1 (ja) * 2016-11-18 2018-08-01 東洋製罐グループホールディングス株式会社 水分吸収用積層保護フィルム
WO2021132127A1 (ja) * 2019-12-27 2021-07-01 三井化学東セロ株式会社 ガスバリア用塗材、ガスバリア性フィルム、ガスバリア性積層体およびガスバリア性積層体の製造方法
JP2021107118A (ja) * 2019-12-27 2021-07-29 三井化学東セロ株式会社 ガスバリア性フィルムおよびガスバリア性積層体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102033299B1 (ko) * 2011-10-05 2019-10-17 주식회사 쿠라레 복합 구조체, 이를 사용한 포장 재료 및 성형품, 및 이들의 제조 방법 및 코팅액
DE102011121259B3 (de) 2011-12-15 2013-05-16 Fabian Walke Verfahren und Vorrichtung zur mobilen Trainingsdatenerfassung und Analyse von Krafttraining
DE102018214185A1 (de) * 2018-08-22 2020-02-27 Mitsubishi Polyester Film Gmbh Polyesterfolie mit Beschichtung
DE102019133681A1 (de) 2019-12-10 2021-06-10 Gühring KG Zerspanungswerkzeug und Verfahren zur Herstellung eines Zerspanungswerkzeuges
KR102432490B1 (ko) 2021-06-03 2022-08-17 주식회사 동서 투명증착 나일론을 이용한 즉석밥용 포장재 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053954A1 (ja) * 2003-12-03 2005-06-16 Kuraray Co., Ltd. ガスバリア性積層体および包装体ならびにガスバリア性積層体の製造方法
WO2006126511A1 (ja) * 2005-05-24 2006-11-30 Mitsui Chemicals, Inc. ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体
JP2008036914A (ja) * 2006-08-04 2008-02-21 Mitsui Chemicals Inc ガスバリア性積層フィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118543A (ja) 1993-10-21 1995-05-09 Kansai Shin Gijutsu Kenkyusho:Kk ガスバリア性組成物およびその用途
JP2000233478A (ja) 1998-12-18 2000-08-29 Tokuyama Corp 積層フィルム
JP2001310425A (ja) 2000-04-27 2001-11-06 Unitika Ltd ガスバリア性フィルム
JP2002326303A (ja) 2001-04-27 2002-11-12 Nippon Shokubai Co Ltd 気体バリア性積層フィルム
JP3856718B2 (ja) 2002-04-01 2006-12-13 レンゴー株式会社 ガスバリア性樹脂組成物及びこれから成形されるガスバリア性フィルム
FR2837829B1 (fr) * 2002-04-02 2005-08-26 Ahlstroem Oy Support enduit d'une couche a base de chitosane et procede de fabrication
JP2004244579A (ja) * 2003-02-17 2004-09-02 Kuraray Co Ltd ポリアミド成形品
US9006338B2 (en) * 2003-10-15 2015-04-14 Mitsui Takeda Chemicals, Inc. Aqueous resin composition having gas barrier properties and laminated film using the same
CN100457451C (zh) * 2003-12-03 2009-02-04 可乐丽股份有限公司 阻气性层压体和包装体以及阻气性层压体的制造方法
WO2006129619A1 (ja) * 2005-06-03 2006-12-07 Kuraray Co., Ltd. ガスバリア性積層体およびその製造方法ならびにそれを用いた包装体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053954A1 (ja) * 2003-12-03 2005-06-16 Kuraray Co., Ltd. ガスバリア性積層体および包装体ならびにガスバリア性積層体の製造方法
WO2006126511A1 (ja) * 2005-05-24 2006-11-30 Mitsui Chemicals, Inc. ガスバリア性組成物、コーティング膜およびそれらの製造方法、ならびに積層体
JP2008036914A (ja) * 2006-08-04 2008-02-21 Mitsui Chemicals Inc ガスバリア性積層フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2266793A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143008A (ja) * 2008-12-17 2010-07-01 Kuraray Co Ltd ラミネートチューブ容器
JP2011213037A (ja) * 2010-04-01 2011-10-27 Kohjin Co Ltd ガスバリア性フィルム及び製造方法
JP2013010857A (ja) * 2011-06-29 2013-01-17 Kohjin Holdings Co Ltd ガスバリア性フィルム及び製造方法
JP2013059930A (ja) * 2011-09-14 2013-04-04 Kohjin Holdings Co Ltd ガスバリア性フィルム及び製造方法
WO2015053340A1 (ja) * 2013-10-10 2015-04-16 東洋製罐グループホールディングス株式会社 水分バリア性の良好なガスバリア性積層体
JP2015096320A (ja) * 2013-10-10 2015-05-21 東洋製罐グループホールディングス株式会社 水分バリア性の良好なガスバリア性積層体
US9956748B2 (en) 2013-10-10 2018-05-01 Toyo Seikan Group Holdings, Ltd. Gas-barrier laminate having favorable water-barrier property
US20170341352A1 (en) * 2014-12-04 2017-11-30 Mitsui Chemicals Tohcello, Inc. Gas barrier polymer, gas barrier film, and gas barrier laminate
KR101929142B1 (ko) 2014-12-04 2018-12-13 미쓰이 가가쿠 토세로 가부시키가이샤 가스 배리어성 중합체, 가스 배리어성 필름 및 가스 배리어성 적층체
WO2016186074A1 (ja) * 2015-05-18 2016-11-24 三井化学東セロ株式会社 ガスバリア性積層体
JPWO2016186074A1 (ja) * 2015-05-18 2018-03-08 三井化学東セロ株式会社 ガスバリア性積層体
TWI711538B (zh) * 2015-05-18 2020-12-01 日商三井化學東賽璐股份有限公司 氣體阻擋性積層體
JPWO2016186075A1 (ja) * 2015-05-21 2018-03-01 三井化学東セロ株式会社 ガスバリア性積層体の製造方法
WO2016186075A1 (ja) * 2015-05-21 2016-11-24 三井化学東セロ株式会社 ガスバリア性積層体の製造方法
JP7002935B2 (ja) 2015-05-21 2022-01-20 三井化学東セロ株式会社 ガスバリア性積層体の製造方法
JP6365804B1 (ja) * 2016-11-18 2018-08-01 東洋製罐グループホールディングス株式会社 水分吸収用積層保護フィルム
WO2021132127A1 (ja) * 2019-12-27 2021-07-01 三井化学東セロ株式会社 ガスバリア用塗材、ガスバリア性フィルム、ガスバリア性積層体およびガスバリア性積層体の製造方法
JP2021107118A (ja) * 2019-12-27 2021-07-29 三井化学東セロ株式会社 ガスバリア性フィルムおよびガスバリア性積層体
JP7372147B2 (ja) 2019-12-27 2023-10-31 三井化学東セロ株式会社 ガスバリア性フィルムおよびガスバリア性積層体

Also Published As

Publication number Publication date
ES2438987T3 (es) 2014-01-21
KR20100134098A (ko) 2010-12-22
KR101220103B1 (ko) 2013-01-11
EP2266793B1 (en) 2013-11-27
AU2009234739B2 (en) 2012-02-09
CN101990494B (zh) 2013-08-21
EP2266793A1 (en) 2010-12-29
AU2009234739A1 (en) 2009-10-15
CN101990494A (zh) 2011-03-23
JPWO2009125801A1 (ja) 2011-08-04
JP4486705B2 (ja) 2010-06-23
US20110027581A1 (en) 2011-02-03
EP2266793A4 (en) 2013-01-23
US9327475B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP4486705B2 (ja) ガスバリア性積層体およびその製造方法
JP4463876B2 (ja) ガスバリア性積層体およびその製造方法
JP5139964B2 (ja) 輸液バッグ
JP5280166B2 (ja) 真空包装袋
JP5081139B2 (ja) ラミネートチューブ容器
JP5366751B2 (ja) 紙容器
JP5292085B2 (ja) スパウト付きパウチ
JP5241583B2 (ja) 真空断熱体
JP5366750B2 (ja) ラミネートチューブ容器
JP5436128B2 (ja) スパウト付きパウチ
JP5442382B2 (ja) 容器
JP5155102B2 (ja) 縦製袋充填シール袋
JP5481147B2 (ja) 輸液バッグ
JP5155142B2 (ja) 紙容器
JP5280275B2 (ja) ガソリンタンク
JP5155122B2 (ja) 容器用蓋材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113160.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009550131

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12937076

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009234739

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009729601

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107024990

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009234739

Country of ref document: AU

Date of ref document: 20090408

Kind code of ref document: A